JP2003063899A - Method for producing iii-v group compound semiconductor - Google Patents

Method for producing iii-v group compound semiconductor

Info

Publication number
JP2003063899A
JP2003063899A JP2001259300A JP2001259300A JP2003063899A JP 2003063899 A JP2003063899 A JP 2003063899A JP 2001259300 A JP2001259300 A JP 2001259300A JP 2001259300 A JP2001259300 A JP 2001259300A JP 2003063899 A JP2003063899 A JP 2003063899A
Authority
JP
Japan
Prior art keywords
compound semiconductor
substrate
group
type
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001259300A
Other languages
Japanese (ja)
Inventor
Yasunari Oku
保成 奥
Yuji Kobayashi
祐二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001259300A priority Critical patent/JP2003063899A/en
Publication of JP2003063899A publication Critical patent/JP2003063899A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a III-V group compound semiconductor having good crystallinity. SOLUTION: The method for producing the III-V group compound semiconductor includes sequentially a first process for placing a substrate 2 composed of an n-type or a p-type III-V group compound semiconductor on a support 1 in a reactor 101, a second process for increasing the temperature of the support to a crystal-growing temperature, and a third process for growing the n-type or the p-type III-V group compound semiconductor on the substrate through an organic metal vapor phase growth method. In the second process, the raw material gas 11 for the V group element of the III-V group compound semiconductor which constitutes the substrate, and the raw material gas for dopant which has same conductivity as the substrate are simultaneously introduced into the reactor 101.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は化合物半導体の製造
方法に係り、特に3族元素と5族元素とからなる3−5
族化合物半導体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a compound semiconductor, and more particularly to a compound semiconductor including a group 3 element and a group 5 element.
The present invention relates to a method for manufacturing a compound semiconductor.

【0002】[0002]

【従来の技術】発光ダイオードやレーザダイオード等の
発光デバイスや電子デバイスの作製に、GaAs、Al
GaAs、AlGaInP、GaInAsP等の3−5
族化合物半導体が広く用いられている。これらのデバイ
スに用いる化合物半導体は、液相エピタキシャル法や有
機金属気相成長法(以下、MOCVD法という)、分子
線エピタキシー法等を用いて成長される。最近では特に
MOCVD法が広く用いられている。
2. Description of the Related Art GaAs, Al are used for manufacturing light emitting devices such as light emitting diodes and laser diodes and electronic devices.
3-5 such as GaAs, AlGaInP, GaInAsP, etc.
Group compound semiconductors are widely used. The compound semiconductors used in these devices are grown by using a liquid phase epitaxial method, a metal organic chemical vapor deposition method (hereinafter referred to as MOCVD method), a molecular beam epitaxy method, or the like. Recently, the MOCVD method has been widely used.

【0003】MOCVD法は、原料として有機金属ガス
と水素化物ガスとをリアクタに供給し、リアクタの内部
に置かれた支持体を加熱しながら、この支持体の上に載
置された基板結晶上に化合物半導体を成長させる方法で
ある。
In the MOCVD method, an organometallic gas and a hydride gas are supplied to a reactor as raw materials, and a support placed inside the reactor is heated while a substrate crystal placed on the support is heated. Is a method of growing a compound semiconductor.

【0004】発光デバイスや電子デバイス等を得るに
は、基板上に同種又は異種の化合物半導体を複数連続し
て成長させる必要がある。例えば、AlGaInPを用
いた発光ダイオードの場合、n型GaAs基板上にn型
GaAsからなるバッファ層、n型AlGaInPから
なる下部クラッド層、n型AlGaInPからなる活性
層、p型AlGaInPからなる上部クラッド層、p型
AlGaAs又はp型GaPからなる電流拡散層等を連
続して成長させる。
In order to obtain a light emitting device, an electronic device or the like, it is necessary to continuously grow a plurality of compound semiconductors of the same kind or different kinds on a substrate. For example, in the case of a light emitting diode using AlGaInP, a buffer layer made of n-type GaAs on an n-type GaAs substrate, a lower cladding layer made of n-type AlGaInP, an active layer made of n-type AlGaInP, and an upper cladding layer made of p-type AlGaInP. , A p-type AlGaAs or p-type GaP current diffusion layer is continuously grown.

