JP2003066634A - Coating device for organic photoreceptor, method for coating and organic photoreceptor - Google Patents

Coating device for organic photoreceptor, method for coating and organic photoreceptor

Info

Publication number
JP2003066634A
JP2003066634A JP2001257726A JP2001257726A JP2003066634A JP 2003066634 A JP2003066634 A JP 2003066634A JP 2001257726 A JP2001257726 A JP 2001257726A JP 2001257726 A JP2001257726 A JP 2001257726A JP 2003066634 A JP2003066634 A JP 2003066634A
Authority
JP
Japan
Prior art keywords
coating
cylindrical conductive
solvent
organic photoreceptor
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001257726A
Other languages
Japanese (ja)
Inventor
Nobuaki Kobayashi
信昭 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2001257726A priority Critical patent/JP2003066634A/en
Publication of JP2003066634A publication Critical patent/JP2003066634A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating Apparatus (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coating device and a method for coating an organic photoreceptor by which solvent vapor can be discharged as uniformly as possible near a cylindrical conductive base body, a nonhalogen solvent having low saturation vapor pressure at about normal temperature is used, and even when a charge transfer layer of a thick coating film is applied, the solvent can be uniformly discharged, irregularity in the film thickness is avoided and a thin film part at the top of the body is made short, and to provide an organic photoreceptor obtained by the above method for coating. SOLUTION: In the coating device for an organic photoreceptor by dipping a plurality of cylindrical conductive base bodies in a coating liquid at a time and drawing up to form a coating film on each cylindrical conductive base body, the device is equipped with a coating tank which houses the coating liquid for charge transfer layer using a nonhalogen solvent and with a plurality of drying hoods disposed above the coating tank in the positions corresponding to the respective cylindrical conductive base bodies.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有機感光体の塗布
装置、塗布方法、該塗布方法で製造された有機感光体に
関し、特に有機感光体の製造において円筒状導電性基体
の外周面に有機感光層を形成する塗布装置、塗布方法及
び該塗布方法により製造された有機感光体に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coating device for an organic photoreceptor, a coating method, and an organic photoreceptor manufactured by the coating method. In particular, in the production of an organic photoreceptor, an organic material is formed on the outer peripheral surface of a cylindrical conductive substrate. The present invention relates to a coating device for forming a photosensitive layer, a coating method, and an organic photoconductor manufactured by the coating method.

【0002】[0002]

【従来の技術】従来、電子写真感光体の感光層を構成す
る光導電材料としては、セレン、硫化カドミウム、酸化
亜鉛等の無機化合物およびポリビニルカルバゾールに代
表される有機化合物が提案されており、また、感光層を
電荷発生層と電荷輸送層とに分離した積層型有機感光体
においては、電荷発生材料および電荷輸送材料として、
種々の有機化合物が提案され、有機感光体として実用化
されている。従来、このような有機感光体の塗布方法と
しては、浸漬塗布法、スプレー塗布法、スピン塗布法、
ビード塗布法、ワイヤーバー塗布法、ブレード塗布法、
ローラー塗布法、押出し塗布法、カーテン塗布法等の各
種塗布方法が知られているが、特に円筒状導電性基体の
外周面に均一な感光層を形成する方法としては、浸漬塗
布法が広く用いられている。
2. Description of the Related Art Heretofore, as a photoconductive material constituting a photosensitive layer of an electrophotographic photosensitive member, inorganic compounds such as selenium, cadmium sulfide and zinc oxide and organic compounds represented by polyvinylcarbazole have been proposed. In the laminated organic photoreceptor in which the photosensitive layer is separated into a charge generating layer and a charge transporting layer, as the charge generating material and the charge transporting material,
Various organic compounds have been proposed and put into practical use as organic photoconductors. Conventionally, as a coating method for such an organic photoreceptor, a dip coating method, a spray coating method, a spin coating method,
Bead coating method, wire bar coating method, blade coating method,
Various coating methods such as a roller coating method, an extrusion coating method, and a curtain coating method are known. Particularly, as a method for forming a uniform photosensitive layer on the outer peripheral surface of a cylindrical conductive substrate, a dip coating method is widely used. Has been.

【0003】近年、有機感光体が使用される複写機、プ
リンター、ファクシミリ等の装置に対しては、小型化、
軽量化の要求が強く、これに伴って有機感光体も年々小
径化がはかられている。有機感光体、特に小径の円筒状
導電性基体を使用した有機感光体を浸漬塗布法によって
製造する方法としては、生産性向上の観点から、特開平
5−88385号公報、特開平6−262113号公報
に記載されているように、複数の円筒状導電性基体を同
時に塗布液に浸漬し、引き上げる多数本同時浸漬塗布方
法が一般的に採用されている。特に、円筒状導電性基体
同士の間隔が狭くなれば、さらに生産性が上がり有利と
なるが、その際に、円筒状導電性基体引上げ時に形成さ
れる塗布膜から発生する溶媒蒸気や、塗布槽液面から発
生する溶媒蒸気の影響により、円筒状導電性基体上に形
成される塗布膜の指触乾燥速度がそれぞれの円筒状導電
性基体間、および円筒状導電性基体一本内で不均一とな
り、膜厚むらを発生してしまう。その回避策としては、
特開昭59−127049号公報等に記載されているよ
うに、円筒状導電性基体が塗布槽液面より引き上げられ
ていない時に、液受け槽近傍に外部よりエアーを送り込
み、液受け槽近傍より溶媒蒸気濃度を事前に低減し、指
触乾燥速度を促進させるもの、特開平3−151号公報
等に記載されているように、液受け槽近傍に溶媒蒸気排
出口を設け、ON−OFF機構を付与した強制排気装置
に連結し、塗布槽液面から引上げ時に円筒状導電性基体
周辺の溶媒蒸気濃度を制御するもの等により、膜厚むら
を抑制することが行われている。
In recent years, downsizing of devices such as copiers, printers and facsimiles using organic photoconductors has been proposed.
There is a strong demand for weight reduction, and along with this, the diameter of organic photoconductors is being reduced year by year. As a method for producing an organic photoconductor, particularly an organic photoconductor using a small-diameter cylindrical conductive substrate by a dip coating method, from the viewpoint of improving productivity, JP-A-5-88385 and JP-A-6-262113. As described in the publication, a multiple simultaneous dip coating method in which a plurality of cylindrical conductive substrates are simultaneously dipped in a coating solution and pulled up is generally adopted. In particular, if the space between the cylindrical conductive substrates is narrowed, the productivity is further increased, which is advantageous. At that time, the solvent vapor generated from the coating film formed when the cylindrical conductive substrate is pulled up, or the coating tank. Due to the influence of solvent vapor generated from the liquid surface, the touch-drying speed of the coating film formed on the cylindrical conductive substrate is non-uniform between the cylindrical conductive substrates and within one cylindrical conductive substrate. And film thickness unevenness occurs. As a workaround,
As described in JP-A-59-127049, etc., when the cylindrical conductive substrate is not pulled up from the liquid level of the coating tank, air is sent from the outside to the vicinity of the liquid receiving tank, and from the vicinity of the liquid receiving tank. An ON-OFF mechanism in which a solvent vapor discharge port is provided in the vicinity of a liquid receiving tank, as described in JP-A-3-151, etc., in which the solvent vapor concentration is reduced in advance to accelerate the touch drying speed. The unevenness of the film thickness is suppressed by controlling the solvent vapor concentration around the cylindrical conductive substrate at the time of pulling up from the liquid level of the coating tank by connecting to the forced exhaust device provided with.

【0004】しかしながら、上記のような技術ではエア
ー供給口近傍や強制排気装置に連結する溶媒蒸気排出口
近辺の円筒状導電性基体の周辺では、溶媒蒸気濃度は低
いが、離れた箇所のそれは高くなり、溶媒蒸気濃度の均
一化をはかることは困難であった。
However, in the above technique, the solvent vapor concentration is low near the air supply port and around the cylindrical conductive substrate in the vicinity of the solvent vapor discharge port connected to the forced evacuation device, but it is high in the distant place. Therefore, it was difficult to make the solvent vapor concentration uniform.

【0005】即ち、浸漬塗布時において、円筒状導電性
基体の周辺の溶媒蒸気濃度が不均一になるという課題に
対する従来技術での回避策では、未だ十分ではない。上
記のような従来技術では、円筒状導電性基体塗布面の溶
媒蒸気濃度が場所により異なり、塗布面の乾燥ムラを引
き起こし、その結果塗布膜厚のむらが発生しやすい。
That is, the conventional workaround for the problem that the solvent vapor concentration around the cylindrical conductive substrate becomes non-uniform during dip coating is not sufficient. In the prior art as described above, the solvent vapor concentration on the coated surface of the cylindrical conductive substrate varies depending on the location, which causes unevenness in drying of the coated surface, resulting in uneven coating film thickness.

