JPH116804A - Method of improving detection sensitivity of thin film and analysis method - Google Patents

Method of improving detection sensitivity of thin film and analysis method

Info

Publication number
JPH116804A
JPH116804A JP9161107A JP16110797A JPH116804A JP H116804 A JPH116804 A JP H116804A JP 9161107 A JP9161107 A JP 9161107A JP 16110797 A JP16110797 A JP 16110797A JP H116804 A JPH116804 A JP H116804A
Authority
JP
Japan
Prior art keywords
thin film
substrate
ray
wavelength
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9161107A
Other languages
Japanese (ja)
Inventor
Kosuke Ryu
光佑 劉
Yoshihiro Kudo
喜弘 工藤
Seiji Kawato
清爾 川戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP9161107A priority Critical patent/JPH116804A/en
Publication of JPH116804A publication Critical patent/JPH116804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately determine the thickness, surface roughness, interface roughness, density, composition and the like of a very thin oxide film formed on a silicon substrate by an X-ray reflection factor method. SOLUTION: An X-ray wavelength 3 near a silicon K absorption end is used to allow increase in the amplitude of a vibration component in a reflection factor data even when the density is closer as between a silicon substrate 1 and an oxide film 2. The thickness of an oxide film 2 is determined from the frequency of the vibration component or the accuracy is improved for determining parameters of the thickness, the surface roughness, the interface roughness, the density and the like of the oxide film 2 by a parameter fitting. In addition, the refractive indexes of the oxide film 2 are determined based on the amplitude of the vibration component in a reflection factor data obtained using two X-ray wavelengths 3 or more near the silicon K absorption end and simultaneous equations are solved by using the refractive indexes obtained to determine the densities and the contents of silicon of the oxide film 2. This also enables determining of a composition of even a very thin oxide film 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、シリコン
基板上に形成された極薄シリコン酸化膜のような極薄膜
の膜厚、密度、表面ラフネス、界面ラフネス、組成等を
X線反射率法により求める際に好適な薄膜の検出感度向
上方法及び解析方法に関する。
The present invention relates to an X-ray reflectance method for determining the thickness, density, surface roughness, interface roughness, composition, etc. of an ultrathin film such as an ultrathin silicon oxide film formed on a silicon substrate. The present invention relates to a method for improving the detection sensitivity of a thin film and an analysis method which are suitable for obtaining the above.

【0002】[0002]

【従来の技術】従来、層状物質試料や膜試料の構造解析
にX線反射率法が用いられている。
2. Description of the Related Art Conventionally, an X-ray reflectivity method has been used for structural analysis of a layered material sample or a film sample.

【0003】例えば、特開平3−146846号公報に
は、X線反射率法を用いたパラメータフィッティングに
よる薄膜の密度測定法が開示されており、また、特開平
6−221841号公報には、積層体からのX線反射率
データから振動成分を抽出し、膜厚その他の物理量を求
める方法及び装置が開示されている。
For example, Japanese Patent Application Laid-Open No. 3-146846 discloses a method of measuring the density of a thin film by parameter fitting using the X-ray reflectivity method. A method and an apparatus for extracting a vibration component from X-ray reflectance data from a body to obtain a film thickness and other physical quantities are disclosed.

【0004】更に、例えば、N. Awaji et al. "High-Ac
curacy X-ray Reflectivity Studyof Native Oxide For
med in Chemical Treatment" (Jpn. J. Appl. Phys. Vo
l.34 (1995) pp.L1013-L1016)、 N. Awaji et al. "Hig
h-Density Layer at the SiO2/Si Interface Observed
by Difference X-Ray Reflectivity" (Jpn. J. Appl. P
hys. Vol.35 (1996) pp.L67-L70) 、Y. Sugita et al.
"X-Ray Reflectometry and Infrared Analysis of Nat
ive Oxides on Si(100) Formed by Chemical Treatmen
t" (Jpn. J. Appl. Phys. Vol.35 (1996) pp.5437-544
3)等に報告されているように、X線反射率法は、シリコ
ン酸化膜の解析にも用いられている。
Further, for example, N. Awaji et al. "High-Ac
curacy X-ray Reflectivity Studyof Native Oxide For
med in Chemical Treatment "(Jpn. J. Appl. Phys. Vo
l.34 (1995) pp.L1013-L1016), N. Awaji et al. "Hig
h-Density Layer at the SiO 2 / Si Interface Observed
by Difference X-Ray Reflectivity "(Jpn. J. Appl. P
hys.Vol.35 (1996) pp.L67-L70), Y.Sugita et al.
"X-Ray Reflectometry and Infrared Analysis of Nat
ive Oxides on Si (100) Formed by Chemical Treatmen
t "(Jpn. J. Appl. Phys. Vol. 35 (1996) pp.5437-544
As reported in 3) and the like, the X-ray reflectivity method is also used for analyzing a silicon oxide film.

【0005】[0005]

【発明が解決しようとする課題】X線反射率法は、シリ
コン酸化膜に関しては、次世代のゲート酸化膜として用
いられる膜厚1〜4nmの極薄酸化膜の解析への応用が
期待されているが、従来のX線反射率法では、膜と基板
の屈折率が近いと、測定データから膜の物理的情報が求
め難く、測定及び解析が困難になるという問題が有っ
た。とりわけ、シリコン基板上に形成されたシリコンの
極薄酸化膜では、基板と酸化膜の密度が近く、屈折率も
近くなるため、条件が厳しかった。
The X-ray reflectivity method is expected to be applied to the analysis of an ultra-thin oxide film having a thickness of 1 to 4 nm, which is used as a next-generation gate oxide film, with respect to a silicon oxide film. However, in the conventional X-ray reflectivity method, if the refractive index of the film is close to the refractive index of the substrate, it is difficult to obtain physical information of the film from the measurement data, so that measurement and analysis are difficult. In particular, in the case of an ultra-thin silicon oxide film formed on a silicon substrate, the conditions are severe because the density of the oxide film is close to that of the substrate and the refractive index is also close.

【0006】ここで、X線反射率法による測定の原理を
説明する。
Here, the principle of measurement by the X-ray reflectivity method will be described.

【0007】複素屈折率nは、iを虚数単位として、 n=1−δ+iβ …(1) と書ける。1−δが実数部、βが虚数部である。The complex refractive index n can be written as n = 1−δ + iβ (1), where i is an imaginary unit. 1-δ is a real part and β is an imaginary part.

【0008】この時、δとβは、夫々、λ:X線波長、
e :古典電子半径、vc :単位格子体積、Zk :単位
格子のk番目の原子の原子番号、fk ′:k番目の原子
の異常分散項の実数成分、fk ″:同虚数成分、NA
アボガドロ定数、ρ:密度、Mk :k番目の原子の原子
量、として、
At this time, δ and β are respectively λ: X-ray wavelength,
r e : classical electron radius, v c : unit cell volume, Z k : atomic number of the k-th atom of the unit cell, f k ': real component of the anomalous dispersion term of the k-th atom, f k ″: same imaginary number Ingredients, N A :
Avogadro constant, ρ: density, M k : atomic weight of k-th atom,

【0009】[0009]

【数1】 (Equation 1)

【0010】となる。## EQU1 ##

【0011】用いるX線の波長が、試料各層の構成元素
のX線吸収端から離れている場合には、異常分散項の実
数成分fk ′の値は、原子番号Zk に比べて充分に小さ
い。従って、この時は、どの元素についても、Σ(Zk
+fk ′)/ΣMk が、ほぼ1/2に等しいとみなすこ
とができ、(2)式は、次のように書ける。 δ=(NA λ2 e /4π)ρ …(4)
When the wavelength of the X-ray used is far from the X-ray absorption edge of the constituent element of each layer of the sample, the value of the real component f k ′ of the anomalous dispersion term is sufficiently smaller than the atomic number Z k. small. Therefore, at this time, ど の (Z k
+ F k ') / ΣM k can be considered to be substantially equal to 、, and the equation (2) can be written as follows. δ = (N A λ 2 r e / 4π) ρ ... (4)

【0012】つまり、この近似が成り立つ時は、膜の組
成(元素の種類)にかかわらず、X線の波長λが決まれ
ば、δは膜の密度ρに比例すると言える。
That is, when this approximation holds, it can be said that δ is proportional to the density ρ of the film if the wavelength λ of the X-ray is determined regardless of the composition of the film (the kind of element).

【0013】ここで、従来の問題点を明らかにするため
に、層状物質に対するX線反射率の理論式を説明する。
Here, in order to clarify the conventional problems, a theoretical formula of the X-ray reflectivity for a layered material will be described.

【0014】図6に示すような試料に、空気側から視斜
角(入射角の余角)θでX線が入射した場合を考える。
なお、以下の説明では、各層における界面の粗さの効果
は無視し、また、偏光は、σ偏光の場合のみを考察す
る。
Consider a case in which X-rays are incident on a sample as shown in FIG. 6 from the air side at an oblique angle (the complementary angle of the incident angle) θ.
In the following description, the effect of the roughness of the interface in each layer is neglected, and only the case where the polarization is σ polarization is considered.

【0015】今、第j層の複素屈折率をnj 、膜厚をd
j とし、また、第j層から第(j+1)層に入射するX
線の視斜角をθj とすると、第j層と第(j+1)層と
の界面での反射に対するフレネル係数(振幅反射率)F
j,j+1 は、nj =1−δj +iβj のように、δj 、β
j をとると、cos θ=nj cos θj であるから、 gj =nj sin θj =(nj 2 −cos2θ)1/2 ≒(θ2 −2δj +2iβj 1/2 …(5) と置いて、 Fj,j+1 =(gj −gj+1 )/(gj +gj+1 ) …(6) で与えられる。
Now, let the complex refractive index of the j-th layer be n j and the film thickness be d
j, and X incident on the (j + 1) th layer from the jth layer
If the viewing angle of the line is θ j , the Fresnel coefficient (amplitude reflectance) F for the reflection at the interface between the j-th layer and the (j + 1) -th layer
j, j + 1 are δ j , β like n j = 1−δ j + iβ j
If j is taken, cos θ = n j cos θ j , so that g j = n j sin θ j = (n j 2 −cos 2 θ) 1/2 ≒ (θ 2 −2δ j + 2iβ j ) 1 / 2 ... (5), and given by F j, j + 1 = (g j −g j + 1 ) / (g j + g j + 1 ) (6)

【0016】また、多層膜で、下側の層からの反射の影
響を含めた試料からの反射率は、このフレネル係数F
j,j+1 を用いて、次の漸化式を解いて得られる|R0,1
2 である。
In a multilayer film, the reflectance from the sample including the influence of reflection from the lower layer is calculated by the Fresnel coefficient F
Using j, j + 1 , the following recurrence equation is solved | R 0,1
| 2 .

