JP2015221402A - Manufacturing method of rotor and manufacturing method of photoreceptor - Google Patents

Manufacturing method of rotor and manufacturing method of photoreceptor Download PDF

Info

Publication number
JP2015221402A
JP2015221402A JP2014106320A JP2014106320A JP2015221402A JP 2015221402 A JP2015221402 A JP 2015221402A JP 2014106320 A JP2014106320 A JP 2014106320A JP 2014106320 A JP2014106320 A JP 2014106320A JP 2015221402 A JP2015221402 A JP 2015221402A
Authority
JP
Japan
Prior art keywords
coating liquid
substrate
coating
resin
charge transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014106320A
Other languages
Japanese (ja)
Other versions
JP6394066B2 (en
Inventor
寛晃 小川
Hiroaki Ogawa
寛晃 小川
博 渋谷
Hiroshi Shibuya
博 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2014106320A priority Critical patent/JP6394066B2/en
Priority to CN201410638177.4A priority patent/CN105093865B/en
Publication of JP2015221402A publication Critical patent/JP2015221402A/en
Application granted granted Critical
Publication of JP6394066B2 publication Critical patent/JP6394066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To inhibit dripping of a coating liquid caused in an upper part of a base substance by the self-weight of the coating liquid applied to the base substance in an immersing manner.SOLUTION: A manufacturing method of a rotor includes: a first step where a cylindrical or columnar base substance is moved down to be immersed in a coating liquid and downward movement of the base substance is stopped when an upper part of the base substance is exposed from the coating liquid; a second step where the base substance is held in a stop position of the first step for a predetermined time period; a third step where the base substance is further moved down after the second step; and a fourth step where the base substance is pulled up from the coating liquid after the third step.

Description

本発明は、回転体の製造方法、感光体の製造方法に関する。   The present invention relates to a method for manufacturing a rotating body and a method for manufacturing a photoreceptor.

特許文献1には、感光体ドラムの基体に塗液(感光層)を塗工する塗工方法が開示されている。この塗工方法では、塗工槽に浸漬させた基体を、その基体の塗工域上部が液面上の空気に所定時間露出するように、一旦引き上げてから再浸漬させ、その後、基体の全体を塗工槽から引き上げる。   Patent Document 1 discloses a coating method in which a coating liquid (photosensitive layer) is applied to a substrate of a photosensitive drum. In this coating method, the substrate immersed in the coating tank is once pulled up and re-immersed so that the upper part of the coating area of the substrate is exposed to the air on the liquid surface for a predetermined time. Pull up from the coating tank.

特開2002−82454号公報JP 2002-82454 A

本発明は、基体に浸漬塗布された塗液の自重によって基体の上部で生じる液だれを抑制することを目的とする。   It is an object of the present invention to suppress dripping that occurs at the top of a substrate due to the weight of the coating liquid dip-coated on the substrate.

請求項1の発明は、円筒状又は円柱状の基体を下降させて塗液に浸漬し、該下降を該基体の上部が該塗液から露出する状態で停止する第1工程と、該第1工程の停止位置で該基体を予め定められた時間保持する第2工程と、該第2工程の後、該基体をさらに下降させる第3工程と、該第3工程の後、該基体を該塗液から引き上げる第4工程と、を有する。   The first aspect of the present invention is a first step in which a cylindrical or columnar substrate is lowered and immersed in a coating liquid, and the lowering is stopped in a state where the upper portion of the substrate is exposed from the coating liquid; A second step of holding the substrate at a process stop position for a predetermined time, a third step of further lowering the substrate after the second step, and a coating of the substrate after the third step. A fourth step of lifting from the liquid.

請求項2の発明では、前記第3工程で下降される位置まで途中で停止せずに前記基体を下降させた後に該基体を引き上げて、前記基体の上部で前記塗液の自重によって液だれが生じる範囲を予め測定し、前記第1工程は、該範囲内に前記塗液の液面が位置するように、前記下降を停止する。   In the invention of claim 2, the substrate is lifted after being lowered without stopping halfway to the position lowered in the third step, and the dripping is caused by the weight of the coating liquid above the substrate. The generated range is measured in advance, and the first step stops the descent so that the liquid level of the coating liquid is located within the range.

請求項3の発明は、請求項1又は2の製造方法によって前記基体の外周に感光層が形成される。   According to a third aspect of the present invention, a photosensitive layer is formed on the outer periphery of the substrate by the manufacturing method of the first or second aspect.

本発明の請求項1の製造方法によれば、第3工程で下降される位置まで途中で停止せずに基体を下降させた後に該基体を引き上げる比較例に比べ、基体に浸漬塗布された塗液の自重によって基体の上部で生じる液だれを抑制できる。   According to the manufacturing method of claim 1 of the present invention, compared with the comparative example in which the substrate is pulled up without being stopped halfway to the position lowered in the third step and then the substrate is pulled up, the coating applied by dip coating on the substrate is performed. It is possible to suppress dripping that occurs at the top of the substrate due to the weight of the liquid.

本発明の請求項2の製造方法によれば、本製造方法における範囲の範囲外に塗液の液面が位置するように、基体の下降を停止する比較例に比べ、基体に浸漬塗布された塗液の自重によって基体の上部で生じる液だれを抑制できる。   According to the manufacturing method of claim 2 of the present invention, the substrate was dip-coated on the substrate as compared with the comparative example in which the descent of the substrate was stopped so that the liquid level of the coating liquid was positioned outside the range of the manufacturing method. The dripping generated at the upper part of the substrate due to the weight of the coating liquid can be suppressed.

本発明の請求項3の製造方法によれば、第3工程で下降される位置まで途中で停止せずに基体を下降させた後に該基体を引き上げる比較例に比べ、基体の軸方向端部における感光層の薄膜化を抑制できる。   According to the manufacturing method of claim 3 of the present invention, compared with the comparative example in which the substrate is pulled up without being stopped halfway to the position lowered in the third step, and then the substrate is pulled up, the axial end portion of the substrate is Thinning of the photosensitive layer can be suppressed.

本実施形態に係る浸漬塗布装置の構成を示す概略図である。It is the schematic which shows the structure of the dip coating apparatus which concerns on this embodiment. 本実施形態に係る感光体の構成を示す概略図である。FIG. 2 is a schematic diagram illustrating a configuration of a photoconductor according to an exemplary embodiment. 本実施形態に係る製造方法を示す概略図である。It is the schematic which shows the manufacturing method which concerns on this embodiment. 本実施形態に係る製造方法を示す概略図である。It is the schematic which shows the manufacturing method which concerns on this embodiment. 本実施形態に係る製造方法において、粘度が上昇した塗液の動作を示す概略図である。It is the schematic which shows operation | movement of the coating liquid with which the viscosity rose in the manufacturing method which concerns on this embodiment. 本実施形態及び比較例に係る製造方法における液だれを示す概略図である。It is the schematic which shows the dripping in the manufacturing method which concerns on this embodiment and a comparative example. 実施例及び比較例の評価結果を示す表である。It is a table | surface which shows the evaluation result of an Example and a comparative example.

以下に、本発明に係る実施形態の一例を図面に基づき説明する。   Below, an example of an embodiment concerning the present invention is described based on a drawing.

(浸漬塗布装置10)
まず、後述の製造方法に用いられる浸漬塗布装置10について説明する。図1は、浸漬塗布装置の構成を示す概略図である。
(Dip coater 10)
First, the dip coating apparatus 10 used for the manufacturing method mentioned later is demonstrated. FIG. 1 is a schematic view showing the configuration of a dip coating apparatus.

浸漬塗布装置10は、図1に示されるように、基体32が浸漬される塗液L(塗布液)が収容された塗液槽12と、塗液Lが貯留された貯留部14と、貯留部14の塗液Lを塗液槽12に供給する供給ポンプ16と、塗液槽12の上部から溢れ出た塗液Lを受ける受け部18と、基体32が塗液槽12の塗液Lに浸漬されるように基体32を昇降させる昇降装置20と、を備えている。   As shown in FIG. 1, the dip coating apparatus 10 includes a coating liquid tank 12 in which a coating liquid L (coating liquid) into which the base 32 is immersed is stored, a storage unit 14 in which the coating liquid L is stored, and a storage. The supply pump 16 that supplies the coating liquid L of the section 14 to the coating liquid tank 12, the receiving section 18 that receives the coating liquid L overflowing from the upper part of the coating liquid tank 12, and the coating liquid L of the coating liquid tank 12. And an elevating device 20 that elevates and lowers the base body 32 so as to be immersed in the apparatus.

この浸漬塗布装置10では、塗液Lが、供給ポンプ16により、塗液槽12の下部の供給口12Aを通じて、貯留部14から塗液槽12に供給されるようになっている。さらに、塗液槽12の開放された上部から溢れ出た塗液Lを受け部18が受け、受け部18が受けた塗液Lが貯留部14に戻るようになっている。このように、塗液Lが循環するようになっている。   In the dip coating apparatus 10, the coating liquid L is supplied from the storage unit 14 to the coating liquid tank 12 through the supply port 12 </ b> A at the lower part of the coating liquid tank 12 by the supply pump 16. Further, the receiving part 18 receives the coating liquid L overflowing from the opened upper part of the coating liquid tank 12, and the coating liquid L received by the receiving part 18 returns to the storage part 14. Thus, the coating liquid L circulates.