【0006】上記溶媒蒸気濃度の不均一化に対する回避
策として、例えば、特開平8−220786号に示され
たのように、リサイクル管の途中で、且つ塗布槽の液面
より低い位置に溶媒蒸気排出口を設けた塗布装置を用
い、比重が空気より重く、飽和蒸気圧が比較的低い溶媒
を用いて、塗布槽液面上の溶媒蒸気濃度を均一化する方
法が提案されている。しかしながらこの方法では、塗布
槽上の乾燥フード内に、飽和蒸気圧が低い溶媒が充満
し、乾燥速度が遅く成りやすく、指触乾燥(指で触って
もべとつかない状態になること)に達するまでに、塗布
膜が流れやすくなり、塗布先端の塗布膜が薄くなる先頭
薄膜が長くなったり、膜厚むらを発生しやすい。特に、
塗布膜厚(塗布直後の溶媒を多量に含んだ膜厚)が厚い
電荷輸送層の塗布では指触乾燥に達するまでに膜厚むら
や先頭薄膜の増大が発生しやすい。
As a measure for avoiding the non-uniformity of the solvent vapor concentration, for example, as shown in JP-A-8-220786, the solvent vapor is placed in the middle of the recycle pipe and at a position lower than the liquid level of the coating tank. A method has been proposed in which a solvent having a specific gravity higher than that of air and a relatively low saturated vapor pressure is used to uniformize the solvent vapor concentration on the liquid surface of the coating tank by using a coating device provided with an outlet. However, with this method, the drying hood on the coating tank is filled with a solvent with a low saturated vapor pressure, and the drying speed tends to be slow, until touch-drying (becomes non-greasy to the touch with fingers) is reached. In addition, the coating film easily flows, the coating film at the coating tip becomes thin, the leading thin film becomes long, and uneven film thickness easily occurs. In particular,
In the case of coating a charge transport layer having a large coating thickness (thickness containing a large amount of solvent immediately after coating), unevenness in the thickness and increase of the leading thin film are likely to occur before touch-drying is reached.

【0007】一方、有機感光体の塗布溶媒としては、従
来バインダーや電荷輸送性物質の溶解性が良好なことか
らハロゲン溶媒が多用されてきたが、近年、地球環境の
破壊の懸念から、ハロゲン溶媒の使用は年々規制が強化
されている。そこで、ハロゲン溶媒に代わる溶媒として
ジオキソラン、ジオキサン等が提案されているが、これ
らの溶媒を用いて従来装置による多数本同時塗布を実施
したところ、膜厚むらの発生、先頭膜厚の増大が著しい
ことが見出された。これは、これらの溶媒が通常の塗布
温度では蒸気圧が低く、指触乾燥までの乾燥時間が長い
ことによるものと考えられる。
On the other hand, as a coating solvent for an organic photoreceptor, a halogen solvent has been widely used because of its good solubility of a binder and a charge transporting substance. In recent years, however, a halogen solvent has been feared because of the fear of destroying the global environment. The use of is being regulated more and more year by year. Therefore, dioxolane, dioxane, etc. have been proposed as a solvent instead of the halogen solvent. However, when a large number of simultaneous coatings by a conventional apparatus were performed using these solvents, unevenness in the film thickness and the increase of the leading film thickness were remarkable. It was found. It is considered that this is because these solvents have a low vapor pressure at a normal application temperature and a long drying time until touch drying.

【0008】[0008]

【発明が解決しようとする課題】そこで、本発明は、従
来の技術における上記のような問題を解決することを目
的としてなされたものである。すなわち、本発明の目的
は、円筒状導電性基体引上げ時に形成される塗布膜から
発生する溶媒蒸気、および塗布槽液面から蒸発する溶媒
蒸気を円筒状導電性基体周辺で、できるだけ均一に排出
し、常温付近で飽和蒸気圧が低い非ハロゲン溶媒を用
い、塗布膜厚が厚い電荷輸送層を塗布しても、均一に溶
媒を排出でき、且つ膜厚むらが小さく、先頭薄膜が短い
有機感光体の塗布装置を提供することにある。本発明の
他の目的は、前記塗布装置を用いて、円筒状導電性基体
上に膜厚むらのない感光層等を形成することができる有
機感光体の塗布方法を提供すること、及び該塗布方法を
用いて製造された有機感光体を提供することにある。
Therefore, the present invention has been made for the purpose of solving the above-mentioned problems in the prior art. That is, the object of the present invention is to discharge the solvent vapor generated from the coating film formed when the cylindrical conductive substrate is pulled up and the solvent vapor evaporated from the liquid surface of the coating tank as uniformly as possible around the cylindrical conductive substrate. An organic photoconductor that can uniformly discharge the solvent even when a non-halogen solvent having a low saturated vapor pressure at around room temperature is used and a charge transport layer having a large coating thickness is applied, has a small thickness unevenness, and has a short leading thin film It is to provide a coating device. Another object of the present invention is to provide a method for coating an organic photoconductor, which is capable of forming a photosensitive layer or the like on a cylindrical conductive substrate using the coating apparatus, and the coating method. An object is to provide an organophotoreceptor manufactured by using the method.

【0009】[0009]

【課題を解決するための手段】本発明の上記課題は以下
のような構成により達成される。
The above object of the present invention can be achieved by the following constitution.

【0010】1.複数本の円筒状導電性基体を同時に塗
布液に浸漬し、引上げて該円筒状導電性基体上に塗布膜
を形成する有機感光体の塗布装置において、該塗布装置
は非ハロゲン溶媒を用いた電荷輸送層用塗布液を収容す
る塗布槽、該塗布槽の上に複数本それぞれの円筒状導電
性基体に対応した乾燥フードを有することを特徴とする
有機感光体の塗布装置。
1. In an organic photoreceptor coating apparatus in which a plurality of cylindrical conductive substrates are simultaneously immersed in a coating liquid and pulled up to form a coating film on the cylindrical conductive substrates, the coating apparatus uses a non-halogen solvent-based charge. An apparatus for coating an organophotoreceptor, comprising: a coating tank containing a transport layer coating solution; and a drying hood on the coating tank corresponding to each of a plurality of cylindrical conductive substrates.

【0011】2.前記乾燥フードは円筒状導電性基体通
過時のフードと円筒状導電性基体間の間隙幅が該円筒状
導電性基体の直径比で1/10〜1に構成されているこ
とを特徴とする前記1に記載の有機感光体の塗布装置。
2. In the dry hood, the gap width between the hood and the cylindrical conductive substrate when passing through the cylindrical conductive substrate is set to 1/10 to 1 in terms of the diameter ratio of the cylindrical conductive substrate. 1. The organic photoreceptor coating apparatus according to 1.

【0012】3.前記乾燥フードが多数の通気孔を有す
ることを特徴とする前記1又は2に記載の有機感光体の
塗布装置。
3. 3. The organic photoreceptor coating apparatus according to 1 or 2 above, wherein the dry hood has a large number of ventilation holes.

【0013】4.前記通気孔の1つの開口径が0.1〜
10mmφであることを特徴とする前記3に記載の有機
感光体の塗布装置。
4. One of the ventilation holes has an opening diameter of 0.1 to
The coating device for an organic photosensitive member as described in 3 above, wherein the coating device has a diameter of 10 mmφ.

【0014】5.前記通気孔全体の開口面積比(乾燥フ
ード全体の面積に対して)が5〜50%であることを特
徴とする前記3又は4に記載の有機感光体の塗布装置。
5. 5. The organic photoreceptor coating apparatus according to 3 or 4 above, wherein the opening area ratio of the entire ventilation holes (with respect to the total area of the dry hood) is 5 to 50%.

【0015】6.前記非ハロゲン溶媒が環状エーテルで
あることを特徴とする前記1〜5のいずれか1項に記載
の有機感光体の塗布装置。
6. 6. The organophotoreceptor coating apparatus according to any one of 1 to 5 above, wherein the non-halogen solvent is a cyclic ether.

【0016】7.前記環状エーテルがジオキソラン、ジ
オキサン及びテトラヒドロフランの内から選択された少
なくとも1種であることを特徴とする前記1〜6のいず
れか1項に記載の有機感光体の塗布装置。
7. 7. The organophotoreceptor coating apparatus according to any one of 1 to 6 above, wherein the cyclic ether is at least one selected from dioxolane, dioxane, and tetrahydrofuran.

【0017】8.前記1〜7のいずれか1項に記載の塗
布装置を用いて、複数本の円筒状導電性基体を同時に塗
布液に浸漬し、引き上げて円筒状導電性基体上に電荷輸
送層を形成することを特徴とする有機感光体の塗布方
法。
8. Using the coating apparatus according to any one of 1 to 7 above, a plurality of cylindrical conductive substrates are simultaneously immersed in a coating solution and pulled up to form a charge transport layer on the cylindrical conductive substrate. A method for applying an organic photoreceptor characterized by the above.

【0018】9.前記電荷輸送層の塗布膜厚が30〜3
00μmであることを特徴とする前記8に記載の有機感
光体の塗布方法。
9. The coating thickness of the charge transport layer is 30 to 3
9. The method for applying an organic photoreceptor as described in 8 above, wherein the coating method is 00 μm.

【0019】10.前記8又は9に記載の有機感光体の
塗布方法を用いて作製されたことを特徴とする有機感光
体。
10. An organic photoreceptor prepared by using the method for applying an organic photoreceptor as described in 8 or 9 above.

