JP2003065977A - Method and apparatus for inspecting laminated thin film - Google Patents

Method and apparatus for inspecting laminated thin film

Info

Publication number
JP2003065977A
JP2003065977A JP2001260515A JP2001260515A JP2003065977A JP 2003065977 A JP2003065977 A JP 2003065977A JP 2001260515 A JP2001260515 A JP 2001260515A JP 2001260515 A JP2001260515 A JP 2001260515A JP 2003065977 A JP2003065977 A JP 2003065977A
Authority
JP
Japan
Prior art keywords
thin film
laminated thin
laminated
film
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001260515A
Other languages
Japanese (ja)
Inventor
Tatsumi Hirano
辰巳 平野
Kazuhiro Ueda
和浩 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001260515A priority Critical patent/JP2003065977A/en
Publication of JP2003065977A publication Critical patent/JP2003065977A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for inspecting laminated thin films whereby a film thickness and a density of an nm oxide film of a magnetic resistance type sensor or the like can be quickly measured and analyzed while hardly affected by a change of film thicknesses and densities of the other laminated thin films. SOLUTION: In the method for inspecting the laminated thin film by which a layer structure of the laminated thin film is inspected by sending X rays by a low angle θinto a laminated body having two or more thin films formed on a substrate, measuring an X-ray reflectivity from the laminated thin film and analyzing the reflectivity, when a refractive index of the thin film is made n=1-(λ/4π)<2> (ξ+iη) wherein λ is an X-ray wavelength by a unit of Å, the X-ray wavelength whereby a square of a refractive index difference at an interface of the laminated film other than the test object ΔN<2> =Δξ<2> +Δη<2> becomes 1.5×10<-8> or smaller is used, and a criterion whereby a square sum of a residual between the reflectivity from a laminated thin film as a standard and the reflectivity from the laminated thin film as the test object becomes not larger than an allowable value calculated from the change of the density and the film thickness is set. The apparatus for inspecting the laminated thin film is provided with an analysis means based on the inspection method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、基板上に2層以上
形成された積層薄膜のX線反射率を測定し積層薄膜の膜
厚,密度を迅速に検査する積層薄膜検査方法および積層
薄膜検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated thin film inspection method and a laminated thin film inspection for measuring the X-ray reflectance of a laminated thin film having two or more layers formed on a substrate to rapidly inspect the thickness and density of the laminated thin film. Regarding the device.

【0002】[0002]

【従来の技術】半導体集積回路,半導体集積回路を用い
たデバイス,磁気ファイルなどの分野では、半導体層,
絶縁層,金属層を積層し、パターン形成により素子を作
製している。素子の高機能・高性能化を目指して形成さ
れる膜は、極薄膜化されるとともに、積層される膜数も
増加している。このような積層薄膜の膜厚,密度は、素
子の特性に大きく影響するので、成膜制御性を高めると
ともに、積層構造を高精度に評価することが必要となっ
ている。
2. Description of the Related Art In the field of semiconductor integrated circuits, devices using semiconductor integrated circuits, magnetic files, etc., semiconductor layers,
An insulating layer and a metal layer are laminated and a pattern is formed to manufacture an element. The film formed for the purpose of high performance and high performance of the element has become extremely thin and the number of laminated films has been increasing. Since the film thickness and density of such a laminated thin film have a great influence on the characteristics of the element, it is necessary to enhance film formation controllability and evaluate the laminated structure with high accuracy.

【0003】X線反射率測定方法は、非破壊で積層体の
層構造を評価できる有効な手法である。従来は、X線源
からのX線を結晶分光器により分光した後、試料に斜入
射角θで入射させ、被検体からの反射X線を検出器で検
出する。制御装置により回転テーブルを駆動させ、その
θ/2θ走査から反射率を測定していた。
The X-ray reflectance measuring method is an effective method for nondestructively evaluating the layer structure of a laminate. Conventionally, after X-rays from an X-ray source are separated by a crystal spectroscope, they are incident on a sample at an oblique incident angle θ, and reflected X-rays from a subject are detected by a detector. The rotating table was driven by the control device, and the reflectance was measured from the θ / 2θ scan.

【0004】図2は、従来の検査処理手順を示すフロー
チャートである。上記装置で測定した被検体からの反射
率を最小2乗法により最適化し、積層薄膜の層構造の膜
厚,密度などの検査項目を決定する。その検査項目が、
目標値を満足していなければ、成膜プロセスにフィード
バックさせる。
FIG. 2 is a flowchart showing a conventional inspection processing procedure. The reflectance from the subject measured by the above apparatus is optimized by the least squares method, and the inspection items such as the film thickness and density of the layer structure of the laminated thin film are determined. The inspection item is
If the target value is not satisfied, it is fed back to the film forming process.

【0005】X線の波長に関しては、Cu−Kα線が、
一般的に使用されている。また、特開平10−0388
21号公報,特開平2000−097883号公報、特
開平2001−083108号公報には、Cu−Kβ
線,Co−Kβ線,Ni−Kα線,Ni−Kβ線を使用
すると、積層構造を高い精度で評価できることが報告さ
れている。
Regarding the wavelength of X-rays, Cu-Kα rays are
Commonly used. In addition, JP-A-10-03388
No. 21, JP-A 2000-097883, and JP-A 2001-083108 disclose Cu-Kβ.
It has been reported that the laminated structure can be evaluated with high accuracy by using the X-ray, Co-Kβ line, Ni-Kα line, and Ni-Kβ line.

【0006】[0006]

【発明が解決しようとする課題】X線反射率法は、積層
体表面および各界面で反射したX線の干渉により生じる
反射率プロファイル中の振動構造を解析する手法である
が、隣接した膜間の屈折率差(密度差)が、小さい場合に
は、界面での反射X線強度が、小さくなり、各膜毎の解
析精度の低下や、薄膜の物質構成によっては、解析が不
可能になるという問題があった。この問題克服のため積
層薄膜構成物質によるX線の屈折率異常分散効果を利用
することが、特開平10−38821号公報により開示
されており、高い精度で積層構造を評価できることが、
報告されている。
The X-ray reflectivity method is a method for analyzing a vibrating structure in a reflectivity profile caused by interference of X-rays reflected on the surface of a laminate and each interface. If the difference in the refractive index (difference in density) is small, the intensity of reflected X-rays at the interface will be small, and analysis will be impossible depending on the decrease in analysis accuracy for each film and the material composition of the thin film. There was a problem. To overcome this problem, the use of the anomalous dispersion of the refractive index of X-rays by the laminated thin-film constituent material is disclosed in JP-A-10-38821, and the laminated structure can be evaluated with high accuracy.
It has been reported.