【0017】[0017]

【数2】 (Equation 2)

【0018】但し、 γj =2πgj j /λ …(8) (λ:真空中でのX線波長)である。Here, γ j = 2πg j dj / λ (8) (λ: X-ray wavelength in vacuum).

【0019】実際の解析においては、(7)式の漸化式
をコンピュータで直接計算させるが、ここでは、近似計
算について説明する。
In the actual analysis, the recurrence formula of the formula (7) is directly calculated by a computer. Here, the approximate calculation will be described.

【0020】基板上に酸化膜が1層しか無い構造では、
(7)式において、F0,1 、F1,2≪1として近似する
と、
In a structure having only one oxide film on the substrate,
In equation (7), approximation as F 0,1 , F 1,2 ≪1 gives

【0021】[0021]

【数3】 (Equation 3)

【0022】となり、反射率は、 |R0,1 2 ≒| exp(2iγ1 )F1,2 +F0,1 2 …(10) となる。And the reflectance is | R 0,1 | 2 2 | exp (2iγ 1 ) F 1,2 + F 0,1 | 2 (10)

【0023】ここで、フレネル係数F0,1 、F1,2 は、
(5)式及び(6)式で与えられるように、虚数成分を
持つ複素数であるが、X線の視斜角θが、全反射臨界角
よりも充分に大きい範囲では、(5)式で、θ2 −2δ
j ≫2βj であるから、実数とみなせ、(5)式は、
Here, the Fresnel coefficients F 0,1 and F 1,2 are
As given by equations (5) and (6), it is a complex number having an imaginary component, but in a range where the viewing oblique angle θ of the X-ray is sufficiently larger than the critical angle for total reflection, the equation (5) is used. , Θ 2 -2δ
Since j ≫ 2β j , it can be regarded as a real number.

【0024】[0024]

【数4】 (Equation 4)

【0025】となる。従って、反射率は、## EQU1 ## Therefore, the reflectance is

【0026】[0026]

【数5】 (Equation 5)

【0027】と近似できる。Can be approximated by

【0028】ここで、膜を除去した基板のみの場合の反
射率は、 |R1 2 ≒(δ2 /2θ2 2 …(13) である。また、視斜角θが全反射臨界角よりも充分に大
きい範囲では、(4)式において、gj =θと置けて、 γj =(2πdj /λ)θ …(14) となり、(11)式の値を、基板の反射率(13)式の
値をベースラインに用いて規格化した値(規格化反射
率)の振動成分は、
Here, the reflectance in the case of only the substrate from which the film has been removed is | R 1 | 2 ≒ (δ 2 / 2θ 2 ) 2 (13) In a range where the viewing angle θ is sufficiently larger than the critical angle for total reflection, in equation (4), g j = θ, and γ j = (2πd j / λ) θ (14) The vibration component of the value (normalized reflectance) obtained by normalizing the value of the expression (11) using the value of the reflectance (13) of the substrate as the baseline is:

【0029】[0029]

【数6】 (Equation 6)

【0030】と近似できる。## EQU2 ##

【0031】図6に示すような多層試料において、X線
反射率測定を行う場合、第j番目の層についての膜厚や
密度等の物理量の情報は、gj 及びγj に含まれてい
る。従って、その層について上記のような物理量の情報
を得るためには、第(j−1)層と第j層の界面及び第
j層と第(j+1)層の界面におけるX線の振幅反射率
が充分に有る必要が有る。このためには、フレネル係数
の式(6)から、隣接する層との間に屈折率の差が充分
に有ることが条件になる。即ち、第j層の情報がX線反
射率測定データに充分に反映されるためには、第(j−
1)層及び第(j+1)層の屈折率が、夫々、第j層の
屈折率から充分に離れていることが必要である。
When measuring the X-ray reflectivity of a multilayer sample as shown in FIG. 6, information on physical quantities such as the film thickness and density of the j-th layer is included in g j and γ j . . Therefore, in order to obtain the physical quantity information as described above for the layer, the amplitude reflectance of X-rays at the interface between the (j-1) th layer and the jth layer and at the interface between the jth layer and the (j + 1) th layer Must be sufficient. For this purpose, from the Fresnel coefficient equation (6), it is a condition that there is a sufficient difference in refractive index between adjacent layers. That is, in order for the information of the j-th layer to be sufficiently reflected in the X-ray reflectivity measurement data, the (j-
It is necessary that the refractive indices of the 1) layer and the (j + 1) th layer are sufficiently separated from the refractive index of the jth layer.

【0032】これは、基板上に1層の膜しか形成されて
いない場合、(15)式の振幅
This is because when only one film is formed on the substrate, the amplitude of the equation (15) is obtained.

【0033】[0033]

【数7】 (Equation 7)

【0034】が大きいこと、即ち、(1)δ1 とδ2
差がゼロでないこと、即ち、基板と膜の間で屈折率に差
が有ること(2)δ1 がゼロでないこと、即ち、膜と真
空(空気)の間で屈折率に差があることが必要であるこ
とに相当する。
That is, (1) the difference between δ 1 and δ 2 is not zero, that is, there is a difference in the refractive index between the substrate and the film. (2) δ 1 is not zero, that is, This means that there is a need for a difference in refractive index between the film and vacuum (air).

【0035】以上のことから、異常分散を無視でき、
(4)式の近似が成り立っている一般のX線波長に対し
ては、密度が屈折率に密接に関係しているため、測定対
象の層とその隣接する層とで密度が近ければ、従来のX
線反射率法では、膜厚等の物理量の情報が求め難くなる
ということが言える。即ち、問題点1:隣接する層と密度が近いほど、その層の情報
は求め難い。
From the above, the anomalous dispersion can be ignored,
For a general X-ray wavelength for which the approximation of the formula (4) is established, the density is closely related to the refractive index. Therefore, if the density between the layer to be measured and the adjacent layer is close, the conventional X
It can be said that the linear reflectance method makes it difficult to obtain information on physical quantities such as film thickness. That is, Problem 1: The closer the density is to the adjacent layer, the more information about that layer
Is hard to find.

【0036】また、測定対象の層とその隣接する層とで
密度に或る程度の差が有り、問題点1を考慮しなくても
良いケースであっても、1つのX線波長のみで測定を行
ったのでは、δを求めて分かるのは、(4)式の近似で
与えられる密度ρの情報だけであり、組成の情報は求め
られない。即ち、問題点2:組成の情報が求められない。
Further, even if there is a certain difference in the density between the layer to be measured and the layer adjacent thereto, and it is not necessary to consider the problem 1, measurement is performed using only one X-ray wavelength. Is obtained, only the information of the density ρ given by approximation of the equation (4) can be obtained by obtaining δ, and the information of the composition cannot be obtained. That is, Problem 2: Information on composition cannot be obtained.

【0037】以上2つの問題点が従来のX線反射率法に
は有った。特に、その利用が期待されているシリコン表
面の極薄酸化膜の解析においては、この2点が大きな障
害となっていた。
The above two problems exist in the conventional X-ray reflectivity method. In particular, in the analysis of an ultra-thin oxide film on the silicon surface, which is expected to be used, these two points have been major obstacles.

【0038】一方、最近、X線反射率法による構造解析
の際、成分元素のX線吸収端近傍の波長を用いることに
より、全反射臨界角の変化から、X線侵入長程度の深さ
までの元素の平均の数密度や組成を決定しようとする方
法が「AGXR(AnomalousGrazing X-ray Reflectomet
ry)法」として発表されている(「固体物理」 Vol.32,
No.3 (1997) pp.161-170)。
On the other hand, recently, in the structural analysis by the X-ray reflectivity method, by using the wavelength near the X-ray absorption edge of the component element, the change from the critical angle of total reflection to the depth of about the X-ray penetration length. A method for determining the average number density and composition of elements is described in AGXR (Anomalous Grazing X-ray Reflectomet
ry) method ”(“ Solid State Physics ”Vol. 32,
No.3 (1997) pp.161-170).

【0039】この方法は、構成元素のX線吸収端近傍の
X線波長を用いた場合の異常分散効果により、全反射臨
界散乱ベクトルの大きさが変化することを利用して、そ
の変化量から、表面領域の構成元素の数密度を求め、以
て、組成を求めようとする方法である。
This method utilizes the fact that the magnitude of the total reflection critical scattering vector changes due to the anomalous dispersion effect when the X-ray wavelength near the X-ray absorption edge of the constituent element is used. In this method, the number density of the constituent elements in the surface region is determined, and the composition is determined.

【0040】しかしながら、この方法では、当該文献中
にも記載されているように、求められる元素の数密度
は、X線視斜角が全反射臨界角と等しい時の、X線の試
料への侵入深さ(例えば、数十nm程度)領域での平均
の値である。
However, in this method, as described in the literature, the number density of the element to be obtained is determined when the X-ray oblique angle is equal to the critical angle for total reflection. This is an average value in a penetration depth (for example, about several tens of nm) region.