【0005】ここで、n型又はp型の導電型の制御は、
有機金属ガス等の原料ガスとともに、n型又はp型のド
ーパントの原料ガスを流すことにより行われるのが一般
的である。例えば、n型GaAsを成長させる場合、ド
ーパントとしてSi、S、Se等が用いられ、それぞれ
の原料ガスとして、SiH4、H2S、H2Se等が用い
られる。また、p型AlGaAsを成長させる場合、ド
ーパントとして、Zn、Mg等が用いられ、それぞれの
原料ガスとして、ジメチル亜鉛(DMZn)やビスシク
ロペンタジエニルマグネシウム(Cp2Mg)等が用い
られる。
Here, control of n-type or p-type conductivity is
It is generally performed by flowing a source gas for an n-type or p-type dopant together with a source gas such as an organometallic gas. For example, when n-type GaAs is grown, Si, S, Se or the like is used as a dopant, and SiH 4 , H 2 S, H 2 Se or the like is used as each source gas. When p-type AlGaAs is grown, Zn, Mg or the like is used as a dopant, and dimethylzinc (DMZn), biscyclopentadienyl magnesium (Cp 2 Mg) or the like is used as each source gas.

【0006】[0006]

【発明が解決しようとする課題】このような積層構造の
デバイスを製造する場合、基板上に成長された積層構造
のウエハの表面のモフォロジーが悪くなるという問題が
発生することがある。すなわち、積層構造の内部で結晶
欠陥が発生し、さらにこれを起点とし欠陥がウエハの表
面にまで到達してピットやヒロック(成長丘)を形成す
ることがある。これらの結晶欠陥はデバイス効率の低下
や電気的特性の劣化を引き起こし、デバイス作製におけ
る歩留まり低下の原因となる。
When manufacturing a device having such a laminated structure, there may occur a problem that the morphology of the surface of the wafer having the laminated structure grown on the substrate deteriorates. That is, a crystal defect may occur inside the laminated structure, and the defect may reach the surface of the wafer starting from this and form a pit or a hillock (growth hill). These crystal defects cause a reduction in device efficiency and a deterioration in electrical characteristics, which causes a reduction in yield in device fabrication.

【0007】したがって、本発明はこのような問題を解
決するためになされたものであって、良質な結晶性を有
する化合物半導体の製造方法を提供するものである。
Therefore, the present invention has been made in order to solve such a problem, and provides a method for producing a compound semiconductor having good crystallinity.

【0008】[0008]

【課題を解決するための手段】本発明は、リアクタの中
の支持体の上にn型又はp型の3−5族化合物半導体か
らなる基板を載置する第一の工程と、支持体の温度を結
晶成長温度にまで上昇させる第二の工程と、前記基板上
に有機金属気相成長法によりn型又はp型の3−5族化
合物半導体を成長させる第三の工程とをこの順に含む3
−5族化合物半導体の製造方法であって、前記第二の工
程において、基板を構成する3−5族化合物半導体の5
族元素の原料ガスとともに基板と同じ導電型のドーパン
トを含む原料ガスをリアクタの中に導入することを特徴
とする。
According to the present invention, there is provided a first step of mounting a substrate made of an n-type or p-type group 3-5 compound semiconductor on a support in a reactor, and a step of forming the support. A second step of raising the temperature to the crystal growth temperature and a third step of growing an n-type or p-type group III-V compound semiconductor on the substrate by a metal organic chemical vapor deposition method are included in this order. Three
-5 Group 5 compound semiconductor manufacturing method, wherein in the second step, 5 of group 3-5 compound semiconductor constituting the substrate is used.
A source gas containing a dopant of the same conductivity type as the substrate is introduced into the reactor together with the source gas of the group element.

【0009】本発明によれば、良質な結晶性を有する化
合物半導体が得られる。
According to the present invention, a compound semiconductor having good crystallinity can be obtained.