さらに、浸漬塗布装置10では、昇降装置20の支持部22で基体32の上部(軸方向端部)を支持し、昇降装置20の昇降運動により、基体32が、塗液槽12の塗液Lに対して浸漬されると共に塗液Lから引き上げられて、塗液Lが基体32の外周に塗布されるようになっている。   Further, in the dip coating apparatus 10, the upper portion (axial end portion) of the substrate 32 is supported by the support portion 22 of the lifting device 20, and the substrate 32 is applied to the coating liquid L in the coating tank 12 by the lifting motion of the lifting device 20. The coating liquid L is applied to the outer periphery of the substrate 32 by being dipped in the coating liquid L and pulled up from the coating liquid L.

(感光体の構成及びその構成材料)
次に、後述の製造方法の製造対象である感光体(回転体の一例)の構成及びその構成材料について説明する。図2は、感光体の構成を示す概略図である。
(Configuration of photoconductor and its constituent materials)
Next, a configuration of a photoconductor (an example of a rotating body) that is a manufacturing target of a manufacturing method that will be described later and its constituent materials will be described. FIG. 2 is a schematic view showing the structure of the photoreceptor.

感光体30は、帯電、露光、現像、転写、定着などの工程を経て画像を形成する電子写真式の画像形成装置(レーザプリンタ等)に用いられる感光体(感光体ドラム)である。感光体30は、具体的には、図2に示されるように、円筒状の基体32と、感光層50と、を有している。感光層50は、下引層34と、電荷発生層36と、電荷輸送層38と、表面層40(オーバーコート層)と、を有して構成されている。下引層34、電荷発生層36、電荷輸送層38及び表面層40は、この順で、基体32の外周面に積層されている。以下、各部(各層)の構成材料について説明する。   The photoreceptor 30 is a photoreceptor (photoreceptor drum) used in an electrophotographic image forming apparatus (laser printer or the like) that forms an image through processes such as charging, exposure, development, transfer, and fixing. Specifically, as shown in FIG. 2, the photoconductor 30 includes a cylindrical base 32 and a photosensitive layer 50. The photosensitive layer 50 includes an undercoat layer 34, a charge generation layer 36, a charge transport layer 38, and a surface layer 40 (overcoat layer). The undercoat layer 34, the charge generation layer 36, the charge transport layer 38, and the surface layer 40 are laminated on the outer peripheral surface of the base 32 in this order. Hereinafter, the constituent material of each part (each layer) will be described.

(基体32)
基体32としては、例えば、導電性を有する材料が用いられる。基体32としては、具体的には、例えば、アルミニウム、銅、ステンレス、クロム、ニッケル等の金属材料が挙げられる。なお、「導電性」とは、例えば、体積抵抗率が1013Ωcm未満であることをいう。
(Substrate 32)
As the base 32, for example, a conductive material is used. Specific examples of the substrate 32 include metal materials such as aluminum, copper, stainless steel, chromium, and nickel. “Conductive” means that the volume resistivity is less than 10 13 Ωcm, for example.

(下引層34)
下引層34は、例えば、結着樹脂に無機粒子を含有した層として構成される。なお、下引層34には、公知の添加剤が含まれていてもよい。
(Underlayer 34)
The undercoat layer 34 is configured as a layer containing inorganic particles in a binder resin, for example. The undercoat layer 34 may contain a known additive.

無機粒子としては、酸化錫、酸化チタン、酸化亜鉛、酸化ジルコニウム等の無機粒子(導電性金属酸化物)が挙げられる。   Examples of the inorganic particles include inorganic particles (conductive metal oxide) such as tin oxide, titanium oxide, zinc oxide, and zirconium oxide.

結着樹脂としては、例えばポリビニルブチラール等のアセタール樹脂、ポリビニルアルコール樹脂、カゼイン、ポリアミド樹脂、セルロース樹脂、ゼラチン、ポリウレタン樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリビニルアセテート樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、シリコーン−アルキッド樹脂、フェノール樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂、ウレタン樹脂等の公知の高分子樹脂化合物、また電荷輸送性基を有する電荷輸送性樹脂やポリアニリン等の導電性樹脂等が挙げられる。   Examples of the binder resin include acetal resins such as polyvinyl butyral, polyvinyl alcohol resin, casein, polyamide resin, cellulose resin, gelatin, polyurethane resin, polyester resin, methacrylic resin, acrylic resin, polyvinyl chloride resin, polyvinyl acetate resin, chloride Known polymer resin compounds such as vinyl-vinyl acetate-maleic anhydride resin, silicone resin, silicone-alkyd resin, phenol resin, phenol-formaldehyde resin, melamine resin, urethane resin, and charge transport property having a charge transporting group Examples thereof include conductive resins such as resins and polyaniline.

下引層34の膜厚は、例えば、15μm以上50μm以下に設定される。   The film thickness of the undercoat layer 34 is set to, for example, 15 μm or more and 50 μm or less.

(電荷発生層36)
電荷発生層36は、例えば、結着樹脂に電荷発生材料を含有する層として構成される。なお、電荷発生層36には、公知の添加剤が含まれていてもよい。
(Charge generation layer 36)
The charge generation layer 36 is configured, for example, as a layer containing a charge generation material in a binder resin. The charge generation layer 36 may contain a known additive.

電荷発生材料としては、ビスアゾ、トリスアゾ等のアゾ顔料、ジブロモアントアントロン等の縮環芳香族顔料、ペリレン顔料、ピロロピロール顔料、フタロシアニン顔料、酸化亜鉛、三方晶系セレン等が挙げられる。   Examples of the charge generation material include azo pigments such as bisazo and trisazo, condensed aromatic pigments such as dibromoanthanthrone, perylene pigments, pyrrolopyrrole pigments, phthalocyanine pigments, zinc oxide, and trigonal selenium.

結着樹脂としては、ポリ−N−ビニルカルバゾール、ポリビニルアントラセン、ポリビニルピレン、ポリシラン等の有機光導電性ポリマーから選択してもよい。望ましい結着樹脂としては、ポリビニルブチラール樹脂、ポリアリレート樹脂(ビスフェノール類と芳香族2価カルボン酸の重縮合体等)、ポリカーボネート樹脂、ポリエステル樹脂、フェノキシ樹脂、塩化ビニル−酢酸ビニル共重合体、ポリアミド樹脂、アクリル樹脂、ポリアクリルアミド樹脂、ポリビニルピリジン樹脂、セルロース樹脂、ウレタン樹脂、エポキシ樹脂、カゼイン、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂等が挙げられる。   The binder resin may be selected from organic photoconductive polymers such as poly-N-vinyl carbazole, polyvinyl anthracene, polyvinyl pyrene and polysilane. Desirable binder resins include polyvinyl butyral resins, polyarylate resins (polycondensates of bisphenols and aromatic divalent carboxylic acids, etc.), polycarbonate resins, polyester resins, phenoxy resins, vinyl chloride-vinyl acetate copolymers, polyamides. Resins, acrylic resins, polyacrylamide resins, polyvinyl pyridine resins, cellulose resins, urethane resins, epoxy resins, caseins, polyvinyl alcohol resins, polyvinyl pyrrolidone resins, and the like.

電荷発生層36の膜厚は、例えば、0.1μm以上5.0μm以下に設定される。   The film thickness of the charge generation layer 36 is set to, for example, 0.1 μm or more and 5.0 μm or less.

(電荷輸送層38)
電荷輸送層38は、例えば、結着樹脂に電荷輸送材料を含有する層として構成される。なお、電荷輸送層38には、公知の添加剤が含まれていてもよい。
(Charge transport layer 38)
The charge transport layer 38 is configured as, for example, a layer containing a charge transport material in a binder resin. The charge transport layer 38 may contain a known additive.