【0007】しかし、本反射率法を積層薄膜の膜厚制御
や管理を目的とした検査方法に適用する場合、以下の問
題がある。(1)X線強度の弱いKβ線を使用するため
に、反射率の測定に数時間を要する。(2)反射率の解析
には、経験と知識が、必要とされるため、解析が難し
く、成膜の検査工程には、不向きである。
However, when this reflectance method is applied to an inspection method for the purpose of controlling and managing the film thickness of a laminated thin film, there are the following problems. (1) It takes several hours to measure the reflectance because Kβ rays having low X-ray intensity are used. (2) Since analysis of reflectance requires experience and knowledge, analysis is difficult and unsuitable for film formation inspection process.

【0008】また、磁気記録再生装置に搭載される磁気
抵抗型センサとして、最近では、nm膜厚の酸化膜を積
層薄膜に含む構成が、主流になりつつあり、この酸化膜
の制御が重要な課題となっている。この場合、nm酸化
膜の膜厚,密度だけでも迅速に検査したいという要望が
ある。
As a magnetoresistive sensor mounted on a magnetic recording / reproducing apparatus, recently, a structure in which an oxide film having a thickness of nm is included in a laminated thin film is becoming mainstream, and control of this oxide film is important. It has become a challenge. In this case, there is a demand to quickly inspect only the thickness and density of the nm oxide film.

【0009】本発明の目的は、他の積層薄膜の膜厚,密
度の変動に影響されにくく、nm酸化膜の膜厚,密度を
迅速に測定し解析できる積層薄膜検査方法および積層薄
膜装置を提供することである。
An object of the present invention is to provide a laminated thin film inspection method and a laminated thin film device which are not easily affected by variations in the thickness and density of other laminated thin films and which can quickly measure and analyze the thickness and density of a nm oxide film. It is to be.

【0010】本発明の他の目的は、前記積層薄膜検査方
法によりnm酸化膜の膜厚,密度を制御しながら製造さ
れ安定した性能を有する磁気抵抗型センサを搭載した磁
気記録再生装置を提供することである。
Another object of the present invention is to provide a magnetic recording / reproducing apparatus equipped with a magnetoresistive sensor having stable performance, which is manufactured by controlling the film thickness and density of nm oxide film by the above-mentioned laminated thin film inspection method. That is.

【0011】[0011]

【課題を解決するための手段】本発明は、上記目的を達
成するために、基板上に2層以上の薄膜を形成した積層
体にX線を低角度θで入射させ、積層薄膜からのX線反
射率を測定し、反射率を解析し、積層薄膜の層構造を検
査する積層薄膜検査方法において、薄膜の屈折率をn=
1−(λ/4π)(ξ+iη),λ:X線波長でÅ単位と
したときに、検査対象以外の積層膜の界面での屈折率差
の2乗ΔN=Δξ+Δηが1.5×10−8以下と
なるX線波長を使用し、標準とする積層薄膜からの反射
率と検査対象である積層薄膜からの反射率との残差の2
乗和が密度および膜厚の変動から算出した許容値以下と
する判定基準を設けた積層薄膜検査方法を提案する。
In order to achieve the above object, the present invention makes X-rays from a laminated thin film incident X-rays at a low angle θ on a laminated body in which two or more thin films are formed on a substrate. In the laminated thin film inspection method of measuring the linear reflectance, analyzing the reflectance, and inspecting the layer structure of the laminated thin film, the refractive index of the thin film is n =
1- (λ / 4π) 2 (ξ + iη), λ: When the X-ray wavelength is set to Å unit, the square of the refractive index difference ΔN 2 = Δξ 2 + Δη 2 at the interface of the laminated film other than the inspection target is An X-ray wavelength of 1.5 × 10 −8 or less is used, and the residual difference between the reflectance from the standard laminated thin film and the reflectance from the laminated thin film to be inspected is 2
We propose a method for inspecting thin film stacks that provides a criterion for making the sum of sums equal to or less than the allowable value calculated from the variations in density and film thickness.

【0012】X線波長としては、Mo−Kα線またはC
o−Kα線を使用することが望ましい。
The X-ray wavelength is Mo-Kα ray or C
It is desirable to use o-Kα radiation.

【0013】本発明は、また、X線源と、基板上に2層
以上の薄膜を形成した試料にX線源からのX線を低角度
θで入射させる分光器と、積層薄膜からのX線反射率を
測定する検出器と、試料および検出器の駆動手段と、駆
動手段を制御し反射率を解析し積層薄膜の層構造を検査
する制御解析手段とを備えた積層薄膜検査装置におい
て、X線源が、薄膜の屈折率をn=1−(λ/4π)
(ξ+iη),λ:X線波長でÅ単位としたときに検査
対象以外の積層膜の界面での屈折率差の2乗ΔN=Δ
ξ+Δηが1.5×10−8以下となる特性X線を発
生するターゲットを含み、制御解析手段の判定基準が、
標準とする積層薄膜からの反射率と検査対象である積層
薄膜からの反射率との残差の2乗和が密度および膜厚の
変動から算出した許容値以下である積層薄膜検査装置を
提案する。
The present invention also provides an X-ray source, a spectroscope for injecting X-rays from the X-ray source at a low angle θ into a sample in which two or more thin films are formed on a substrate, and an X-ray from a laminated thin film. In a laminated thin film inspection device comprising a detector for measuring the linear reflectance, a driving means for the sample and the detector, and a control analysis means for controlling the driving means to analyze the reflectance and inspecting the layer structure of the laminated thin film, The X-ray source changes the refractive index of the thin film to n = 1- (λ / 4π)
2 (ξ + iη), λ: When the X-ray wavelength is set to Å unit, the square of the difference in refractive index at the interface of the laminated film other than the inspection target ΔN 2 = Δ
ξ 2 + Δη 2 includes a target that generates a characteristic X-ray with a value of 1.5 × 10 −8 or less, and the criterion of the control analysis means is
We propose a laminated thin film inspection system in which the sum of squares of the residuals of the reflectance from the standard laminated thin film and the reflectance from the laminated thin film to be inspected is less than or equal to the allowable value calculated from the variation of the density and the film thickness. .