【0010】[0010]

【発明の実施の形態】請求項1に記載の発明は、リアク
タの中の支持体の上にn型又はp型の3−5族化合物半
導体からなる基板を載置する第一の工程と、支持体の温
度を結晶成長温度にまで上昇させる第二の工程と、前記
基板上に有機金属気相成長法によりn型又はp型の3−
5族化合物半導体を成長させる第三の工程とをこの順に
含む3−5族化合物半導体の製造方法であって、前記第
二の工程において、基板を構成する3−5族化合物半導
体の5族元素の原料ガスとともに基板と同じ導電型のド
ーパントを含む原料ガスをリアクタの中に導入すること
を特徴とする3−5族化合物半導体の製造方法である。
この構成により、支持体の温度を上昇させる過程におい
て、基板を構成する3−5族化合物半導体の5族元素の
再蒸発を防ぐとともに、基板に含まれるドーパントの再
蒸発とこれに伴い生じる不純物の取り込まれを防ぐこと
ができるという作用を有する。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 comprises a first step of mounting a substrate made of an n-type or p-type group 3-5 compound semiconductor on a support in a reactor, The second step of raising the temperature of the support to the crystal growth temperature, and the n-type or p-type 3-on the substrate by the metal organic chemical vapor deposition method.
A method for manufacturing a 3-5 group compound semiconductor, comprising a third step of growing a 5 group compound semiconductor in this order, wherein in the second step, the 5 group element of the 3-5 group compound semiconductor constituting the substrate And a source gas containing a dopant having the same conductivity type as that of the substrate together with the source gas of (3) are introduced into the reactor.
With this configuration, in the process of raising the temperature of the support, re-evaporation of the Group 5 element of the Group 3-5 compound semiconductor forming the substrate is prevented, and re-evaporation of the dopant contained in the substrate and the impurities generated thereby are prevented. It has the effect of being prevented from being taken in.

【0011】請求項2に記載の発明は、前記5族元素の
原料ガスと前記ドーパントの原料ガスを、支持体の温度
が500℃を超える前に導入することを特徴とする請求
項1記載の3−5族化合物半導体の製造方法である。こ
の構成により、基板に含まれる5族元素とドーパントの
再蒸発をより一層効果的に防ぐことができるという作用
を有する。
The invention according to claim 2 is characterized in that the source gas of the group 5 element and the source gas of the dopant are introduced before the temperature of the support exceeds 500 ° C. A method for manufacturing a 3-5 group compound semiconductor. This configuration has an effect that the re-evaporation of the Group 5 element and the dopant contained in the substrate can be prevented more effectively.

【0012】請求項3に記載の発明は、前記5族元素の
原料ガスと前記ドーパントの原料ガスの流量を、支持体
の温度が上昇するにつれ増加させることを特徴とする請
求項1又は2記載の3−5族化合物半導体の製造方法で
ある。この構成により、基板表面における5族元素とド
ーパントの含有率をほぼ一定に保ったまま3−5族化合
物半導体の結晶成長を開始することができるという作用
を有する。
The invention according to claim 3 is characterized in that the flow rates of the source gas for the group 5 element and the source gas for the dopant are increased as the temperature of the support increases. No. 3-5 group compound semiconductor manufacturing method. With this configuration, it is possible to start crystal growth of the 3-5 group compound semiconductor while keeping the content rates of the group 5 element and the dopant on the substrate surface substantially constant.

【0013】以下、本発明の実施の形態について、図1
及び図2を用いて説明する。
FIG. 1 shows an embodiment of the present invention.
2 and FIG.

【0014】図1に本発明の一実施の形態に係る化合物
半導体の製造方法を実施するための結晶成長装置の概略
図を示す。結晶成長装置100は、リアクタ101と原
料ガス11の供給系102と排気系103とを有する。
リアクタ101の内部にはウエハを載置させる支持体1
が設けられており、支持体1の上にGaAs等からなる
基板2が載置されている。支持体1はグラファイト等の
熱伝導率の高い材料を用いて形成され、結晶の成長時に
は支持体1の下部に設けられたヒーター3により約40
0℃から約1000℃程度の高温に加熱される。リアク
タ101は、このような高温に耐えられるように選択さ
れた石英やステンレス、モリブデン等の材料を用いた部
品により構成されている。
FIG. 1 is a schematic view of a crystal growth apparatus for carrying out a compound semiconductor manufacturing method according to an embodiment of the present invention. The crystal growth apparatus 100 has a reactor 101, a source gas supply system 102, and an exhaust system 103.
A support 1 for mounting a wafer inside the reactor 101.
And a substrate 2 made of GaAs or the like is placed on the support 1. The support 1 is formed of a material having a high thermal conductivity such as graphite, and when the crystal grows, the heater 3 provided below the support 1 causes the support 1 to have a temperature of about 40 μm.
It is heated to a high temperature of about 0 ° C to about 1000 ° C. The reactor 101 is composed of parts made of a material such as quartz, stainless steel, molybdenum, or the like, which is selected to withstand such a high temperature.

