JP2003066196A - Production method for fluorescent plate, fluorescent plate, radiation detector, production method for radiation detector and radiation detection system - Google Patents

Production method for fluorescent plate, fluorescent plate, radiation detector, production method for radiation detector and radiation detection system

Info

Publication number
JP2003066196A
JP2003066196A JP2001261908A JP2001261908A JP2003066196A JP 2003066196 A JP2003066196 A JP 2003066196A JP 2001261908 A JP2001261908 A JP 2001261908A JP 2001261908 A JP2001261908 A JP 2001261908A JP 2003066196 A JP2003066196 A JP 2003066196A
Authority
JP
Japan
Prior art keywords
protective layer
phosphor
fluorescent plate
optical sensor
convex portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001261908A
Other languages
Japanese (ja)
Other versions
JP4587431B2 (en
JP2003066196A5 (en
Inventor
Katsuro Takenaka
克郎 竹中
Satoshi Okada
岡田  聡
Yoshihiro Ogawa
善広 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001261908A priority Critical patent/JP4587431B2/en
Priority to US10/066,618 priority patent/US6847041B2/en
Publication of JP2003066196A publication Critical patent/JP2003066196A/en
Priority to US10/933,249 priority patent/US7244945B2/en
Publication of JP2003066196A5 publication Critical patent/JP2003066196A5/ja
Application granted granted Critical
Publication of JP4587431B2 publication Critical patent/JP4587431B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)

Abstract

PROBLEM TO BE SOLVED: To resolve the problem of an optical sensor destruction and the like due to a roughness caused on a fluorescent plate. SOLUTION: The production method is characterized in that it includes a process to form a first protection layer 104 on the surface of a fluorescent layer 103 having a surface formed of projections 105, a process to form a second protection layer 108 on the first protection layer after crushing the projections 105 from above the first protection layer 104 or removing them. The fluorescent layer on the fluorescent plate produced with this method is characterized in that it has cesium iodide as the main component. The radiation detector is characterized in that it is provided with the fluorescent plate produced with this method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、蛍光体層上に保護
層が形成された蛍光板の製造方法、蛍光板、放射線検出
装置、放射線検出装置の製造方法および放射線検出シス
テムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a fluorescent plate in which a protective layer is formed on a phosphor layer, a fluorescent plate, a radiation detecting device, a method for manufacturing a radiation detecting device, and a radiation detecting system.

【0002】[0002]

【従来の技術】図1は従来例としての間接型X線エリア
センサーの断面図である。ガラス基板110上に格子状
に配列された光電変換素子112と、それらをつなぐ配
線部113と、そしてこれらを保護する光センサー保護
層114と、を備える光センサー111上に、蛍光体1
03及び反射層102を形成して、X線エリアセンサー
が作成される。
2. Description of the Related Art FIG. 1 is a sectional view of an indirect X-ray area sensor as a conventional example. The fluorescent substance 1 is provided on the optical sensor 111 including the photoelectric conversion elements 112 arranged in a grid pattern on the glass substrate 110, the wiring portion 113 connecting them, and the optical sensor protective layer 114 for protecting them.
03 and the reflective layer 102 are formed, and an X-ray area sensor is created.

【0003】蛍光体基板101側から蛍光体103へ入
射してくるX線は、蛍光体103でX線から可視光等の
光へ波長変換され、その後、可視光は光センサー111
の光電変換素子112により光電変換され電気信号に変
わる。その信号を増幅し、画像処理を加えることにより
X線デジタル画像ができる。
The X-rays incident on the phosphor 103 from the phosphor substrate 101 side are wavelength-converted from the X-rays to light such as visible light by the phosphor 103, and then the visible light is detected by the optical sensor 111.
Is converted into an electric signal by photoelectric conversion by the photoelectric conversion element 112. An X-ray digital image can be produced by amplifying the signal and applying image processing.

【0004】現在、光センサー111上に蛍光体103
を形成する手段として、直接光センサー111上に蛍光
体103を蒸着及びコーティングする手法と、図1のよ
うに光センサー111とは別基台101上に反射層10
2及び蛍光体103を形成し、保護層130で覆ったの
ちローラー107を使い、接着剤を介し光センサー11
1に貼り合せる手法とがある。
At present, the phosphor 103 is provided on the optical sensor 111.
As a means for forming the film, a method of directly depositing and coating the phosphor 103 on the optical sensor 111 and a reflection layer 10 on the base 101 different from the optical sensor 111 as shown in FIG.
2 and the phosphor 103 are formed and covered with the protective layer 130, and then the roller 107 is used, and the optical sensor 11 is provided with an adhesive.
There is a method of sticking to 1.

【0005】両者を比べると、後者の方が歩留まり良く
効率的に、蛍光体103を光センサー111上に形成す
ることができるので、現在一般的に使用されている。ま
た、X線エリアセンサー用の蛍光体としては、発光量及
び解像度の点からCsI(ヨウ化セシウム)が主に使わ
れており、蛍光体基板に形成する手法としては、真空蒸
着によることが多い。
Comparing the two, the latter is currently generally used because the phosphor 103 can be formed on the optical sensor 111 efficiently and with good yield. In addition, CsI (cesium iodide) is mainly used as the phosphor for the X-ray area sensor from the viewpoint of the amount of emitted light and the resolution, and the method of forming it on the phosphor substrate is often vacuum deposition. .

【0006】貼り合せにより、蛍光体を光センサー上に
形成する手法について説明をする。蛍光板の製造方法に
ついて説明する。図2はその製造工程を示す断面図であ
る。蛍光体が形成される蛍光体基板101の材料には、
X線吸収の少ないアモルファスカーボン(a−C)、も
しくは安価なガラス基板、または、反射層102を同時
に兼ねる材料としてアルミニウム板等が使用される。
A method of forming a phosphor on the photosensor by bonding will be described. A method of manufacturing the fluorescent plate will be described. FIG. 2 is a sectional view showing the manufacturing process. The material of the phosphor substrate 101 on which the phosphor is formed is
Amorphous carbon (a-C) with low X-ray absorption, an inexpensive glass substrate, or an aluminum plate or the like is used as a material that also serves as the reflective layer 102.

【0007】まず、図2(a)に示すように、蛍光体基
板101に反射層102を形成する。反射層102は、
光センサーとは反対方向へ発光した蛍光体の光を反射さ
せ、光センサーが効率よく検出できるようにするために
形成される。反射層102の材料としては、反射率の高
い、Al、Ag等の金属または金属化合物材料が用いら
れ、形成方法はスパッタ等の方法で行う。
First, as shown in FIG. 2A, a reflective layer 102 is formed on a phosphor substrate 101. The reflective layer 102 is
It is formed in order to reflect the light of the fluorescent substance emitted in the direction opposite to the light sensor so that the light sensor can detect efficiently. As a material of the reflective layer 102, a metal or a metal compound material having a high reflectance such as Al or Ag is used, and the forming method is a method such as sputtering.

【0008】次に、図2(b)に示すように、蛍光体基
板101上に形成された反射層102上に蛍光体103
を形成する。蛍光体103の材料にはCsI等が使用さ
れる。CsIを用い真空蒸着にて形成する場合について
の説明を以下で行う。
Next, as shown in FIG. 2B, the phosphor 103 is formed on the reflective layer 102 formed on the phosphor substrate 101.
To form. CsI or the like is used for the material of the phosphor 103. The case of forming by vacuum deposition using CsI will be described below.

【0009】反射層102が形成された蛍光体基板10
3を真空槽にセットし、ポートに蒸着材料であるCsI
(Na+)もしくはCsI(Tl+)を入れる。真空槽内
の圧力を0.1〜1.0[Pa]まで引き、反射層10
2が形成された蛍光体基板101を高温(100〜18
0℃程度)に加熱して、ポートに電流を流し加熱する
と、CsIが蒸気化し、反射層102が形成された蛍光
体基板101にCsIの柱状結晶が形成される。
Phosphor substrate 10 on which the reflective layer 102 is formed
3 is set in the vacuum chamber, and CsI which is a vapor deposition material is used for the port
(Na + ) or CsI (Tl + ) is added. The pressure in the vacuum chamber is reduced to 0.1 to 1.0 [Pa], and the reflective layer 10
2 is formed on the phosphor substrate 101 at a high temperature (100 to 18
When heated to about 0 ° C.) and a current is applied to the port to heat, CsI is vaporized, and columnar crystals of CsI are formed on the phosphor substrate 101 on which the reflective layer 102 is formed.