電荷輸送材料としては、公知のものが挙げられ、例えば、2,5−ビス(p−ジエチルアミノフェニル)−1,3,4−オキサジアゾール等のオキサジアゾール誘導体、1,3,5−トリフェニル−ピラゾリン、1−[ピリジル−(2)]−3−(p−ジエチルアミノスチリル)−5−(p−ジエチルアミノスチリル)ピラゾリン等のピラゾリン誘導体、トリフェニルアミン、トリス[4−(4,4−ジフェニル−1,3−ブタジエニル)フェニル]アミン、N,N′−ビス(3,4−ジメチルフェニル)ビフェニル−4−アミン、トリ(p−メチルフェニル)アミニル−4−アミン、ジベンジルアニリン等の芳香族第3級アミノ化合物、N,N′−ビス(3−メチルフェニル)−N,N′−ジフェニルベンジジン等の芳香族第3級ジアミノ化合物、3−(4′−ジメチルアミノフェニル)−5,6−ジ−(4′−メトキシフェニル)−1,2,4−トリアジン等の1,2,4−トリアジン誘導体、4−ジエチルアミノベンズアルデヒド−1,1−ジフェニルヒドラゾン等のヒドラゾン誘導体、2−フェニル−4−スチリル−キナゾリン等のキナゾリン誘導体、6−ヒドロキシ−2,3−ジ(p−メトキシフェニル)ベンゾフラン等のベンゾフラン誘導体、p−(2,2−ジフェニルビニル)−N,N−ジフェニルアニリン等のα−スチルベン誘導体、エナミン誘導体、N−エチルカルバゾール等のカルバゾール誘導体、ポリ−N−ビニルカルバゾール及びその誘導体などの正孔輸送物質、クロラニル、ブロモアントラキノン等のキノン系化合物、テトラシアノキノジメタン系化合物、2,4,7−トリニトロフルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン等のフルオレノン化合物、キサントン系化合物、チオフェン化合物等の電子輸送物質が挙げられる。   Examples of the charge transport material include known materials, such as oxadiazole derivatives such as 2,5-bis (p-diethylaminophenyl) -1,3,4-oxadiazole, Phenyl-pyrazolin, pyrazoline derivatives such as 1- [pyridyl- (2)]-3- (p-diethylaminostyryl) -5- (p-diethylaminostyryl) pyrazoline, triphenylamine, tris [4- (4,4- Diphenyl-1,3-butadienyl) phenyl] amine, N, N′-bis (3,4-dimethylphenyl) biphenyl-4-amine, tri (p-methylphenyl) aminyl-4-amine, dibenzylaniline, etc. Aromatic tertiary amino compounds, aromatic tertiary diaminos such as N, N′-bis (3-methylphenyl) -N, N′-diphenylbenzidine Compound, 1,2,4-triazine derivatives such as 3- (4′-dimethylaminophenyl) -5,6-di- (4′-methoxyphenyl) -1,2,4-triazine, 4-diethylaminobenzaldehyde Hydrazone derivatives such as -1,1-diphenylhydrazone, quinazoline derivatives such as 2-phenyl-4-styryl-quinazoline, benzofuran derivatives such as 6-hydroxy-2,3-di (p-methoxyphenyl) benzofuran, p- ( 2,2-diphenylvinyl) -N, N-diphenylaniline and other α-stilbene derivatives, enamine derivatives, carbazole derivatives such as N-ethylcarbazole, hole transport materials such as poly-N-vinylcarbazole and its derivatives, chloranil , Quinone compounds such as bromoanthraquinone, tetracyanoquinodimethane compounds And electron transport materials such as fluorenone compounds such as 2,4,7-trinitrofluorenone and 2,4,5,7-tetranitro-9-fluorenone, xanthone compounds and thiophene compounds.

結着樹脂としては、例えば、ポリカーボネート樹脂(例えば、ビスフェノールA若しくはビスフェノールZタイプ等のポリカーボネート樹脂)、アクリル樹脂、メタクリル樹脂、ポリアリレート樹脂、ポリエステル樹脂、ポリ塩化ビニル樹脂、ポリスチレン樹脂、アクリロニトリル−スチレン共重合体樹脂、アクリロニトリル−ブタジエン共重合体樹脂、ポリビニルアセテート樹脂、ポリビニルホルマール樹脂、ポリスルホン樹脂、スチレン−ブタジエン共重合体樹脂、塩化ビニリデン−アクリルニトリル共重合体樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、フェノール−ホルムアルデヒド樹脂、ポリアクリルアミド樹脂、ポリアミド樹脂、塩素ゴム等の絶縁性樹脂、及びポリビニルカルバゾール、ポリビニルアントラセン、ポリビニルピレン等の有機光導電性ポリマー等が挙げられる。   Examples of the binder resin include polycarbonate resin (for example, polycarbonate resin such as bisphenol A or bisphenol Z type), acrylic resin, methacrylic resin, polyarylate resin, polyester resin, polyvinyl chloride resin, polystyrene resin, and acrylonitrile-styrene. Polymer resin, acrylonitrile-butadiene copolymer resin, polyvinyl acetate resin, polyvinyl formal resin, polysulfone resin, styrene-butadiene copolymer resin, vinylidene chloride-acrylonitrile copolymer resin, vinyl chloride-vinyl acetate-maleic anhydride Resin, silicone resin, phenol-formaldehyde resin, polyacrylamide resin, polyamide resin, insulating resin such as chlorinated rubber, and polyvinylcarbazole, polyvinyl alcohol Anthracene, organic photoconductive polymers such as polyvinyl pyrene, and the like.

電荷輸送層38の膜厚は、例えば、5μm以上50μm以下に設定される。   The film thickness of the charge transport layer 38 is set to, for example, 5 μm or more and 50 μm or less.

(表面層40)
表面層40は、例えば、結着樹脂及びフッ素系粒子を含んで構成されている。耐摩耗性の観点から、結着樹脂として硬化性の樹脂が用いられ、トナーの転写性向上の観点から、フッ素系粒子が配合されている。なお、表面層40には、公知の添加剤が含まれていてもよい。
(Surface layer 40)
The surface layer 40 includes, for example, a binder resin and fluorine-based particles. From the viewpoint of abrasion resistance, a curable resin is used as the binder resin, and from the viewpoint of improving toner transferability, fluorine-based particles are blended. The surface layer 40 may contain a known additive.

結着樹脂としては、例えば、架橋性の電荷輸送材料が架橋した架橋物が挙げられる。   Examples of the binder resin include a cross-linked product obtained by cross-linking a cross-linkable charge transport material.

フッ素系粒子を構成する材料としては、フッ素原子を含有する樹脂であれば特に限定されるものではないが、例えば、4フッ化エチレン樹脂(PTFE)、3フッ化塩化エチレン樹脂、6フッ化プロピレン樹脂、フッ化ビニル樹脂、フッ化ビニリデン樹脂、2フッ化2塩化エチレン樹脂、及びそれらの共重合体の中から選ばれる1種又は2種以上から構成される。   The material constituting the fluorine-based particles is not particularly limited as long as it is a resin containing a fluorine atom. For example, tetrafluoroethylene resin (PTFE), trifluorinated ethylene resin, hexafluoropropylene It is comprised from 1 type (s) or 2 or more types chosen from resin, a vinyl fluoride resin, a vinylidene fluoride resin, a 2 difluorinated ethylene chloride resin, and those copolymers.

(感光体の製造方法)
次に、感光体(回転体の一例)の製造方法について説明する。感光体の製造方法は、下引層形成工程、電荷発生層形成工程、電荷輸送層形成工程、表面層形成工程を有している。
(Photoconductor manufacturing method)
Next, a method for manufacturing a photoreceptor (an example of a rotating body) will be described. The method for producing a photoreceptor includes an undercoat layer forming step, a charge generation layer forming step, a charge transport layer forming step, and a surface layer forming step.

(下引層形成工程)
下引層形成工程では、基体32の外周に下引層34を形成する。具体的には、例えば、下引層34の前述の構成材料を溶媒(分散媒)に加えた塗液を基体32に塗布して、当該塗液による塗膜を乾燥させることで、基体32に下引層34を形成する。
(Undercoat layer forming process)
In the undercoat layer forming step, the undercoat layer 34 is formed on the outer periphery of the substrate 32. Specifically, for example, a coating liquid obtained by adding the above-described constituent materials of the undercoat layer 34 to a solvent (dispersion medium) is applied to the base 32, and a coating film formed by the coating liquid is dried, whereby the base 32 is coated. An undercoat layer 34 is formed.

塗液を基体32に塗布する方法としては、例えば、浸漬塗布法、突き上げ塗布法、ワイヤーバー塗布法、スプレー塗布法、ブレード塗布法、ナイフ塗布法、カーテン塗布法等の公知の方法が用いられる。   As a method for applying the coating liquid to the substrate 32, known methods such as a dip coating method, a push-up coating method, a wire bar coating method, a spray coating method, a blade coating method, a knife coating method, and a curtain coating method are used. .

また、塗液を調製するための溶媒(分散媒)としては、公知の有機溶剤、例えばアルコール系、芳香族系、ハロゲン化炭化水素系、ケトン系、ケトンアルコール系、エーテル系、エステル系等から選択される。溶媒としては、具体的には、例えば、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、ベンジルアルコール、メチルセルソルブ、エチルセルソルブ、アセトン、メチルエチルケトン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸n−ブチル、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルム、クロルベンゼン、トルエン等の有機溶剤が用いられる。また、これらの溶剤は、単独または2種以上混合して用いてもよい。   Moreover, as a solvent (dispersion medium) for preparing the coating liquid, known organic solvents such as alcohols, aromatics, halogenated hydrocarbons, ketones, ketone alcohols, ethers, esters, etc. Selected. Specific examples of the solvent include methanol, ethanol, n-propanol, iso-propanol, n-butanol, benzyl alcohol, methyl cellosolve, ethyl cellosolve, acetone, methyl ethyl ketone, cyclohexanone, methyl acetate, ethyl acetate, Organic solvents such as n-butyl acetate, dioxane, tetrahydrofuran, methylene chloride, chloroform, chlorobenzene and toluene are used. Moreover, you may use these solvents individually or in mixture of 2 or more types.