【0041】従って、この公知のAGXR法では、X線
の侵入深さより充分に厚い均一な膜の組成については求
めることができる。しかしながら、侵入深さより薄い
膜、例えば、膜厚数nmといった膜の組成を正確に求め
ることは極めて困難である。例えば、現在、半導体産業
において解析技術の確立が求められている分野、特に、
シリコンゲート酸化膜の膜厚は1〜4nmという極薄膜
であり、従って、公知のAGXR法は、これらの解析に
は殆ど利用できない。
Therefore, according to the known AGXR method, a composition of a uniform film sufficiently thicker than the penetration depth of X-rays can be obtained. However, it is extremely difficult to accurately determine the composition of a film thinner than the penetration depth, for example, a film having a thickness of several nm. For example, in the field where the establishment of analysis technology is currently required in the semiconductor industry,
The thickness of the silicon gate oxide film is an extremely thin film of 1 to 4 nm, and therefore, the known AGXR method can hardly be used for these analyses.

【0042】そこで、本発明の目的は、従来公知のAG
XR法におけるX線侵入深さ領域での平均の情報しか得
られないという欠点を解消し、且つ、従来のX線反射率
法における上述した問題点1及び2を解決することので
きる薄膜の検出感度向上方法及び解析方法を提供するこ
とである。
Accordingly, an object of the present invention is to provide a conventionally known AG
Detection of a thin film that solves the disadvantage that only average information in the X-ray penetration depth region can be obtained in the XR method and that can solve the above-described problems 1 and 2 in the conventional X-ray reflectivity method It is to provide a sensitivity improvement method and an analysis method.

【0043】[0043]

【課題を解決するための手段】上述した課題を解決すべ
く、本発明の薄膜の検出感度向上方法では、基板
(「A」とする。)上に形成された、基板Aに密度が近
い測定対象薄膜(「B」とする。)の物性を、X線反射
率法に基づいて解析する場合に、X線反射率強度の振動
成分の測定データより、その振動の周期を求め、その周
期と、薄膜の膜厚との関係式を用い、得られた周期から
測定対象の薄膜の膜厚を求める方法において、基板A又
は薄膜Bの主要な構成元素のうち、基板Aと薄膜Bにお
いて、体積当たりの含有量が異なるいずれかの元素のX
線吸収端近傍の波長を入射X線の波長として用いること
で、基板Aと薄膜Bの屈折率の差を拡大せしめ、これに
より、基板Aと薄膜Bの界面におけるX線反射のフレネ
ル係数(振幅反射率)を拡大せしめ、以て、得られる反
射率強度振動成分の振幅を拡大することにより反射率強
度振動成分の検出感度を向上させる。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a method for improving the detection sensitivity of a thin film according to the present invention employs a method in which a density close to a substrate A formed on a substrate (referred to as "A") is measured. When analyzing the physical properties of the target thin film (referred to as “B”) based on the X-ray reflectivity method, the period of the vibration is obtained from the measurement data of the vibration component of the X-ray reflectivity intensity, and the period of the vibration is determined. In a method of obtaining the thickness of a thin film to be measured from the obtained period using a relational expression with the thickness of the thin film, the volume of the substrate A and the thin film B among the main constituent elements of the substrate A or the thin film B is determined. X of any of the elements with different contents per unit
By using the wavelength near the X-ray absorption edge as the wavelength of the incident X-ray, the difference between the refractive indices of the substrate A and the thin film B is enlarged, whereby the Fresnel coefficient (amplitude) of X-ray reflection at the interface between the substrate A and the thin film B is increased. (Reflectance), thereby increasing the amplitude of the obtained reflectance intensity vibration component, thereby improving the sensitivity of detecting the reflectance intensity vibration component.

【0044】また、本発明の別の態様による検出感度向
上方法では、基板(「A」とする。)上に形成された、
基板Aに密度が近い測定対象薄膜(「B」とする。)の
物性を、X線反射率法に基づいて解析する場合に、X線
反射率強度の振動成分の測定データに対し、パラメータ
フィッティングを行うことにより、測定対象の薄膜の膜
厚、若しくは、膜表面ラフネス、若しくは、膜と基板の
界面ラフネス、のパラメータのいずれか、若しくは、同
時に複数のパラメータを求める方法において、基板A又
は薄膜Bの主要な構成元素のうち、基板Aと薄膜Bにお
いて、体積当たりの含有量が異なるいずれかの元素のX
線吸収端近傍の波長を入射X線の波長として用いること
で、基板Aと薄膜Bの屈折率の差を拡大せしめ、これに
より、基板Aと薄膜Bの界面におけるX線反射のフレネ
ル係数(振幅反射率)を拡大せしめ、以て、得られる反
射率強度振動成分の振幅を拡大することにより反射率強
度振動成分の検出感度を向上させる。
Further, in the method for improving the detection sensitivity according to another aspect of the present invention, a method for forming a substrate on a substrate (referred to as “A”).
When analyzing the physical properties of a thin film to be measured (referred to as “B”) having a density close to that of the substrate A based on the X-ray reflectivity method, parameter fitting is performed on the measurement data of the vibration component of the X-ray reflectivity intensity. In the method for obtaining one of the parameters of the thickness of the thin film to be measured, or the roughness of the film surface, or the roughness of the interface between the film and the substrate, or the method of obtaining a plurality of parameters simultaneously, the substrate A or the thin film B Of the main constituent elements having different contents per volume in the substrate A and the thin film B, X
By using the wavelength near the X-ray absorption edge as the wavelength of the incident X-ray, the difference between the refractive indices of the substrate A and the thin film B is enlarged, whereby the Fresnel coefficient (amplitude) of X-ray reflection at the interface between the substrate A and the thin film B is increased. (Reflectance), thereby increasing the amplitude of the obtained reflectance intensity vibration component, thereby improving the sensitivity of detecting the reflectance intensity vibration component.

【0045】また、本発明の薄膜の解析方法では、組成
と密度が既知であるような基板(「A」とする。)上に
形成された測定対象薄膜(「B」とする。)の物性を、
X線反射率法に基づいて解析する場合に、2種以上の波
長において反射率測定を行い、うち少なくとも1の波長
については、試料における或る一部の領域(「R」とす
る。)に含まれるいずれかの元素(「X」とする。)の
吸収端に近い波長を用い、測定データより波長λを変え
たときの領域Rの屈折率の変動を求め、この変動の程度
から領域Rにおける元素Xの体積当たりの含有量、ひい
ては組成を求める方法において、屈折率の変動を、反射
率強度振動成分の振幅の変動から求めるか、若しくは、
測定対象膜Bの屈折率を求める値としたパラメータフィ
ッティングから求める、ことにより、領域Rを測定対象
薄膜Bと一致せしめ、以て、測定対象薄膜Bにおける元
素Xの体積当たりの含有量及び測定対象領域の密度を求
める。
In the method for analyzing a thin film according to the present invention, the physical properties of a thin film to be measured (hereinafter, referred to as "B") formed on a substrate ("A") having a known composition and density. To
When analyzing based on the X-ray reflectivity method, reflectivity measurement is performed at two or more wavelengths, and at least one of the wavelengths is measured in a certain region (referred to as “R”) in the sample. Using a wavelength close to the absorption edge of any of the contained elements (referred to as “X”), a change in the refractive index of the region R when the wavelength λ is changed is obtained from the measurement data. In the method for determining the content of element X per volume, and thus the composition, the change in the refractive index is determined from the change in the amplitude of the reflectance intensity vibration component, or
The region R is matched with the thin film B to be measured by determining the refractive index of the film B to be measured from the parameter fitting, and the content per unit volume of the element X in the thin film B to be measured and the measurement object Find the density of the area.

【0046】[0046]

【発明の実施の形態】以下、本発明を好ましい実施の形
態に従い説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described according to preferred embodiments.

【0047】〔第1の実施の形態〕本発明の第1の実施
形態においては、例えば、図1に示すような基板1上に
薄膜2が形成された試料に対し、基板1又は薄膜2の主
要構成元素であって、且つ、体積当たりの含有量が異な
る成分元素のいずれかについて、そのX線吸収端近傍
(概ね±0.02Å以内)の波長のX線3を用い、X線
反射率法による測定を行う。
[First Embodiment] In a first embodiment of the present invention, for example, a sample having a thin film 2 formed on a substrate 1 as shown in FIG. X-ray reflectivity of any of the main constituent elements having different contents per volume using X-rays 3 having a wavelength near the X-ray absorption edge (generally within ± 0.02 °). Perform the measurement by the method.

【0048】従って、この場合には、(2)式に示した
δにおいて、異常分散によるfk ′の項がZk に比べ無
視できなくなる。(2)式から、fk ′を無視した場合
と無視しない場合とでのδの変化量Δδは、体積当たり
のその選択された成分元素の原子数に依存することが分
かる。即ち、仮に基板1と薄膜2の密度ρが互いに近い
場合でも、その体積当たりの含有量が比較的大きく異な
る成分元素を選択して、そのX線吸収端近傍の波長のX
線を用いれば、基板1と薄膜2との屈折率差を大きくと
ることができる。
Therefore, in this case, in δ shown in the equation (2), the term of f k ′ due to anomalous dispersion cannot be ignored compared to Z k . From equation (2), it can be seen that the change Δδ in δ when f k ′ is ignored and when it is not ignored depends on the number of atoms of the selected component element per volume. That is, even if the densities ρ of the substrate 1 and the thin film 2 are close to each other, a component element whose content per volume is relatively different from each other is selected, and X of the wavelength near the X-ray absorption edge is selected.
If a line is used, the difference in the refractive index between the substrate 1 and the thin film 2 can be increased.

【0049】例えば、基板1を、密度2.33g/cm
3 のシリコン基板、薄膜2を、膜厚2nm、密度2.3
0g/cm3 のシリコン酸化膜として、理論計算した結
果を図2及び図3に示す。
For example, when the substrate 1 has a density of 2.33 g / cm
3 silicon substrate, thin film 2 was formed to a thickness of 2 nm and a density of 2.3.
FIGS. 2 and 3 show the results of theoretical calculations for a silicon oxide film of 0 g / cm 3 .