【0020】以下、本発明を詳細に説明する。図1は本
発明の多本同時浸漬塗布装置の一例の概略構成を示すも
のであり、円筒状導電性基体を塗布液から引上げ途中の
状態を示すものである。図1において、塗布槽6の上に
は外部のエアー流れの影響を防止するための溶媒蒸気溜
室11を有しており、該溶媒蒸気溜室11の上部に個別
の乾燥フード14が設けられている。円筒状導電性基体
は塗布槽6から引き上げられると、溶媒蒸気溜室14に
入り、ここで塗布膜が大量の溶媒蒸気を放出し、個別の
乾燥フード14に送られ乾燥される。本発明では前記溶
媒蒸気溜室11と乾燥フード14の間に排出口12を設
けることが好ましい。排出口12を設けることにより、
塗布液に高い飽和蒸気圧の溶媒を用いた場合でも溶媒蒸
気溜室11内の溶媒蒸気濃度を全体に均一に維持するこ
とができ、塗布膜の指触乾燥むらを発生させない。
The present invention will be described in detail below. FIG. 1 shows a schematic configuration of an example of the multiple simultaneous dip coating apparatus of the present invention, showing a state in which a cylindrical conductive substrate is being pulled up from a coating liquid. In FIG. 1, a solvent vapor storage chamber 11 for preventing the influence of an external air flow is provided on the coating tank 6, and an individual drying hood 14 is provided above the solvent vapor storage chamber 11. ing. When the cylindrical conductive substrate is pulled up from the coating tank 6, the cylindrical conductive substrate enters the solvent vapor reservoir chamber 14 where the coating film releases a large amount of solvent vapor and is sent to an individual drying hood 14 to be dried. In the present invention, it is preferable to provide the discharge port 12 between the solvent vapor storage chamber 11 and the drying hood 14. By providing the outlet 12,
Even when a solvent having a high saturated vapor pressure is used as the coating liquid, the solvent vapor concentration in the solvent vapor reservoir chamber 11 can be maintained uniform throughout, and uneven touch-drying of the coating film does not occur.

【0021】ここで、溶媒蒸気溜室とは塗布槽を覆い、
塗布液や塗布膜から発生する溶媒蒸気を一旦、よどま
せ、溶媒蒸気濃度が均一な雰囲気を保つための部屋であ
る。排出口は塗布された基体が引き上げられたとき、円
筒状導電性基体を取り巻くように溶媒蒸気溜室と乾燥フ
ードの間に形成されている。又、乾燥フードは円筒状導
電性基体を取り囲む構造を有する。
Here, the solvent vapor reservoir covers the coating tank,
This is a room for temporarily stagnating the solvent vapor generated from the coating liquid or coating film and maintaining an atmosphere with a uniform solvent vapor concentration. The outlet is formed between the solvent vapor reservoir and the drying hood so as to surround the cylindrical conductive substrate when the coated substrate is pulled up. The dry hood has a structure surrounding the cylindrical conductive substrate.

【0022】一方、塗布液1は、塗布液タンク2から供
給配管3を通してポンプ4によって圧送され、フィルタ
ー5を介して塗布槽6内に供給される。塗布槽6は槽内
塗布液流速均一性を得るために下部にメッシュ15を挿
入してある。塗布槽6内に供給された塗布液はオーバー
フローし、塗布槽6の上部の溶媒蒸気溜室11の下端部
に設けられた塗布液受け槽7で補集されリサイクル管8
に流出し、塗布液タンク2に回収される。この浸漬塗布
装置を用いて浸漬塗布を行う場合、円筒状導電性基体9
が塗布槽6に浸漬され、その後、引き上げられた時、塗
布槽液面10を一定に保持する目的で、常にオーバーフ
ローするように循環手段によって塗布液を循環する。
On the other hand, the coating liquid 1 is pumped from the coating liquid tank 2 through the supply pipe 3 by the pump 4, and is supplied into the coating tank 6 through the filter 5. A mesh 15 is inserted in the lower part of the coating tank 6 in order to obtain uniform coating liquid flow velocity in the tank. The coating liquid supplied into the coating tank 6 overflows and is collected in the coating liquid receiving tank 7 provided at the lower end of the solvent vapor reservoir 11 at the upper part of the coating tank 6 to be recycled.
And is collected in the coating liquid tank 2. When performing dip coating using this dip coating device, the cylindrical conductive substrate 9
Is immersed in the coating tank 6 and then, when it is pulled up, the coating solution is circulated by a circulation means so as to always overflow in order to keep the coating tank liquid surface 10 constant.

【0023】従来、多数本の円筒状導電性基体を同時に
塗布する場合、塗布槽6の上に設けられる乾燥フードは
図2の如く、溶媒蒸気溜室を乾燥フードと兼用し且つ排
出口12がリサイクル管8の途中にある構造、即ち、多
数本基体の全部を大型の乾燥フード14(以下、大型乾
燥フードとも云う)で囲んだ構造の装置が用いられてい
たが、この構造では乾燥フード14の中の溶媒蒸気濃度
が均一に低下しにくく、各基体の周辺の溶媒蒸気濃度を
均一に低下させるのが難しく、膜厚むらや先頭薄膜の増
大を引き起こしがちであった。特にジオキソラン、ジオ
キサン及びテトラヒドロフラン等の環状エーテル溶剤を
用いて、厚い塗布膜の電荷輸送層を形成した場合、この
傾向が顕著に現れていた。
Conventionally, when a large number of cylindrical conductive substrates are coated at the same time, the drying hood provided on the coating tank 6 also serves as the solvent vapor reservoir chamber as shown in FIG. An apparatus having a structure in the middle of the recycle pipe 8, that is, a structure in which all of a large number of substrates are surrounded by a large dry hood 14 (hereinafter also referred to as a large dry hood) has been used, but in this structure, the dry hood 14 is used. It was difficult to uniformly reduce the solvent vapor concentration in the solution, and it was difficult to uniformly reduce the solvent vapor concentration around each substrate, which tended to cause unevenness of the film thickness and increase of the leading thin film. In particular, when a charge transport layer of a thick coating film was formed using a cyclic ether solvent such as dioxolane, dioxane and tetrahydrofuran, this tendency was remarkable.

【0024】本発明では図1の如く、溶媒蒸気溜室と乾
燥フードを分離し、乾燥フードを個別の円筒状導電性基
体毎に設けることにより、各円筒状導電性基体間の乾燥
条件を均一にし、且つ乾燥フード内の溶媒蒸気濃度を均
一に低下させることにより、ジオキソラン、ジオキサン
及びテトラヒドロフラン等の乾燥速度が比較的遅い環状
エーテル溶剤を用い、厚い塗布膜の電荷輸送層を塗布し
ても、膜厚むらや先頭薄膜の増大を防止し、各感光体間
の特性ばらつきを小さくすることが出来る。
In the present invention, as shown in FIG. 1, the solvent vapor reservoir chamber and the drying hood are separated, and the drying hood is provided for each individual cylindrical conductive substrate, so that the drying conditions between the cylindrical conductive substrates are uniform. And, by uniformly lowering the solvent vapor concentration in the dry hood, by using a cyclic ether solvent having a relatively slow drying rate such as dioxolane, dioxane and tetrahydrofuran, even if the charge transport layer of a thick coating film is applied, It is possible to prevent the unevenness of the film thickness and the increase of the leading thin film, and reduce the characteristic variations among the respective photoconductors.

【0025】上記乾燥フードは円筒状導電性基体を通過
させるに十分な円筒状の形態を有することが好ましい。
即ち、乾燥フードのフードと円筒状導電性基体間の間隙
幅(図1のH)が該円筒状導電性基体の直径比で1/1
0〜1に構成することが好ましい。該直径比が1/10
未満の場合は円筒状導電性基体の通過に際して、乾燥フ
ードと基体が接触し、塗布膜を削る等の障害が出やす
く、一方、直径比を1より大きくしても、装置が大型に
なるだけで、生産性の向上には寄与しない。通気孔1つ
の開口径は、0.1〜10mmが好ましい。0.1mm
未満だと乾燥フード中に溶媒蒸気が滞留しやすく、10
mmより大きいと乾燥フード内が外気により攪乱されや
すい。
The dry hood preferably has a cylindrical shape sufficient to allow the cylindrical conductive substrate to pass therethrough.
That is, the gap width (H in FIG. 1) between the hood of the dry hood and the cylindrical conductive substrate is 1/1 in terms of the diameter ratio of the cylindrical conductive substrate.
It is preferable to set it to 0-1. The diameter ratio is 1/10
When the ratio is less than 1, the dry hood and the substrate are likely to come into contact with each other when passing through the cylindrical conductive substrate, and a trouble such as scraping of the coating film is likely to occur. On the other hand, even if the diameter ratio is larger than 1, the device becomes large in size. Therefore, it does not contribute to the improvement of productivity. The opening diameter of each ventilation hole is preferably 0.1 to 10 mm. 0.1 mm
If it is less than 10, solvent vapor tends to stay in the dry hood, and 10
If it is larger than mm, the inside of the dry hood is easily disturbed by the outside air.

【0026】又、乾燥フードには多数の通気孔を有する
ことが好ましい。該通気口の全体の開口面積比(乾燥フ
ード全体の面積に対して)は5〜50%であることが好
ましい。5%未満では乾燥フード中に溶媒蒸気が滞留し
やすく、50%より大きいと乾燥フード内の環境が外気
により、攪乱されやすい。
It is also preferable that the dry hood has a large number of ventilation holes. The overall opening area ratio of the ventilation holes (with respect to the total area of the dry hood) is preferably 5 to 50%. If it is less than 5%, solvent vapor tends to stay in the dry hood, and if it is more than 50%, the environment inside the dry hood is easily disturbed by the outside air.

【0027】又、乾燥フードの長さは5cm〜300c
mが好ましい。5cm未満では乾燥フードの効果が小さ
く、膜厚むらの発生等の防止効果が小さい。一方300
cmより大きくても、装置が大型化するに見合った効果
が得られない。
The length of the dry hood is 5 cm to 300 c.
m is preferred. When it is less than 5 cm, the effect of the dry hood is small, and the effect of preventing the occurrence of uneven film thickness is small. While 300
Even if it is larger than cm, the effect commensurate with the increase in size of the device cannot be obtained.