また、液中に下引層34の構成材料を分散させる場合の方法としては、例えば、ボールミル、振動ボールミル、アトライター、サンドミル、横型サンドミル等のメディア分散機や、攪拌、超音波分散機、ロールミル、高圧ホモジナイザー等のメディアレス分散機を用いた公知の分散方法が挙げられる。   In addition, as a method for dispersing the constituent material of the undercoat layer 34 in the liquid, for example, a media disperser such as a ball mill, a vibration ball mill, an attritor, a sand mill, a horizontal sand mill, an agitator, an ultrasonic disperser, a roll mill And a known dispersion method using a medialess disperser such as a high-pressure homogenizer.

(電荷発生層形成工程)
電荷発生層形成工程では、基体32に形成された下引層34の表面上に電荷発生層36を形成する。具体的には、例えば、電荷発生層36の前述の構成材料を溶媒(分散媒)に加えた塗液を、基体32に形成された下引層34の表面上に塗布して、当該塗液による塗膜を乾燥させることで、下引層34の表面上に電荷発生層36を形成する。
(Charge generation layer forming process)
In the charge generation layer forming step, the charge generation layer 36 is formed on the surface of the undercoat layer 34 formed on the substrate 32. Specifically, for example, a coating liquid obtained by adding the above-described constituent materials of the charge generation layer 36 to a solvent (dispersion medium) is applied onto the surface of the undercoat layer 34 formed on the base 32, and the coating liquid is applied. The charge generation layer 36 is formed on the surface of the undercoat layer 34 by drying the coating film.

塗液を下引層34の表面上に塗布する方法としては、下引層34を形成する場合と同様に、公知の塗布方法が用いられる。塗液を調製するための溶媒(分散媒)としては、下引層34を形成するための塗液と同様に、例えば、公知の有機溶剤が用いられる。液中に電荷発生層36の構成材料を分散させる場合の方法としては、下引層34を形成するための塗液の場合と同様に、公知の分散方法が挙げられる。   As a method of applying the coating liquid onto the surface of the undercoat layer 34, a known application method is used as in the case of forming the undercoat layer 34. As the solvent (dispersion medium) for preparing the coating liquid, for example, a known organic solvent is used in the same manner as the coating liquid for forming the undercoat layer 34. As a method for dispersing the constituent material of the charge generation layer 36 in the liquid, a known dispersion method may be used as in the case of the coating liquid for forming the undercoat layer 34.

(電荷輸送層形成工程)
電荷輸送層形成工程では、図1に示す浸漬塗布装置10を用いた浸漬塗布方法により、下引層34(図2参照)及び電荷発生層36(図2参照)が形成された基体32の外周に、電荷輸送層38(図2参照)の前述の構成材料を溶媒(分散媒)に加えた塗液(塗布液)を塗布し、電荷輸送層38を形成する。
(Charge transport layer forming step)
In the charge transport layer forming step, the outer periphery of the substrate 32 on which the undercoat layer 34 (see FIG. 2) and the charge generation layer 36 (see FIG. 2) are formed by the dip coating method using the dip coating apparatus 10 shown in FIG. A coating liquid (coating liquid) obtained by adding the above-described constituent materials of the charge transport layer 38 (see FIG. 2) to a solvent (dispersion medium) is applied to form the charge transport layer 38.

なお、塗液を調製するための溶媒(分散媒)としては、下引層34を形成するための塗液と同様に、例えば、公知の有機溶剤が用いられる。液中に電荷輸送層38の構成材料を分散させる場合の方法としては、下引層34を形成するための塗液の場合と同様に、公知の分散方法が挙げられる。   In addition, as a solvent (dispersion medium) for preparing the coating liquid, for example, a known organic solvent is used in the same manner as the coating liquid for forming the undercoat layer 34. As a method for dispersing the constituent material of the charge transport layer 38 in the liquid, a known dispersion method may be used as in the case of the coating liquid for forming the undercoat layer 34.

電荷輸送層形成工程は、具体的には、停止工程(第1工程の一例)、保持工程(第2工程の一例)、下降工程(第3工程の一例)及び引上工程(第4工程の一例)を有している。なお、少なくとも、保持工程において、浸漬塗布装置10の供給ポンプ16が停止し、貯留部14から塗液槽12への塗液Lの供給が停止している。   Specifically, the charge transport layer forming process includes a stop process (an example of the first process), a holding process (an example of the second process), a descending process (an example of the third process), and a pulling process (an example of the fourth process). Example). At least in the holding step, the supply pump 16 of the dip coating apparatus 10 is stopped, and the supply of the coating liquid L from the storage unit 14 to the coating liquid tank 12 is stopped.

停止工程では、図3(A)に示されるように、下引層34及び電荷発生層36が形成された基体32を下降させて、該基体32を塗液Lに浸漬する。具体的には、基体32の上部を浸漬塗布装置10の支持部22で支持し、その基体32を、昇降装置20(図1参照)により、塗液Lが収容された塗液槽12の中へ下降させる。そして、図3(B)に示されるように、基体32の上部が塗液Lから露出する状態で、基体32の下降を停止する。   In the stopping step, as shown in FIG. 3A, the base 32 on which the undercoat layer 34 and the charge generation layer 36 are formed is lowered and the base 32 is immersed in the coating liquid L. Specifically, the upper portion of the substrate 32 is supported by the support portion 22 of the dip coating apparatus 10, and the substrate 32 is placed in the coating liquid tank 12 containing the coating liquid L by the lifting device 20 (see FIG. 1). To lower. Then, as shown in FIG. 3B, the lowering of the base 32 is stopped in a state where the upper part of the base 32 is exposed from the coating liquid L.

保持工程では、停止工程における停止位置(図3(B)に示す位置)で、該基体32を予め定められた規定時間保持する。このとき、基体32は、図中の二点鎖線Aで示される第1浸漬位置(浸漬部分)まで浸漬されている。   In the holding step, the substrate 32 is held for a predetermined specified time at the stop position (the position shown in FIG. 3B) in the stop step. At this time, the base | substrate 32 is immersed to the 1st immersion position (immersion part) shown by the dashed-two dotted line A in a figure.

この第1浸漬位置は、例えば、以下のように設定される。すなわち、下降途中で停止することなく(停止位置(図3(B)に示す位置)での停止を行わずに)、下降工程における後述の最下位置(図4(A)に示す位置)に基体32を下降させた後に基体32を引き上げる第1比較例の場合(図6(A)参照)において、基体32の上部で塗液Lの自重によって液だれが生じる範囲(図6(A)のDの範囲)を予め測定し、その範囲内に、第1浸漬位置を設定する。すなわち、当該範囲内に塗液Lの液面(上面)が位置するように、停止工程において、基体32の下降を停止するようになっている。   For example, the first immersion position is set as follows. That is, without stopping in the middle of the descent (without stopping at the stop position (the position shown in FIG. 3B)), the lowermost position (the position shown in FIG. 4A) described later in the descent process. In the case of the first comparative example in which the substrate 32 is pulled up after the substrate 32 is lowered (see FIG. 6A), a range in which dripping occurs due to the weight of the coating liquid L above the substrate 32 (in FIG. 6A). D range) is measured in advance, and the first immersion position is set within the range. That is, the descent of the base 32 is stopped in the stopping step so that the liquid surface (upper surface) of the coating liquid L is located within the range.

第1比較例における液だれは、塗液Lによる塗膜の上端から特定の範囲で生じるものであり、基体32の軸方向中央部における膜厚よりも、膜厚が薄くなった範囲を、液だれが生じた範囲とする。なお、例えば、渦電流膜厚測定装置にて、基体32の90°毎の周方向の4か所で測定した測定値の平均値を、膜厚とする。   The liquid dripping in the first comparative example occurs in a specific range from the upper end of the coating film by the coating liquid L, and the range in which the film thickness is thinner than the film thickness in the axial central portion of the substrate 32 is the liquid. It is the range where anyone has occurred. For example, an average value of measured values measured at four locations in the circumferential direction of the base body 32 every 90 ° by the eddy current film thickness measurement device is defined as a film thickness.

当該範囲(図6(A)のDの範囲)の上下長さは、基体32の上下方向長さが300〜350mmである場合において、例えば、20mmとされる。なお、塗液Lの粘度によって液だれの程度は変化するため、当該範囲(図6(A)のDの範囲)の上下長さは、塗液Lの粘度によって、変化しうる。   The vertical length of the range (the range D in FIG. 6A) is, for example, 20 mm when the vertical length of the base body 32 is 300 to 350 mm. Since the degree of dripping varies depending on the viscosity of the coating liquid L, the vertical length of the range (the range of D in FIG. 6A) can vary depending on the viscosity of the coating liquid L.

また、保持工程において、基体32を規定時間保持するのは、塗液Lの液面(気液界面)における溶媒の蒸発によって塗液Lの粘度を、塗液Lの液面(気液界面)で局所的に上昇させるためであり、前記規定時間は、例えば、2秒以上20秒以下の範囲で設定される。   In the holding step, the substrate 32 is held for a specified time because the viscosity of the coating liquid L is evaporated by evaporation of the solvent on the liquid surface (gas-liquid interface) of the coating liquid L, and the liquid surface (gas-liquid interface) of the coating liquid L. The specified time is set in a range of 2 seconds to 20 seconds, for example.