【0014】X線波長としては、Mo−Kα線またはC
o−Kα線を使用する。
The X-ray wavelength is Mo-Kα ray or C
Use o-Kα radiation.

【0015】本発明は、上記他の目的を達成するため
に、磁気記録媒体と、磁気記録媒体から磁気信号を読み
出す磁気抵抗型センサと、磁気記録媒体に磁気信号を書
き込む書き込みヘッドと、磁気抵抗型センサおよび書き
込みヘッドを先端部に搭載し磁気記録媒体の半径方向に
駆動するアームと、磁気記録媒体とアームの駆動手段を
制御する制御装置と、読み出された磁気信号および書き
込む磁気信号を処理する信号処理手段とを備えた磁気記
録再生装置において、磁気抵抗型センサの積層薄膜が、
前記積層薄膜検査装置により膜厚を制御管理され製造さ
た積層薄膜である磁気記録再生装置を提案する。
In order to achieve the above-mentioned other objects, the present invention provides a magnetic recording medium, a magnetoresistive sensor for reading a magnetic signal from the magnetic recording medium, a write head for writing a magnetic signal on the magnetic recording medium, and a magnetic resistance. Type sensor and a write head are mounted on the tip of the arm to drive in the radial direction of the magnetic recording medium, a control device to control the magnetic recording medium and the driving means of the arm, and the read magnetic signal and the magnetic signal to be written are processed. In the magnetic recording / reproducing apparatus provided with the signal processing means for
A magnetic recording / reproducing apparatus is proposed which is a laminated thin film manufactured by controlling the film thickness by the laminated thin film inspection apparatus.

【0016】[0016]

【発明の実施の形態】次に、図1〜図8を参照して、本
発明による積層薄膜検査方法および積層薄膜検査装置並
びに磁気記録再生装置の実施形態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a laminated thin film inspecting method, a laminated thin film inspecting apparatus, and a magnetic recording / reproducing apparatus according to the present invention will be described below with reference to FIGS.

【0017】[0017]

【実施形態1】本発明においては、検査対象以外の積層
膜から反射を抑制するX線波長を選択したので、検査対
象である積層薄膜の膜厚,密度などの構造変化に鋭敏と
なる積層薄膜検査方法が得られる。
First Embodiment In the present invention, an X-ray wavelength that suppresses reflection from a laminated film other than the inspection target is selected, so that the laminated thin film sensitive to structural changes such as film thickness and density of the laminated thin film to be inspected. The inspection method is obtained.

【0018】基板にn−1層の膜が、形成された積層体
からのX線反射率を考える。複素屈折率をn=1−(λ
/4π)(ξ+iη),入射X線の視斜角をθ,X線波
長をλ,膜厚をt,散乱ベクトルの大きさをq=4πsi
nθ/λとし、q>ξ,ηの近似を用いると、反射率R
は、数式1で表される。
Consider the X-ray reflectance from the laminated body in which the n-1 layer film is formed on the substrate. Let the complex refractive index be n = 1- (λ
/ 4π) 2 (ξ + iη), the oblique angle of the incident X-ray is θ, the X-ray wavelength is λ, the film thickness is t, and the magnitude of the scattering vector is q = 4πsi.
Using nθ / λ and using the approximation of q 2 > ξ, η, the reflectance R
Is expressed by Equation 1.

【0019】[0019]

【数1】 数式1中のφは、反射X線の位相を表す量であり、膜厚
などの関数である。数式1で第1の和の項は、表面およ
び界面からの反射であり、この項からは、膜厚に関する
情報は、引き出せない。
[Equation 1] Φ in Expression 1 is an amount representing the phase of the reflected X-ray and is a function of the film thickness or the like. In Equation 1, the first sum term is the reflection from the surface and the interface, and information about the film thickness cannot be derived from this term.

【0020】これに対して、第2の和の項は、表面およ
び界面で反射したX線の干渉によるものであり、図3に
示すように、反射率に振動構造が現れる。この振動構造
に積層体の各膜の膜厚,密度の情報が入っている。振動
の振幅を決める界面での屈折率差の2乗ΔN=(Δξ
+Δη)は、入射X線の波長に依存する。
On the other hand, the second sum term is due to the interference of X-rays reflected on the surface and the interface, and as shown in FIG. 3, a vibrating structure appears in the reflectance. This vibrating structure contains information about the film thickness and density of each film of the laminated body. Square of refractive index difference at the interface that determines the amplitude of vibration ΔN 2 = (Δξ
2 + Δη 2 ) depends on the wavelength of the incident X-ray.

【0021】X線波長の選択により、この振動の振幅が
大きくなれば、界面で反射するX線強度が高くなり、そ
の界面に接する膜の構造を高精度に解析できる。
If the amplitude of this vibration is increased by the selection of the X-ray wavelength, the intensity of X-rays reflected at the interface becomes high, and the structure of the film in contact with the interface can be analyzed with high accuracy.

【0022】一方、波長選択により、振動の振幅が小さ
くなれば、界面で反射する強度が低くなり、その界面に
接する膜の構造の変化が反射率に反映されない。
On the other hand, if the amplitude of vibration is reduced by wavelength selection, the intensity of reflection at the interface becomes low, and the change in the structure of the film in contact with the interface is not reflected in the reflectance.

【0023】本発明の特徴は、このように、波長選択に
より振動の振幅が小さくなることを利用して、検査対象
とする膜の構造変化のみを解析し、検査対象以外の積層
膜の構造変化に影響されないことである。
The feature of the present invention is that the structural change of the film to be inspected is analyzed by utilizing the fact that the amplitude of vibration is reduced by the wavelength selection as described above, and the structural change of the laminated film other than the inspected film is analyzed. Is not affected by.