【0015】結晶成長時には、供給系102より所望の
化合物半導体を得るための原料ガス11をリアクタ10
1へ供給する。リアクタ101の内部では、ヒーター3
により加熱されて高温に保持された支持体1とその上に
載置された基板2により原料ガスが分解され、支持体1
の上に堆積するとともに基板2の上に所望の化合物半導
体が成長する。支持体1上への堆積または基板2への成
長に用いられなかった余剰の原料ガス12は、排気系1
03へと送られる。
During crystal growth, the source gas 11 for obtaining a desired compound semiconductor is supplied from the supply system 102 to the reactor 10.
Supply to 1. Inside the reactor 101, the heater 3
The raw material gas is decomposed by the support 1 heated by the substrate 1 and held at a high temperature and the substrate 2 placed thereon, and the support 1
A desired compound semiconductor is grown on the substrate 2 while being deposited on the substrate 2. Excess source gas 12 not used for deposition on the support 1 or growth on the substrate 2 is exhausted from the exhaust system 1.
It is sent to 03.

【0016】ここで、本発明の第一の特徴は、所望の化
合物半導体の成長に際し、支持体の温度を結晶成長温度
にまで上昇させる工程において、基板を構成する3−5
族化合物半導体の5族元素の原料ガスとともに基板と同
じ導電型のドーパントを含む原料ガスをリアクタの中に
導入することとしたことである。
Here, the first feature of the present invention is that the substrate is formed in the step of raising the temperature of the support to the crystal growth temperature in growing the desired compound semiconductor 3-5
That is, the source gas containing the dopant of the same conductivity type as that of the substrate is introduced into the reactor together with the source gas of the group 5 element of the group compound semiconductor.

【0017】図2は図1に示す本発明の一実施の形態に
係る方法を実施するための結晶成長装置のリアクタ内部
の一部を示す概略断面図である。リアクタ101の内部
および支持体1の上には、一回前の結晶成長において堆
積した化合物半導体の堆積物31が残存しているのが通
常である。
FIG. 2 is a schematic sectional view showing a part of the inside of the reactor of the crystal growth apparatus for carrying out the method according to the embodiment of the present invention shown in FIG. Usually, the compound semiconductor deposit 31 deposited in the previous crystal growth remains inside the reactor 101 and on the support 1.

【0018】ここで、支持体1の上に基板2を載置し化
合物半導体21を成長させようとすると、支持体の温度
を室温から約400℃〜1000℃の結晶成長温度に上
昇させる過程でリアクタの内壁及び支持体の上の堆積物
31の一部が熱により再び分解してガス状となり、基板
2の表面を汚染すると考えられる。特に、一回前の結晶
成長が、基板の導電型と異なる導電型の化合物半導体で
終了する場合、堆積物31には基板と異なる導電型のド
ーパントが含まれることとなり、これにより基板2の表
面において生じるドーパントの再蒸発や補償等によって
基板表面の結晶性が悪くなったり、基板とその上に成長
される化合物半導体との界面で高抵抗な領域が形成され
たりする。このような問題は積層構造のデバイスの特性
を劣化させる原因となる。
Here, when the substrate 2 is placed on the support 1 to grow the compound semiconductor 21, the temperature of the support is raised from room temperature to a crystal growth temperature of about 400 ° C. to 1000 ° C. It is considered that a part of the deposit 31 on the inner wall of the reactor and the support is decomposed again by heat to become a gas and pollutes the surface of the substrate 2. In particular, when the previous crystal growth ends with a compound semiconductor having a conductivity type different from that of the substrate, the deposit 31 contains a dopant having a conductivity type different from that of the substrate, which causes the surface of the substrate 2. The crystallinity of the substrate surface may be deteriorated due to the re-evaporation or compensation of the dopant that occurs in the above step, or a high resistance region may be formed at the interface between the substrate and the compound semiconductor grown on the substrate. Such a problem causes deterioration of the characteristics of a device having a laminated structure.