規定時間の下限は、保持工程において塗液Lの溶媒が蒸発して、要求される液だれの抑制効果を発揮するのに必要な粘度に上昇するのに必要な時間によって設定される。塗液Lの粘度がほとんど上昇していない状態では、自重による液だれが生じてしまうためである。   The lower limit of the specified time is set by the time required for the solvent of the coating liquid L to evaporate in the holding step and to increase to a viscosity necessary for exhibiting the required dripping suppression effect. This is because in the state where the viscosity of the coating liquid L has hardly increased, dripping occurs due to its own weight.

一方、規定時間の上限は、基体32が塗液Lから引き上げられた際に(引上工程)、溶媒の蒸発による気泡の塗液Lからの排出が確保できる粘度となるように設定される。塗液Lの粘度が上昇すれば、気泡の移動が制限されると共に、塗液Lが流れにくく厚膜化されるため、塗液Lの粘度が高すぎると、気泡の塗液Lからの排出が阻害される。   On the other hand, the upper limit of the specified time is set so that when the substrate 32 is pulled up from the coating liquid L (lifting step), the viscosity is such that air bubbles can be discharged from the coating liquid L due to evaporation of the solvent. If the viscosity of the coating liquid L increases, the movement of the bubbles is restricted, and the coating liquid L does not flow easily and is thickened. If the viscosity of the coating liquid L is too high, the bubbles are discharged from the coating liquid L. Is inhibited.

なお、塗液Lの溶媒の沸点(揮発性)によって、経過時間当たりの粘度の上昇度は変化するため、規定時間は、塗液Lの溶媒の沸点(揮発性)によって変化しうるが、溶媒として公知の有機溶剤を用いた塗液Lでは、2秒以上20秒以下の範囲であれば、要求される液だれの抑制効果を発揮すると共に、気泡の排出が確保できる粘度に上昇する。   The degree of increase in viscosity per elapsed time varies depending on the boiling point (volatility) of the solvent of the coating liquid L, and thus the specified time can vary depending on the boiling point (volatility) of the solvent of the coating liquid L. In the coating liquid L using a known organic solvent, if it is in the range of 2 seconds or more and 20 seconds or less, the required dripping suppression effect is exhibited and the viscosity rises to ensure the discharge of bubbles.

保持工程の後に、下降工程が実施される。下降工程では、図4(A)に示されるように、基体32における保持工程で露出していた上部の一部が、塗液Lに浸漬するまで基体32を下降させる。これにより、基体32は、図中の二点鎖線Bで示される第2浸漬位置まで浸漬される。基体32の第2浸漬位置まで浸漬されたとき、基体32が電荷輸送層形成工程において最も下方の位置(最下位置)に位置する。   After the holding process, a descending process is performed. In the descending step, as shown in FIG. 4A, the substrate 32 is lowered until a part of the upper portion exposed in the holding step in the substrate 32 is immersed in the coating liquid L. Thereby, the base | substrate 32 is immersed to the 2nd immersion position shown by the dashed-two dotted line B in a figure. When the substrate 32 is immersed to the second immersion position, the substrate 32 is positioned at the lowest position (lowermost position) in the charge transport layer forming step.

下降工程の後に、引上工程が実施される。引上工程では、図4(B)に示されるように、下降工程で塗液Lに浸漬された基体32を塗液Lから引き上げる。これにより、電荷発生層36上に塗液Lが塗布される。   After the descending process, a pulling process is performed. In the pulling-up process, as shown in FIG. 4B, the substrate 32 immersed in the coating liquid L in the descending process is pulled up from the coating liquid L. Thereby, the coating liquid L is applied onto the charge generation layer 36.

そして、塗液槽12から引き上げた基体32の下端部分に付着した塗液Lを拭き取り、塗液Lによる塗膜を乾燥(溶媒を蒸発により除去)させることで、電荷輸送層38を形成する。   And the charge transport layer 38 is formed by wiping off the coating liquid L adhering to the lower end part of the base | substrate 32 pulled up from the coating liquid tank 12, and drying the coating film by the coating liquid L (removing a solvent by evaporation).

(表面層形成工程)
表面層形成工程では、基体32に形成された電荷輸送層38の表面上に表面層40を形成する。具体的には、例えば、表面層40の前述の構成材料を溶媒(分散媒)に加えた塗液を、基体32に形成された電荷輸送層38の表面上に塗布して、当該塗液による塗膜を乾燥させることで、電荷輸送層38の表面上に表面層40を形成する。
(Surface layer forming step)
In the surface layer forming step, the surface layer 40 is formed on the surface of the charge transport layer 38 formed on the substrate 32. Specifically, for example, a coating liquid obtained by adding the above-described constituent materials of the surface layer 40 to a solvent (dispersion medium) is applied onto the surface of the charge transport layer 38 formed on the base 32, and the coating liquid is used. The surface layer 40 is formed on the surface of the charge transport layer 38 by drying the coating film.

塗液を電荷輸送層38の表面上に塗布する方法としては、下引層34を形成する場合と同様に、公知の塗布方法が用いられる。表面層40を形成するための塗液を調製するための溶媒(分散媒)としては、下引層34を形成するための塗液と同様に、例えば、公知の有機溶剤が用いられる。液中に表面層40の構成材料を分散させる場合の方法としては、下引層34を形成するための塗液の場合と同様に、公知の分散方法が挙げられる。   As a method of applying the coating liquid onto the surface of the charge transport layer 38, a known coating method is used as in the case of forming the undercoat layer 34. As a solvent (dispersion medium) for preparing a coating liquid for forming the surface layer 40, for example, a known organic solvent is used in the same manner as the coating liquid for forming the undercoat layer 34. As a method for dispersing the constituent material of the surface layer 40 in the liquid, a known dispersion method may be used as in the case of the coating liquid for forming the undercoat layer 34.

以上のように、前述の下引層形成工程、電荷発生層形成工程、電荷輸送層形成工程、表面層形成工程を経て、電子写真式の画像形成装置に用いられる感光体(回転体の一例)が製造される。   As described above, a photoreceptor (an example of a rotating body) used in an electrophotographic image forming apparatus through the above-described undercoat layer forming step, charge generation layer forming step, charge transport layer forming step, and surface layer forming step. Is manufactured.

(本実施形態に係る作用)
本実施形態の製造方法における電荷輸送層形成工程では、図3(B)に示されるように、基体32の第1浸漬位置(二点鎖線Aの位置)まで浸漬するように、基体32の下降を停止し、この停止位置で該基体32を予め定められた規定時間保持する。このように、基体32が停止位置(図3(B)に示す位置)に規定時間とどまることで、塗液Lの流れ(溢れ出る動作)が滞り、図5(A)に示されるように、当該塗液Lの液面(気液界面)において、塗液Lの溶媒が蒸発して、塗液Lの粘度が上昇する。基体32の周囲で粘度が上昇した塗液LAが、基体32の第1浸漬位置(二点鎖線Aの位置)に付着する。なお、図5(A)(B)(C)において、粘度が上昇した塗液を符号LAにて示している。
(Operation according to this embodiment)
In the charge transport layer forming step in the manufacturing method of the present embodiment, as shown in FIG. 3B, the substrate 32 is lowered so as to be immersed up to the first immersion position of the substrate 32 (position of the two-dot chain line A). And the base 32 is held at the stop position for a predetermined time. As described above, the base 32 stays at the stop position (position shown in FIG. 3B) for a specified time, so that the flow of the coating liquid L (overflowing operation) is delayed, and as shown in FIG. In the liquid surface (gas-liquid interface) of the coating liquid L, the solvent of the coating liquid L evaporates and the viscosity of the coating liquid L increases. The coating liquid LA whose viscosity has increased around the substrate 32 adheres to the first immersion position (the position of the two-dot chain line A) of the substrate 32. In FIGS. 5A, 5B, and 5C, the coating liquid having an increased viscosity is indicated by reference sign LA.

一方、下降工程における最下位置(図4(A)に示す位置)まで途中で停止せずに基体32を下降させた後に基体32を引き上げる第1比較例では、塗液Lの液面(気液界面)において、塗液Lが流動した状態が維持されるので、塗液Lの粘度が局所的に上昇しない。従って、粘度が上昇した塗液LAの基体32への付着も生じない。このため、図6(A)に示されるように、基体32の上部において、符号Dの範囲で、塗液Lの重力による液だれが生じる。   On the other hand, in the first comparative example in which the base 32 is pulled up without being stopped halfway to the lowest position (position shown in FIG. 4A) in the lowering step, the liquid level of the coating liquid L (gas Since the state in which the coating liquid L flows is maintained at the liquid interface), the viscosity of the coating liquid L does not increase locally. Therefore, adhesion of the coating liquid LA having an increased viscosity to the substrate 32 does not occur. For this reason, as shown in FIG. 6A, in the upper part of the substrate 32, dripping due to the gravity of the coating liquid L occurs in the range of the reference sign D.