【0024】次に、X線の波長選択について検討した。
既に述べたように、磁気記録再生装置に搭載される磁気
抵抗型センサとして、最近では、nm膜厚の酸化膜を積
層薄膜に含む構成が主流になりつつあり、この酸化膜の
制御が重要な課題となっている。この場合、nm酸化膜
の膜厚,密度だけでも迅速に検査したいという要望があ
る。磁気抵抗型センサを構成する積層薄膜には、遷移金
属の磁性層や非磁性層が含まれており、これら遷移金属
の膜からの反射を抑制するX線波長を探索した。 図4
は、Cu,NiFe,CoFeを各々積層した各界面に
おける屈折率差の2乗ΔN=(Δξ+Δη)を示
す。X線波長としては、強度が高いKα線を検討した。
図4からは、Mo−Kα線が、各界面でのΔNが最も
小さく、最適な波長であり、Co−Kα線も、次にΔN
が小さく有望であることがわかる。以上から、ΔN
が1.5×10−8以下であれば、遷移金属の積層膜界
面からの反射X線の強度を抑制できることがわかる。
Next, the wavelength selection of X-rays was examined.
As described above, as a magnetoresistive sensor mounted on a magnetic recording / reproducing apparatus, recently, a structure including an oxide film having a thickness of nm in a laminated thin film is becoming mainstream, and control of this oxide film is important. It has become a challenge. In this case, there is a demand to quickly inspect only the thickness and density of the nm oxide film. The laminated thin film that constitutes the magnetoresistive sensor includes a magnetic layer and a nonmagnetic layer of a transition metal, and an X-ray wavelength that suppresses reflection from these transition metal films was searched for. Figure 4
Indicates the square of the refractive index difference ΔN 2 = (Δξ 2 + Δη 2 ) at each interface where Cu, NiFe, and CoFe are laminated. As the X-ray wavelength, Kα ray having high intensity was examined.
From FIG. 4, the Mo-Kα line has the smallest ΔN 2 at each interface and is the optimum wavelength, and the Co-Kα line also has the next ΔN.
It turns out that 2 is small and promising. From the above, ΔN 2
It can be seen that the intensity of the reflected X-ray from the interface of the laminated film of the transition metal can be suppressed when the value is 1.5 × 10 −8 or less.

【0025】[0025]

【実施形態2】本実施形態2では、磁気抵抗型センサの
積層薄膜に含まれるnm酸化膜の検査について説明す
る。
Second Embodiment In a second embodiment, an inspection of a nm oxide film included in a laminated thin film of a magnetoresistive sensor will be described.

【0026】図5は、本実施形態2の積層薄膜検査装置
の構成を示すブロック図である。X線源1からのX線を
結晶分光器3により所望の特性X線に分光した後、試料
6に入射させる。試料6からの反射X線をスリット7,
9およびソーラスリット8で成型し平行化した後、検出
器10で計測する。
FIG. 5 is a block diagram showing the structure of the laminated thin film inspection apparatus according to the second embodiment. The X-rays from the X-ray source 1 are separated into desired characteristic X-rays by the crystal spectroscope 3 and then incident on the sample 6. The reflected X-ray from the sample 6 is slit 7,
After molding with 9 and the solar slit 8 to make them parallel, the detector 10 measures.

【0027】次に、個々の機能について説明する。X線
ターゲットには、フィラメントからの電子線が照射され
る回転表面にMoを形成したCuの回転対陰極を用いた
Moターゲットを採用した。X線源1の動作条件は、管
電圧60kV,管電流300mAである。
Next, each function will be described. As the X-ray target, a Mo target using a Cu rotating anticathode having Mo formed on the rotating surface irradiated with the electron beam from the filament was adopted. The operating conditions of the X-ray source 1 are a tube voltage of 60 kV and a tube current of 300 mA.

【0028】このX線源1からのMo−Kα線(波長0.
0709nm)を結晶分光器Ge(111)チャンネルカ
ット型の結晶により取り出した。分光器への入射スリッ
ト2は、幅0.1mm,高さ10mmに、出射スリット
4は、幅0.1mm,高さ5mmに設定した。また、検
出器10の前のスリット7は、幅0.2mm,高さ5m
mとし、スリット9は、幅0.2mmとし、ソーラスリ
ット8は、5度とした。回転テーブル5は、θ−2θの
2軸からなり、θテーブル上に設けた試料保持台の位置
を制御装置11により駆動し、試料6を入射X線に平行
に調節できる。検出器10には、開口径1インチのシン
チレーションカウンタを用いた。各駆動部は、制御装置
11により制御できる。
Mo-Kα rays from the X-ray source 1 (wavelength: 0.
0709 nm) was taken out by a crystal spectrometer Ge (111) channel cut type crystal. The entrance slit 2 to the spectroscope was set to have a width of 0.1 mm and a height of 10 mm, and the exit slit 4 was set to have a width of 0.1 mm and a height of 5 mm. The slit 7 in front of the detector 10 has a width of 0.2 mm and a height of 5 m.
m, the slit 9 has a width of 0.2 mm, and the solar slit 8 has a width of 5 degrees. The rotary table 5 is composed of two axes of θ−2θ, and the position of the sample holder provided on the θ table can be driven by the controller 11 to adjust the sample 6 in parallel with the incident X-ray. As the detector 10, a scintillation counter having an opening diameter of 1 inch was used. Each drive unit can be controlled by the control device 11.

【0029】X線源1からのX線を結晶分光器3により
分光した後、試料6に斜入射角θで入射させ、被検体か
らの反射X線を検出器10で検出する。制御装置11に
より回転テーブル5を駆動させ、そのθ/2θ走査から
反射率を測定する。入射スリット2,出射スリット4
は、入射X線を制限し、スリット7,9は、反射X線を
制限する。ソーラスリット8は、反射X線の平行性を高
める。解析装置12は、得られた反射率を解析し、各層
の密度,膜厚などの解析結果を出力装置13に出力す
る。
After the X-ray from the X-ray source 1 is separated by the crystal spectroscope 3, it is made incident on the sample 6 at an oblique incident angle θ, and the reflected X-ray from the object is detected by the detector 10. The rotating table 5 is driven by the control device 11, and the reflectance is measured from the θ / 2θ scan. Entrance slit 2 and exit slit 4
Limits incident X-rays and the slits 7, 9 limit reflected X-rays. The solar slit 8 enhances the parallelism of the reflected X-rays. The analysis device 12 analyzes the obtained reflectance and outputs the analysis result such as the density and film thickness of each layer to the output device 13.