【0050】なお、この計算では、薄膜2の表面及び薄
膜2と基板1の界面のラフネスをいずれも0.3nmと
している。また、計算は、反射率の漸化式である(6)
式及び(7)式を直接解いて値を求めており、シリコン
の複素屈折率の虚数成分も考慮している。但し、影響の
小さい酸素原子の異常分散項は無視し、酸素原子に対し
ては、異常分散項を、実数部、虚数部ともゼロとした。
In this calculation, the roughness of the surface of the thin film 2 and the roughness of the interface between the thin film 2 and the substrate 1 are each set to 0.3 nm. The calculation is a recurrence formula of the reflectance (6).
The value is obtained by directly solving the equation and the equation (7), and the imaginary component of the complex refractive index of silicon is also taken into consideration. However, the anomalous dispersion term of oxygen atoms having little effect was ignored, and the anomalous dispersion term for oxygen atoms was set to zero for both the real part and the imaginary part.

【0051】図2に、シリコンK吸収端(6.738
Å)近傍の各波長での反射率試算結果を、図3に、図2
の反射率を基板反射率で規格化した規格化反射率の計算
結果を夫々示す。なお、これらの図2及び図3におい
て、横軸は、X線の視斜角〔mrad〕、縦軸は、いず
れも相対値で表した反射強度及び規格化反射強度を夫々
示す。
FIG. 2 shows a silicon K absorption edge (6.738).
Å) The reflectance calculation results at each wavelength in the vicinity are shown in FIG.
The calculation results of the normalized reflectance obtained by standardizing the reflectance of the substrate with the substrate reflectance are shown. 2 and 3, the horizontal axis represents the oblique angle [mrad] of the X-ray, and the vertical axis represents the reflection intensity and the normalized reflection intensity, both expressed as relative values.

【0052】図2から分かるように、波長が長いため、
視斜角300mrad程度で反射率減衰は8桁程度であ
る。
As can be seen from FIG. 2, since the wavelength is long,
At a viewing angle of about 300 mrad, the reflectivity attenuation is about 8 digits.

【0053】また、比較のために、同じ試料に対するX
線波長1.54Åでの反射率試算結果を図4に、規格化
反射率の計算結果を図5に夫々示す。視斜角80mra
d程度で、反射率減衰は8桁程度である。
For comparison, X for the same sample
FIG. 4 shows the calculation result of the reflectance at a line wavelength of 1.54 °, and FIG. 5 shows the calculation result of the normalized reflectance. Viewing angle 80mra
About d, and the reflectance attenuation is about eight digits.

【0054】これらの結果から、特に、図3と図5を比
較すると、シリコンK吸収端近傍の波長を用いることに
より、反射強度の振動成分の振幅を大きくとることので
きることが分かる。
From these results, comparing FIGS. 3 and 5 in particular, it can be seen that the amplitude of the vibration component of the reflection intensity can be increased by using the wavelength near the silicon K absorption edge.

【0055】即ち、基板1と薄膜2の密度が近いため
に、図4及び図5の例では、基板1の屈折率の実数成分
δ1 と薄膜2の屈折率の実数成分δ2 の差が小さくな
り、従って、例えば、(15)式で表される振動成分の
振幅が小さくなる。これに対し、本実施の形態による図
2及び図3の例では、シリコンのK吸収端近傍の波長の
X線を用いることにより、基板1と薄膜2の密度が近く
ても、基板1の屈折率の実数成分δ1 と薄膜2の屈折率
の実数成分δ2 の差を大きくとることができ、従って、
振幅の大きい振動成分を得ることができる。
[0055] That is, because the density of the substrate 1 and the thin film 2 is close, in the example of FIG. 4 and FIG. 5, the difference between the real component [delta] 2 of the refractive index of the real component [delta] 1 and the thin film 2 having a refractive index of the substrate 1 is Therefore, the amplitude of the vibration component expressed by the equation (15) becomes smaller. On the other hand, in the examples of FIGS. 2 and 3 according to the present embodiment, by using X-rays having a wavelength near the K absorption edge of silicon, even if the density of the substrate 1 and the thin film 2 is close, the refraction of the substrate 1 is reduced. The difference between the real component δ 1 of the refractive index and the real component δ 2 of the refractive index of the thin film 2 can be made large.
A vibration component having a large amplitude can be obtained.

【0056】そこで、例えば、(15)式から、振動成
分の振動の周期はλ/(2d1 )であるので、例えば、
図3において、X線波長λ=6.742Åのデータにつ
いて、振動の周期を調べると、およそ170mradで
あり、従って、 d1 =6.742/(2×0.17)≒19.8〔Å〕 となり、薄膜2の膜厚が約2nmであることが分かる。
Therefore, for example, from the equation (15), the period of the vibration of the vibration component is λ / (2d 1 ).
In FIG. 3, when the period of the vibration is examined for the data at the X-ray wavelength λ = 6.742ra, it is about 170 mrad, and therefore, d 1 = 6.742 / (2 × 0.17) ≒ 19.8 [Å It can be seen that the thickness of the thin film 2 is about 2 nm.

【0057】一方、図5の場合でも、X線波長λ=1.
54Åのデータについて、振動の周期がおよそ40mr
adであることが求まるので、 d1 =1.54/(2×0.04)≒19.25〔Å〕 となり、やはり薄膜2の膜厚が約2nmであることが分
かる。
On the other hand, even in the case of FIG. 5, the X-ray wavelength λ = 1.
For 54 ° data, the oscillation period is about 40 mr
Since ad is determined, d 1 = 1.54 / (2 × 0.04) ≒ 19.25 [Å], and it can be seen that the thickness of the thin film 2 is also about 2 nm.

【0058】しかし、図3と図5のデータを比較すると
分かるように、例えば、図3で振幅の最も大きい6.7
42Åのデータでは、図5の場合と比較して、振幅が百
倍以上のデータを得ることができる。従って、振動成分
の周期を調べるためには、図3のデータを用いる方が、
図5のデータを用いるよりも遙に容易で且つ精度も向上
することは明らかである。
However, as can be seen by comparing the data of FIGS. 3 and 5, for example, 6.7 having the largest amplitude in FIG.
With the data of 42 °, it is possible to obtain data whose amplitude is 100 times or more as compared with the case of FIG. Therefore, in order to check the period of the vibration component, it is better to use the data of FIG.
Clearly, it is much easier and more accurate than using the data of FIG.

【0059】このように、本実施の形態では、X線反射
率法による測定を行うに際し、基板1又は薄膜2の主要
構成元素のうち、基板1と薄膜2とで体積当たりの含有
量が異なる元素のX線吸収端近傍の波長の入射X線を用
いることにより、反射強度データの振動成分の振幅が比
較的大きい測定データを得、その振動成分の周期から、
薄膜2の膜厚を求める。
As described above, in the present embodiment, when the measurement is performed by the X-ray reflectivity method, among the main constituent elements of the substrate 1 or the thin film 2, the content per volume differs between the substrate 1 and the thin film 2. By using incident X-rays having a wavelength near the X-ray absorption edge of the element, measurement data in which the amplitude of the vibration component of the reflection intensity data is relatively large, and from the period of the vibration component,
The thickness of the thin film 2 is determined.

【0060】従って、測定データからその振動成分の周
期を調べる際、その振動成分の振幅が大きいために、正
確な値を比較的容易に得ることができる。
Therefore, when checking the period of the vibration component from the measurement data, an accurate value can be obtained relatively easily because the amplitude of the vibration component is large.

【0061】特に、基板1と薄膜2の密度が近い場合に
は、従来のようなX線波長を用いると、振動成分の振幅
が小さくなるために、その周期の測定が困難(場合によ
っては、不可能)になるが、本実施の形態では、基板1
と薄膜2の密度が近い場合でも、反射強度データの振動
成分の振幅を大きくとることができるので、その周期の
測定を容易且つ正確に行うことができる。
In particular, when the density of the substrate 1 and that of the thin film 2 are close to each other, if the conventional X-ray wavelength is used, the amplitude of the vibration component becomes small, so that it is difficult to measure the period (in some cases, Impossible), but in the present embodiment, the substrate 1
Even when the density of the thin film 2 is close to that of the thin film 2, the amplitude of the vibration component of the reflection intensity data can be increased, so that the period can be measured easily and accurately.

【0062】反射強度データの振動成分は、図1に示す
薄膜2表面での反射光と、薄膜2と基板1との界面での
反射光とが互いに干渉することより生じるもので、その
周期から求まる膜厚の値は、X線波長やX線の侵入深さ
に殆ど影響されない。そこで、この第1の実施の形態で
は、例えば、基板1と薄膜2の密度が近いために、通常
のX線波長を用いた時には、反射強度データの振動成分
の振幅が小さくなり過ぎて、その周期の測定が困難にな
るような場合に、基板1と薄膜2で含有量の異なる元素
のX線吸収端に近いX線波長を用いて、その元素の含有
量の違いにより、振動成分の振幅を相対的に拡大し、そ
の周期の測定を容易且つ正確なものにする。
The vibration component of the reflection intensity data is caused by interference between the light reflected on the surface of the thin film 2 and the light reflected on the interface between the thin film 2 and the substrate 1 shown in FIG. The value of the obtained film thickness is hardly influenced by the X-ray wavelength or the penetration depth of the X-ray. Therefore, in the first embodiment, for example, since the density of the substrate 1 and the thin film 2 is close to each other, when a normal X-ray wavelength is used, the amplitude of the vibration component of the reflection intensity data becomes too small. When it becomes difficult to measure the period, the X-ray wavelength near the X-ray absorption edge of an element having a different content between the substrate 1 and the thin film 2 is used. Is relatively enlarged, making the measurement of its period easier and more accurate.

【0063】なお、上の例では、測定データから振動成
分の周期を調べ、その結果から、例えば、(15)式の
ような近似式に基づいて膜厚を求めているが、例えば、
薄膜2の膜厚、薄膜2の密度、薄膜2の表面ラフネス、
薄膜2と基板1との界面ラフネス等の物理量を、パラメ
ータフィッティングにより、個々に又は同時に求めるこ
ともできる。
In the above example, the period of the vibration component is checked from the measured data, and from the result, the film thickness is obtained based on an approximate expression such as Expression (15).
Thickness of the thin film 2, density of the thin film 2, surface roughness of the thin film 2,
Physical quantities such as interface roughness between the thin film 2 and the substrate 1 can be obtained individually or simultaneously by parameter fitting.