【0010】その際、CsIが完全に蒸気化する前に
(固形化の状態)、真空槽内に飛び出し、その固形物が
反射層102が形成された蛍光体基板103の蒸着面に
付着することがある。これをスプラッシュという。
At this time, before CsI is completely vaporized (solidified state), the solid matter should be ejected into a vacuum chamber and the solid matter should adhere to the vapor deposition surface of the phosphor substrate 103 on which the reflective layer 102 is formed. There is. This is called splash.

【0011】スプラッシュとなったCsIは、蒸着面に
対し、図2(b)に示すように、大きさ(直径)404
が数十〜数百μm程度、高さ405が十数〜百数十μm
程度の凸部となり現れる。また、図2(b)に示すよう
に、凸部と同時にその周辺には、隙間幅406が数〜数
十μm、深さが数十〜数百μmにもなる凹部も発生す
る。また、反射層102に形成された蛍光体基板101
に蒸着前に付着している異物、もしくは蒸着中や蒸着直
後に蒸着面に付着した異物によってもこの凹凸が現れ
る。
As shown in FIG. 2B, the size of CsI which became a splash is 404 with respect to the vapor deposition surface.
Is several tens to several hundreds of μm, and the height 405 is ten to several hundreds of μm
It appears as a convex part of the degree. Further, as shown in FIG. 2B, a concave portion having a gap width 406 of several to several tens of μm and a depth of several tens to several hundreds of μm is formed at the same time as the convex portion. In addition, the phosphor substrate 101 formed on the reflective layer 102
The irregularities also appear due to foreign matter adhered to the surface of the vapor deposition surface, or foreign matter adhered to the vapor deposition surface during or immediately after the vapor deposition.

【0012】これらの原因によるCsI表面の凹凸を無
くすための効果的な手法は、現時点では考えられていな
い。また、蛍光体103の厚みを厚くすれば、それだけ
蒸着時間も長くなるので、発生しやすくなり、蒸着面積
を大きくしても、発生率が高くなる。
At present, no effective method has been considered for eliminating the unevenness of the CsI surface due to these causes. Further, if the thickness of the phosphor 103 is increased, the vapor deposition time becomes longer accordingly, so that it easily occurs, and even if the vapor deposition area is increased, the occurrence rate becomes high.

【0013】次いで、図2(c)または図2(d)に示
すように、蛍光体103上もしくは、これらの層の全周
に機械的なストレスや湿気から保護するための保護層1
30を形成する。保護層130は、貼り合せた際、蛍光
体と光センサーとの間に入るため、光の透過率が高い材
料で、かつ薄く形成しなくてはならない。
Next, as shown in FIG. 2 (c) or FIG. 2 (d), a protective layer 1 for protecting the phosphor 103 or the entire circumference of these layers from mechanical stress and moisture.
Form 30. The protective layer 130, which is placed between the phosphor and the optical sensor when bonded together, must be made of a material having a high light transmittance and formed thin.

【0014】透過率が低いと、蛍光体103で発光した
光が保護層130で吸収されてしまい、光センサーの感
度が低下してしまう。また、保護層130の膜厚が厚い
と蛍光体と光センサーとの間の距離が離れてしまい、蛍
光体103からの光が散乱し、光センサーの解像度が低
下してしまう。さらに、蛍光体103にCsIを使用す
る場合、CsIは潮解性があるため、湿気から保護でき
るよう透湿度の低い材料を用いなければならない。ポリ
パラキシリレン樹脂はこれらの条件を満たした材料であ
る。
When the transmittance is low, the light emitted from the phosphor 103 is absorbed by the protective layer 130, and the sensitivity of the optical sensor is lowered. Further, if the protective layer 130 is thick, the distance between the phosphor and the optical sensor becomes large, and the light from the phosphor 103 is scattered, so that the resolution of the optical sensor deteriorates. Furthermore, when CsI is used for the phosphor 103, CsI has a deliquescent property, and thus a material having a low moisture permeability must be used so that it can be protected from moisture. Polyparaxylylene resin is a material that satisfies these conditions.

【0015】図2(c)に示すように、CsIからなる
蛍光体103を真空蒸着により形成した場合、スプラッ
シュまたは異物による凹凸が現れ、凸部は数十〜百数十
μmの高さとなる。保護層は数μm〜十数μmと薄いた
め、保護層130形成後にも形成前の凹凸と同等の大き
さとなって現れる。
As shown in FIG. 2 (c), when the phosphor 103 made of CsI is formed by vacuum vapor deposition, irregularities due to splashes or foreign matter appear, and the height of the protrusion becomes several tens to several hundreds of tens μm. Since the protective layer is as thin as several μm to several tens of μm, even after the protective layer 130 is formed, it appears in the same size as the unevenness before the formation.

【0016】また、図2(d)に示すように、凸部周辺
の凹部では、隙間数μm〜数十μmの隙間が空いている
ため、保護層130が形成されないところや、または保
護層130が他の部分に比べ薄くなる場合もある。隙間
の距離だけの保護層を形成しないと隙間は埋まらない
が、保護層を数十μmの厚みにすると解像度が劣化する
ためできない。
Further, as shown in FIG. 2D, in the concave portion around the convex portion, there is a gap of several μm to several tens of μm, so that the protective layer 130 is not formed or the protective layer 130. May be thinner than other parts. If the protective layer is not formed by the distance of the gap, the gap is not filled.

【0017】蛍光体基板101上に反射層102と蛍光
体103と保護層130とが、上記のように形成された
蛍光板を、接着剤を介し光センサーに貼り合せることに
より、X線センサーとなる。
An X-ray sensor is obtained by bonding the fluorescent plate having the reflective layer 102, the fluorescent material 103 and the protective layer 130 formed on the fluorescent material substrate 101 as described above to an optical sensor via an adhesive. .

【0018】蛍光板を接着剤115を介し、光センサー
111に貼り合せる際、接着剤115は、保護層130
と同様に、蛍光体103と光センサー111との間に形
成される。そのため、その光透過率及び膜厚が重要にな
る。
When the fluorescent plate is attached to the optical sensor 111 via the adhesive 115, the adhesive 115 is used as the protective layer 130.
Similarly to, is formed between the phosphor 103 and the optical sensor 111. Therefore, its light transmittance and film thickness are important.

【0019】蛍光板109の一般的な貼り合せとして
は、接着剤115を光センサー111上に塗布し、その
上に蛍光板109を重ね合せ、ローラーで押し付けなが
ら貼り合せを行う。その際、接着剤115の厚さは、ロ
ーラーの荷重・移動速度および接着剤115の粘度等で
コントロールされる。
As a general bonding of the fluorescent plate 109, the adhesive 115 is applied on the optical sensor 111, the fluorescent plate 109 is superposed on the adhesive 115, and the bonding is performed by pressing with a roller. At that time, the thickness of the adhesive 115 is controlled by the load / moving speed of the roller, the viscosity of the adhesive 115, and the like.

【0020】[0020]

【発明が解決しようとする課題】上述したように蛍光体
(特にCsI)を蒸着により、蛍光体基板等に形成する
際、スプラッシュや異物により数十μm〜数百μmの凹
凸が発生する。これら凹凸により、蛍光板と光センサー
の貼り合せでは図3(a)および図3(b)に示すよう
に、以下のような問題が発生する。
As described above, when a phosphor (especially CsI) is formed on a phosphor substrate or the like by vapor deposition, irregularities of several tens of μm to several hundreds of μm are generated due to splash or foreign matter. Due to these irregularities, the following problems occur when the fluorescent plate and the optical sensor are bonded together, as shown in FIGS. 3 (a) and 3 (b).