【0030】被検体は、Si基板上に形成したトンネル
型磁気抵抗膜である。膜構成は、Ru(5)/NiFe
(3)/CoFe(3)/AlO(1.5)/CoFe(3)M
nPt(23)/NiFe(5)/Ta(5)/Si基板とし
た。括弧内は、設定膜厚で単位は、nmである。AlO
は、Al成膜後、100Torr、20分の自然酸化により
形成した。このAlOの膜厚,密度を評価し、nm酸化
膜の形成工程を検査することを目的とした。
The subject is a tunnel type magnetoresistive film formed on a Si substrate. The film structure is Ru (5) / NiFe
(3) / CoFe (3) / AlO (1.5) / CoFe (3) M
An nPt (23) / NiFe (5) / Ta (5) / Si substrate was used. The thickness in parentheses is the set film thickness and the unit is nm. AlO
Was formed by natural oxidation for 20 minutes at 100 Torr after forming the Al film. The purpose was to evaluate the film thickness and density of this AlO and inspect the process for forming the nm oxide film.

【0031】次に、測定および解析手順を説明する。最
初にX線と平行になるように試料6の位置を調節した
後、試料6を設定角度に回転させるとともに、2θを所
定の角度に回転させる。測定は、試料6のステップ角度
0.004゜でθ−2θ走査により反射X線強度を計測
した。θの測定範囲は、0.08゜〜1.62゜で385
点測定した。1点あたりの測定時間は、5〜10秒で、
全測定時間は、〜1時間である。回転テーブル5の駆動
は、制御装置11により制御し、検出器10からの信号
は、制御装置11を経て、解析装置12に順次記録し
た。
Next, the measurement and analysis procedure will be described. First, the position of the sample 6 is adjusted so as to be parallel to the X-ray, and then the sample 6 is rotated to a set angle and 2θ is rotated to a predetermined angle. For the measurement, the reflected X-ray intensity was measured by θ-2θ scanning at a step angle of 0.004 ° of sample 6. The measuring range of θ is 385 from 0.08 ° to 1.62 °
The point was measured. The measurement time per point is 5-10 seconds,
The total measurement time is ~ 1 hour. The drive of the rotary table 5 was controlled by the control device 11, and the signals from the detector 10 were sequentially recorded in the analysis device 12 via the control device 11.

【0032】角度θ(度)、Δθ一定の条件で計測されて
いる反射率データを散乱ベクトルの大きさq=4πsin
θ/λ,Δq一定でデータ変換したq表示反射率で解析
した。 反射率の計算には、L.G.Paratt(Phys.Rev.95,3
59(1954))およびL.Nevot and P.Croce(Rev.Phys.Appl
15,761(1980))による理論式を用いた。計算にあたり各
層の複素屈折率は、文献値(Sasaki;KEK Report,88−
14)を用いた。
The reflectance data measured under the condition that the angle θ (degree) and Δθ are constant is used as the scattering vector magnitude q = 4πsin.
The analysis was performed using the q display reflectance obtained by data conversion with constant θ / λ and Δq. To calculate the reflectance, use LGParatt (Phys.Rev.95,3
59 (1954)) and L. Nevot and P. Croce (Rev. Phys. Appl
The theoretical formula by 15,761 (1980)) was used. In the calculation, the complex refractive index of each layer is based on literature values (Sasaki; KEK Report, 88-
14) was used.

【0033】解析に用いた層構造モデルは、酸化層/R
u/NiFe/CoFe/AlO/CoFe/MnPt
/NiFe/反応層/Ta/界面層/Si基板とし、各
層の屈折率,膜厚,界面幅を最小2乗法を用いて最適化
した。解析結果を図6に示す。解析装置12上で計算
し、計算結果を出力装置13に出した。本解析には、数
時間を要し、AlOの膜厚,密度の検査には、不向きで
ある。
The layer structure model used in the analysis is oxide layer / R
u / NiFe / CoFe / AlO / CoFe / MnPt
/ NiFe / reaction layer / Ta / interface layer / Si substrate, and the refractive index, film thickness, and interface width of each layer were optimized using the least square method. The analysis result is shown in FIG. The calculation was performed on the analysis device 12, and the calculation result was output to the output device 13. This analysis requires several hours and is not suitable for inspecting the film thickness and density of AlO.

【0034】そこで、AlOの膜構造が、変化した場合
の反射率変化を計算し、その結果を図3に示す。
Therefore, the change in reflectance when the AlO film structure was changed was calculated, and the result is shown in FIG.

【0035】AlOの膜厚を1.53nmに固定し、屈
折率ξ(密度に比例)を±20%(5.11×10−4
7.66×10−4に対応)、変化させた反射率を示す。
また、ξを6.38×10−4に固定し、膜厚を±10
%(1.37,1.68nmに対応)、変化させた反射率も
併せて示す。
With the AlO film thickness fixed at 1.53 nm, the refractive index ξ (proportional to the density) is ± 20% (5.11 × 10 −4 ,
(Corresponding to 7.66 × 10 −4 ), and the changed reflectance is shown.
Moreover, ξ is fixed at 6.38 × 10 −4 , and the film thickness is ± 10.
% (Corresponding to 1.37 and 1.68 nm) and the changed reflectance are also shown.

【0036】屈折率を±20%変化させた場合、散乱ベ
クトルqが、0.10.25の範囲で僅かにずれているの
がわかる。図7は、その部分を拡大して示す図である。
It can be seen that when the refractive index is changed by ± 20%, the scattering vector q is slightly deviated within the range of 0.10.25. FIG. 7 is an enlarged view of that portion.

【0037】一方、膜厚を±10%変化させた場合、q
が0.150.35の範囲でずれているのがわかる。図8
は、その部分を拡大して示す図である。屈折率変化に比
べ、膜厚変化の方が反射率のずれが大きいことがわか
る。
On the other hand, when the film thickness is changed by ± 10%, q
It can be seen that is shifted in the range of 0.150.35. Figure 8
FIG. 3 is an enlarged view of that portion. It can be seen that the deviation of the reflectance is larger when the film thickness is changed than when the refractive index is changed.