【0028】本発明は乾燥フードの下、塗布槽の上に溶
媒蒸気溜室を有することが好ましいが、乾燥フードの塗
布液面からの距離は1cm〜100cmの間が好まし
い。即ち、1cm未満では溶媒蒸気溜室の空間が狭くな
り、塗布直後の塗布膜を安定させることが出来ない。
又、100cmより大きくても装置が大型化するに見合
った効果が得られない。
In the present invention, it is preferable to have a solvent vapor storage chamber below the drying hood and above the coating tank, but the distance from the coating liquid surface of the drying hood is preferably between 1 cm and 100 cm. That is, if it is less than 1 cm, the space of the solvent vapor storage chamber becomes narrow, and the coating film immediately after coating cannot be stabilized.
Further, even if it is larger than 100 cm, the effect commensurate with the increase in size of the apparatus cannot be obtained.

【0029】又、本発明は溶媒蒸気溜室と乾燥フードの
間に排気口を設けることが好ましい。即ち、溶媒蒸気溜
室のすぐ上に排出口を設けることにより、その上に続く
乾燥フードに溶媒蒸気が直接吸引されず、乾燥フード中
の溶媒蒸気濃度を低くすることができ、塗布膜の指触乾
燥を速めることができ、乾燥速度が比較的遅い環状エー
テル溶媒を用いた電荷輸送層の塗布膜の場合でも、膜厚
むら及び先頭薄膜の増大を防止することが出来る。尚、
本発明の電荷輸送層の非ハロゲン溶媒としては上記環状
エーテル溶媒が最も好ましいが、環状エーテルとその他
の非ハロゲン溶媒の混合溶媒も好ましく用いることが出
来る。例えば環状エーテル溶媒とアルコール系溶媒、ケ
トン系溶媒、芳香族系溶媒等を混合して用いても良好な
効果が得られる。
Further, in the present invention, it is preferable to provide an exhaust port between the solvent vapor reservoir chamber and the drying hood. That is, by providing an outlet just above the solvent vapor reservoir chamber, the solvent vapor is not directly sucked into the drying hood that follows it, so that the concentration of solvent vapor in the drying hood can be lowered and the finger of the coating film can be reduced. Touch drying can be accelerated, and even in the case of a charge transport layer coating film using a cyclic ether solvent having a relatively low drying speed, it is possible to prevent unevenness in film thickness and increase of the leading thin film. still,
The above-mentioned cyclic ether solvent is most preferable as the non-halogen solvent for the charge transport layer of the present invention, but a mixed solvent of the cyclic ether and another non-halogen solvent can also be preferably used. For example, a good effect can be obtained by mixing a cyclic ether solvent and an alcohol solvent, a ketone solvent, an aromatic solvent, or the like.

【0030】前記排出口12は溶媒蒸気溜室と乾燥フー
ドの間に0.1〜10mmの間隙幅で設置するのが好ま
しい。0.1mm未満では溶媒蒸気の排出量が十分でな
く、10mm以上だと溶媒蒸気の排出は十分であるが、
溶媒蒸気溜室が外部空気の流れの影響を受けやすく、溶
媒蒸気溜室の溶媒蒸気濃度の均一性が乱されやすい。
The discharge port 12 is preferably installed with a gap width of 0.1 to 10 mm between the solvent vapor storage chamber and the drying hood. If it is less than 0.1 mm, the amount of solvent vapor discharged is not sufficient, and if it is 10 mm or more, the amount of solvent vapor discharged is sufficient,
The solvent vapor storage chamber is easily affected by the flow of external air, and the solvent vapor concentration uniformity in the solvent vapor storage chamber is easily disturbed.

【0031】前記溶媒蒸気溜室の上部蓋部分には円筒状
導電性基体を通過させるに必要な開口部(穴)が設けら
れている。この開口部は円筒状導電性基体と同様に円形
が好ましい。
The upper lid portion of the solvent vapor storage chamber is provided with an opening (hole) necessary for passing the cylindrical conductive substrate. The opening is preferably circular like the cylindrical conductive substrate.

【0032】前記乾燥フードの乾燥条件は自然乾燥が好
ましい。該乾燥フード内の塗布膜は塗布直後の状態であ
るので、強制的に乾燥風を送り込むと、却って膜厚むら
や、先頭薄膜を増加させる。
The drying condition of the dry hood is preferably natural drying. Since the coating film in the drying hood is in a state immediately after coating, if the drying air is forcedly fed, the film thickness unevenness and the leading thin film are increased.

【0033】また、複数の円筒状導電性基体の外周面に
同時に塗膜を形成させるのに、各基体の塗布乾燥条件を
均一にすることが好ましく、お互いの円筒状導電性基体
の配列位置に差が出ない配列方法が好ましい。このよう
な基体の配列方法としては、図3に図示した4本同時塗
布装置の配列方法が好ましい。
Further, in order to form a coating film on the outer peripheral surfaces of a plurality of cylindrical conductive substrates at the same time, it is preferable that the coating and drying conditions of the respective substrates are made uniform, and the coating positions of the cylindrical conductive substrates are arranged at each other. An arrangement method that does not make a difference is preferable. As a method for arranging such a substrate, the method for arranging the four-layer simultaneous coating apparatus shown in FIG. 3 is preferable.

【0034】本発明において、有機感光体とは電子写真
感光体の構成に必要不可欠な電荷発生機能及び電荷輸送
機能のいずれか一方の機能を有機化合物に持たせて構成
された電子写真感光体を意味し、公知の有機電荷発生物
質又は有機電荷輸送物質から構成された感光体、電荷発
生機能と電荷輸送機能を高分子錯体で構成した感光体等
公知の有機電子写真感光体を全て含有する。
In the present invention, the organic photoconductor is an electrophotographic photoconductor having an organic compound having one of the charge generating function and the charge transporting function, which are indispensable for the construction of the electrophotographic photoconductor. This means that it includes all known organic electrophotographic photoreceptors such as a photoreceptor composed of a known organic charge generating material or an organic charge transporting material and a photoreceptor composed of a polymer complex having a charge generating function and a charge transporting function.

【0035】本発明の有機感光体は円筒状導電性基体上
に電荷発生層、電荷輸送層を有するが、円筒状導電性基
体と電荷発生層の間に中間層を設ける層構成がより好ま
しい。以下、本発明に好ましく用いられる有機感光体の
層構成について記載する。
The organic photoreceptor of the present invention has a charge generation layer and a charge transport layer on a cylindrical conductive substrate, but a layer structure in which an intermediate layer is provided between the cylindrical conductive substrate and the charge generation layer is more preferable. Hereinafter, the layer structure of the organic photoreceptor preferably used in the present invention will be described.

【0036】円筒状導電性基体 円筒状導電性基体とは回転することによりエンドレスに
画像を形成できるに必要な円筒状の基体を意味し、真直
度で0.1mm以下、振れ0.1mm以下の範囲にある
導電性の基体が好ましい。この真円度及び振れの範囲を
超えると、良好な画像形成が困難になる。
Cylindrical Conductive Substrate The cylindrical conductive substrate means a cylindrical substrate required to form an image endlessly by rotating and has a straightness of 0.1 mm or less and a shake of 0.1 mm or less. Conductive substrates in the range are preferred. When the circularity and the shake range are exceeded, good image formation becomes difficult.

【0037】導電性の材料としてはアルミニウム、ニッ
ケルなどの金属ドラム、又はアルミニウム、酸化錫、酸
化インジュウムなどを蒸着したプラスチックドラム、又
は導電性物質を塗布した紙・プラスチックドラムを使用
することができる。導電性基体としては常温で比抵抗1
3Ωcm以下が好ましい。
As the conductive material, a metal drum of aluminum, nickel or the like, a plastic drum on which aluminum, tin oxide, indium oxide or the like is deposited, or a paper / plastic drum coated with a conductive substance can be used. As a conductive substrate, the specific resistance is 1 at room temperature.
It is preferably 0 3 Ωcm or less.

【0038】本発明で用いられる導電性基体は、その表
面に封孔処理されたアルマイト膜が形成されたものを用
いても良い。アルマイト処理は、通常例えばクロム酸、
硫酸、シュウ酸、リン酸、硼酸、スルファミン酸等の酸
性浴中で行われるが、硫酸中での陽極酸化処理が最も好
ましい結果を与える。硫酸中での陽極酸化処理の場合、
硫酸濃度は100〜200g/L、アルミニウムイオン
濃度は1〜10g/L、液温は20℃前後、印加電圧は
約20Vで行うのが好ましいが、これに限定されるもの
ではない。又、陽極酸化被膜の平均膜厚は、通常20μ
m以下、特に10μm以下が好ましい。
The electroconductive substrate used in the present invention may have a surface on which a sealed alumite film is formed. Alumite treatment is usually, for example, chromic acid,
It is carried out in an acidic bath of sulfuric acid, oxalic acid, phosphoric acid, boric acid, sulfamic acid, etc., but anodizing in sulfuric acid gives the most favorable results. In the case of anodizing treatment in sulfuric acid,
It is preferable that the sulfuric acid concentration is 100 to 200 g / L, the aluminum ion concentration is 1 to 10 g / L, the liquid temperature is about 20 ° C., and the applied voltage is about 20 V, but the present invention is not limited thereto. The average thickness of the anodized film is usually 20μ.
m or less, and particularly preferably 10 μm or less.

【0039】中間層 本発明においては導電性基体と感光層の間に、有機樹脂
或いは有機金属化合物の反応により形成される樹脂層、
或いは有機樹脂中に酸化チタン等の半導体粒子を分散し
た中間層を設けることが好ましい。このような中間層を
設けることにより、導電性基体からの自由電荷の進入を
防止できる。中間層の関す膜厚は0.1〜20μmが好
ましい。
Intermediate layer In the present invention, a resin layer formed by the reaction of an organic resin or an organometallic compound between the conductive substrate and the photosensitive layer,
Alternatively, it is preferable to provide an intermediate layer in which semiconductor particles such as titanium oxide are dispersed in an organic resin. By providing such an intermediate layer, it is possible to prevent entry of free charges from the conductive substrate. The thickness of the intermediate layer is preferably 0.1 to 20 μm.