【0064】その場合には、例えば、(7)式の漸化式
で与えられる反射率の理論式を用い、その理論式中の各
パラメータを、例えば、マルカート法による非線形最小
二乗法により、実測データに対し最適化することで、各
パラメータを求めることができる。なお、ラフネスを求
める際には、(6)式の代わりに、
In this case, for example, the theoretical formula of the reflectance given by the recurrence formula of the formula (7) is used, and each parameter in the theoretical formula is measured by, for example, the nonlinear least square method by the Marquardt method. Each parameter can be obtained by optimizing the data. When calculating the roughness, instead of equation (6),

【0065】[0065]

【数8】 (Equation 8)

【0066】を用いることにより、理論式中にラフネス
の項σを含めることができる。
By using, the term σ of roughness can be included in the theoretical formula.

【0067】このパラメータフィッティングによる場合
でも、X線波長λとして、例えば、シリコンK吸収端近
傍の波長を用いて、反射率の振動成分が強調された実測
データを得、且つ、例えば、既述した特開平6−221
841号公報に記載の方法のように、その強調された振
動成分のデータが有効に反映されるような最適化を行う
ことにより、計算効率及び精度を向上させることができ
る。
Even in the case of this parameter fitting, using the wavelength near the silicon K absorption edge, for example, as the X-ray wavelength λ, the actual measurement data in which the vibration component of the reflectance is emphasized is obtained. JP-A-6-221
By performing optimization such that the data of the emphasized vibration component is effectively reflected as in the method described in JP-A-841, the calculation efficiency and accuracy can be improved.

【0068】〔第2の実施の形態〕次に、本発明の第2
の実施の形態を説明するが、この第2の実施の形態で
は、例えば、図1に示すような基板1上に薄膜2が形成
された試料において、薄膜2の組成を求める。但し、基
板1の組成及び密度は既知とする。
[Second Embodiment] Next, a second embodiment of the present invention will be described.
In the second embodiment, for example, the composition of the thin film 2 is obtained from a sample in which the thin film 2 is formed on a substrate 1 as shown in FIG. However, the composition and density of the substrate 1 are assumed to be known.

【0069】この目的のために、この第2の実施の形態
では、薄膜2の成分元素のうち含有量を求めたい元素
(「X」とする。)の異常分散項の実数成分f′の値が
異なるような2以上の波長で測定を行う。この時、少な
くとも1波長については、その元素XのX線吸収端近傍
の波長(概ね±0.02Å以内)で、従って、f′の絶
対値がその元素Xの原子番号ZX に比べ無視できないよ
うな条件の波長を選ぶ。
For this purpose, in the second embodiment, the value of the real component f ′ of the anomalous dispersion term of the element whose content is to be determined (“X”) among the component elements of the thin film 2 Are measured at two or more wavelengths such that At this time, at least one wavelength is a wavelength near the X-ray absorption edge of the element X (generally within ± 0.02 °), and therefore, the absolute value of f ′ cannot be ignored compared to the atomic number Z X of the element X. Choose a wavelength under such conditions.

【0070】(2)式において、通常、Mk ≒2Zk
あるので、この(2)式を、
In equation (2), since M k ≒ 2Z k , this equation (2) is

【0071】[0071]

【数9】 (Equation 9)

【0072】とすることができる。変形して、Can be obtained. Deform,

【0073】[0073]

【数10】 (Equation 10)

【0074】である。Is as follows.

【0075】この(19)式において、re 、NA は既
知であり、ρは、薄膜2については未知である。λを決
めてX線反射率測定を行えば、δは、例えば、反射強度
データの振動成分の振幅から求めることができる。
[0075] In this equation (19), r e, N A is known, [rho is unknown for the thin film 2. If X-ray reflectance measurement is performed with λ determined, δ can be determined from, for example, the amplitude of the vibration component of the reflection intensity data.

【0076】今、元素XのX線吸収端に近い波長λ1
選び、元素X以外の構成元素についてはf′が無視で
き、元素Xについてはf′が無視できないとすると、元
素Xについて、 (M+2f′)=AM (A≠1) …(20) と置ける。
Now, a wavelength λ 1 close to the X-ray absorption edge of the element X is selected, and f ′ can be ignored for the constituent elements other than the element X, and f ′ cannot be ignored for the element X. (M + 2f ′) = AM (A ≠ 1) (20)

【0077】ここで、元素Xの質量比をXと置くと、元
素X以外の元素の質量比は(1−X)であるから、波長
λ1 の時の反射率測定から求めたδをδL1として、 {AX+(1−X)}ρ={1+(A−1)X}ρ =4πδL1/(λ1 2e A ) …(21)
Here, if the mass ratio of the element X is X, the mass ratio of the elements other than the element X is (1-X), so that δ obtained from the reflectance measurement at the wavelength λ 1 is δ. as L1, {AX + (1- X)} ρ = {1+ (A-1) X} ρ = 4πδ L1 / (λ 1 2 r e N A) ... (21)

【0078】同様に、波長λ2 (元素XのX線吸収端に
近くなくても良い。但し、少なくとも元素X以外の構成
元素についてはf′が無視できるものとする。)を選ん
だ時、元素Xについて、 (M+2f′)=BM …(22) と置くと、波長λ2 の時の反射率測定から求めたδをδ
L2として、 {BX+(1−X)}ρ={1+(B−1)X}ρ =4πδL2/(λ2 2e A ) …(23)
Similarly, when a wavelength λ 2 (which does not have to be close to the X-ray absorption edge of the element X, but f ′ can be ignored for at least the constituent elements other than the element X), For the element X, if (M + 2f ′) = BM (22), δ obtained from the reflectance measurement at the wavelength λ 2 is converted to δ.
As L2, {BX + (1- X)} ρ = {1+ (B-1) X} ρ = 4πδ L2 / (λ 2 2 r e N A) ... (23)

【0079】これらA及びBの値は、元素の異常分散項
の数表(例えば、S. Sasaki "Numerical Tables of Ano
malous Scattering Factors Calculated by the Cromer
andLiberman's Method" KEK Report 88-14(1989)) か
ら求めることができる。
The values of A and B are calculated by using a numerical table of the anomalous dispersion terms of elements (eg, S. Sasaki "Numerical Tables of Ano
malous Scattering Factors Calculated by the Cromer
andLiberman's Method "KEK Report 88-14 (1989)).

【0080】この時、(21)式及び(23)式の未知
数は、Xとρの2つであるので、(21)式及び(2
3)式を連立させて解けば、Xとρの値を確定すること
ができる。
At this time, since the unknowns in the equations (21) and (23) are two of X and ρ, the equations (21) and (2)
By solving equations 3) simultaneously, the values of X and ρ can be determined.

【0081】なお、基板1と薄膜2の密度がそれほど近
くなく、従って、既述した問題点1の対策をしなくても
良い場合には、波長λ2 は、元素XのX線吸収端から離
れていても良い。この時には、B=1と置けるので、
(23)式から直ちに密度ρが求められ、それにより、
(21)式からXを求めることができる。
When the density of the substrate 1 and the density of the thin film 2 are not so close and therefore it is not necessary to take measures against the above-mentioned problem 1, the wavelength λ 2 is shifted from the X-ray absorption edge of the element X. You may be away. At this time, since B = 1 can be set,
The density ρ is immediately obtained from the equation (23).
X can be obtained from equation (21).

【0082】一方、基板1と薄膜2の密度が近い場合に
は、波長λ2 として、元素XのX線吸収端から離れたも
のを用いると、第1の実施の形態でも述べたように、反
射強度データの振動成分の振幅が小さくなるので、それ
からδL2を求めるのが困難(又は不可能)になる。従っ
て、この場合には、波長λ2 として、元素XのX線吸収
端に近いものを用いる必要が有る。
On the other hand, when the density of the substrate 1 is close to that of the thin film 2, if the wavelength λ 2 is far from the X-ray absorption edge of the element X, as described in the first embodiment, Since the amplitude of the vibration component of the reflection intensity data becomes small, it becomes difficult (or impossible) to determine δ L2 therefrom. Therefore, in this case, it is necessary to use a wavelength close to the X-ray absorption edge of the element X as the wavelength λ 2 .

【0083】この第2の実施の形態の具体的な例とし
て、第1の実施の形態で説明したシリコン基板上のシリ
コン酸化膜の組成を求める場合を説明する。
As a specific example of the second embodiment, the case where the composition of the silicon oxide film on the silicon substrate described in the first embodiment is obtained will be described.

【0084】例えば、図3に示した規格化反射率曲線の
うち、波長6.743Åのデータと波長6.750Åの
データから組成を計算する。
For example, the composition is calculated from the data of the wavelength 6.743 ° and the data of the wavelength 6.750 ° in the normalized reflectance curve shown in FIG.

【0085】まず、上述した異常分散項の数表(S. Sas
aki : KEK Report 88-14) から、シリコンの異常分散項
の実数成分f′及び虚数成分f″として、 f′(Si) f″(Si) 6.743Å −9.887 0.353 6.750Å −7.532 0.353 が得られる。
First, the number table of the anomalous variance term described above (S. Sas
aki: From KEK Report 88-14), as the real component f ′ and the imaginary component f ″ of the anomalous dispersion term of silicon, f ′ (Si) f ″ (Si) 6.743Å−9.887 0.353 6.750Å -7.532 0.353 is obtained.

【0086】δを求めるのに、通常は、実測データに対
して、既知のパラメータフィッティングアルゴリズムを
用いるが、ここでは、(15)式の近似式からδを求め
る。
In order to obtain δ, usually, a known parameter fitting algorithm is used for the actually measured data. Here, δ is obtained from the approximate expression of Expression (15).