【0038】これらの事実から、nm酸化膜の形成工程
を検査する判定因子R(%)を数式2で導入する。
From these facts, the judgment factor R (%) for inspecting the process of forming the nm oxide film is introduced by the mathematical formula 2.

【0039】[0039]

【数2】 ここで、Istdは、標準試料からの反射率、Iは、被検
体からの反射率である。上記の屈折率変化のRは、1.
8%、膜厚変化のRは、5.1%であった。そこで、n
m酸化膜の形成工程を検査する判定因子の許容値として
は、5%が妥当である。
[Equation 2] Here, Istd is the reflectance from the standard sample, and I is the reflectance from the subject. R of the above refractive index change is 1.
8%, R of film thickness change was 5.1%. Therefore, n
5% is appropriate as the allowable value of the judgment factor for inspecting the formation process of the m-oxide film.

【0040】図1は、本発明による積層薄膜検査方法の
処理手順を示すフローチャートである。Mo−Kα線ま
たはCo−Kα線による被検体の反射率を測定する。標
準試料と被検体の反射率から数式2により計算した判定
因子が許容値以下であれば、被検体のnm酸化膜の管理
工程を満足している。一方、判定因子が許容値以上であ
れば、反射率の詳細な解析により各層の膜構造を決定
し、それを成膜プロセスにフィードバックする。
FIG. 1 is a flow chart showing the processing procedure of the laminated thin film inspection method according to the present invention. The reflectance of the subject with Mo-Kα rays or Co-Kα rays is measured. If the determination factor calculated from the reflectance of the standard sample and the test object by the mathematical formula 2 is equal to or less than the allowable value, the process for controlling the nm oxide film of the test object is satisfied. On the other hand, if the determination factor is equal to or greater than the allowable value, the film structure of each layer is determined by detailed analysis of reflectance, and the film structure is fed back to the film forming process.

【0041】本実施形態2では、Moターゲットを用い
たがCoターゲットからのCo−Kα1線を用いてもよ
い。
Although the Mo target is used in the second embodiment, a Co-Kα1 ray from a Co target may be used.

【0042】本実施形態2では、波長の短いMo−Kα
線を用いているため、反射率の測定範囲が短く、短時間
で測定できる。また、遷移金属の積層膜界面からの反射
X線の強度を抑制するX線波長を用いているので、遷移
金属の膜構造の変動の影響が少ない。さらに、本実施形
態2では、数式2の判定因子による解析であるから、詳
細な解析に比べて、極めて短時間で評価できる。
In the second embodiment, Mo-Kα having a short wavelength is used.
Since the line is used, the reflectance measurement range is short and the measurement can be performed in a short time. Further, since the X-ray wavelength that suppresses the intensity of the reflected X-ray from the interface of the transition metal laminated film is used, the influence of the change in the transition metal film structure is small. Furthermore, in the second embodiment, since the analysis is performed by the determination factor of Expression 2, the evaluation can be performed in an extremely short time as compared with the detailed analysis.

【0043】[0043]

【実施形態3】次に、本発明の積層薄膜検査方法または
積層薄膜検査装置により膜厚が制御され管理された磁気
抵抗型センサを搭載する磁気記録再生装置について説明
する。
Third Embodiment Next, a magnetic recording / reproducing apparatus equipped with a magnetoresistive sensor whose film thickness is controlled and controlled by the laminated thin film inspection method or laminated thin film inspection apparatus of the present invention will be described.

【0044】磁気抵抗型センサの膜構成は、実施形態2
で用いた試料と同一である。スパッタリング装置で成膜
した5インチウエファを被検体として、図1に示した処
理手順により評価し、判定因子が許容値を満足するウエ
ファのみをヘッド加工の工程にまわした。
The film structure of the magnetoresistive sensor is the same as that of the second embodiment.
It is the same as the sample used in. A 5-inch wafer formed by a sputtering apparatus was used as an object to be evaluated by the processing procedure shown in FIG. 1, and only the wafer whose judgment factor satisfied the allowable value was passed to the head processing step.

【0045】この磁気抵抗型センサを組み込んだ各磁気
記録再生装置は、nm酸化膜の膜厚,密度が制御されて
いるために、各磁気抵抗型センサの感度が安定してお
り、記録装置として良好な歩留まりを示した。
In each magnetic recording / reproducing apparatus incorporating this magnetoresistive sensor, since the thickness and density of the nm oxide film are controlled, the sensitivity of each magnetoresistive sensor is stable, and as a recording apparatus, It showed a good yield.

【0046】本実施形態3によれば、磁気抵抗型センサ
の主要素であるnm酸化膜の膜構造をより精密に管理し
制御できるので、各センサの性能のばらつきを許容範囲
内におさえることができ、性能が安定した磁気記録再生
装置を生産できる。
According to the third embodiment, the film structure of the nm oxide film, which is the main element of the magnetoresistive sensor, can be more precisely managed and controlled, so that the variation in the performance of each sensor can be suppressed within the allowable range. It is possible to produce a magnetic recording / reproducing device with stable performance.

【0047】[0047]

【発明の効果】本発明の積層薄膜検査方法および積層薄
膜検査装置によれば、波長の短いMo−Kα線を用いて
いるため、反射率の測定範囲が短く、短時間で測定でき
る。
According to the laminated thin film inspection method and the laminated thin film inspection apparatus of the present invention, since the Mo-Kα ray having a short wavelength is used, the reflectance measurement range is short and the measurement can be performed in a short time.

【0048】また、遷移金属の積層膜界面からの反射X
線の強度を抑制するX線波長を使用しており、遷移金属
の膜構造の変動の影響が少ない。
The reflection X from the interface of the transition metal laminated film
The X-ray wavelength that suppresses the intensity of the rays is used, and the influence of the change in the transition metal film structure is small.

【0049】さらに、数式2の判定因子による解析であ
るため、詳細な解析に比べて、極めて短時間で、膜構造
を評価できる。
Further, since the analysis is based on the judgment factor of Equation 2, the film structure can be evaluated in an extremely short time as compared with the detailed analysis.