【0021】(1)光センサーの破壊 図3(a)に示すように、光センサー111は、光セン
サー保護層114により覆われ、保護されているが、蛍
光板109の貼り合せ表面の突起により、光センサー1
11を傷つけ破壊してしまう。光センサー111は、格
子状に配列された光電変換素子112の集まりだが、突
起の大きさまたは数に応じ、破壊される光電変換素子1
12の数も増える。また、光電変換素子112を結ぶ配
線部113が破壊された場合、光電変換素子112の1
列全ての破壊につながる。
(1) Destruction of Optical Sensor As shown in FIG. 3 (a), the optical sensor 111 is covered and protected by the optical sensor protective layer 114, but due to the protrusion on the bonding surface of the fluorescent plate 109, Light sensor 1
It damages and destroys 11. The optical sensor 111 is a collection of photoelectric conversion elements 112 arranged in a grid, but the photoelectric conversion elements 1 are destroyed depending on the size or number of the protrusions.
The number of twelve also increases. Further, when the wiring portion 113 connecting the photoelectric conversion elements 112 is destroyed, the
It leads to the destruction of all rows.

【0022】(2)保護層の破壊 図3(b)に示すように、蛍光板表面に凹凸があると、
貼り合せ時にローラーの荷重が凸部に集中し、凸部の蛍
光体103および保護層130が押しつぶされる。その
ため、保護層130にクラック(ヒビ・割れ)が発生す
る。
(2) Destruction of the protective layer As shown in FIG. 3 (b), if the fluorescent plate surface has irregularities,
At the time of bonding, the load of the roller is concentrated on the convex portion, and the phosphor 103 and the protective layer 130 on the convex portion are crushed. Therefore, cracks (cracks) occur in the protective layer 130.

【0023】また、凹部では、保護層形成時に保護層1
30が覆われない部分があり、蛍光体103が剥き出し
の状態になり、温湿度耐久試験を行うとこのクラック及
び保護層130で覆われていない凹部からから湿気(水
分)が浸入し、蛍光体103は破壊される場合がある。
特に蛍光体103がCsIの場合は潮解してしまう。
In the concave portion, the protective layer 1 is formed when the protective layer is formed.
There is a portion where 30 is not covered, and the phosphor 103 is exposed. When a temperature and humidity durability test is performed, moisture (moisture) enters from the cracks and the recesses not covered by the protective layer 130, and 103 may be destroyed.
Especially when the phosphor 103 is CsI, the liquid will be deliquesced.

【0024】(3)解像度の低下 蛍光板109と光センサー111の貼り合せでは、形成
後の接着剤115の膜厚が重要で、高解像度を得るには
20μm以下が望ましい。しかし、蛍光板109表面の
凹凸部は高さが数十〜百数十μmあることが多く、この
状態で光センサー111や保護層130の破壊がないよ
うに貼り合せるとなると、接着剤115の膜厚を20μ
m以上の厚さに厚くしなければならなってしまう(百数
十μmの厚みになってしまう)。そのため、蛍光体10
3と光センサー111との間の距離が大きく空いてしま
い、解像度が低下してしまう。
(3) Decrease in resolution When the fluorescent plate 109 and the optical sensor 111 are attached, the film thickness of the adhesive 115 after formation is important, and 20 μm or less is desirable to obtain high resolution. However, the height of the uneven portion on the surface of the fluorescent plate 109 is often several tens to one hundred and several tens of μm. 20μ thick
It must be thickened to a thickness of m or more (a thickness of hundreds of tens of μm). Therefore, the phosphor 10
3 and the optical sensor 111 are greatly separated, resulting in a decrease in resolution.

【0025】(4)気泡の混入 蛍光板109の凹凸は保護層130や光センサー111
の破壊だけではなく、貼り合せ時に気泡を抱き込んでし
まうことがある。蛍光板109表面に無数の凸部がある
とローラーの荷重が凸部に集中してしまい、接着剤11
5にローラーの荷重が加わらず、接着剤115が拡がり
にくくなる。
(4) Inclusion of air bubbles The unevenness of the fluorescent plate 109 is caused by the protective layer 130 and the optical sensor 111.
In addition to the destruction of, the air bubbles may be caught during the bonding. If there are innumerable protrusions on the surface of the fluorescent plate 109, the load of the roller concentrates on the protrusions, and the adhesive 11
The load of the roller is not applied to 5, and the adhesive 115 is less likely to spread.

【0026】また、凸部が少ない場合でも凸部周辺で
は、荷重の掛からない箇所が発生してしまい、気泡を押
し流すことができなくなってしまう。そのため、蛍光板
109と光センサー111との間には気泡が残るので、
蛍光体103で発光した光を乱反射させ、解像度を低下
させる。
Further, even when the number of convex portions is small, a portion where a load is not applied is generated around the convex portions, so that bubbles cannot be swept away. Therefore, bubbles remain between the fluorescent plate 109 and the optical sensor 111.
The light emitted from the phosphor 103 is diffusely reflected to reduce the resolution.

【0027】蛍光体の凹凸は上記の(1)〜(4)のよ
うな問題を引き起こしてしまうため、その平坦化は重要
な課題となっている。
The unevenness of the phosphor causes the problems described in (1) to (4) above, and the flattening thereof is an important issue.

【0028】[0028]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明は、蛍光板の製造方法において、凸部が形
成された面を有する蛍光体層の当該面に第1の保護層を
形成する工程と、前記第1の保護層の上から前記凸部を
押しつぶした後、または除去した後に、当該第1の保護
層上に第2の保護層を形成する工程と、を含むことを特
徴とする。
In order to solve the above-mentioned problems, the present invention provides a method of manufacturing a fluorescent plate, wherein a first protective layer is provided on the surface of a phosphor layer having a surface on which convex portions are formed. And a step of forming a second protective layer on the first protective layer after squeezing the convex portion from above the first protective layer or after removing the convex portion. Characterize.

【0029】[0029]

【発明の実施の形態】まず、本発明の基本的な考え方に
ついて説明する。蛍光板表面にある凹凸を貼り合せ前で
平坦化することにより、上記の問題点を解決する。上記
の従来例において、保護層の形成前に表面を平坦化する
には、蛍光体がCsIの場合、潮解性があるため、真空
中もしくはN2雰囲気中で行わなくてはならない。その
ためには、専用装置を製造する必要があり、コストが掛
かってしまう。そのため、蛍光体を形成後、第1の保護
層で蛍光体表面もしくは蛍光体基板を含めた全周を覆う
ことにより仮保護を行い、その後蛍光体とその上に形成
された保護層の平坦化処理をする。そして、第2の保護
層を形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the basic idea of the present invention will be described. The above problem is solved by flattening the unevenness on the surface of the fluorescent plate before bonding. In the above-mentioned conventional example, in order to flatten the surface before forming the protective layer, when the phosphor is CsI, it has to be deliquescent, so that it must be performed in a vacuum or in an N 2 atmosphere. For that purpose, it is necessary to manufacture a dedicated device, which causes a cost increase. Therefore, after forming the phosphor, temporary protection is performed by covering the entire surface including the phosphor surface or the phosphor substrate with the first protective layer, and then flattening the phosphor and the protective layer formed thereon. To process. Then, the second protective layer is formed.

【0030】以下、平坦化を行う手法について説明す
る。
The method of flattening will be described below.