【0040】感光層 本発明の感光体の感光層構成は前記中間層上に電荷発生
機能と電荷輸送機能を1つの層に持たせた単層構造の感
光層構成でも良いが、より好ましくは感光層の機能を電
荷発生層(CGL)と電荷輸送層(CTL)に分離した
構成をとるのがよい。機能を分離した構成を取ることに
より繰り返し使用に伴う残留電位増加を小さく制御で
き、その他の電子写真特性を目的に合わせて制御しやす
い。負帯電用の感光体では中間層の上に電荷発生層(C
GL)、その上に電荷輸送層(CTL)の構成を取るこ
とが好ましい。正帯電用の感光体では前記層構成の順が
負帯電用感光体の場合の逆となる。本発明の最も好まし
い感光層構成は前記機能分離構造を有する負帯電感光体
構成である。
Photosensitive Layer The photosensitive layer structure of the photoconductor of the present invention may be a single-layer photosensitive layer structure in which one layer has a charge generating function and a charge transporting function on the intermediate layer, but it is more preferable that the photosensitive layer is photosensitive. It is preferable that the function of the layer is separated into a charge generation layer (CGL) and a charge transport layer (CTL). By adopting a constitution in which the functions are separated, the increase in residual potential due to repeated use can be controlled to be small, and other electrophotographic characteristics can be easily controlled according to the purpose. In the negative charging photoreceptor, the charge generation layer (C
GL) and a charge transport layer (CTL) thereon. In the case of the photoconductor for positive charging, the order of the layers is the reverse of that of the photoconductor for negative charging. The most preferable photosensitive layer structure of the present invention is a negatively charged photosensitive member structure having the above-mentioned function separation structure.

【0041】以下に機能分離負帯電感光体の感光層構成
について説明する。 電荷発生層 電荷発生層には電荷発生物質(CGM)を含有する。そ
の他の物質としては必要によりバインダー樹脂、その他
添加剤を含有しても良い。
The constitution of the photosensitive layer of the function-separated negatively charged photoreceptor will be described below. Charge Generation Layer The charge generation layer contains a charge generation material (CGM). If necessary, a binder resin and other additives may be contained as other substances.

【0042】電荷発生物質(CGM)としては公知の電
荷発生物質(CGM)を用いることができる。例えばフ
タロシアニン顔料、アゾ顔料、ペリレン顔料、アズレニ
ウム顔料などを用いることができる。これらの中で繰り
返し使用に伴う残留電位増加を最も小さくできるCGM
は複数の分子間で安定な凝集構造をとりうる立体、電位
構造を有するものであり、具体的には特定の結晶構造を
有するフタロシアニン顔料、ペリレン顔料のCGMが挙
げられる。例えばCu−Kα線に対するブラッグ角2θ
が27.2°に最大ピークを有するチタニルフタロシア
ニン、同2θが12.4に最大ピークを有するベンズイ
ミダゾールペリレン等のCGMは繰り返し使用に伴う劣
化がほとんどなく、残留電位増加小さくすることができ
る。
As the charge generating substance (CGM), a known charge generating substance (CGM) can be used. For example, a phthalocyanine pigment, an azo pigment, a perylene pigment, an azurenium pigment or the like can be used. Among these, CGM that can minimize the increase in residual potential with repeated use
Has a steric structure and a potential structure capable of forming a stable aggregation structure among a plurality of molecules, and specific examples thereof include a phthalocyanine pigment and a perylene pigment CGM having a specific crystal structure. For example, the Bragg angle 2θ with respect to Cu-Kα rays
CGMs such as titanyl phthalocyanine having a maximum peak at 27.2 ° and benzimidazole perylene having a maximum peak at 22.4 at 27.2 have almost no deterioration due to repeated use, and the residual potential increase can be reduced.

【0043】電荷発生層にCGMの分散媒としてバイン
ダーを用いる場合、バインダーとしては公知の樹脂を用
いることができるが、最も好ましい樹脂としてはホルマ
ール樹脂、ブチラール樹脂、シリコーン樹脂、シリコー
ン変性ブチラール樹脂、フェノキシ樹脂等が挙げられ
る。バインダー樹脂と電荷発生物質との割合は、バイン
ダー樹脂100質量部に対し20〜600質量部が好ま
しい。これらの樹脂を用いることにより、繰り返し使用
に伴う残留電位増加を最も小さくできる。電荷発生層の
乾燥膜厚は0.01μm〜2μmが好ましい。
When a binder is used as a CGM dispersion medium in the charge generation layer, a known resin can be used as the binder, but the most preferable resin is a formal resin, a butyral resin, a silicone resin, a silicone-modified butyral resin, or a phenoxy resin. Resin etc. are mentioned. The ratio of the binder resin to the charge generating substance is preferably 20 to 600 parts by mass with respect to 100 parts by mass of the binder resin. By using these resins, the increase in residual potential due to repeated use can be minimized. The dry film thickness of the charge generation layer is preferably 0.01 μm to 2 μm.

【0044】電荷輸送層 本発明の電荷輸送層とは少なくとも電荷輸送物質を含有
する層を意味する。該電荷輸送物質は電荷発生物質から
発生した正孔或いは電子を輸送する機能を有していれ
ば、公知、新規に係わらずいかなる有機化合物も利用で
きる。
Charge Transport Layer The charge transport layer of the present invention means a layer containing at least a charge transport substance. As long as the charge-transporting substance has a function of transporting holes or electrons generated from the charge-generating substance, any known or new organic compound can be used.

【0045】電荷輸送層には電荷輸送物質(CTM)及
びCTMを分散し製膜するバインダー樹脂を含有する。
その他の物質としては必要により酸化防止剤等の添加剤
を含有しても良い。
The charge transport layer contains a charge transport material (CTM) and a binder resin for dispersing CTM to form a film.
Other substances may optionally contain additives such as antioxidants.

【0046】電荷輸送物質(CTM)としては公知の電
荷輸送物質(CTM)を用いることができる。例えばト
リフェニルアミン誘導体、ヒドラゾン化合物、スチリル
化合物、ベンジジン化合物、ブタジエン化合物などを用
いることができる。これら電荷輸送物質は通常、適当な
バインダー樹脂中に溶解して層形成が行われる。これら
の中で繰り返し使用に伴う残留電位増加を最も小さくで
きるCTMは高移動度で、且つ組み合わされるCGMと
のイオン化ポテンシャル差が0.5(eV)以下の特性
を有するものであり、好ましくは0.25(eV)以下
である。
As the charge transport material (CTM), a known charge transport material (CTM) can be used. For example, a triphenylamine derivative, a hydrazone compound, a styryl compound, a benzidine compound, a butadiene compound or the like can be used. These charge transport materials are usually dissolved in a suitable binder resin to form a layer. Among these, CTM that can minimize the increase in residual potential due to repeated use has high mobility and has a characteristic that the difference in ionization potential with CGM to be combined is 0.5 (eV) or less, and preferably 0. It is 0.25 (eV) or less.

【0047】CGM、CTMのイオン化ポテンシャルは
表面分析装置AC−1(理研計器社製)で測定される。
The ionization potentials of CGM and CTM are measured by a surface analyzer AC-1 (manufactured by Riken Keiki Co., Ltd.).

【0048】電荷輸送層(CTL)に用いられる樹脂と
しては、例えばポリスチレン、アクリル樹脂、メタクリ
ル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリビニル
ブチラール樹脂、エポキシ樹脂、ポリウレタン樹脂、フ
ェノール樹脂、ポリエステル樹脂、アルキッド樹脂、ポ
リカーボネート樹脂、シリコーン樹脂、メラミン樹脂並
びに、これらの樹脂の繰り返し単位のうちの2つ以上を
含む共重合体樹脂。又これらの絶縁性樹脂の他、ポリ−
N−ビニルカルバゾール等の高分子有機半導体が挙げら
れる。
Examples of the resin used for the charge transport layer (CTL) are polystyrene, acrylic resin, methacrylic resin, vinyl chloride resin, vinyl acetate resin, polyvinyl butyral resin, epoxy resin, polyurethane resin, phenol resin, polyester resin, alkyd. Resins, polycarbonate resins, silicone resins, melamine resins, and copolymer resins containing two or more of the repeating units of these resins. In addition to these insulating resins, poly-
Examples include polymer organic semiconductors such as N-vinylcarbazole.

【0049】これらCTLのバインダーとして最も好ま
しいものはポリカーボネート樹脂である。ポリカーボネ
ート樹脂はCTMの分散性、電子写真特性を良好にする
ことにおいて、最も好ましい。バインダー樹脂と電荷輸
送物質との割合は、バインダー樹脂100質量部に対し
10〜200質量部が好ましい。又、電荷輸送層の乾燥
膜厚は10〜40μmが好ましい。
The most preferred binder for these CTLs is a polycarbonate resin. Polycarbonate resin is most preferable in improving dispersibility of CTM and electrophotographic characteristics. The ratio of the binder resin to the charge transport material is preferably 10 to 200 parts by mass with respect to 100 parts by mass of the binder resin. The dry film thickness of the charge transport layer is preferably 10 to 40 μm.

【0050】保護層 本発明の有機感光体は、低表面エネルギーの表面層を形
成する保護層を設けても良い。例えばシロキサン系樹脂
層の保護層、フッ素系樹脂を含有した保護層等を前記感
光層の上に設けてもよい。
Protective Layer The organic photoreceptor of the present invention may be provided with a protective layer forming a surface layer having a low surface energy. For example, a protective layer of a siloxane-based resin layer, a protective layer containing a fluorine-based resin, or the like may be provided on the photosensitive layer.