【0087】まず、 re =2.8179×10-13 〔cm〕 NA =6.022×1023〔/mol〕 MSi=28.086 (シリコンの原子量) MO =15.9994(酸素の原子量) ρSi=2.33〔g/cm3 〕(シリコン基板1の密
度) である。
[0087] First, r e = 2.8179 × 10 -13 (cm) N A = 6.022 × 10 23 [/ mol] M Si = 28.086 (silicon atomic weight) M O = 15.9994 (oxygen Ρ Si = 2.33 [g / cm 3 ] (density of the silicon substrate 1).

【0088】波長6.743Å(=λ1 )の時のシリコ
ン基板1のδの値は、(2)式から、
The value of δ of the silicon substrate 1 at the wavelength of 6.743δ (= λ 1 ) is given by the following equation (2).

【0089】[0089]

【数11】 [Equation 11]

【0090】である。また、図3のデータから、振動の
最大値は約12.5、最小値は約0.994である。従
って、これを(15)式の近似式と比較すると、
Is as follows. From the data in FIG. 3, the maximum value of the vibration is about 12.5 and the minimum value is about 0.994. Therefore, when this is compared with the approximate expression of Expression (15),

【0091】[0091]

【数12】 (Equation 12)

【0092】解を持つ条件から、δ2 <δ1 、また、δ
1 、δ2 >0なので、これを解いて、
From the condition having a solution, δ 21 , and δ 21
1 , δ 2 > 0, so solve this and

【0093】[0093]

【数13】 (Equation 13)

【0094】従って、 δ1 =2.268×4.19×10-5≒9.503×1
-5 が近似式より簡易に求めた薄膜2のδ1 である。
Therefore, δ 1 = 2.268 × 4.19 × 10 −5 ≒ 9.503 × 1
0 −5 is δ 1 of the thin film 2 easily obtained from the approximate expression.

【0095】一方、波長6.750Å(=λ2 )の時の
シリコン基板1のδの値は、(2)式から、
On the other hand, when the wavelength is 6.750 ° (= λ 2 ), the value of δ of the silicon substrate 1 is given by the following equation (2).

【0096】[0096]

【数14】 [Equation 14]

【0097】である。また、図3のデータから、振動の
最大値は約4.94、最小値は約0.997である。従
って、これを(15)式の近似式と比較すると、
Is as follows. From the data in FIG. 3, the maximum value of the vibration is about 4.94 and the minimum value is about 0.997. Therefore, when this is compared with the approximate expression of Expression (15),

【0098】[0098]

【数15】 (Equation 15)

【0099】解を持つ条件から、δ2 <δ1 、また、δ
1 、δ2 >0なので、これを解いて、
From the condition having a solution, δ 21 , and δ 21
1 , δ 2 > 0, so solve this and

【0100】[0100]

【数16】 (Equation 16)

【0101】従って、 δ1 =1.611×6.6028×10-5≒10.63
7×10-5 が近似式より簡易に求めた薄膜2のδ1 である。
Therefore, δ 1 = 1.611 × 6.602 × 10 −5 ≒ 10.63
7 × 10 −5 is δ 1 of the thin film 2 easily obtained from the approximate expression.

【0102】これらの値を用いて、(21)式と(2
3)式の連立方程式を解くが、 A=(MSi+2f′)/MSi =(28.086−2×9.887)/28.086 ≒0.29595 B=(MSi+2f′)/MSi =(28.086−2×7.532)/28.086 ≒0.46365 であるので、(21)式は、 (1−0.70405X)ρ=1.5477 また、(23)式は、 (1−0.53635X)ρ=1.7288 となる。この連立方程式の解は、 X≒0.4679 ρ≒2.3080 である。
Using these values, equation (21) and (2)
Solving the simultaneous equations of the expression 3), A = (M Si + 2f ′) / M Si = (28.086−2 × 9.887) /28.086≒0.29595 B = (M Si + 2f ′) / Since M Si = (28.086−2 × 7.532) /28.086≒0.46365, the expression (21) is given by: (1−0.740505) ρ = 1.5477 and the expression (23) Is (1−0.53635X) ρ = 1.7288. The solution of this simultaneous equation is X ≒ 0.4679 ρ ≒ 2.3080.

【0103】Xは、シリコンの質量比なので、組成比に
直すと(但し、薄膜2の構成元素は、SiとOのみとす
る。)、 Si:O=(0.4679/28.086) :{(1−0.4679)/15.9994} ≒1:1.996 となり、薄膜2の組成式は、実質的にSiO2 であると
分かる。また、密度ρは約2.31g/cm3 と分か
る。
Since X is the mass ratio of silicon, if it is converted to a composition ratio (however, the constituent elements of the thin film 2 are only Si and O), Si: O = (0.4679 / 28.086): {(1-0.4679) /15.9994} {1: 1.996}, which indicates that the composition formula of the thin film 2 is substantially SiO 2 . Also, the density ρ is found to be about 2.31 g / cm 3 .

【0104】なお、この例では、各波長におけるδを、
(15)式の近似式を用いて求めたが、各波長における
δは、第1の実施の形態でも述べた公知のパラメータフ
ィッティングにより求めても良い。その場合、既述した
(17)式を用い、理論式にラフネスの項σを含めて計
算を行うことにより、精度をより向上させることができ
る。
In this example, δ at each wavelength is
Although calculated using the approximate expression of Expression (15), δ at each wavelength may be calculated by well-known parameter fitting described in the first embodiment. In this case, the accuracy can be further improved by performing the calculation using the equation (17) described above and including the roughness term σ in the theoretical equation.

【0105】また、上述の例では、基板1と薄膜2の密
度が近い(2.33g/cm3 と2.30g/cm3
ため、いずれもシリコンのK吸収端に近い2波長を用い
たが、基板1と薄膜2の密度がそれ程近くない場合に
は、一方の波長は目標元素XのX線吸収端に近くなくて
も良い。即ち、その場合には、目標元素XのX線吸収端
から離れた波長を用いても、充分にδの測定が可能であ
り、そのδから直ちに薄膜2の密度ρを求めることがで
きる。そして、その密度ρの値を用いて、目標元素Xの
X線吸収端に近い波長で測定したδから、目標元素Xの
質量比Xを求めることができる。
In the above example, the substrate 1 and the thin film 2 have close densities (2.33 g / cm 3 and 2.30 g / cm 3 ).
Therefore, in each case, two wavelengths close to the K absorption edge of silicon were used. However, when the density of the substrate 1 and the thin film 2 is not so close, even if one wavelength is not close to the X-ray absorption edge of the target element X. good. In other words, in this case, even if a wavelength away from the X-ray absorption edge of the target element X is used, δ can be measured sufficiently, and the density ρ of the thin film 2 can be immediately obtained from δ. Then, using the value of the density ρ, the mass ratio X of the target element X can be obtained from δ measured at a wavelength close to the X-ray absorption edge of the target element X.

【0106】更に、上述の例では、2波長のX線で夫々
測定したδを用いて連立方程式を構成したが、3波長以
上のX線で夫々δを測定し、その結果得られる3個以上
の方程式を互いに2個ずつ連立させて、薄膜2の密度ρ
及び目標元素Xの質量比Xの値を夫々複数ずつ求め、例
えば、それらの平均値として、薄膜2の密度ρ及び目標
元素Xの質量比Xを夫々決定するようにしても良い。
Furthermore, in the above example, simultaneous equations were constructed using δ measured with X-rays of two wavelengths. However, δ was measured with X-rays of three or more wavelengths, and three or more obtained as a result. Of the thin film 2 by simultaneous equations
Alternatively, a plurality of values of the mass ratio X of the target element X may be obtained, and for example, the density ρ of the thin film 2 and the mass ratio X of the target element X may be determined as their average values.

【0107】以上に説明したように、この第2の実施の
形態では、組成と密度が既知である基板1上に形成され
た薄膜2の組成を、薄膜2の構成元素のX線吸収端に近
い波長を含む2以上の波長を用いたX線反射率法により
求める。即ち、各波長において、反射率実測データの振
動成分の振幅から、又は、その振動成分の振幅を有効に
反映したパラメータフィッティングにより、薄膜2の複
素屈折率nの実数成分δを求め、このδの値を用いて、
例えば、薄膜2における当該構成元素の質量比と薄膜2
の密度とを未知数として含む連立方程式を解き、薄膜2
における当該構成元素の質量比及び薄膜2の密度を夫々
求める。これにより、薄膜2の組成を求めることができ
る。
As described above, in the second embodiment, the composition of the thin film 2 formed on the substrate 1 having a known composition and density is applied to the X-ray absorption edge of the constituent elements of the thin film 2. It is determined by an X-ray reflectivity method using two or more wavelengths including near wavelengths. That is, at each wavelength, the real component δ of the complex refractive index n of the thin film 2 is obtained from the amplitude of the vibration component of the measured reflectance data or by parameter fitting that effectively reflects the amplitude of the vibration component. Using the value
For example, the mass ratio of the constituent elements in the thin film 2 and the thin film 2
Solves a system of equations containing the density of
, The mass ratio of the constituent element and the density of the thin film 2 are determined. Thereby, the composition of the thin film 2 can be obtained.

【0108】ここで、この第2の実施の形態の方法と、
既述した公知のAGXR法との違いを説明する。
Here, the method according to the second embodiment,
The difference from the known AGXR method described above will be described.

【0109】既述した公知のAGXR法では、数密度を
求めたい元素のX線吸収端に近い2波長を用い、その全
反射臨界角のシフト量から当該元素の数密度を求めてい
る。しかし、この方法では、全反射臨界角のシフト量か
ら数密度を求めているため、当該文献にも記載されてい
るように、得られる結果は、X線の侵入深さ程度(通
常、数十nm程度)での平均の数密度である。従って、
例えば、シリコン基板上の膜厚数nm程度の極薄酸化膜
の測定にこの方法をそのまま用いると、シリコン基板か
らの情報も拾ってしまい、酸化膜の正確な組成を求める
ことはできない。
In the known AGXR method described above, two wavelengths near the X-ray absorption edge of an element whose number density is to be obtained are used, and the number density of the element is obtained from the shift amount of the critical angle of total reflection. However, in this method, since the number density is obtained from the shift amount of the critical angle of total reflection, as described in the literature, the obtained result is about the penetration depth of X-rays (generally, several tens of (about nm). Therefore,
For example, if this method is used as it is for measuring an ultra-thin oxide film having a thickness of about several nm on a silicon substrate, information from the silicon substrate is also collected, and it is not possible to obtain an accurate composition of the oxide film.