【0019】本発明のように、所望の化合物半導体の成
長に際し、支持体の温度を結晶成長温度にまで上昇させ
る工程において、基板を構成する3−5族化合物半導体
の5族元素の原料ガスとともに基板と同じ導電型のドー
パントを含む原料ガスをリアクタの中に導入すると、基
板表面におけるドーパントの再蒸発や補償等を防止し、
基板の表面を汚染することがなく、良質な基板表面を維
持したまま結晶成長を開始することができる。
In the step of raising the temperature of the support to the crystal growth temperature during the growth of a desired compound semiconductor as in the present invention, together with the source gas of the group 5 element of the group 3-5 compound semiconductor constituting the substrate. When a source gas containing a dopant of the same conductivity type as the substrate is introduced into the reactor, it prevents re-evaporation or compensation of the dopant on the substrate surface,
Crystal growth can be started without contaminating the surface of the substrate and maintaining a good substrate surface.

【0020】また、支持体の温度、すなわち基板の温度
が500℃付近になると、基板に含まれる5族元素とド
ーパントの再蒸発が発生するので、本発明の第三の特徴
のように、5族元素の原料ガスとドーパントの原料ガス
を支持体の温度が500℃を超える前に導入することに
より、これらの再蒸発をより一層効果的に防ぐことがで
きる。
Further, when the temperature of the support, that is, the temperature of the substrate is around 500 ° C., re-evaporation of the Group 5 element and the dopant contained in the substrate occurs, so that the third characteristic of the present invention is 5 By introducing the raw material gas of the group element and the raw material gas of the dopant before the temperature of the support exceeds 500 ° C., re-evaporation of these can be prevented more effectively.

【0021】さらにまた、本発明者らの知見によれば、
支持体の温度を上昇させる工程において、基板の表面に
おいて基板に含まれる5族元素とドーパントの再蒸発が
支持体の温度に応じて生じるので、本発明の第三の特徴
のように、5族元素の原料ガスとドーパントの原料ガス
の流量を、支持体の温度が上昇するに従い増加させるこ
とにより、基板表面における5族元素とドーパントの含
有率をほぼ一定に保ったまま3−5族化合物半導体の結
晶成長を開始することができる。
Furthermore, according to the findings of the present inventors,
In the step of raising the temperature of the support, re-evaporation of the Group 5 element and the dopant contained in the substrate on the surface of the substrate occurs depending on the temperature of the support. By increasing the flow rates of the source gas of the element and the source gas of the dopant as the temperature of the support rises, the group 3-5 compound semiconductor is maintained while keeping the content of the group 5 element and the dopant on the substrate surface substantially constant. Crystal growth can be started.

【0022】[0022]

【実施例】以下、AlGaInPを用いた発光ダイオー
ドの製造方法を例にとり本発明の実施例を説明する。ま
ず、化合物半導体を用いた発光ダイオード等の積層構造
の成長後、n型GaAsからなる基板をリアクタに導入
し、支持体の上に載置する。
EXAMPLES Examples of the present invention will be described below by taking a method of manufacturing a light emitting diode using AlGaInP as an example. First, after growing a laminated structure such as a light emitting diode using a compound semiconductor, a substrate made of n-type GaAs is introduced into a reactor and placed on a support.