【0031】(1)押しつぶし 図4(a)は、蛍光体表面の凹凸を押しつぶすことによ
り平坦化する例を示す断面図である。押しつぶしに用い
る機材としては、平板やローラーがあり、この例では、
平板412を使用している。その際、押し圧が強すぎる
と凸部の周辺にも影響を与え、周囲の蛍光体も破壊して
しまう恐れがあるため、圧力制御できるようにストッパ
ーを付けたり、プッシュプルゲージのように荷重を測定
できる機構を持たせるのがよい。また、蛍光板を平坦な
板(定盤等)の上に保護層を下にして置き、上からロー
ラーで押し転がすことで、全面の凸部を全て一度に平坦
化することができる。
(1) Crushing FIG. 4 (a) is a sectional view showing an example of flattening by crushing the irregularities on the phosphor surface. Equipment used for crushing includes flat plates and rollers, and in this example,
The flat plate 412 is used. At that time, if the pushing pressure is too strong, it may affect the surroundings of the convex part and destroy the surrounding phosphor, so attach a stopper so that the pressure can be controlled, or load like a push-pull gauge. It is better to have a mechanism that can measure In addition, by placing the fluorescent plate on a flat plate (such as a surface plate) with the protective layer facing down and rolling it with a roller from above, it is possible to flatten all the convex portions on the entire surface at once.

【0032】(2)削る 図4(b)は、削ることにより平坦化する例を示す断面
図である。円盤状のヤスリ413を回転させて、凸部を
削り平坦化している。押しつぶしに耐えられない蛍光体
に適用するとよいが、削りかすが発生するという問題が
ある。
(2) Grinding FIG. 4B is a sectional view showing an example of flattening by grinding. By rotating the disk-shaped file 413, the convex portions are scraped and flattened. It may be applied to a phosphor that cannot withstand crushing, but there is a problem that shavings occur.

【0033】(3)切り落とす 図4(c)は、切り落とすことにより平坦化する例につ
いて示す断面図である。爪きりのような向かい合った刃
415で切断し、平坦化を行う。突起の高さが高いもの
を切り取る際に有効である。
(3) Cutting off FIG. 4 (c) is a sectional view showing an example of flattening by cutting off. The blades 415 facing each other like a nail clipper are used for cutting and flattening. This is effective when cutting out high protrusions.

【0034】(4)レーザにより焼き去る レーザの加工は、微細加工に適しており、ミクロンオー
ダーの加工ができ、現在半導体製造工程で実用されてい
る。レーザ照射の時間やパルス幅等のパラメータや、ま
た、レーザの種類によっても加工精度が変わり、長波長
のYAGレーザ、短波長のエキシマレーザなどがある。
凸部の形状やモード(スプラッシュ、異物)により使い
分けることにより効果的な加工が施せる。また、基板検
査装置と連動させることにより、全自動で凸部の平坦化
を行える。
(4) Laser processing for burning off with a laser is suitable for fine processing and can be processed on the order of microns, and is currently put to practical use in semiconductor manufacturing processes. The processing accuracy varies depending on parameters such as laser irradiation time and pulse width, and the type of laser, and there are long-wavelength YAG laser, short-wavelength excimer laser, and the like.
Effective processing can be performed by properly using the convex shape and mode (splash, foreign matter). Further, by linking with the board inspection device, the convex portions can be flattened automatically.

【0035】図5は上記の(1)から(4)に示した平
坦化処理後の様子を示す断面図である。押しつぶしによ
り平坦化した場合、図5(a)もしくは(b)のように
なる。図5(a)のように表面に無数の数〜十数μm程
度の幅のクラック421がある場合がある。凸部が数百
μm程度のときに見られる。
FIG. 5 is a sectional view showing a state after the flattening process shown in the above (1) to (4). When flattened by crushing, the result is as shown in FIG. As shown in FIG. 5A, there are cases where an infinite number of cracks 421 with a width of about several tens of μm are present on the surface. It can be seen when the convex portion is about several hundred μm.

【0036】図5(b)は、図2(d)で示した保護層
形成時に凸部周辺部の凹部に保護層が入り込まず、周囲
に隙間がある状態の凸部を押しつぶし、平坦化した例で
ある。図2(d)で開いていた隙間406が、凸部が押
されることによって、横方向に広がり隙間406が図5
(b)の隙間422のように狭くなる。例として、押し
つぶし前に隙間が20μm程度あったものが、押しつぶ
しにより4μm程度に狭まった。その際の凸部の大きさ
はφ約250μmで高さ約40μmである。図5(c)
は、凸部を削った場合もしくは切り取った場合の例であ
る。図5(c)に示すように、蛍光体103が削られた
部分は、423に示すように剥き出しになる。
In FIG. 5B, when the protective layer shown in FIG. 2D is formed, the protective layer does not enter the concave portion around the convex portion, and the convex portion having a gap in the periphery is crushed and flattened. Here is an example. The gap 406 that was opened in FIG. 2D is expanded in the lateral direction by pressing the convex portion, and the gap 406 is formed in FIG.
It becomes narrow like the gap 422 of (b). As an example, there was a gap of about 20 μm before crushing, but it was reduced to about 4 μm by crushing. At this time, the size of the convex portion is φ about 250 μm and the height is about 40 μm. FIG. 5 (c)
Shows an example when the convex portion is cut or cut. As shown in FIG. 5C, the portion where the phosphor 103 is scraped off is exposed as shown at 423.

【0037】以上のように凸部が平坦化された蛍光板上
に形成される第2の保護層について、以下で説明する。
The second protective layer formed on the fluorescent plate having the projections flattened as described above will be described below.

【0038】<第2の保護層材料>第2の保護層は、蛍
光体と光センサーと間に形成されるため、第1の保護層
(蛍光体形成直後に形成した保護層)の材料条件と同条
件が必要になる。
<Second protective layer material> Since the second protective layer is formed between the phosphor and the optical sensor, the material conditions for the first protective layer (the protective layer formed immediately after the phosphor is formed) are set. The same conditions as above are required.

【0039】(1)光透過率 蛍光体で発光する光を吸収しないよう、波長λ≒400
〜700[nm]で約80%以上の透過率がある材料が望
ましい。
(1) Light transmittance The wavelength λ≈400 so that the light emitted by the phosphor is not absorbed.
A material having a transmittance of about 80% or more at ˜700 [nm] is desirable.

【0040】(2)厚み 第1の保護層を含めたトータルの厚みが20μm以下で
あることがのぞましく、これ以上厚いと解像度の低下が
顕著に表れる。
(2) Thickness It is desirable that the total thickness including the first protective layer is 20 μm or less, and if the total thickness is more than 20 μm, the resolution is remarkably deteriorated.

【0041】(3)透湿性 蛍光体により耐湿性の強弱があるが、特にCsIの場合
は耐湿性が弱く、潮解する性質をもっている。蛍光体に
CsIを使用する場合、その材料には2.0g/24h
(ASTM E96−63T)以下のものが好ましく、
それによって信頼性を高めることができる。
(3) Moisture resistance is strong and weak due to the moisture-permeable phosphor, but especially CsI has weak moisture resistance and has a deliquescent property. When CsI is used for the phosphor, the material is 2.0g / 24h
(ASTM E96-63T) or less is preferable,
Thereby, the reliability can be increased.

【0042】(4)ヌレ性 第2の保護層が接着剤を介して光センサーと貼り合せる
界面となるため、ヌレ性のよい材料がよい。場合によっ
ては、プラズマ処理やコロナ放電処理を行って、ヌレ性
を改善するのも有効である。
(4) Wetting property Since the second protective layer serves as an interface to be bonded to the optical sensor via an adhesive, a material having good wetting property is preferable. Depending on the case, it is also effective to improve the wetting property by performing plasma treatment or corona discharge treatment.

【0043】(5)蛍光体との相性 第2の保護層は、第1の保護層が形成されていない蛍光
体表面で、蛍光体と接触するため、蛍光体に影響を与え
ない(溶解等)材料がよい。
(5) Compatibility with Phosphor The second protective layer is on the surface of the phosphor on which the first protective layer is not formed, and since it comes into contact with the phosphor, it does not affect the phosphor (dissolution, etc.). ) The material is good.