このため、形成される電荷輸送層の膜厚が、基体32の軸方向一端部において、軸方向中央部よりも薄くなり、電荷輸送層の膜厚が基体32の軸方向でばらつくことになる。電荷輸送層の膜厚が基体32の軸方向でばらつくと、帯電ムラが生じて画像の濃度ムラが発生すると共に、感光層の摩耗による寿命が電荷輸送層の膜厚の薄い部分に応じた寿命となることで、感光体の寿命が短くなる。   For this reason, the thickness of the charge transport layer formed is thinner at one axial end of the substrate 32 than at the central portion in the axial direction, and the thickness of the charge transport layer varies in the axial direction of the substrate 32. If the film thickness of the charge transport layer varies in the axial direction of the substrate 32, uneven charging occurs and uneven density of the image occurs, and the lifetime due to wear of the photosensitive layer depends on the portion where the thickness of the charge transport layer is thin. As a result, the life of the photoreceptor is shortened.

従って、電荷輸送層の膜厚が薄い部分については、画像エリアとして使用できず、基体32において、画像エリアとして使用できる範囲Rが狭くなる。よって、要求される画像エリアを確保するためには、基体32を長くする必要がある。   Accordingly, a portion where the thickness of the charge transport layer is thin cannot be used as an image area, and the range R that can be used as an image area in the base 32 is narrowed. Therefore, in order to ensure the required image area, it is necessary to lengthen the base 32.

また、下降工程における最下位置(図4(A)に示す位置)まで途中で停止せずに基体32を下降させて、予め定められた時間保持した後に、基体32を引き上げる第2比較例では、粘度が上昇した塗液が、基体32の第2浸漬位置(二点鎖線Bの位置)に付着する。このため、図6(B)に示されるように、基体32の第2浸漬位置(二点鎖線Bの位置)、すなわち、基体32に塗布された塗液Lの上端において、塗液Lが下方に流れにくくなり、塗液Lの重力による液だれが抑制される。しかしながら、基体32の上端よりも下側では、塗液Lの重力による液だれが生じる。従って、第1比較例と同様に、画像エリアとして使用できる範囲Rが狭くなり、要求される画像エリアを確保するためには、基体32を長くする必要がある。   In the second comparative example in which the base 32 is lowered without being stopped halfway to the lowest position in the lowering step (the position shown in FIG. 4A) and held for a predetermined time, and then the base 32 is pulled up. The coating liquid having an increased viscosity adheres to the second immersion position (position of the two-dot chain line B) of the substrate 32. For this reason, as shown in FIG. 6 (B), the coating liquid L is downward at the second immersion position (the position of the two-dot chain line B) of the base 32, that is, at the upper end of the coating liquid L applied to the base 32. And the dripping due to the gravity of the coating liquid L is suppressed. However, dripping due to the gravity of the coating liquid L occurs below the upper end of the substrate 32. Accordingly, as in the first comparative example, the range R that can be used as the image area is narrowed, and the base 32 needs to be lengthened to ensure the required image area.

これに対して、本実施形態では、図5(A)に示されるように、粘度が上昇した塗液LAが基体32の第1浸漬位置(二点鎖線Aの位置)に付着し、付着した塗液LAが、下降工程(図5(B)参照)及び引上工程(図5(C)参照)において、基体32の昇降動作に追従する。   On the other hand, in this embodiment, as shown in FIG. 5A, the coating liquid LA having an increased viscosity adheres to and adheres to the first immersion position (the position of the two-dot chain line A) of the base 32. The coating liquid LA follows the ascending / descending operation of the base 32 in the lowering process (see FIG. 5B) and the lifting process (see FIG. 5C).

そして、基体32を引き上げた際に(引上工程)、基体32の第1浸漬位置(二点鎖線Aの位置)において、基体32に塗布された塗液L、LAが下方に流れにくくなる。このため、図6(C)に示されるように、基体32の上部において、基体32に塗布された塗液Lの上端よりも下側で生じる液だれが抑制される。   When the base 32 is pulled up (lifting step), the coating liquids L and LA applied to the base 32 are less likely to flow downward at the first immersion position of the base 32 (the position of the two-dot chain line A). For this reason, as shown in FIG. 6C, dripping that occurs below the upper end of the coating liquid L applied to the base 32 at the top of the base 32 is suppressed.

このため、塗液Lによる塗膜が基体32の上部で厚膜化し、膜厚のバラつきに起因する画像の濃度ムラや、感光層の摩耗による感光体の短寿命等の前述の問題が解消され、画像領域として使用できる範囲Rが拡大される。これにより、要求される長さの画像領域を得るのに必要な基体32の軸方向長さを縮められ、感光体の製造費を抑えられる。   For this reason, the coating film by the coating liquid L is thickened on the upper portion of the substrate 32, and the above-mentioned problems such as uneven image density due to the variation in film thickness and the short life of the photosensitive member due to wear of the photosensitive layer are solved. The range R that can be used as an image area is enlarged. As a result, the axial length of the base 32 necessary to obtain an image area having a required length can be reduced, and the manufacturing cost of the photoreceptor can be reduced.

なお、基体32の第1浸漬位置の上方においては、塗液Lの粘度が上昇していないため、液だれが生じるものの、粘度が上昇した塗液LAが、基体32の第1浸漬位置で、粘度が上昇していない塗液Lを支持することになり、塗液Lの液だれが抑制される。また、図6(C)では、第1比較例(図6(A)参照)において生じる液だれを二点鎖線DAにて示している。   Note that, since the viscosity of the coating liquid L is not increased above the first immersion position of the base 32, the liquid dripping occurs, but the coating liquid LA having an increased viscosity is at the first immersion position of the base 32. The coating liquid L whose viscosity has not increased is supported, and dripping of the coating liquid L is suppressed. In FIG. 6C, the dripping that occurs in the first comparative example (see FIG. 6A) is indicated by a two-dot chain line DA.

特に、本実施形態では、保持工程において、第1比較例の場合に基体32の上部で塗液の自重によって液だれが生じる範囲内(図6(A)のDの範囲)に、塗液Lの液面が位置するように、基体32の下降を停止する。このため、第1比較例及び第2比較例において液だれを生じる範囲Dで、塗膜が厚膜化される。このため、画像領域として使用できる領域Rが、より効果的に拡大される。   In particular, in the present embodiment, in the holding step, in the case of the first comparative example, the coating liquid L falls within a range where the dripping occurs due to the weight of the coating liquid on the base 32 (range D in FIG. 6A). The descent of the base body 32 is stopped so that the liquid level is positioned. For this reason, a coating film is thickened in the range D which produces dripping in the 1st comparative example and the 2nd comparative example. For this reason, the area | region R which can be used as an image area is expanded more effectively.

以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

[実施例1]
−電荷輸送層の形成−
4フッ化エチレン樹脂粒子8質量部(平均粒径:0.2μm)と、フッ化アルキル基含有メタクリルコポリマー(重量平均分子量30000)0.01質量部とを、テトラヒドロフラン4質量部、トルエン1質量部とともに20℃の液温に保ち、48時間攪拌混合し、4フッ化エチレン樹脂粒子懸濁液Aを得た。
[Example 1]
-Formation of charge transport layer-
8 parts by mass of tetrafluoroethylene resin particles (average particle size: 0.2 μm) and 0.01 parts by mass of a fluorinated alkyl group-containing methacrylic copolymer (weight average molecular weight 30000), 4 parts by mass of tetrahydrofuran, and 1 part by mass of toluene The mixture was kept at a liquid temperature of 20 ° C. and stirred for 48 hours to obtain a tetrafluoroethylene resin particle suspension A.

次に、電荷輸送物質として、N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−[1,1’]ビフェニル−4,4’−ジアミン4質量部と、ビスフェノールZ型ポリカーボネート樹脂(粘度平均分子量:40,000)6質量部、酸化防止剤として2,6−ジ−t−ブチル−4−メチルフェノール0.1質量部を混合して、テトラヒドロフラン24質量部及びトルエン11質量部を混合溶解して、混合溶解液Bを得た。   Next, 4 parts by mass of N, N′-diphenyl-N, N′-bis (3-methylphenyl)-[1,1 ′] biphenyl-4,4′-diamine as a charge transport material, and bisphenol Z type 6 parts by mass of polycarbonate resin (viscosity average molecular weight: 40,000), 0.1 part by mass of 2,6-di-t-butyl-4-methylphenol as an antioxidant are mixed, 24 parts by mass of tetrahydrofuran and 11 of toluene. Mass parts were mixed and dissolved to obtain a mixed solution B.

このB液に前記A液を加えて攪拌混合した後、微細な流路を持つ貫通式チャンバーを装着した高圧ホモジナイザー(吉田機械興行株式会社製)を用いて、500kgf/cm2まで昇圧しての分散処理を6回繰り返した液に、フッ素変性シリコーンオイル(商品名:FL−100 信越化学工業社製)を5ppm添加し、十分に撹拌して電荷輸送層形成用塗液を得た。   Dispersion after increasing the pressure to 500 kgf / cm 2 using a high pressure homogenizer (manufactured by Yoshida Kikai Kogyo Co., Ltd.) equipped with a penetrating chamber having a fine flow path after adding the A liquid to the B liquid and stirring and mixing. 5 ppm of fluorine-modified silicone oil (trade name: FL-100 manufactured by Shin-Etsu Chemical Co., Ltd.) was added to the solution obtained by repeating the treatment six times, and the mixture was sufficiently stirred to obtain a coating solution for forming a charge transport layer.