【0023】次に、ヒーターを用いて支持体とその上に
載置した基板とを加熱し、AsH3とSiH4ガスを流し
ながら結晶成長温度(例えば、650℃)にまで温度を
上昇させる。ここで、SiH4ガスの流量は、結晶成長
温度において成長されるn型GaAsのキャリア濃度が
基板と同等になる流量の1/2に設定し、その後温度の
上昇に従い流量を増加させた。
Next, the support and the substrate placed thereon are heated using a heater, and the temperature is raised to the crystal growth temperature (for example, 650 ° C.) while flowing AsH 3 and SiH 4 gas. Here, the flow rate of the SiH 4 gas was set to ½ of the flow rate at which the carrier concentration of n-type GaAs grown at the crystal growth temperature was equivalent to that of the substrate, and thereafter the flow rate was increased as the temperature increased.

【0024】次に、原料ガスとしてTMGを流し始める
と同時にSiH4ガスの流量を所望の流量に変化させ、
SiドープGaAsからなるn型バッファ層を約1μm
の厚さに成長させる。
Next, at the same time as starting to flow TMG as a source gas, the flow rate of SiH 4 gas is changed to a desired flow rate,
About 1 μm of n-type buffer layer made of Si-doped GaAs
Grow to a thickness of.

【0025】原料ガスの供給を止めることによりn型バ
ッファ層の成長を止めた後、引き続き原料ガスとしてT
MG、トリメチルアルミニウム(TMA)、トリメチル
インジウム(TMI)、PH3ガスおよびSiH4ガスを
流し始め、SiドープAl0. 35Ga0.15In0.5Pから
なるn型クラッド層を約1μmの厚さに成長させる。
After stopping the growth of the n-type buffer layer by stopping the supply of the source gas, the source gas T
MG, trimethyl aluminum (TMA), trimethyl indium (TMI), PH 3 gas and SiH 4 begins to conduct gas, Si-doped Al 0. 35 Ga 0.15 In 0.5 grow the n-type cladding layer made of P to a thickness of about 1μm Let

【0026】原料ガスの供給を止めることによりn型ク
ラッド層の成長を止めた後、同様にしてアンドープAl
0.1Ga0.4In0.5Pからなる活性層およびZnドープ
Al0 .35Ga0.15In0.5Pからなるp型クラッド層を
それぞれ約0.5μmおよび約1μmの厚さに連続して
成長させる。ここで、Znの原料ガスとしてはジメチル
亜鉛(DMZ)を用いる。
After the growth of the n-type cladding layer is stopped by stopping the supply of the source gas, the undoped Al is similarly formed.
0.1 Ga 0.4 In 0.5 in the active layer consisting of P and Zn-doped Al 0 .35 Ga 0.15 In 0.5 p-type cladding layer consisting of P and continuously to a thickness of respectively about 0.5μm and about 1μm grow. Here, dimethyl zinc (DMZ) is used as a source gas of Zn.

【0027】原料ガスの供給を止めることによりp型ク
ラッド層の成長を止めたのち、引き続き原料ガスとして
TMG、TMA、DMZおよびAsH3ガスを流し始
め、ZnドープAl0.7Ga0.3Asからなるp型電流拡
散層を約7μmの厚さに成長させる。
After stopping the growth of the p-type clad layer by stopping the supply of the raw material gas, TMG, TMA, DMZ and AsH 3 gas are subsequently started to flow as the raw material gas, and the p-type layer made of Zn-doped Al 0.7 Ga 0.3 As is formed. The current spreading layer is grown to a thickness of about 7 μm.

【0028】AsH3ガスを除く原料ガスの供給を止め
ることによりp型電流拡散層の成長を止めた後、AsH
3ガスを流しながら温度を降下させる。室温程度になっ
たらAsH3ガスの供給を止め十分に排気した後、リア
クタから基板を取り出す。
After stopping the growth of the p-type current diffusion layer by stopping the supply of the source gases other than the AsH 3 gas, the AsH
3 Decrease the temperature while flowing gas. When the temperature reaches about room temperature, the supply of AsH 3 gas is stopped and exhausted sufficiently, and then the substrate is taken out from the reactor.