【0044】以上の(1)から(5)に記載した条件を
満たした材料としては、オレフィン系樹脂の、ポリパラ
キシリレン樹脂(スリーボンド社製、商品名パリレ
ン)、特にポリパラクロロキシリレン(同社製、商品名
パリレンC)や、ポリイミド系樹脂、アクリル系樹脂、
エポキシ系樹脂等がある。膜の硬化条件は、熱硬化型や
紫外線硬化法などを用いることができる。
Materials satisfying the above conditions (1) to (5) include polyparaxylylene resin (trade name parylene manufactured by ThreeBond Co., Ltd.), which is an olefin resin, and particularly polyparachloroxylylene ( Company name, parylene C), polyimide resin, acrylic resin,
There are epoxy resins and the like. As a curing condition for the film, a thermosetting type or an ultraviolet curing method can be used.

【0045】<第2の保護層形成方法>第2の保護層の
形成方法としては、熱CVDやプラズマCVD、スピン
コートやディップコート(浸漬引き上げ法)、ポッティ
ング(滴下法)、スプレー法(散布法)、ハケ等で保護
層を塗る方法がある。
<Second protective layer forming method> As the second protective layer forming method, thermal CVD, plasma CVD, spin coating, dip coating (immersion pulling up method), potting (dropping method), spraying method (dispersion) Method) and a method of applying a protective layer with a brush.

【0046】第2の保護層の形成は、第1の保護層の全
面に形成してもよいが、平坦化時に第1の保護層が剥が
れたか、もしくは、クラックが入った箇所のみ形成して
もよい。蛍光体表面の凹凸部の数が多く数十以上ある場
合は、全面にコーティングした方がよいが、数個程度な
ら、第2の保護層をハケで塗ったり、またディスペンサ
ーで滴下してもよい。その際は、第2の保護層の高さ
(厚さ)が数μmから十数μm以下になるように注意し
なくてはならない。
The second protective layer may be formed on the entire surface of the first protective layer. However, the second protective layer may be formed only on a portion where the first protective layer is peeled off or cracked during flattening. Good. When the number of irregularities on the surface of the phosphor is large and there are several tens or more, it is better to coat the entire surface, but if it is about several, the second protective layer may be applied by brush or dropped with a dispenser. . In that case, care must be taken so that the height (thickness) of the second protective layer is from several μm to ten and several μm or less.

【0047】平坦化処理を行ったことにより発生したク
ラックや、蛍光体形成時に発生した隙間を第2の保護層
で覆う必要がある。クラック、隙間ともに平坦化処理を
行ったことにより、数μm〜十数μmになっている。こ
れらを埋められるよう上記に挙げた形成方法により、数
μm〜十数μmの厚みを有する第2の保護層を形成す
る。このような平坦化処理と第2の保護層の形成を行う
ことにより幅数十μmの隙間やクラックが埋まり、凹凸
部での耐湿性(CsIの場合)が向上する。
It is necessary to cover the cracks generated by the flattening process and the gaps generated during the phosphor formation with the second protective layer. Both cracks and gaps have a thickness of several μm to several tens of μm due to the flattening treatment. The second protective layer having a thickness of several μm to several tens of μm is formed by the above-described forming method so as to fill these. By performing such a flattening process and the formation of the second protective layer, the gaps and cracks having a width of several tens of μm are filled, and the moisture resistance (in the case of CsI) in the uneven portion is improved.

【0048】以上の点に鑑みて行った実施形態について
以下で説明する。
Embodiments made in view of the above points will be described below.

【0049】(実施形態1)図6は本発明の実施形態1
を示す断面図である。図6(a)に示すように、蛍光体
基板101としてアモルファスカーボンプレート(a−
C)を使い、反射層102としてアルミニウム(Al)
を、そして蛍光体103としてヨウ化セシウム(Cs
I)を蒸着し、第1の保護層104としてパリレンを形
成した。蛍光体103上のスプラッシュおよび異物によ
る凹凸は凸部105で示している。
(First Embodiment) FIG. 6 shows a first embodiment of the present invention.
FIG. As shown in FIG. 6A, an amorphous carbon plate (a-
C) and aluminum (Al) as the reflective layer 102
And cesium iodide (Cs
I) was vapor-deposited to form parylene as the first protective layer 104. Concavities and convexities due to the splash and foreign matter on the phosphor 103 are indicated by the convex portions 105.

【0050】蛍光体103の厚みを500μm程度、第
1の保護層104の厚みを5μm程度とした。この場
合、大きさ200〜500μm程度、高さ30〜70μ
m程度の凸部105がほぼ全面に渡り、約200個存在
した。凸部の計測は、液晶用に用いられる基板検査装置
とレーザによる3次元形状測定機を用いて行った。3次
元形状測定を行い、その結果、凸部105の高い100
μm以上のもののみ、爪きり状の両刃で切断を行った。
The phosphor 103 has a thickness of about 500 μm, and the first protective layer 104 has a thickness of about 5 μm. In this case, the size is about 200 to 500 μm and the height is 30 to 70 μm.
About 200 convex portions 105 of about m were present on almost the entire surface. The measurement of the convex portion was performed using a substrate inspection device used for liquid crystal and a three-dimensional shape measuring machine using a laser. The three-dimensional shape is measured, and as a result, the height of the convex portion 105 is 100
Only those with a thickness of μm or more were cut with a nail clipper double blade.

【0051】次いで、図6(b)に示すように蛍光板1
09を、蛍光体103面側を下にし、定盤106の上に
置き、上からローラー107で、押し転がして平坦化処
理を行った。上記のように平坦化処理を行ったことによ
り、蛍光体103にあった凸部105は高さ5〜20μ
m程度になった。また、これら凸部周辺にあった凹部の
隙間も数μm程度になった。また、図1(b)のように
ローラー107と定盤106で凸部を全て同時に潰すこ
とにより、工数を掛けずに平坦化ができた。
Next, as shown in FIG. 6B, the fluorescent plate 1
09 was placed on the surface plate 106 with the surface of the phosphor 103 facing down, and rolled by a roller 107 from above to perform a flattening process. By performing the flattening process as described above, the convex portion 105 on the phosphor 103 has a height of 5 to 20 μm.
It became about m. Further, the gap between the concave portions around these convex portions was also about several μm. Further, as shown in FIG. 1B, by flattening all the convex portions with the roller 107 and the surface plate 106 at the same time, it was possible to flatten without man-hours.

【0052】その後、図6(c)に示すように、第2の
保護層108として、第1の保護層104と同じ材料で
あるパリレンを熱CVD法で全面全周に10μm程度形
成し、数μmの隙間やクラックを上から覆った。
After that, as shown in FIG. 6C, parylene, which is the same material as that of the first protective layer 104, is formed as a second protective layer 108 by thermal CVD over the entire circumference to a thickness of about 10 μm. The μm gaps and cracks were covered from above.

【0053】このように平坦化処理し、第2の保護層1
08としてのパリレンを形成した蛍光板109は、温湿
度耐久試験(条件55℃ 90%・750h)を行って
も、凹凸部においても変色が見られなかった。比較のた
め、平坦化処理を行わない基板も同時に試験したが、7
50hで変色が見られ、潮解が確認された。
The second protective layer 1 is flattened in this manner.
The fluorescent plate 109 on which parylene as 08 was formed did not show any discoloration even in the uneven portion, even after the temperature and humidity durability test (condition 55 ° C. 90% 750 h). For comparison, a substrate without the flattening treatment was also tested at the same time.
Discoloration was observed at 50 hours and deliquescence was confirmed.

【0054】次いで、図6(d)に示すように、上記の
ように形成された蛍光板109を接着剤115を用い
て、光センサー111に貼り合せる。貼り合せ時の接着
剤115の膜厚が20μm程度になるように、ローラー
の荷重と速度を設定することにより、光センサー111
を破壊せず、気泡の混入も無く蛍光板109を光センサ
ー111上に形成できた。
Next, as shown in FIG. 6D, the fluorescent plate 109 formed as described above is attached to the optical sensor 111 using the adhesive 115. By setting the load and speed of the roller so that the film thickness of the adhesive 115 at the time of bonding is about 20 μm, the optical sensor 111
It was possible to form the fluorescent plate 109 on the optical sensor 111 without breaking the glass and without mixing air bubbles.