【0051】上記では本発明の最も好ましい感光体の層
構成を例示したが、本発明では上記以外の感光体層構成
でも良い。
In the above, the most preferable layer constitution of the photosensitive member of the present invention is exemplified, but in the present invention, a photosensitive member layer constitution other than the above may be adopted.

【0052】本発明の有機感光体を構成する各層を製造
する為の塗布液には上記各層の成分を溶解する溶媒が必
要である。本発明では電荷輸送層の溶媒に非ハロゲン溶
媒を用いることを特徴としているが、その他の各層も非
ハロゲン溶媒を用いることが好ましい。これら非ハロゲ
ン溶媒としてはアルコール類、ケトン類等各種の溶媒が
挙げられるが、本発明の電荷輸送層用の塗布液溶媒とし
てはジオキソラン、ジオキサン及びテトラヒドロフラン
が特に好ましい。これらの溶媒は公知の電荷発生物質及
び電荷発生層のバインダー樹脂の溶解性が優れており、
地球環境に対する環境負荷の点においても、きわめて優
れている。
The coating solution for producing each layer constituting the organic photoreceptor of the present invention requires a solvent capable of dissolving the components of each layer. The present invention is characterized by using a non-halogen solvent as the solvent for the charge transport layer, but it is preferable to use a non-halogen solvent for each of the other layers. Examples of these non-halogen solvents include various solvents such as alcohols and ketones, but dioxolane, dioxane and tetrahydrofuran are particularly preferable as the coating liquid solvent for the charge transport layer of the present invention. These solvents have excellent solubility of the known charge generating substance and the binder resin of the charge generating layer,
It is also extremely excellent in terms of environmental load on the global environment.

【0053】また、本発明の塗布装置、或いは塗布方法
は、有機感光体の下引き層、電荷発生層の形成にも好適
に適用することができる。しかしながら、特に塗布膜厚
が100μmを超え、膜厚むらや先頭薄膜の発生が大き
い電荷輸送層に本発明の塗布方法を適用すると好結果が
得られる。
Further, the coating apparatus or the coating method of the present invention can be suitably applied to the formation of the undercoat layer and the charge generation layer of the organic photoreceptor. However, particularly when the coating method of the present invention is applied to the charge transport layer in which the coating film thickness exceeds 100 μm and the unevenness of the film thickness and the occurrence of the leading thin film are large, good results are obtained.

【0054】以上、本発明の装置を用いて多数本の円筒
状導電性基体に電荷輸送層を形成することにより、浸漬
塗布直後の指触乾燥の条件を個々の基体間で均一に保ち
ながら溶媒を系外に排出ができる。その結果、塗布膜厚
(塗布直後の溶媒を含んだ塗布膜厚)が30〜300μ
mの電荷輸送層でも膜厚むらを小さくできる。
As described above, the charge transport layer is formed on a large number of cylindrical conductive substrates using the apparatus of the present invention, so that the solvent can be dried while keeping the condition of touch-drying immediately after dip coating even between the individual substrates. Can be discharged out of the system. As a result, the coating film thickness (coating film thickness including the solvent immediately after coating) was 30 to 300 μm.
Even in the charge transport layer of m, the unevenness of the film thickness can be reduced.

【0055】又、常温の飽和蒸気圧が1.3〜40kP
aの乾燥速度が比較的遅いジオキソラン、ジオキサン及
びテトラヒドロフラン等の環状エーテル溶媒を用いて
も、膜厚むらの改良効果を持続することが出来る。
The saturated vapor pressure at room temperature is 1.3 to 40 kP.
Even if a cyclic ether solvent such as dioxolane, dioxane, or tetrahydrofuran having a relatively low drying rate of a is used, the effect of improving the unevenness in film thickness can be maintained.

【0056】[0056]

【実施例】以下、本発明を実施例によって具体的に説明
する。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0057】実施例1 以下の様にして、円筒状導電性基体上に中間層を形成し
た。
Example 1 An intermediate layer was formed on a cylindrical conductive substrate as follows.

【0058】ポリアミド樹脂CM8000(東レ社製)
1質量部、メタノール10質量部を同一容器中に加え溶
解分散して、中間層塗布液1を作製した。該中間層塗布
液を図1の独立した乾燥フード(各乾燥フードには多数
の3mmφの通気口があり、通気孔の開口面積比は25
%)を有する4本同時浸漬塗布装置を用いて円筒状アル
ミニウム基体(1.0mmt×30mmφ×340m
m)上に塗布した。その時の塗布液温度は24℃とし
た。アルミニウム基体を塗布液から引き上げる速度は4
80mm/minとした。排出口12の位置としては、
図1に示す溶媒蒸気溜室と乾燥フードの間に間隙幅1m
mで設置されている。該排出口は塗布槽液面から10c
mの高さに50mmの円で形成されている。また、塗布
液循環流量は5L/min、リサイクル管8の径は、内
径150mmφとした。塗布した各基体は15cmの各
乾燥フードを経由し風乾した後、乾燥機に入れ、70℃
において、10分間加熱乾燥し、膜厚0.1μmの中間
層を形成した。
Polyamide resin CM8000 (manufactured by Toray)
1 part by mass and 10 parts by mass of methanol were added to the same container and dissolved and dispersed to prepare an intermediate layer coating liquid 1. The intermediate layer coating solution was applied to the independent dry hood of FIG. 1 (each dry hood has a large number of vent holes of 3 mmφ, and the opening area ratio of the vent holes is 25
%) And a cylindrical aluminum substrate (1.0 mmt × 30 mmφ × 340 m)
m). The coating liquid temperature at that time was 24 ° C. The speed of pulling up the aluminum substrate from the coating solution is 4
It was set to 80 mm / min. As the position of the outlet 12,
1m gap width between the solvent vapor reservoir and the drying hood shown in Fig. 1.
It is installed at m. The outlet is 10c from the liquid level of the coating tank.
It is formed with a circle of 50 mm at a height of m. The coating liquid circulation flow rate was 5 L / min, and the diameter of the recycle pipe 8 was 150 mmφ. Each coated substrate was air-dried through a 15 cm dry hood, then placed in a drier at 70 ° C.
In 10 minutes, it heat-dried and formed the 0.1-micrometer-thick intermediate | middle layer.

【0059】次に、Y型チタニルフタロシアニン60質
量部、シリコーン変性ブチラール樹脂(信越化学社製)
700質量部、2−ブタノン2000質量部を混合し、
サンドミルを用いて10時間分散し、電荷発生層塗布液
を調製した。この塗布液を図1の独立した乾燥フード
(各乾燥フードには多数の3mmφの通気口があり、通
気孔の開口面積比は25%)を有する4本同時浸漬塗布
装置を用いて、上記実施例1により得られた中間層が形
成されたアルミニウム基体の上に塗布し、70℃におい
て10分間乾燥し、膜厚0.2μmの電荷発生層を形成
した。アルミニウム基体を塗布液から引き上げる速度は
240mm/minとした。その時の塗布液温度は24
℃とした。排出口12の位置としては、図1に示す溶媒
蒸気溜室と乾燥フードの間に間隙幅1mmで設置されて
いる。該排出口は塗布槽液面から10cmの高さに50
mmの円で形成されている。また、塗布液循環流量は5
L/min、リサイクル管8の径は内径150mmφと
した。
Next, 60 parts by mass of Y-type titanyl phthalocyanine and a silicone-modified butyral resin (manufactured by Shin-Etsu Chemical Co., Ltd.)
700 parts by mass and 2-butanone 2000 parts by mass are mixed,
It was dispersed for 10 hours using a sand mill to prepare a charge generation layer coating liquid. This coating solution was subjected to the above-mentioned operation by using a four simultaneous dip coating apparatus having independent dry hoods (each drying hood has a large number of vent holes of 3 mmφ and the opening area ratio of the vent holes is 25%) in FIG. It was applied onto the aluminum substrate on which the intermediate layer obtained in Example 1 was formed, and dried at 70 ° C. for 10 minutes to form a charge generation layer having a film thickness of 0.2 μm. The speed of pulling up the aluminum substrate from the coating solution was 240 mm / min. The coating liquid temperature at that time is 24
℃ was made. As the position of the discharge port 12, a gap width of 1 mm is installed between the solvent vapor storage chamber and the drying hood shown in FIG. The outlet is 50 cm at a height of 10 cm from the surface of the coating tank.
It is formed by a circle of mm. The circulating flow rate of the coating solution is 5
L / min, the diameter of the recycle tube 8 was 150 mmφ.