【0050】磁気抵抗型センサの主要素であるnm酸化
膜の膜構造をより精密に管理し制御できるので、各セン
サの性能のばらつきを許容範囲内におさめて、安定した
性能の磁気記録再生装置を生産できる。
Since the film structure of the nm oxide film, which is the main element of the magnetoresistive sensor, can be more precisely managed and controlled, the variation in the performance of each sensor can be kept within the allowable range, and the magnetic recording / reproducing apparatus with stable performance. Can be produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による積層薄膜検査方法の処理手順を説
明する図である。
FIG. 1 is a diagram illustrating a processing procedure of a laminated thin film inspection method according to the present invention.

【図2】従来のX線反射率の詳細な解析を基本とする積
層薄膜検査方法の処理手順を説明する図である。
FIG. 2 is a diagram illustrating a processing procedure of a conventional laminated thin film inspection method based on detailed analysis of X-ray reflectance.

【図3】AlOの屈折率を±20%変化させ、または、
膜厚を±10%変化させたときの反射率を示す図であ
る。
FIG. 3 shows a change in the refractive index of AlO by ± 20%, or
It is a figure which shows the reflectance when changing a film thickness ± 10%.

【図4】磁気抵抗型センサを構成する遷移金属積層膜の
各界面における屈折率差の2乗ΔN=Δξ+Δη
を種々の波長で計算した図である。
FIG. 4 is a square of a refractive index difference ΔN 2 = Δξ 2 + Δη 2 at each interface of a transition metal laminated film forming a magnetoresistive sensor.
It is the figure which calculated with various wavelengths.

【図5】実施形態2の積層薄膜検査装置の構成を示すブ
ロック図である。
FIG. 5 is a block diagram showing a configuration of a laminated thin film inspection apparatus according to a second embodiment.

【図6】酸化層/Ru/NiFe/CoFe/AlO/
CoFe/MnPt/NiFe/反応層/Ta/界面層
/Si基板とし、各層の屈折率,膜厚,界面幅を最小2
乗法を用いて最適化した解析結果を示す図である。
FIG. 6 Oxide layer / Ru / NiFe / CoFe / AlO /
CoFe / MnPt / NiFe / reaction layer / Ta / interfacial layer / Si substrate, each layer having a minimum refractive index, film thickness and interface width of 2
It is a figure which shows the analysis result optimized using the multiplication method.

【図7】図3の屈折率20%変化に対する反射率の変化
を示す図である。
7 is a diagram showing changes in reflectance with respect to changes in the refractive index of 20% in FIG.

【図8】図3の膜厚10%変化に対する反射率の変化を
示す図である。
8 is a diagram showing a change in reflectance with respect to a change in film thickness of 10% in FIG.

【符号の説明】[Explanation of symbols]

1 X線源 2 入射スリット 3 結晶分光器 4 出射スリット 5 回転テーブル 6 試料 7 スリット 8 ソーラスリット 9 スリット 10 検出器 11 制御装置 12 解析装置 13 出力装置 1 X-ray source 2 incident slit 3 Crystal spectrometer 4 exit slit 5 turntable 6 samples 7 slits 8 solar slits 9 slits 10 detector 11 Control device 12 Analyzer 13 Output device