【0055】(実施形態2)図7は、本発明の実施形態
2を示す断面図である。蛍光板109の構成は実施形態
1と同様である。実施形態1に比べ凸部105の数が約
20個と少ないため、図7(a)に示すように、ローラ
ーは使わず、プッシュプルゲージ120で押しつぶし、
均一に平坦化できないもののみ、回転機構のついた径
0.5のヤスリで表面を削った。
(Second Embodiment) FIG. 7 is a sectional view showing a second embodiment of the present invention. The structure of the fluorescent plate 109 is the same as that of the first embodiment. Since the number of the convex portions 105 is as small as about 20 as compared with the first embodiment, as shown in FIG. 7A, the roller is not used and the push-pull gauge 120 crushes it.
The surface of only those that could not be evenly flattened was ground with a file with a rotating mechanism and a diameter of 0.5.

【0056】その後、図7(b)に示すように、第2の
保護層108としてUV硬化型アクリル系UV硬化樹脂
をディスペンサー122で滴下し、UVランプを当てて
硬化した。その際、この滴下した部分だけ高さが厚くな
らないよう、UV硬化型アクリル系樹脂の粘度、表面張
力および硬化収縮率等を考慮し、硬化させるまでの時間
を決めた。
After that, as shown in FIG. 7B, a UV curable acrylic UV curable resin was dropped as a second protective layer 108 with a dispenser 122 and a UV lamp was applied to cure it. At this time, the time until curing was determined in consideration of the viscosity, surface tension, curing shrinkage ratio, etc. of the UV-curable acrylic resin so that the height of the dropped portion would not become thick.

【0057】(実施形態3)本実施形態を示す図面はな
く、蛍光板109の構成は実施形態1または2と同様で
ある。実施形態3では蛍光体表面の凸部を平坦化する手
段としてレーザを用いている。レーザの照射時間、照射
エネルギーおよび照射回数等を調整することにより、凸
部を焼き切る深さを決めることができ、それぞれの凸部
の大きさおよび高さに応じてそれぞれのパラメータの設
定を行う。基板検査装置によって凸部を検出し、位置座
標データをレーザリペア装置に送り、大きさおよび高さ
から、それぞれに合った条件で全自動により平坦化処理
を行う。平坦化処理後、基板検査装置及び3次元測定器
で再度突起形状を確認し、凸部が平坦化されているか確
認し、高い場合、再度レーザリペアを行い、条件に合う
までこの作業を繰り返す。
(Embodiment 3) There is no drawing showing this embodiment, and the structure of the fluorescent plate 109 is the same as that of Embodiment 1 or 2. In the third embodiment, a laser is used as a means for flattening the convex portion on the phosphor surface. By adjusting the laser irradiation time, irradiation energy, the number of times of irradiation, etc., the depth at which the convex portions are burned can be determined, and the respective parameters are set according to the size and height of each convex portion. The convex portion is detected by the substrate inspection device, the position coordinate data is sent to the laser repair device, and the flattening process is performed automatically from the size and height under conditions suitable for each. After the flattening process, the shape of the protrusion is checked again with the substrate inspection device and the three-dimensional measuring device, and it is confirmed whether the convex portion is flattened.

【0058】このように、レーザによる平坦化の場合、
実施形態1あるいは2に比べ、精度良く平坦化すること
が可能で、凸部の高さを5μm以下に揃えることが可能
である。また、実施形態3では、光センサーに貼り合せ
る際の接着剤を第2の保護層にも用いている。この第2
の保護層には、光の透過率が高く、かつ透湿度の低い熱
硬化性アクリル系樹脂を使用する。そのため、蛍光体と
光センサーとの間の距離を10μm程度と狭くできるの
で、高解像度の光センサーを実現できる。(パリレン≒
5μm、熱硬化性アクリル系樹脂≒5μm)
Thus, in the case of flattening with a laser,
As compared with the first or second embodiment, the flattening can be performed more accurately, and the height of the convex portion can be made equal to or less than 5 μm. Further, in the third embodiment, the adhesive used for bonding to the optical sensor is also used for the second protective layer. This second
For the protective layer, a thermosetting acrylic resin having a high light transmittance and a low moisture permeability is used. Therefore, the distance between the phosphor and the optical sensor can be narrowed to about 10 μm, and a high-resolution optical sensor can be realized. (Parylene ≒
5 μm, thermosetting acrylic resin ≈ 5 μm)

【0059】(実施形態4)図8は上記の実施形態の放
射線検出システムへの応用例である。本実施形態は、X
線画像を撮影するX線撮像システムとし、上記の実施形
態1等は、X線撮像装置6040として利用されてい
る。X線発生源としてのX線チューブ6050で発生し
たX線6060は患者あるいは被検体6061の胸部な
どの観察部分6062を透過し、X線撮像装置6040
に入射する。この入射したX線には被検体6061の内
部の情報が含まれている。X線が入射することによって
X線撮像装置6040は電気的情報を得る。この情報は
デジタルに変換され、画像処理手段としてのイメージプ
ロセッサ6070により画像処理され制御室(コントロ
ールルーム)にある表示手段としてのディスプレイ60
80で観察可能となる。
(Fourth Embodiment) FIG. 8 shows an application example of the above-described embodiment to the radiation detection system. In this embodiment, X
An X-ray imaging system that captures a line image is used, and the above-described first embodiment and the like are used as an X-ray imaging device 6040. X-rays 6060 generated by an X-ray tube 6050 as an X-ray generation source pass through an observation portion 6062 such as the chest of a patient or subject 6061, and an X-ray imaging device 6040.
Incident on. The incident X-ray contains information inside the subject 6061. The X-ray imaging device 6040 obtains electrical information by the incidence of X-rays. This information is converted to digital, image-processed by an image processor 6070 as an image processing means, and a display 60 as a display means in a control room.
It becomes observable at 80.

【0060】また、この情報は電話回線や無線6090
等の伝送手段により遠隔地などへ転送でき、別の場所の
ドクタールームなどでディスプレイ6081に表示もし
くはフィルムなどの出力により遠隔地の医師が診断する
ことも可能である。得られた情報はフィルムプロセッサ
などの記録手段6100により光ディスク、光磁気ディ
スク、磁気ディスクなどの各種記録材料を用いた記録媒
体、フィルムや紙などの記録媒体6110に記録や保存
することもできる。
Further, this information is used for the telephone line or wireless 6090.
It is also possible to transfer to a remote place or the like by a transmission means such as etc., and it is also possible for a doctor at a remote place to make a diagnosis by displaying on a display 6081 or outputting a film etc. The obtained information can be recorded or stored in a recording medium 6110 such as an optical disk, a magneto-optical disk, or a magnetic disk, or a recording medium 6110 such as a film or a paper by the recording unit 6100 such as a film processor.

【0061】[0061]

【発明の効果】以上説明したように、本発明によれば、
第1の保護層を形成してから、蛍光体層表面にできた凸
部を押しつぶしたり、あるいは除去したりして平坦化し
て、第2の保護層を形成したので、貼り合せの際の光セ
ンサーの破壊がなくなった。蛍光体の貼り合せ表面を平
坦化したことにより、貼り合せ時の保護層の破壊がなく
なり、耐湿性および保存性が向上した。
As described above, according to the present invention,
After forming the first protective layer, the convex portions formed on the surface of the phosphor layer are flattened by crushing or removing the convex portions to form the second protective layer. The sensor is no longer destroyed. By flattening the bonding surface of the phosphor, destruction of the protective layer during bonding was eliminated, and moisture resistance and storability were improved.