【0060】上記の電荷発生層の上に、図1の独立した
乾燥フード(各乾燥フードには多数の3mmφの通気口
があり、通気孔の開口面積比は25%)を有する4本同
時浸漬塗布装置を用いて、電荷輸送層を塗布した。電荷
輸送物質〔N−(4−メチルフェニル)−N−{4−
(β−フェニルスチリル)フェニル}−p−トルイジ
ン〕225質量部、ポリカーボネート(粘度平均分子量
20,000)300質量部、酸化防止剤(例示化合物
1−3)6質量部、ジオキソラン2000質量部を混合
し、溶解して電荷輸送層塗布液を調製した。この塗布液
を前記電荷発生層の上に浸漬塗布法で塗布し、塗布膜厚
95μm、乾燥膜厚20μmの電荷輸送層を形成した。
アルミニウム基体を塗布液から引き上げる速度は240
mm/minとした。その時の塗布液温度は24℃とし
た。排出口12の位置としては、図2に示す溶媒蒸気溜
室と乾燥フードの間に間隙幅1mmで設置されている。
該排出口は塗布槽液面から10cmの高さに50mmの
円で形成されている。また、塗布液循環流量は1L/m
in、リサイクル管の径は、内径100mmφとした。
塗布したアルミニウム基体は、15cmの乾燥フードを
経由して風乾した後、乾燥機に入れ、90℃において、
60分間加熱乾燥し、電荷輸送層を形成し、有機感光体
ドラムを作製した。その時の4本それぞれの膜厚むら値
を表1に示す。ここで、膜厚むら値は、塗布膜上端から
20mm、50mm、160mm、300mmのそれぞ
れの箇所の円周方向4点(90°間隔)、合計16点の
膜厚値の最大値と最小値の差である。その結果を表1に
示す。
On the above-mentioned charge generation layer, four simultaneous immersions having independent dry hoods of FIG. 1 (each dry hood has a large number of vent holes of 3 mmφ and the opening area ratio of the vent holes is 25%) The charge transport layer was applied using an applicator. Charge transport material [N- (4-methylphenyl) -N- {4-
225 parts by mass of (β-phenylstyryl) phenyl} -p-toluidine], 300 parts by mass of polycarbonate (viscosity average molecular weight 20,000), 6 parts by mass of antioxidant (Exemplary compound 1-3), and 2000 parts by mass of dioxolane are mixed. Then, it was dissolved to prepare a charge transport layer coating solution. This coating liquid was applied onto the charge generation layer by a dip coating method to form a charge transport layer having a coating film thickness of 95 μm and a dry film thickness of 20 μm.
The speed of pulling up the aluminum substrate from the coating solution is 240
mm / min. The coating liquid temperature at that time was 24 ° C. As the position of the discharge port 12, a gap width of 1 mm is installed between the solvent vapor storage chamber and the drying hood shown in FIG.
The discharge port is formed as a circle of 50 mm at a height of 10 cm from the liquid level of the coating tank. The coating liquid circulation flow rate is 1 L / m.
In, the diameter of the recycling pipe was 100 mmφ.
The coated aluminum substrate was air-dried via a 15 cm dry hood and then placed in a dryer at 90 ° C.
It was heated and dried for 60 minutes to form a charge transport layer, and an organic photosensitive drum was produced. Table 1 shows the film thickness unevenness values of the four films at that time. Here, the film thickness unevenness value is the maximum value and the minimum value of the film thickness values of 4 points (90 ° intervals) in the circumferential direction at each of 20 mm, 50 mm, 160 mm and 300 mm from the upper end of the coating film, for a total of 16 points. It is the difference. The results are shown in Table 1.

【0061】比較例1 比較のために、図2記載の大型乾燥フード(排出口がリ
サイクル管の途中にある)を用いた以外は、実施例1と
同一の条件で円筒状導電性基体上に前記中間層、電荷発
生層、電荷輸送層の塗布操作を行った。その結果を表1
に示す。
Comparative Example 1 For comparison, a cylindrical dry conductive substrate was prepared under the same conditions as in Example 1 except that the large dry hood shown in FIG. 2 (the discharge port was in the middle of the recycling pipe) was used. The coating operation of the intermediate layer, the charge generation layer, and the charge transport layer was performed. The results are shown in Table 1.
Shown in.

【0062】[0062]

【表1】 [Table 1]

【0063】実施例2 排出口12の間隔幅を8mmとし、電荷輸送層塗布液の
溶媒をジオキソランからジオキサンに変更した以外は、
実施例1と同一の条件で前記電荷発生層上に電荷輸送層
の塗布を行ったその結果を表1に示す。
Example 2 Except that the distance between the discharge ports 12 was set to 8 mm and the solvent for the charge transport layer coating solution was changed from dioxolane to dioxane.
Table 1 shows the results of coating the charge transport layer on the charge generation layer under the same conditions as in Example 1.

【0064】実施例3 排出口12の間隔幅を0.2mmとし、電荷輸送層塗布
液の溶媒をジオキソランからテトラヒドロフランに変更
した以外は、実施例1と同一条件で前記電荷発生層上に
電荷輸送層の塗布を行った。その結果を表1に示す。
Example 3 The charge transport layer was formed on the charge generation layer under the same conditions as in Example 1 except that the distance between the discharge ports 12 was 0.2 mm and the solvent for the charge transport layer coating solution was changed from dioxolane to tetrahydrofuran. The layers were applied. The results are shown in Table 1.

【0065】叉、実施例1〜3、及び比較例1の各感光
体について先頭薄膜の評価を行った。結果を表2に示
す。 *先頭薄膜の評価 円筒状感光体のドラム軸に沿って任意に一本の直線を選
定する。該直線の塗布先頭部から10mm等間隔に感光
層の膜厚を測定し、図4に示したような感光層膜厚プロ
フィールを作成する。先頭薄膜の長さLは、感光体のド
ラム先端から先頭部膜厚立ち上がりの接線と飽和膜厚の
延長戦の交点迄の長さaと定義する。各感光体につい
て、先頭薄膜長さを測定し、その結果を表2に示した。
膜厚測定器は光検出方式の膜厚測定器MCPD−100
0(瞬間マルチ測光検出器:大塚電子(株))を用いて
行った。
Further, the leading thin film of each of the photoconductors of Examples 1 to 3 and Comparative Example 1 was evaluated. The results are shown in Table 2. * Evaluation of the leading thin film An arbitrary straight line is selected along the drum axis of the cylindrical photoreceptor. The film thickness of the photosensitive layer is measured at regular intervals of 10 mm from the leading portion of the coating on the straight line, and a photosensitive layer film thickness profile as shown in FIG. 4 is created. The length L of the leading thin film is defined as the length a from the drum tip of the photoconductor to the intersection of the tangent of the leading portion thickness rise and the extension of the saturated thickness. The length of the leading thin film was measured for each photoconductor, and the results are shown in Table 2.
The film thickness measuring device is a photodetection type film thickness measuring device MCPD-100.
0 (instantaneous multi-photometric detector: Otsuka Electronics Co., Ltd.) was used.

【0066】[0066]

【表2】 [Table 2]

【0067】表1、表2から判るように複数本の円筒状
導電性基体を同時に塗布液に浸漬する塗布槽の上に複数
本の円筒状導電性基体に対応した独立フードを設けた塗
布装置を用いて形成した中間層、電荷発生層、電荷輸送
層を有する有機感光体は、比較の大型乾燥フードを用い
た場合に比し、膜厚むら及び先頭薄膜の長さのいずれに
おいても著しく改善されていることが見いだされる。
As can be seen from Tables 1 and 2, a coating device in which an independent hood corresponding to a plurality of cylindrical conductive substrates is provided on a coating tank in which a plurality of cylindrical conductive substrates are simultaneously immersed in a coating solution. The organic photoconductor having an intermediate layer, a charge generation layer, and a charge transport layer formed by using is significantly improved in both thickness unevenness and length of the leading thin film as compared with the case of using a comparative large dry hood. Is found to have been done.

【0068】[0068]

【発明の効果】上記の実施例からも明らかなように、本
発明の有機感光体の塗布装置及び塗布方法を用いれば、
各円筒状導電性基体に形成された感光層は膜厚むらが小
さく、先頭薄膜の長さも短いものを作製することがで
き、したがって性能が良好な円筒状の有機感光体を提供
することが可能である。
As is apparent from the above-mentioned embodiments, the use of the organic photoreceptor coating apparatus and coating method of the present invention
The photosensitive layer formed on each cylindrical conductive substrate can have a small thickness unevenness, and the length of the leading thin film can be made small. Therefore, it is possible to provide a cylindrical organic photosensitive member with good performance. Is.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の多本同時浸漬塗布装置の一例の概略構
成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of an example of a multiple simultaneous dip coating apparatus of the present invention.

【図2】大型乾燥フードを用いた塗布装置の図である。FIG. 2 is a diagram of a coating device using a large-sized dry hood.

【図3】4本同時塗布装置の配列方法の図である。FIG. 3 is a diagram of an arraying method of four simultaneous coating devices.

【図4】感光層の膜厚プロフィールを示した図である。FIG. 4 is a view showing a film thickness profile of a photosensitive layer.