この塗液を温度24℃、粘度440mPa・sに調整し、外径30mm、長さ340mmのアルミパイプ基体上に、前述の電荷輸送層形成工程に基づき塗布を行った。基体を下降中、最下位置より6mm浅い停止位置にて5秒停止後、最下位置まで浸漬し、引上げ速度170mm/minにて中心部の膜厚30.0μmになるように引き上げ、塗膜を乾燥させて、実施例1の電荷輸送層を作成した。   This coating solution was adjusted to a temperature of 24 ° C. and a viscosity of 440 mPa · s, and applied on an aluminum pipe substrate having an outer diameter of 30 mm and a length of 340 mm based on the above-described charge transport layer forming step. While descending the substrate, it was stopped for 5 seconds at a stop position 6 mm shallower than the lowest position, then dipped to the lowest position, and pulled up to a film thickness of 30.0 μm at the center at a pulling rate of 170 mm / min. Was dried to prepare the charge transport layer of Example 1.

[実施例2]
実施例1に記載の停止時間を2秒とした以外は、同様の条件で電荷輸送層を作成した。
[Example 2]
A charge transport layer was prepared under the same conditions except that the stop time described in Example 1 was 2 seconds.

[実施例3]
実施例1に記載の停止時間を10秒とした以外は、同様の条件で電荷輸送層を作成した。
[Example 3]
A charge transport layer was prepared under the same conditions except that the stop time described in Example 1 was 10 seconds.

[実施例4]
実施例1に記載の停止時間を15秒とした以外は、同様の条件で電荷輸送層を作成した。
[Example 4]
A charge transport layer was prepared under the same conditions except that the stop time described in Example 1 was 15 seconds.

[実施例5]
実施例1に記載の停止時間を20秒とした以外は、同様の条件で電荷輸送層を作成した。
[Example 5]
A charge transport layer was prepared under the same conditions except that the stop time described in Example 1 was 20 seconds.

[実施例6]
実施例1に記載の塗液をテトラヒドロフランの代わりに、1,4-ジオキサン(沸点が、テトラヒドロフランより高い)を用いた以外は、同様の条件で塗液を得た。その後、実施例1に記載の同様の条件で電荷輸送層を作成した。
[Example 6]
A coating solution was obtained under the same conditions except that 1,4-dioxane (boiling point was higher than tetrahydrofuran) was used as the coating solution described in Example 1 instead of tetrahydrofuran. Thereafter, a charge transport layer was prepared under the same conditions as described in Example 1.

[実施例7]
実施例1に記載の塗液をテトラヒドロフランの代わりに、1,4-ジオキサンを用いた以外は、同様の条件で塗液を得た。実施例1に記載の停止時間を20秒とした以外は同様の条件で電荷輸送層を作成した。
[Example 7]
A coating solution was obtained under the same conditions except that 1,4-dioxane was used as the coating solution described in Example 1 instead of tetrahydrofuran. A charge transport layer was prepared under the same conditions except that the stop time described in Example 1 was 20 seconds.

[比較例1]
実施例1に記載の最下位置まで途中で停止せずに基体を下降させた後に基体を引き上げて、電荷輸送層を作成した。他の条件は、実施例1と同様である。
[Comparative Example 1]
The substrate was lowered without stopping halfway to the lowest position described in Example 1, and then the substrate was pulled up to form a charge transport layer. Other conditions are the same as in the first embodiment.

(評価)
実施例1〜7及び比較例1で作成した電荷輸送層の膜厚を、渦電流膜厚測定装置(自社製)にて、電荷輸送層の上端(上端側の塗布開始位置)より50mm以上310mm以下の間を20mm間隔に、90°毎の周方向の4か所で測定し、その平均値を平均膜厚A(μm)とした。
(Evaluation)
The film thickness of the charge transport layer prepared in Examples 1 to 7 and Comparative Example 1 is 50 mm or more and 310 mm from the upper end (application start position on the upper end side) of the charge transport layer using an eddy current film thickness measurement device (manufactured by our company). Measurements were made at intervals of 20 mm at four locations in the circumferential direction every 90 °, and the average value was defined as the average film thickness A (μm).

電荷輸送層の上端より10mmにおいて、90°毎の周方向の4か所で測定し、その平均値を膜厚B(μm)とし、A−Bの値を、基体の上部だれ量とした。   Measurement was performed at four locations in the circumferential direction every 90 ° at 10 mm from the upper end of the charge transport layer, and the average value was defined as the film thickness B (μm), and the value AB was defined as the amount of the upper part of the substrate.

また、作成された電荷輸送層に気泡による塗膜不良があるか否かを目視にて確認した。図7に示される評価結果では、塗膜不良がなかった場合を「○」とし、気泡が確認されたが画質に影響がない程度である場合を「△」とした。   Further, it was visually confirmed whether or not the prepared charge transport layer had a coating film defect due to bubbles. In the evaluation results shown in FIG. 7, the case where there was no coating film failure was indicated as “◯”, and the case where bubbles were confirmed but did not affect the image quality was indicated as “Δ”.

さらに、実施例1から6及び比較例1で作成された電荷輸送層を有する感光体ドラムを、電子写真式の画像形成装置に組み込んで、画質評価を行った。画質評価では、単色のハーフトーン画像を用紙に出力し、当該ハーフトーン画像上の濃度ムラを目視することにより評価した。図7に示される評価結果では、ハーフトーン画像に濃度ムラが見られない場合を「○」とし、ハーフトーン画像に濃度ムラが少し見られるが画質に問題ない場合を「△」とし、ハーフトーン画像に濃度ムラが見られ画質に問題ある場合を「×」とした。   Further, the photoconductor drum having the charge transport layer prepared in Examples 1 to 6 and Comparative Example 1 was incorporated into an electrophotographic image forming apparatus, and image quality evaluation was performed. In the image quality evaluation, a single-color halftone image was output on a sheet, and the density unevenness on the halftone image was visually evaluated. In the evaluation results shown in FIG. 7, “◯” indicates that no density unevenness is found in the halftone image, and “Δ” indicates that there is no problem in image quality although there is a slight density unevenness in the halftone image. A case where density unevenness was found in the image and there was a problem with the image quality was indicated as “x”.

この結果、図7に示されるように、実施例1〜7において、比較例1に比べ、上部液だれ量が低減された。また、画質濃度ムラも、実施例1〜7において、比較例1よりも良好となった。なお、実施例5では、気泡による塗膜不良が確認されたものの、画質濃度ムラには影響がなかった。   As a result, as shown in FIG. 7, the upper liquid dripping amount was reduced in Examples 1 to 7 as compared with Comparative Example 1. In addition, the image quality density unevenness was also better in Examples 1-7 than in Comparative Example 1. In Example 5, although a coating film defect due to bubbles was confirmed, there was no effect on image quality density unevenness.

(変形例)
前述の下降工程では、停止工程及び保持工程において基体32における露出していた上部の一部が、塗液に浸漬するまで該基体を下降させていたが、これに限られず、基体32における保持工程で露出していた上部の全部が、塗液に浸漬するまで該基体を下降させてもよい。
(Modification)
In the above-described descending step, the substrate is lowered until a part of the exposed upper portion of the substrate 32 is immersed in the coating liquid in the stopping step and the retaining step. The substrate may be lowered until the entire upper part exposed in step 1 is immersed in the coating solution.

また、製造される回転体としては、感光体(感光体ドラム)に限られず、例えば、定着ロール等のロール状の部材であってもよい。   Further, the manufactured rotating body is not limited to the photosensitive body (photosensitive drum), and may be a roll-shaped member such as a fixing roll.

また、塗液Lに浸漬される基体32の形状としては、円筒状に限られず、例えば、円柱状に形成されていてもよい。   Further, the shape of the substrate 32 immersed in the coating liquid L is not limited to a cylindrical shape, and may be formed in a columnar shape, for example.

また、本実施形態では、電荷輸送層形成工程において、停止工程、保持工程、下降工程及び引上工程を含む浸漬塗布方法により、電荷輸送層38を形成していたが、これに限られない。例えば、下引層34、電荷発生層36及び表面層40を形成する場合に、当該浸漬塗布方法を用いて、浸漬塗布を行う構成であってもよい。   In the present embodiment, the charge transport layer 38 is formed by the dip coating method including the stop process, the holding process, the descending process, and the pulling process in the charge transport layer forming process, but the present invention is not limited to this. For example, when forming the undercoat layer 34, the charge generation layer 36, and the surface layer 40, a configuration in which dip coating is performed using the dip coating method may be employed.

また、前述の停止工程では、第1比較例の場合(図6(A)参照)において、基体32の上部で塗液Lの自重によって液だれが生じる範囲内(図6(A)のDの範囲)に塗液Lの液面が位置するように、基体32の下降を停止していたがこれに限られない。例えば、図6(A)のDの範囲の下側(当該範囲の若干下側)で停止してもよく、基体32の上部が露出する状態で停止すればよい。   Further, in the above-described stopping step, in the case of the first comparative example (see FIG. 6A), within the range where dripping occurs due to the weight of the coating liquid L above the base 32 (D in FIG. 6A). Although the descent of the base body 32 is stopped so that the liquid level of the coating liquid L is located in the range), the present invention is not limited to this. For example, it may be stopped at the lower side of the range of D in FIG. 6A (slightly lower side of the range), and may be stopped with the upper portion of the base 32 exposed.