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G001 AA01 AA09 BA05 BA15 CA01 EA01 GA01 GA13 GA14 JA05 KA12 LA11 MA05 5D034 BA02 BB12 DA04 DA07    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 2G001 AA01 AA09 BA05 BA15 CA01                       EA01 GA01 GA13 GA14 JA05                       KA12 LA11 MA05                 5D034 BA02 BB12 DA04 DA07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板上に2層以上の薄膜を形成した積層
体にX線を低角度θで入射させ、積層薄膜からのX線反
射率を測定し、前記反射率を解析し、積層薄膜の層構造
を検査する積層薄膜検査方法において、 薄膜の屈折率をn=1−(λ/4π)(ξ+iη),λ:
X線波長でÅ単位としたときに、検査対象以外の積層膜
の界面での屈折率差の2乗ΔN=Δξ+Δηが1.
5×10−8以下となるX線波長を使用し、 標準とする積層薄膜からの反射率と検査対象である積層
薄膜からの反射率との残差の2乗和が密度および膜厚の
変動から算出した許容値以下とする判定基準を設けたこ
とを特徴とする積層薄膜検査方法。
1. A laminated thin film in which two or more thin films are formed on a substrate, X-rays are incident on the laminated thin film at a low angle θ, X-ray reflectance from the laminated thin film is measured, and the reflectance is analyzed. In the laminated thin film inspection method for inspecting the layer structure of, the thin film has a refractive index of n = 1− (λ / 4π) 2 (ξ + iη), λ:
The square of the refractive index difference ΔN 2 = Δξ 2 + Δη 2 at the interface of the laminated film other than the inspection target is 1.
Using the X-ray wavelength of 5 × 10 −8 or less, the sum of squares of the residuals of the reflectance from the standard laminated thin film and the reflectance from the laminated thin film to be inspected is the variation of the density and the film thickness. A method for inspecting a laminated thin film, wherein a judgment criterion is set to be equal to or less than an allowable value calculated from.
【請求項2】 請求項1に記載の積層薄膜検査方法にお
いて、 前記X線波長としてMo−Kα線またはCo−Kα線を
使用することを特徴とする積層薄膜検査方法。
2. The method for inspecting a laminated thin film according to claim 1, wherein Mo-Kα rays or Co-Kα rays are used as the X-ray wavelength.
【請求項3】 X線源と、基板上に2層以上の薄膜を形
成した試料に前記X線源からのX線を低角度θで入射さ
せる分光器と、積層薄膜からのX線反射率を測定する検
出器と、前記試料および前記検出器の駆動手段と、前記
駆動手段を制御し前記反射率を解析し前記積層薄膜の層
構造を検査する制御解析手段とを備えた積層薄膜検査装
置において、 前記X線源が、前記薄膜の屈折率をn=1−(λ/4π)
(ξ+iη),λ:X線波長でÅ単位としたときに、検
査対象以外の積層膜の界面での屈折率差の2乗ΔN
Δξ+Δηが1.5×10−8以下となる特性X線を
発生するターゲットを含み、 前記制御解析手段の判定基準が、標準とする積層薄膜か
らの反射率と検査対象である積層薄膜からの反射率との
残差の2乗和が密度および膜厚の変動から算出した許容
値以下であることを特徴とする積層薄膜検査装置。
3. An X-ray source, a spectroscope for injecting an X-ray from the X-ray source at a low angle θ into a sample having two or more thin films formed on a substrate, and an X-ray reflectance from a laminated thin film. A laminated thin film inspection apparatus comprising: a detector for measuring the sample, a driving means for the sample and the detector, and a control analysis means for controlling the driving means to analyze the reflectance and inspect the layer structure of the laminated thin film. In the X-ray source, the refractive index of the thin film is n = 1- (λ / 4π).
2 (ξ + i η), λ: When the X-ray wavelength is in units of Å, the square of the difference in refractive index at the interface of the laminated film other than the inspection target ΔN 2 =
The target includes a target that generates a characteristic X-ray with Δξ 2 + Δη 2 of 1.5 × 10 −8 or less, and the criterion of the control analysis means is the reflectance from the laminated thin film which is the standard and the laminated layer which is the inspection target. A laminated thin film inspection apparatus, wherein a sum of squares of residuals with respect to reflectance from a thin film is equal to or less than an allowable value calculated from variations in density and film thickness.
【請求項4】 請求項3に記載の積層薄膜検査装置にお
いて、 X線波長としてMo−Kα線またはCo−Kα線を使用
することを特徴とする積層薄膜検査装置。
4. The laminated thin film inspection apparatus according to claim 3, wherein Mo—Kα rays or Co—Kα rays are used as X-ray wavelengths.
【請求項5】 磁気記録媒体と、前記磁気記録媒体から
磁気信号を読み出す磁気抵抗型センサと、前記磁気記録
媒体に磁気信号を書き込む書き込みヘッドと、前記磁気
抵抗型センサおよび前記書き込みヘッドを先端部に搭載
し前記磁気記録媒体の半径方向に駆動するアームと、前
記磁気記録媒体と前記アームの駆動手段を制御する制御
装置と、読み出された磁気信号および書き込む磁気信号
を処理する信号処理手段とを備えた磁気記録再生装置に
おいて、 前記磁気抵抗型センサの積層薄膜が、請求項3または4
に記載の積層薄膜検査装置により膜厚を制御管理され製
造された積層薄膜であることを特徴とする磁気記録再生
装置。
5. A magnetic recording medium, a magnetoresistive sensor for reading a magnetic signal from the magnetic recording medium, a write head for writing a magnetic signal on the magnetic recording medium, and a tip portion of the magnetoresistive sensor and the write head. An arm that is mounted on a disk and drives in the radial direction of the magnetic recording medium, a control device that controls the magnetic recording medium and a driving unit of the arm, and a signal processing unit that processes a read magnetic signal and a magnetic signal to be written. 5. A magnetic recording / reproducing apparatus comprising: the laminated thin film of the magnetoresistive sensor;
A magnetic recording / reproducing apparatus, which is a laminated thin film manufactured by controlling and controlling the film thickness by the laminated thin film inspecting apparatus described in 1.
JP2001260515A 2001-08-30 2001-08-30 Method and apparatus for inspecting laminated thin film Pending JP2003065977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001260515A JP2003065977A (en) 2001-08-30 2001-08-30 Method and apparatus for inspecting laminated thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001260515A JP2003065977A (en) 2001-08-30 2001-08-30 Method and apparatus for inspecting laminated thin film

Publications (1)

Publication Number Publication Date
JP2003065977A true JP2003065977A (en) 2003-03-05

Family

ID=19087702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001260515A Pending JP2003065977A (en) 2001-08-30 2001-08-30 Method and apparatus for inspecting laminated thin film

Country Status (1)

Country Link
JP (1) JP2003065977A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101065074B1 (en) 2004-01-16 2011-09-15 삼성전자주식회사 Standard sample for TEM Transmission electron microscope elemental mapping and TEM elemental mapping method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101065074B1 (en) 2004-01-16 2011-09-15 삼성전자주식회사 Standard sample for TEM Transmission electron microscope elemental mapping and TEM elemental mapping method using the same

Similar Documents

Publication Publication Date Title
US7582868B2 (en) Method of nano thin film thickness measurement by auger electron spectroscopy
JPS63153455A (en) Optical disk testing system
JPH11304728A (en) X-ray measuring device
Parkin et al. Unidirectionally biased Permalloy: A polarized-neutron-reflection experiment
JP3811089B2 (en) Wear amount measurement method
US8179624B2 (en) Method and apparatus for evaluating a magnetic recording medium
Inaba X-ray thin-film measurement techniques
JP3389115B2 (en) Stacked structure inspection method and X-ray reflectivity device
JP2003065977A (en) Method and apparatus for inspecting laminated thin film
JP3968350B2 (en) X-ray diffraction apparatus and method
JPH0712714A (en) Evaluation method for carbon protective film of magnetic recording medium
Gao et al. In situ ellipsometric diagnostics of multilayer thin film deposition during sputtering
JP2003183838A (en) Oxide film-forming apparatus and magnetic recording and reproducing device
JP3329197B2 (en) Thin film laminate inspection method
JP2001083108A (en) Laminated structure inspection method, x-ray reflectance device, and magnetic recording and reproducing device
JP3509483B2 (en) X-ray reflectivity measuring method and method of manufacturing spin valve for magnetic head
JP2000035408A (en) Film structure analysis method using x-ray reflectance method
JP2000207736A (en) Method for measuring thickness of carbon protective film
JP2003329620A (en) Inspection method of laminated thin film
US20120287426A1 (en) Pattern inspection method and device for same
Hirano et al. Layered structure analysis of GMR multilayers by X-ray reflectometry using the anomalous dispersion effect
JP2000146830A (en) Infrared microscopic ft-ir device and analyzing method of recording medium
JPH116804A (en) Method of improving detection sensitivity of thin film and analysis method
JP3810303B2 (en) Thin film inspection method and apparatus, and micro device manufacturing method
YING Quantitative characterization technology for nanometer spaced head-disk systems