【符号の説明】[Explanation of symbols]

1 塗布液 2 塗布液タンク 3 供給配管 4 ポンプ 5 フィルター 6 塗布槽 7 塗布液受け槽 8 リサイクル管 9 円筒状導電性基体 10 塗布槽液面(オーバーフロー面) 11 溶媒蒸気溜室 12 排出口 14 乾燥フード 15 メッシュ 1 coating liquid 2 Coating liquid tank 3 supply piping 4 pumps 5 filters 6 coating tanks 7 Coating liquid receiving tank 8 recycling pipes 9 Cylindrical conductive substrate 10 Liquid level of coating tank (overflow surface) 11 Solvent vapor reservoir 12 outlet 14 Dry hood 15 mesh

フロントページの続き Fターム(参考) 2H068 EA14 EA16 4D075 AB02 AB33 AB36 AB52 AB56 AB60 CA48 DA15 DA20 DB01 DB07 DB18 DB31 DC19 DC24 EA07 EA45 EB14 EB15 EB16 EB19 EB22 EB32 EB33 EB35 EB36 EB38 EB39 EB43 EC30 4F040 AA07 AB06 AC01 BA42 CC09 CC13 DB27 4F042 AA03 AA06 AA10 BA03 BA25 CA01 CB02 CB20 DE01 DE09Continued front page    F-term (reference) 2H068 EA14 EA16                 4D075 AB02 AB33 AB36 AB52 AB56                       AB60 CA48 DA15 DA20 DB01                       DB07 DB18 DB31 DC19 DC24                       EA07 EA45 EB14 EB15 EB16                       EB19 EB22 EB32 EB33 EB35                       EB36 EB38 EB39 EB43 EC30                 4F040 AA07 AB06 AC01 BA42 CC09                       CC13 DB27                 4F042 AA03 AA06 AA10 BA03 BA25                       CA01 CB02 CB20 DE01 DE09

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 複数本の円筒状導電性基体を同時に塗布
液に浸漬し、引上げて該円筒状導電性基体上に塗布膜を
形成する有機感光体の塗布装置において、該塗布装置は
非ハロゲン溶媒を用いた電荷輸送層用塗布液を収容する
塗布槽、該塗布槽の上に複数本それぞれの円筒状導電性
基体に対応した乾燥フードを有することを特徴とする有
機感光体の塗布装置。
1. An organic photoreceptor coating apparatus in which a plurality of cylindrical conductive substrates are simultaneously immersed in a coating solution and pulled up to form a coating film on the cylindrical conductive substrates, wherein the coating apparatus is a non-halogen compound. An apparatus for coating an organic photoreceptor, comprising: a coating tank containing a coating liquid for a charge transport layer using a solvent; and a drying hood corresponding to each of a plurality of cylindrical conductive substrates on the coating tank.
【請求項2】 前記乾燥フードは円筒状導電性基体通過
時のフードと円筒状導電性基体間の間隙幅が該円筒状導
電性基体の直径比で1/10〜1に構成されていること
を特徴とする請求項1に記載の有機感光体の塗布装置。
2. The dry hood is configured such that a gap width between the hood and the cylindrical conductive substrate when passing through the cylindrical conductive substrate is 1/10 to 1 in terms of a diameter ratio of the cylindrical conductive substrate. The coating device for an organic photoreceptor according to claim 1.
【請求項3】 前記乾燥フードが多数の通気孔を有する
ことを特徴とする請求項1又は2に記載の有機感光体の
塗布装置。
3. The apparatus for coating an organic photoconductor according to claim 1, wherein the drying hood has a large number of ventilation holes.
【請求項4】 前記通気孔の1つの開口径が0.1〜1
0mmφであることを特徴とする請求項3に記載の有機
感光体の塗布装置。
4. One of the ventilation holes has an opening diameter of 0.1 to 1.
The coating device for an organic photoreceptor according to claim 3, wherein the coating device has a diameter of 0 mmφ.
【請求項5】 前記通気孔全体の開口面積比(乾燥フー
ド全体の面積に対して)が5〜50%であることを特徴
とする請求項3又は4に記載の有機感光体の塗布装置。
5. The apparatus for coating an organic photoconductor according to claim 3, wherein an opening area ratio of the entire ventilation holes (to an area of the entire drying hood) is 5 to 50%.
【請求項6】 前記非ハロゲン溶媒が環状エーテルであ
ることを特徴とする請求項1〜5のいずれか1項に記載
の有機感光体の塗布装置。
6. The apparatus for coating an organophotoreceptor according to claim 1, wherein the non-halogen solvent is a cyclic ether.
【請求項7】 前記環状エーテルがジオキソラン、ジオ
キサン及びテトラヒドロフランの内から選択された少な
くとも1種であることを特徴とする請求項1〜6のいず
れか1項に記載の有機感光体の塗布装置。
7. The organophotoreceptor coating apparatus according to claim 1, wherein the cyclic ether is at least one selected from dioxolane, dioxane, and tetrahydrofuran.
【請求項8】 請求項1〜7のいずれか1項に記載の塗
布装置を用いて、複数本の円筒状導電性基体を同時に塗
布液に浸漬し、引き上げて円筒状導電性基体上に電荷輸
送層を形成することを特徴とする有機感光体の塗布方
法。
8. Using the coating apparatus according to claim 1, a plurality of cylindrical conductive substrates are simultaneously immersed in a coating solution and then pulled up to form a charge on the cylindrical conductive substrate. A method for coating an organic photoreceptor, which comprises forming a transport layer.
【請求項9】 前記電荷輸送層の塗布膜厚が30〜30
0μmであることを特徴とする請求項8に記載の有機感
光体の塗布方法。
9. The coating thickness of the charge transport layer is 30 to 30.
The coating method for an organic photoreceptor according to claim 8, wherein the coating thickness is 0 μm.
【請求項10】 請求項8又は9に記載の有機感光体の
塗布方法を用いて作製されたことを特徴とする有機感光
体。
10. An organic photoconductor manufactured by using the method for coating an organic photoconductor according to claim 8.
JP2001257726A 2001-08-28 2001-08-28 Coating device for organic photoreceptor, method for coating and organic photoreceptor Pending JP2003066634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001257726A JP2003066634A (en) 2001-08-28 2001-08-28 Coating device for organic photoreceptor, method for coating and organic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001257726A JP2003066634A (en) 2001-08-28 2001-08-28 Coating device for organic photoreceptor, method for coating and organic photoreceptor

Publications (1)

Publication Number Publication Date
JP2003066634A true JP2003066634A (en) 2003-03-05

Family

ID=19085346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001257726A Pending JP2003066634A (en) 2001-08-28 2001-08-28 Coating device for organic photoreceptor, method for coating and organic photoreceptor

Country Status (1)

Country Link
JP (1) JP2003066634A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1762899A1 (en) 2005-09-12 2007-03-14 Ricoh Company, Ltd. Latent electrostatic image bearing member, and the method for producing the same, image forming method, image forming apparatus, and process cartridge
JP2007127922A (en) * 2005-11-07 2007-05-24 Ricoh Co Ltd Electrophotographic photoreceptor manufacturing device and manufacturing method
JP2010075828A (en) * 2008-09-25 2010-04-08 Canon Inc Coating apparatus and method of manufacturing electrophotographic photoreceptor
EP2420324A1 (en) * 2010-08-17 2012-02-22 Canon Kabushiki Kaisha Coating apparatus, method for producing electrophotographic photosensitive member and method for mass-producing electrophotographic photosensitive members

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1762899A1 (en) 2005-09-12 2007-03-14 Ricoh Company, Ltd. Latent electrostatic image bearing member, and the method for producing the same, image forming method, image forming apparatus, and process cartridge
US7560204B2 (en) 2005-09-12 2009-07-14 Ricoh Company, Ltd. Latent electrostatic image bearing member, and the method for producing the same, image forming method, image forming apparatus, and process cartridge
JP2007127922A (en) * 2005-11-07 2007-05-24 Ricoh Co Ltd Electrophotographic photoreceptor manufacturing device and manufacturing method
JP4568674B2 (en) * 2005-11-07 2010-10-27 株式会社リコー Electrophotographic photoreceptor manufacturing apparatus and manufacturing method
JP2010075828A (en) * 2008-09-25 2010-04-08 Canon Inc Coating apparatus and method of manufacturing electrophotographic photoreceptor
EP2420324A1 (en) * 2010-08-17 2012-02-22 Canon Kabushiki Kaisha Coating apparatus, method for producing electrophotographic photosensitive member and method for mass-producing electrophotographic photosensitive members
CN102375353A (en) * 2010-08-17 2012-03-14 佳能株式会社 Coating apparatus, method for producing electrophotographic photosensitive member and method for mass-producing electrophotographic photosensitive members
US9146578B2 (en) 2010-08-17 2015-09-29 Canon Kabushiki Kaisha Coating apparatus, method for producing electrophotographic photosensitive member and method for mass-producing electrophotographic photosensitive members

Similar Documents

Publication Publication Date Title
CN111198484B (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP6528596B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus
JP2008046197A (en) Organic photoreceptor, and image forming apparatus and process cartridge using the organic photoreceptor
US20060127796A1 (en) Method of forming electrophotographic photoreceptor and method of drying coating film
EP2349590B1 (en) Dip-coating process
JP2003066634A (en) Coating device for organic photoreceptor, method for coating and organic photoreceptor
JP2003066633A (en) Coating device for organic photoreceptor, method for coating and organic photoreceptor
JP2021098182A (en) Coating dryer and coating dry method
JP6394066B2 (en) Rotating body manufacturing method, photoreceptor manufacturing method
EP1222964B1 (en) Liquid spray-coating method and electrophotographic photoreceptor formed by the method
JP4175453B2 (en) Electrophotographic photosensitive member coating apparatus, coating method, and electrophotographic photosensitive member
JP4390409B2 (en) Electrophotographic photosensitive member coating apparatus, coating method, and electrophotographic photosensitive member
JP2921431B2 (en) Electrophotographic photoreceptor manufacturing method and dip coating apparatus
JP4414366B2 (en) Electrophotographic photoreceptor manufacturing apparatus and manufacturing method
US9146578B2 (en) Coating apparatus, method for producing electrophotographic photosensitive member and method for mass-producing electrophotographic photosensitive members
JP2012108187A (en) Method for manufacturing electrophotographic photoreceptor
JP5341450B2 (en) Coating apparatus and method for producing electrophotographic photosensitive member
JPS6275454A (en) Production of electrophotographic sensitive body
JP4856892B2 (en) Coating method and method for producing electrophotographic photosensitive member
JP2006065053A (en) Method for manufacturing electrophotographic photoreceptor, stripping liquid for electrophotographic photoreceptor, and electrophotographic photoreceptor
JPH01119365A (en) Coating applicator
JP2022148912A (en) Coating device and method
JPH0480383B2 (en)
JP2021098183A (en) Coating dryer and coating dry method
JP2014178365A (en) Electrophotographic photoreceptor and method for manufacturing the same