【0062】蛍光体の貼り合せ表面を平坦化したことに
より、凸部付近の凹部の隙間が狭くなり、隙間を完全に
上から第2の保護層でコーティングすることが可能にな
り、耐湿性および保存性が向上した。蛍光体の貼り合せ
表面を平坦化したことにより、貼り合せ後の接着剤の厚
み分布がなくなり、解像度の劣化がなくなった。蛍光体
の貼り合せ表面を平坦化したことにより、貼り合せ時の
接着剤の流れが良くなり、また、凸部付近に発生してい
た気泡がなくなった。
By flattening the bonding surface of the phosphor, the gap between the concave portions near the convex portion becomes narrower, and it becomes possible to completely coat the gap with the second protective layer from above, thereby improving the moisture resistance and The storability is improved. By flattening the bonding surface of the phosphor, the thickness distribution of the adhesive after bonding was eliminated, and deterioration of resolution was eliminated. By flattening the bonding surface of the phosphor, the flow of the adhesive at the time of bonding was improved, and the bubbles generated near the convex portion were eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】蛍光板を光センサーに貼り合せる工程を説明す
るための断面図である。
FIG. 1 is a cross-sectional view illustrating a step of attaching a fluorescent plate to an optical sensor.

【図2】従来例の蛍光板の製造工程を示す断面図であ
る。
FIG. 2 is a cross-sectional view showing a manufacturing process of a conventional fluorescent plate.

【図3】蛍光体の凸部によって生じる課題を説明するた
めの断面図である。
FIG. 3 is a cross-sectional view for explaining a problem caused by a convex portion of a phosphor.

【図4】蛍光体の凸部を平坦化する方法を説明するため
の断面図である。
FIG. 4 is a cross-sectional view for explaining a method of flattening a convex portion of a phosphor.

【図5】蛍光体の凸部を平坦化した後の様子を示す断面
図である。
FIG. 5 is a cross-sectional view showing a state after the convex portion of the phosphor is flattened.

【図6】本発明の実施形態1を説明するための断面図で
ある。
FIG. 6 is a cross-sectional view for explaining the first embodiment of the present invention.

【図7】本発明の実施形態2を説明するための断面図で
ある。
FIG. 7 is a sectional view for explaining a second embodiment of the present invention.

【図8】本発明の実施形態4の構成図である。FIG. 8 is a configuration diagram of a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

101 蛍光体基板 102 反射層 103 蛍光体層 104 第1の保護層 105 凸部 106 定盤 107 ローラー 108 第2の保護層 109 蛍光板 110 光センサー基板 111 光センサー 112 光電変換素子 113 配線 114 光センサー保護層 115 接着剤 130 保護層 101 phosphor substrate 102 reflective layer 103 phosphor layer 104 First protective layer 105 convex 106 surface plate 107 roller 108 Second protective layer 109 fluorescent plate 110 Optical sensor board 111 Optical sensor 112 Photoelectric conversion element 113 wiring 114 Optical sensor protective layer 115 Adhesive 130 Protective layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 31/09 H01L 31/00 A H04N 5/32 27/14 K (72)発明者 小川 善広 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 Fターム(参考) 2G083 AA02 AA10 BB01 CC01 CC03 CC04 CC05 DD01 DD02 DD17 EE02 EE08 EE10 2G088 EE01 FF02 GG10 GG19 GG20 JJ05 JJ09 JJ10 JJ37 KK32 4M118 AA10 AB01 BA05 CB11 FB09 5C024 AX11 CY47 EX24 GX09 5F088 BB03 BB07 EA04 HA15 LA08─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 31/09 H01L 31/00 A H04N 5/32 27/14 K (72) Inventor Yoshihiro Ogawa Ota, Tokyo 3-30-2, Ward Shimomaru Canon Inc. F-term (reference) 2G083 AA02 AA10 BB01 CC01 CC03 CC04 CC05 DD01 DD02 DD17 EE02 EE08 EE10 2G088 EE01 FF02 GG10 GG19 GG20 CB10 BB11 AB05 CB10 BB11 A05 A4 AX11 CY47 EX24 GX09 5F088 BB03 BB07 EA04 HA15 LA08

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 凸部が形成された面を有する蛍光体層の
該面に第1の保護層を形成する工程と、 前記第1の保護層の上から前記凸部を押しつぶした後、
または除去した後に、該第1の保護層上に第2の保護層
を形成する工程と、を含むことを特徴とする蛍光板の製
造方法。
1. A step of forming a first protective layer on a surface of a phosphor layer having a surface on which a convex portion is formed, and crushing the convex portion from above the first protective layer,
Or a step of forming a second protective layer on the first protective layer after the removal, or a method of manufacturing a fluorescent plate.
【請求項2】 請求項1記載の蛍光板の製造方法で製造
された蛍光板において、前記蛍光体層はヨウ化セシウム
を主成分とすることを特徴とする蛍光板。
2. The phosphor plate manufactured by the method for manufacturing a phosphor plate according to claim 1, wherein the phosphor layer contains cesium iodide as a main component.
【請求項3】 請求項1記載の蛍光板の製造方法で製造
された蛍光板を備えることを特徴とする放射線検出装
置。
3. A radiation detecting apparatus comprising a fluorescent plate manufactured by the method for manufacturing a fluorescent plate according to claim 1.
【請求項4】 凸部が形成された面を有する蛍光体層の
該面に第1の保護層が形成された後に、該第1の保護層
の上から前記凸部が押しつぶされ、または除去された蛍
光板を、第2の保護層としての接着剤が塗布された光セ
ンサー基板に貼り合せて、接着する工程を含むことを特
徴とする放射線検出装置の製造方法。
4. A phosphor layer having a surface on which a convex portion is formed, and after the first protective layer is formed on that surface, the convex portion is crushed or removed from above the first protective layer. A method of manufacturing a radiation detecting apparatus, comprising the step of bonding the fluorescent plate thus prepared to an optical sensor substrate coated with an adhesive as a second protective layer and adhering the same.
【請求項5】 請求項3記載の放射線検出装置または請
求項4記載の製造方法で製造された放射線検出装置と、
該放射線検出装置からの信号を画像として処理する画像
処理手段と、該画像処理手段からの信号を記録する記録
手段と、該画像処理手段からの信号を表示するための表
示手段と、前記画像処理からの信号を伝送するための伝
送手段と、を有することを特徴とする放射線検出システ
ム。
5. A radiation detecting apparatus according to claim 3 or a radiation detecting apparatus manufactured by the manufacturing method according to claim 4,
Image processing means for processing the signal from the radiation detection device as an image, recording means for recording the signal from the image processing means, display means for displaying the signal from the image processing means, and the image processing And a transmission means for transmitting a signal from the radiation detection system.
JP2001261908A 2001-02-09 2001-08-30 Method for manufacturing fluorescent plate and method for manufacturing radiation detection apparatus Expired - Lifetime JP4587431B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001261908A JP4587431B2 (en) 2001-08-30 2001-08-30 Method for manufacturing fluorescent plate and method for manufacturing radiation detection apparatus
US10/066,618 US6847041B2 (en) 2001-02-09 2002-02-06 Scintillator panel, radiation detector and manufacture methods thereof
US10/933,249 US7244945B2 (en) 2001-02-09 2004-09-03 Scintillator panel, radiation detector and manufacture methods thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001261908A JP4587431B2 (en) 2001-08-30 2001-08-30 Method for manufacturing fluorescent plate and method for manufacturing radiation detection apparatus

Publications (3)

Publication Number Publication Date
JP2003066196A true JP2003066196A (en) 2003-03-05
JP2003066196A5 JP2003066196A5 (en) 2008-10-16
JP4587431B2 JP4587431B2 (en) 2010-11-24

Family

ID=19088884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001261908A Expired - Lifetime JP4587431B2 (en) 2001-02-09 2001-08-30 Method for manufacturing fluorescent plate and method for manufacturing radiation detection apparatus

Country Status (1)