本発明は、上記の実施形態に限るものではなく、その主旨を逸脱しない範囲内において種々の変形、変更、改良が可能である。例えば、上記に示した変形例は、適宜、複数を組み合わせて構成しても良い。   The present invention is not limited to the above-described embodiment, and various modifications, changes, and improvements can be made without departing from the spirit of the present invention. For example, the modification examples described above may be appropriately combined.

30 感光体(回転体の一例)
32 基体
50 感光層
L 塗液
30 photoconductor (an example of a rotating body)
32 Substrate 50 Photosensitive layer L Coating liquid

Claims (3)

円筒状又は円柱状の基体を下降させて塗液に浸漬し、該下降を該基体の上部が該塗液から露出する状態で停止する第1工程と、
該第1工程の停止位置で該基体を予め定められた時間保持する第2工程と、
該第2工程の後、該基体をさらに下降させる第3工程と、
該第3工程の後、該基体を該塗液から引き上げる第4工程と、
を有する回転体の製造方法。
A first step in which a cylindrical or columnar substrate is lowered and immersed in a coating liquid, and the lowering is stopped in a state where the upper portion of the substrate is exposed from the coating liquid;
A second step of holding the substrate at a stop position of the first step for a predetermined time;
A third step of further lowering the substrate after the second step;
A fourth step of lifting the substrate from the coating liquid after the third step;
The manufacturing method of the rotary body which has this.
前記第3工程で下降される位置まで途中で停止せずに前記基体を下降させた後に該基体を引き上げて、前記基体の上部で前記塗液の自重によって液だれが生じる範囲を予め測定し、
前記第1工程は、該範囲内に前記塗液の液面が位置するように、前記下降を停止する
請求項1に記載の回転体の製造方法。
Measuring the range in which dripping occurs due to the weight of the coating liquid at the upper part of the substrate by pulling up the substrate after lowering the substrate without stopping halfway to the position lowered in the third step,
The method of manufacturing a rotating body according to claim 1, wherein the first step stops the descent so that the liquid level of the coating liquid is located within the range.
請求項1又は2の製造方法によって前記基体の外周に感光層が形成される感光体の製造方法。   A method for producing a photoreceptor, wherein a photosensitive layer is formed on the outer periphery of the substrate by the production method according to claim 1.
JP2014106320A 2014-05-22 2014-05-22 Rotating body manufacturing method, photoreceptor manufacturing method Active JP6394066B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014106320A JP6394066B2 (en) 2014-05-22 2014-05-22 Rotating body manufacturing method, photoreceptor manufacturing method
CN201410638177.4A CN105093865B (en) 2014-05-22 2014-11-06 Manufacturing method, the manufacturing method of photoreceptor of rotary body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014106320A JP6394066B2 (en) 2014-05-22 2014-05-22 Rotating body manufacturing method, photoreceptor manufacturing method

Publications (2)

Publication Number Publication Date
JP2015221402A true JP2015221402A (en) 2015-12-10
JP6394066B2 JP6394066B2 (en) 2018-09-26

Family

ID=54574603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014106320A Active JP6394066B2 (en) 2014-05-22 2014-05-22 Rotating body manufacturing method, photoreceptor manufacturing method

Country Status (2)

Country Link
JP (1) JP6394066B2 (en)
CN (1) CN105093865B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017125895A (en) * 2016-01-12 2017-07-20 富士ゼロックス株式会社 Image forming apparatus
JP2018049238A (en) * 2016-09-23 2018-03-29 富士ゼロックス株式会社 Method for producing electrophotographic photoreceptor, method for forming fluorine resin particle-containing layer, and electrophotographic photoreceptor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5980364A (en) * 1982-10-27 1984-05-09 Canon Inc Coating method
JPS62254871A (en) * 1986-04-30 1987-11-06 Mitsubishi Chem Ind Ltd Dip coating method
JPH02210447A (en) * 1989-02-10 1990-08-21 Minolta Camera Co Ltd Production of electrophotographic sensitive body
JPH0760183A (en) * 1993-08-26 1995-03-07 Mitsubishi Chem Corp Dip coating method
JPH07175229A (en) * 1993-12-20 1995-07-14 Ricoh Co Ltd Production of electrophotographic photoreceptor
JPH1039523A (en) * 1996-07-23 1998-02-13 Fuji Xerox Co Ltd Electrophotographic photoreceptor and its production
JP2000221708A (en) * 1999-02-01 2000-08-11 Ricoh Co Ltd Production of electrophotographic photoreceptor
JP2002082454A (en) * 2000-09-06 2002-03-22 Kyocera Mita Corp Method for coating photoreceptor drum

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001109174A (en) * 1999-10-05 2001-04-20 Nec Niigata Ltd Method and device for coating of photoreceptor drum
JP4210291B2 (en) * 2006-04-12 2009-01-14 シャープ株式会社 Layer forming apparatus for electrophotographic photosensitive member
JP4494513B2 (en) * 2008-10-15 2010-06-30 キヤノン株式会社 Immersion coating method and method for producing electrophotographic photosensitive member
JP4743300B2 (en) * 2009-03-26 2011-08-10 富士ゼロックス株式会社 Cylindrical core for manufacturing an endless strip, method for manufacturing an endless strip

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5980364A (en) * 1982-10-27 1984-05-09 Canon Inc Coating method
JPS62254871A (en) * 1986-04-30 1987-11-06 Mitsubishi Chem Ind Ltd Dip coating method
JPH02210447A (en) * 1989-02-10 1990-08-21 Minolta Camera Co Ltd Production of electrophotographic sensitive body
JPH0760183A (en) * 1993-08-26 1995-03-07 Mitsubishi Chem Corp Dip coating method
JPH07175229A (en) * 1993-12-20 1995-07-14 Ricoh Co Ltd Production of electrophotographic photoreceptor
JPH1039523A (en) * 1996-07-23 1998-02-13 Fuji Xerox Co Ltd Electrophotographic photoreceptor and its production
JP2000221708A (en) * 1999-02-01 2000-08-11 Ricoh Co Ltd Production of electrophotographic photoreceptor
JP2002082454A (en) * 2000-09-06 2002-03-22 Kyocera Mita Corp Method for coating photoreceptor drum

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017125895A (en) * 2016-01-12 2017-07-20 富士ゼロックス株式会社 Image forming apparatus
JP2018049238A (en) * 2016-09-23 2018-03-29 富士ゼロックス株式会社 Method for producing electrophotographic photoreceptor, method for forming fluorine resin particle-containing layer, and electrophotographic photoreceptor

Also Published As

Publication number Publication date
CN105093865A (en) 2015-11-25
CN105093865B (en) 2019-11-08
JP6394066B2 (en) 2018-09-26

Similar Documents

Publication Publication Date Title
JP6528596B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus
JP4354969B2 (en) Electrophotographic photosensitive member and image forming apparatus
JP2016090593A (en) Electrophotographic photoreceptor, manufacturing method of the same, process cartridge, and electrophotographic device
JP6489824B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP6394066B2 (en) Rotating body manufacturing method, photoreceptor manufacturing method
JP2007188003A (en) Method for manufacturing electrophotographic photoreceptor
US20180004101A1 (en) Single-layer type electrophotographic photoreceptor for positive charging, electrophotographic photoreceptor cartridge, and image forming apparatus
JP2007147824A (en) Electrophotographic photoreceptor and image forming apparatus
JP2010115641A (en) Dip-coating process and method of manufacturing electrophotographic photosensitive member
JP6781588B2 (en) Manufacturing method of electrophotographic photosensitive member, electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
JP2003167363A (en) Electrophotographic photoreceptor and method for manufacturing the same
JP2007248733A (en) Electrophotographic photoreceptor and image forming apparatus
JP2012108187A (en) Method for manufacturing electrophotographic photoreceptor
JP5446333B2 (en) Electrophotographic photoreceptor and method for producing the same
JP2002189305A (en) Apparatus for producing electrophotographic photoreceptor and method therefor
JP2001066802A (en) Apparatus for production of electrophotographic photoreceptor, and production of electrophotographic photoreceptor
JP4599853B2 (en) Immersion coating method, dip coating apparatus, and method for producing electrophotographic photosensitive member
JP4036458B2 (en) Electrophotographic photoreceptor and image forming apparatus
JP6493527B2 (en) Electrophotographic photoreceptor, method for producing the same, and electrophotographic apparatus
JP5341450B2 (en) Coating apparatus and method for producing electrophotographic photosensitive member
JP2005266071A (en) Method for manufacturing electrophotographic photoreceptor
JP2023042057A (en) Electrophotographic photoreceptor and manufacturing method thereof, process cartridge, and electrophotographic device
JP2014178365A (en) Electrophotographic photoreceptor and method for manufacturing the same
JP3556353B2 (en) Manufacturing method of electrophotographic photoreceptor
JP2013134490A (en) Method for manufacturing electrophotographic photoreceptor and electrophotographic photoreceptor manufactured by manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180813

R150 Certificate of patent or registration of utility model

Ref document number: 6394066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350