【0110】一方、上述した第2の実施の形態では、質
量比を求めたい元素XのX線吸収端に近い波長を含む2
以上の波長を用いてX線反射率測定を行い、そのX線反
射率測定で得られた反射強度データの振動成分の振幅か
ら薄膜2の屈折率(実数成分δ)を求め、その屈折率の
値を用いて、当該元素Xの質量比X及び薄膜2の密度ρ
を夫々求める。この反射強度データの振動成分は、図1
に示す薄膜2の表面で反射した成分と、薄膜2と基板1
との界面で反射した成分との干渉により生じるもので、
基板1の屈折率が既知の時に、その振動成分の振幅から
求められる屈折率は薄膜2そのものの屈折率である。
On the other hand, in the second embodiment, the mass ratio of the element X whose wavelength is close to the X-ray absorption edge is determined.
X-ray reflectance measurement is performed using the above wavelengths, and the refractive index (real number component δ) of the thin film 2 is determined from the amplitude of the vibration component of the reflection intensity data obtained by the X-ray reflectance measurement. Using the values, the mass ratio X of the element X and the density ρ of the thin film 2
Ask for each. The vibration component of the reflection intensity data is shown in FIG.
The component reflected on the surface of the thin film 2 shown in FIG.
Caused by interference with components reflected at the interface with
When the refractive index of the substrate 1 is known, the refractive index obtained from the amplitude of the vibration component is the refractive index of the thin film 2 itself.

【0111】即ち、この第2の実施の形態の方法では、
X線の侵入深さのいかんにかかわらず、薄膜2そのもの
の屈折率を得ることができ、従って、その屈折率を用い
て求められる元素Xの質量比X及び薄膜2の密度ρは、
いずれも、基板1の情報を含まない薄膜2そのものの物
性情報である。
That is, in the method of the second embodiment,
Regardless of the penetration depth of the X-rays, the refractive index of the thin film 2 itself can be obtained. Therefore, the mass ratio X of the element X and the density ρ of the thin film 2 determined using the refractive index are as follows:
Each of them is physical property information of the thin film 2 itself which does not include information of the substrate 1.

【0112】このように、本発明の第2の実施の形態の
方法によれば、公知のAGXR法では困難(又は不可
能)であった極薄膜の組成を比較的容易且つ正確に求め
ることが可能となる。
As described above, according to the method of the second embodiment of the present invention, it is possible to relatively easily and accurately determine the composition of an ultrathin film, which has been difficult (or impossible) by the known AGXR method. It becomes possible.

【0113】なお、以上に説明した第1及び第2の実施
の形態において、X線源としては、例えば、シンクロト
ロン放射光を用いることができる。
In the first and second embodiments described above, for example, synchrotron radiation can be used as the X-ray source.

【0114】[0114]

【発明の効果】本発明においては、基板上に形成された
薄膜の膜厚をX線反射率法により求める際に、基板又は
薄膜の主要な構成元素のうち、基板と薄膜において体積
当たりの含有量が異なるいずれかの元素のX線吸収端近
傍の波長を入射X線の波長として用いることで、反射強
度データの振動成分の振幅が大きい測定データを得、そ
の振動成分の周期から薄膜の膜厚を求める。従って、例
えば、基板と薄膜の密度が近い場合でも、振動成分の振
幅が比較的大きい反射強度データを得ることができ、そ
の周期の測定が容易且つ正確になる。
According to the present invention, when the thickness of a thin film formed on a substrate is determined by the X-ray reflectivity method, the content of the main constituent elements of the substrate or the thin film per volume in the substrate and the thin film is determined. By using the wavelength near the X-ray absorption edge of one of the elements having different amounts as the wavelength of the incident X-ray, measurement data having a large amplitude of the vibration component of the reflection intensity data is obtained. Find the thickness. Therefore, for example, even when the density of the thin film is close to that of the substrate, it is possible to obtain the reflection intensity data having a relatively large amplitude of the vibration component, and the measurement of the period is easy and accurate.

【0115】また、X線反射率法に基づいて、基板上に
形成された薄膜の膜厚、膜表面ラフネス、膜と基板の界
面ラフネス等の物理パラメータをパラメータフィッティ
ングにより求める際に、基板又は薄膜の主要な構成元素
のうち、基板と薄膜において体積当たりの含有量が異な
るいずれかの元素のX線吸収端近傍の波長を入射X線の
波長として用いることで得られる、反射強度データの振
動成分の振幅が大きい測定データを用い、且つ、その振
動成分が有効に反映されるようなパラメータフィッティ
ングを行うことにより、計算効率及び精度を大幅に向上
させることができる。
When physical parameters such as the film thickness, film surface roughness, and film-substrate interface roughness of the thin film formed on the substrate are determined by parameter fitting based on the X-ray reflectivity method, Among the main constituent elements, the vibration component of the reflection intensity data obtained by using the wavelength near the X-ray absorption edge of any of the elements having different contents per volume in the substrate and the thin film as the wavelength of the incident X-ray By using measurement data having a large amplitude and performing parameter fitting so that the vibration component is effectively reflected, calculation efficiency and accuracy can be greatly improved.

【0116】更に、X線反射率法に基づいて、組成及び
密度が既知の基板上に形成された薄膜の組成を求める際
に、薄膜の構成元素のX線吸収端に近い波長を含む2以
上の波長を用いて測定を行い、波長による薄膜の屈折率
の変動を、夫々の波長における反射強度データの振動成
分の振幅から求めるか、或いは、その反射強度データの
振動成分の振幅を有効に反映したパラメータフィッティ
ングにより求め、得られた薄膜の屈折率の変動から、当
該元素の含有量及び薄膜の密度を求めることにより、例
えば、シリコン基板上に形成された極薄酸化膜のような
膜厚の極めて薄い薄膜の組成でも比較的容易且つ正確に
求めることができる。
Further, when the composition of a thin film formed on a substrate having a known composition and density is determined based on the X-ray reflectivity method, two or more wavelengths including wavelengths close to the X-ray absorption edge of the constituent elements of the thin film are obtained. Of the refractive index of the thin film according to the wavelength is obtained from the amplitude of the vibration component of the reflection intensity data at each wavelength, or the amplitude of the vibration component of the reflection intensity data is effectively reflected. By determining the content of the element and the density of the thin film from the variation in the refractive index of the obtained thin film, for example, by obtaining the parameter fitting, for example, to obtain a film thickness such as an ultrathin oxide film formed on a silicon substrate. Even the composition of an extremely thin film can be determined relatively easily and accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態で測定する基板上の薄膜を
示す概略図である。
FIG. 1 is a schematic diagram showing a thin film on a substrate to be measured in an embodiment of the present invention.

【図2】シリコンのK吸収端近傍のX線波長を用いた時
の視斜角と反射強度との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a viewing angle and a reflection intensity when an X-ray wavelength near a K absorption edge of silicon is used.

【図3】図2のデータを基板の反射強度で規格化したデ
ータを示すグラフである。
FIG. 3 is a graph showing data obtained by normalizing the data of FIG. 2 with the reflection intensity of a substrate.

【図4】シリコンのK吸収端から離れたX線波長を用い
た時の視斜角と反射強度との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the viewing angle and the reflection intensity when an X-ray wavelength away from the K absorption edge of silicon is used.

【図5】図4のデータを基板の反射強度で規格化したデ
ータを示すグラフである。
FIG. 5 is a graph showing data obtained by normalizing the data of FIG. 4 with the reflection intensity of a substrate.

【図6】多層膜における反射の原理を示す概略図であ
る。
FIG. 6 is a schematic diagram illustrating the principle of reflection in a multilayer film.

【符号の説明】[Explanation of symbols]

1…基板、2…薄膜、3…X線、θ…視斜角 DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Thin film, 3 ... X-ray, θ ... Oblique angle