Country Link
JP (1) JP4587431B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219516A (en) * 2005-02-08 2006-08-24 Konica Minolta Medical & Graphic Inc Manufacturing method of radiation image-converting panel
JP2006343123A (en) * 2005-06-07 2006-12-21 Konica Minolta Medical & Graphic Inc Method of manufacturing radiological image conversion panel, and radiological image conversion panel
US7315027B2 (en) 2003-10-22 2008-01-01 Canon Kabushiki Kaisha Radiation detection device, scintillator panel, method of making the same, making apparatus, and radiation image pick-up system
JP2008014859A (en) * 2006-07-07 2008-01-24 Fujifilm Corp Radiation image conversion panel and method for manufacturing radiation image conversion panel
JP2008014853A (en) * 2006-07-07 2008-01-24 Fujifilm Corp Radiation image conversion panel and method for manufacturing radiation image conversion panel
JPWO2008029610A1 (en) * 2006-09-05 2010-01-21 コニカミノルタエムジー株式会社 Scintillator panel
JP2010025620A (en) * 2008-07-16 2010-02-04 Konica Minolta Medical & Graphic Inc Radiographic image conversion panel and manufacturing method therefor
KR100964654B1 (en) * 2008-02-20 2010-06-22 주식회사바텍 A large area x-ray detector and method for fabricating the same
KR101034468B1 (en) 2009-01-22 2011-05-17 (주)세현 X-ray detector and method of manufacturing the same
JP2011149731A (en) * 2010-01-19 2011-08-04 Toshiba Corp Manufacturing method of plastic scintillator member and radiation detector
JP2012172971A (en) * 2011-02-17 2012-09-10 Konica Minolta Medical & Graphic Inc Scintillator panel, manufacturing method thereof, flat panel detector and manufacturing method thereof
JP2012181108A (en) * 2011-03-01 2012-09-20 Canon Inc Radiation detector, scintillator panel, manufacturing method thereof, and radiation detection system
JP2012202831A (en) * 2011-03-25 2012-10-22 Fujifilm Corp Radiation image detector and method for manufacturing radiation image detector
US8779373B2 (en) 2011-03-02 2014-07-15 Canon Kabushiki Kaisha Radiation detection apparatus, radiation detection system and method of manufacturing radiation detection apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230198A (en) * 1993-01-29 1994-08-19 Konica Corp Radiation image conversion panel
JP2000009845A (en) * 1998-06-19 2000-01-14 Hamamatsu Photonics Kk Radiation image sensor
JP2000075038A (en) * 1998-09-02 2000-03-14 Hamamatsu Photonics Kk Radiation image sensor and its manufacturing method
JP2000131444A (en) * 1998-10-28 2000-05-12 Canon Inc Device and system for detecting radiation and manufacture of device therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230198A (en) * 1993-01-29 1994-08-19 Konica Corp Radiation image conversion panel
JP2000009845A (en) * 1998-06-19 2000-01-14 Hamamatsu Photonics Kk Radiation image sensor
JP2000075038A (en) * 1998-09-02 2000-03-14 Hamamatsu Photonics Kk Radiation image sensor and its manufacturing method
JP2000131444A (en) * 1998-10-28 2000-05-12 Canon Inc Device and system for detecting radiation and manufacture of device therefor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7315027B2 (en) 2003-10-22 2008-01-01 Canon Kabushiki Kaisha Radiation detection device, scintillator panel, method of making the same, making apparatus, and radiation image pick-up system
JP2006219516A (en) * 2005-02-08 2006-08-24 Konica Minolta Medical & Graphic Inc Manufacturing method of radiation image-converting panel
JP2006343123A (en) * 2005-06-07 2006-12-21 Konica Minolta Medical & Graphic Inc Method of manufacturing radiological image conversion panel, and radiological image conversion panel
JP4517945B2 (en) * 2005-06-07 2010-08-04 コニカミノルタエムジー株式会社 Radiation image conversion panel manufacturing method and radiation image conversion panel
JP2008014853A (en) * 2006-07-07 2008-01-24 Fujifilm Corp Radiation image conversion panel and method for manufacturing radiation image conversion panel
JP2008014859A (en) * 2006-07-07 2008-01-24 Fujifilm Corp Radiation image conversion panel and method for manufacturing radiation image conversion panel
JP5206410B2 (en) * 2006-09-05 2013-06-12 コニカミノルタエムジー株式会社 Scintillator panel
JPWO2008029610A1 (en) * 2006-09-05 2010-01-21 コニカミノルタエムジー株式会社 Scintillator panel
KR100964654B1 (en) * 2008-02-20 2010-06-22 주식회사바텍 A large area x-ray detector and method for fabricating the same
JP2010025620A (en) * 2008-07-16 2010-02-04 Konica Minolta Medical & Graphic Inc Radiographic image conversion panel and manufacturing method therefor
KR101034468B1 (en) 2009-01-22 2011-05-17 (주)세현 X-ray detector and method of manufacturing the same
JP2011149731A (en) * 2010-01-19 2011-08-04 Toshiba Corp Manufacturing method of plastic scintillator member and radiation detector
JP2012172971A (en) * 2011-02-17 2012-09-10 Konica Minolta Medical & Graphic Inc Scintillator panel, manufacturing method thereof, flat panel detector and manufacturing method thereof
US9040940B2 (en) 2011-02-17 2015-05-26 Konica Minolta Medical & Graphic, Inc. Scintillator panel and production method thereof, flat panel detector and production method thereof
JP2012181108A (en) * 2011-03-01 2012-09-20 Canon Inc Radiation detector, scintillator panel, manufacturing method thereof, and radiation detection system
US8779369B2 (en) 2011-03-01 2014-07-15 Canon Kabushiki Kaisha Radiation detection apparatus, scintillator panel, method for manufacturing same and radiation detection system
US8779373B2 (en) 2011-03-02 2014-07-15 Canon Kabushiki Kaisha Radiation detection apparatus, radiation detection system and method of manufacturing radiation detection apparatus
JP2012202831A (en) * 2011-03-25 2012-10-22 Fujifilm Corp Radiation image detector and method for manufacturing radiation image detector

Also Published As

Publication number Publication date
JP4587431B2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
US7244945B2 (en) Scintillator panel, radiation detector and manufacture methods thereof
US6891164B2 (en) Radiation image sensor and scintillator panel
JP2003066196A (en) Production method for fluorescent plate, fluorescent plate, radiation detector, production method for radiation detector and radiation detection system
US7315027B2 (en) Radiation detection device, scintillator panel, method of making the same, making apparatus, and radiation image pick-up system
US7064335B2 (en) Radiation image sensor and scintillator panel
JP4800434B2 (en) Manufacturing method of scintillator panel and radiation image sensor
CN100397096C (en) Radiation detection device and method of producing the same
JP4920994B2 (en) Scintillator panel, radiation detection apparatus and radiation detection system
JP3789646B2 (en) Radiation image sensor
JP2001188086A (en) Radiation imaging device using continuous polymer layer for scintillator
WO1998036291A1 (en) Radiation detection device and method of producing the same
JP2006335887A (en) Fluorescent plate
JP2003262676A (en) DIRECT CsI SCINTILLATOR COATING FOR IMPROVED LONGEVITY IN DIGITAL X-RAY DETECTOR ASSEMBLY
JP3987438B2 (en) Scintillator panel and radiation image sensor
JP2004061115A (en) Scintillator panel, radiation detection device, and radiation imaging system
JP4612815B2 (en) Radiation detection apparatus, scintillator panel, manufacturing method thereof, and radiation detection system
JP2003066150A (en) Fluorescent plate, radiation detector and radiation detecting system
JP2005337962A (en) Radiation detector
JP2004333381A (en) Radiation detector and manufacturing method therefor
JP3029873B2 (en) Radiation detecting element and method of manufacturing the same
JP2005148060A (en) Radiation detection device, scintillator panel and manufacturing method
JP2004325126A (en) Radiation detector
JP4283863B2 (en) Scintillator panel
JP6643098B2 (en) Radiation detection device, radiation detection system, and method of manufacturing radiation detection device
Flusberg et al. Thermal-to-visible transducer (TVT) for thermal-IR imaging

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080829

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090326

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100903

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R150 Certificate of patent or registration of utility model

Ref document number: 4587431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

EXPY Cancellation because of completion of term