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板(「A」とする。)上に形成され
た、基板Aに密度が近い測定対象薄膜(「B」とす
る。)の物性を、X線反射率法に基づいて解析する場合
に、X線反射率強度の振動成分の測定データより、その
振動の周期を求め、その周期と、薄膜の膜厚との関係式
を用い、得られた周期から測定対象の薄膜の膜厚を求め
る方法において、 基板A又は薄膜Bの主要な構成元素のうち、基板Aと薄
膜Bにおいて、体積当たりの含有量が異なるいずれかの
元素のX線吸収端近傍の波長を入射X線の波長として用
いることで、基板Aと薄膜Bの屈折率の差を拡大せし
め、 これにより、基板Aと薄膜Bの界面におけるX線反射の
フレネル係数(振幅反射率)を拡大せしめ、 以て、得られる反射率強度振動成分の振幅を拡大するこ
とにより反射率強度振動成分の検出感度を向上させる、
ことを特徴とする、X線反射率法による薄膜の膜厚測定
のための検出感度向上方法。
1. A physical property of a thin film to be measured (hereinafter, referred to as “B”) having a density close to that of a substrate A formed on a substrate (hereinafter, referred to as “A”) is analyzed based on an X-ray reflectivity method. In this case, the period of the vibration is obtained from the measurement data of the vibration component of the X-ray reflectivity intensity, and the relationship between the period and the film thickness of the thin film is used. In the method for obtaining the thickness, of the main constituent elements of the substrate A or the thin film B, the wavelength near the X-ray absorption edge of any of the elements having different contents per volume in the substrate A and the thin film B is calculated as By using the wavelength as the wavelength, the difference between the refractive indices of the substrate A and the thin film B is enlarged, thereby increasing the Fresnel coefficient (amplitude reflectance) of X-ray reflection at the interface between the substrate A and the thin film B. Reflectivity by increasing the amplitude of the reflected vibration component Improve the detection sensitivity of intensity vibration components,
A method for improving detection sensitivity for measuring the thickness of a thin film by an X-ray reflectivity method.
【請求項2】 基板(「A」とする。)上に形成され
た、基板Aに密度が近い測定対象薄膜(「B」とす
る。)の物性を、X線反射率法に基づいて解析する場合
に、X線反射率強度の振動成分の測定データに対し、パ
ラメータフィッティングを行うことにより、測定対象の
薄膜の膜厚、若しくは、膜表面ラフネス、若しくは、膜
と基板の界面ラフネス、のパラメータのいずれか、若し
くは、同時に複数のパラメータを求める方法において、 基板A又は薄膜Bの主要な構成元素のうち、基板Aと薄
膜Bにおいて、体積当たりの含有量が異なるいずれかの
元素のX線吸収端近傍の波長を入射X線の波長として用
いることで、基板Aと薄膜Bの屈折率の差を拡大せし
め、 これにより、基板Aと薄膜Bの界面におけるX線反射の
フレネル係数(振幅反射率)を拡大せしめ、 以て、得られる反射率強度振動成分の振幅を拡大するこ
とにより反射率強度振動成分の検出感度を向上させる、
ことを特徴とする、X線反射率法による薄膜の膜厚、若
しくは、膜表面ラフネス、若しくは、膜と基板の界面ラ
フネス、の測定のための検出感度向上方法。
2. A physical property of a thin film to be measured (hereinafter, referred to as “B”) having a density close to that of the substrate A formed on the substrate (hereinafter, referred to as “A”) is analyzed based on an X-ray reflectivity method. In this case, by performing parameter fitting on the measurement data of the vibration component of the X-ray reflectance intensity, the parameters of the film thickness of the thin film to be measured, the film surface roughness, or the interface roughness between the film and the substrate are obtained. Or the method of obtaining a plurality of parameters simultaneously. Among the main constituent elements of the substrate A or the thin film B, the X-ray absorption of any of the elements having different contents per volume in the substrate A and the thin film B By using the wavelength near the edge as the wavelength of the incident X-ray, the difference between the refractive indices of the substrate A and the thin film B is enlarged, whereby the Fresnel coefficient (amplitude inverse) of the X-ray reflection at the interface between the substrate A and the thin film B is increased. Allowed a larger rate), than Te, improve the detection sensitivity of the reflectance intensity vibration components by expanding the amplitude of the reflectance intensity vibration component obtained,
A method for improving detection sensitivity for measuring a film thickness of a thin film, a film surface roughness, or an interface roughness between a film and a substrate by an X-ray reflectivity method.
【請求項3】 組成と密度が既知であるような基板
(「A」とする。)上に形成された測定対象薄膜
(「B」とする。)の物性を、X線反射率法に基づいて
解析する場合に、2種以上の波長において反射率測定を
行い、うち少なくとも1の波長については、試料におけ
る或る一部の領域(「R」とする。)に含まれるいずれ
かの元素(「X」とする。)の吸収端に近い波長を用
い、測定データより波長λを変えたときの領域Rの屈折
率の変動を求め、この変動の程度から領域Rにおける元
素Xの体積当たりの含有量、ひいては組成を求める方法
において、 屈折率の変動を、反射率強度振動成分の振幅の変動から
求めるか、若しくは、測定対象膜Bの屈折率を求める値
としたパラメータフィッティングから求める、ことによ
り、領域Rを測定対象薄膜Bと一致せしめ、以て、測定
対象薄膜Bにおける元素Xの体積当たりの含有量及び測
定対象領域の密度を求める、ことを特徴とする、X線反
射率法による薄膜の組成と密度を求める解析方法。
3. A physical property of a thin film to be measured (hereinafter, referred to as “B”) formed on a substrate (hereinafter, referred to as “A”) whose composition and density are known, based on an X-ray reflectivity method. In the case where the analysis is performed, the reflectance measurement is performed at two or more wavelengths, and at least one of the wavelengths includes any one of the elements (referred to as “R”) included in a certain region (“R”) in the sample. Using a wavelength close to the absorption edge of “X”), a change in the refractive index of the region R when the wavelength λ is changed is obtained from the measurement data. In the method of obtaining the content, and thus the composition, the change in the refractive index is obtained from the change in the amplitude of the reflectance intensity vibration component, or from the parameter fitting using the value to obtain the refractive index of the film B to be measured. , Region R to be measured Determining the composition and density of the thin film by the X-ray reflectance method, wherein the content and the density of the element X in the measurement target thin film B are determined in conformity with the thin film B. analysis method.
JP9161107A 1997-06-18 1997-06-18 Method of improving detection sensitivity of thin film and analysis method Pending JPH116804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9161107A JPH116804A (en) 1997-06-18 1997-06-18 Method of improving detection sensitivity of thin film and analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9161107A JPH116804A (en) 1997-06-18 1997-06-18 Method of improving detection sensitivity of thin film and analysis method

Publications (1)

Publication Number Publication Date
JPH116804A true JPH116804A (en) 1999-01-12

Family

ID=15728747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9161107A Pending JPH116804A (en) 1997-06-18 1997-06-18 Method of improving detection sensitivity of thin film and analysis method

Country Status (1)

Country Link
JP (1) JPH116804A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001075426A1 (en) * 2000-04-04 2001-10-11 Rigaku Corporation Analyzing method for non-uniform-density sample and device and system therefor
KR100742840B1 (en) 2005-12-26 2007-07-25 주식회사 포스코 A Method for measuring base coating thickness of electrical steel sheets
GB2452963A (en) * 2007-09-21 2009-03-25 Rolls Royce Plc Measuring surface roughness and assessing degradation of a protective coating and oxide forming layer on a component
WO2010131665A1 (en) * 2009-05-15 2010-11-18 Fujii Yoshikazu Method and device for analyzing layer structure of multilayer body using x-ray reflectance method
CN112525857A (en) * 2020-11-26 2021-03-19 合肥铜冠信息科技有限责任公司 Multi-verification motor vehicle exhaust remote measuring device and verification method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001075426A1 (en) * 2000-04-04 2001-10-11 Rigaku Corporation Analyzing method for non-uniform-density sample and device and system therefor
KR100742840B1 (en) 2005-12-26 2007-07-25 주식회사 포스코 A Method for measuring base coating thickness of electrical steel sheets
GB2452963A (en) * 2007-09-21 2009-03-25 Rolls Royce Plc Measuring surface roughness and assessing degradation of a protective coating and oxide forming layer on a component
GB2452963B (en) * 2007-09-21 2010-05-26 Rolls Royce Plc A method for assessing degradation of a coating on a component by measuring its surface roughness
US8056407B2 (en) 2007-09-21 2011-11-15 Rolls-Royce Plc Method for assessing degradation of a coating on a component by measuring its surface roughness
WO2010131665A1 (en) * 2009-05-15 2010-11-18 Fujii Yoshikazu Method and device for analyzing layer structure of multilayer body using x-ray reflectance method
JP2010266381A (en) * 2009-05-15 2010-11-25 Kobe Univ Method, device and program for analyzing layer structure of laminate using x-ray reflectivity method
CN112525857A (en) * 2020-11-26 2021-03-19 合肥铜冠信息科技有限责任公司 Multi-verification motor vehicle exhaust remote measuring device and verification method

Similar Documents

Publication Publication Date Title
Roessler Kramers-Kronig analysis of non-normal incidence reflection
EP0163466B1 (en) Method and apparatus for evaluating both thickness and compositional variables in a layered or thin film sample
US6392756B1 (en) Method and apparatus for optically determining physical parameters of thin films deposited on a complex substrate
Joerger et al. Influence of incoherent superposition of light on ellipsometric coefficients
Lengeler et al. Surface analysis by means of reflection, fluorescence and diffuse scattering of hard X-ray
JP2006513418A (en) Film thickness measuring apparatus and method using improved high-speed Fourier transform
JPH116804A (en) Method of improving detection sensitivity of thin film and analysis method
Powell et al. Inelastic mean free paths, mean escape depths, information depths, and effective attenuation lengths for hard X-ray photoelectron spectroscopy
Stenzel et al. A hybrid method for determination of optical thin film constants
US6639673B1 (en) Surface coating measurement instrument and apparatus for determination of coating thickness
Kim et al. An evaluation of errors in determining the refractive index and thickness of thin SiO2 films using a rotating analyzer ellipsometer
Richter et al. Calibrating an ellipsometer using x-ray reflectivity
JP3329197B2 (en) Thin film laminate inspection method
Likhachev Evaluation of different dispersion models for correlation of spectroscopic ellipsometry and X-ray reflectometry
JP3389115B2 (en) Stacked structure inspection method and X-ray reflectivity device
Stenzel et al. In Situ and Ex Situ Spectrophotometric Characterization of Single-and Multilayer-Coatings I: Basics
Kuldkepp et al. First mirror contamination studies for polarimetry motional Stark effect measurements for ITER
Awaji Wavelength dispersive grazing incidence X-ray fluorescence of multilayer thin films
Bertin et al. Spectroscopic ellipsometry with compensator and X-ray specular reflectivity for characterization of thin optical layers on transparent substrates
Sharma Model of a plasmonic phase interrogation probe for optical sensing of hemoglobin in blood samples
JP3555833B2 (en) Method and apparatus for evaluating optical constants
JPH11108862A (en) Method for analyzing structure of metal multilayered film by measuring x-ray reflectivity and fluorescent x-rays and standard sample and apparatus used therein
Manciu et al. Structural parameters of multilayers from X-ray reflectivity: an easy-to-handle approach
JPH116724A (en) Preprocessing method of sample in x-ray reflectance measurement, measurement data analysis method, analyzer thereof and computer readable recording medium having program for analysis thereof recorded thereon
JPH03146846A (en) Method for measuring density of thin film