【0029】このようにして得られた発光ダイオードの
積層構造のウエハの表面の欠陥密度を測定したところ4
00/cm2であった。これに対し、本発明の方法を用
いずに連続して発光ダイオードの積層構造を成長させた
ウエハの欠陥密度は11000/cm2であり、本発明
の方法を用いた場合に比べ約28倍多かった。
The defect density on the surface of the wafer having the laminated structure of the light emitting diode thus obtained was measured and found to be 4
It was 00 / cm 2 . On the other hand, the defect density of the wafer in which the laminated structure of the light emitting diode is continuously grown without using the method of the present invention is 11000 / cm 2, which is about 28 times higher than that in the case of using the method of the present invention. It was

【0030】さらに、発光ダイオードのウエハを通常の
方法によりチップにして出力を評価したところ、本発明
の方法を用いた場合は、本発明の方法を用いない場合に
比して約8倍高い出力が得られた。
Further, when the wafer of the light emitting diode was chipped by a usual method and the output was evaluated, the output was about 8 times higher when the method of the present invention was used than when the method of the present invention was not used. was gotten.

【0031】なお、ここでは、n型GaAs基板の上に
n型の化合物半導体を成長させ、その上に積層構造を形
成する実施の態様について示したが、p型GaAs基板
の上にp型の化合物半導体を成長させる場合に、温度を
上昇させる過程でp型のドーパントの原料ガスを流して
もよく、本発明の思想の範囲内である。その他本発明の
思想を逸脱しない範囲で種々変形しても良い。
Here, an embodiment has been shown in which an n-type compound semiconductor is grown on an n-type GaAs substrate and a laminated structure is formed on the n-type compound semiconductor. When growing a compound semiconductor, a source gas of a p-type dopant may be supplied in the process of raising the temperature, which is within the scope of the present invention. Other various modifications may be made without departing from the spirit of the present invention.

【0032】[0032]

【発明の効果】本発明によれば、基板とその上に接して
最初に成長させる化合物半導体との界面における結晶欠
陥の発生を抑制することができるので、これらの化合物
半導体の積層構造を用いた発光デバイスや電子デバイス
の製造歩留まりを向上させることができるという優れた
効果が得られる。
According to the present invention, it is possible to suppress the generation of crystal defects at the interface between the substrate and the compound semiconductor which is grown on the substrate in contact therewith. Therefore, the laminated structure of these compound semiconductors is used. An excellent effect that the manufacturing yield of the light emitting device or the electronic device can be improved is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態に係る化合物半導体の製
造方法を実施するための結晶成長装置の概略図
FIG. 1 is a schematic view of a crystal growth apparatus for carrying out a compound semiconductor manufacturing method according to an embodiment of the present invention.

【図2】図1に示す本発明の一実施の形態に係る方法を
実施するための結晶成長装置のリアクタ内部の一部を示
す概略断面図
FIG. 2 is a schematic cross-sectional view showing a part of the inside of the reactor of the crystal growth apparatus for carrying out the method according to the embodiment of the present invention shown in FIG.

【符号の説明】[Explanation of symbols]

1 支持体 2 基板 3 ヒーター 11 原料ガス 12 余剰の原料ガス 21 化合物半導体 31 堆積物 100 結晶成長装置 101 リアクタ 102 原料ガス供給系 103 排気系 1 support 2 substrates 3 heater 11 Raw material gas 12 Excess material gas 21 Compound semiconductor 31 sediment 100 crystal growth equipment 101 reactor 102 source gas supply system 103 Exhaust system

フロントページの続き Fターム(参考) 4G077 AA03 BE46 DB08 EE09 TB05 TC02 TC16 5F045 AB18 AC01 AC08 AD10 AF04 BB12 CA10 DQ06 EE18 Continued front page    F-term (reference) 4G077 AA03 BE46 DB08 EE09 TB05                       TC02 TC16                 5F045 AB18 AC01 AC08 AD10 AF04                       BB12 CA10 DQ06 EE18

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リアクタの中の支持体の上にn型又はp
型の3−5族化合物半導体からなる基板を載置する第一
の工程と、支持体の温度を結晶成長温度にまで上昇させ
る第二の工程と、前記基板上に有機金属気相成長法によ
りn型又はp型の3−5族化合物半導体を成長させる第
三の工程とをこの順に含む3−5族化合物半導体の製造
方法であって、前記第二の工程において、基板を構成す
る3−5族化合物半導体の5族元素の原料ガスとともに
基板と同じ導電型のドーパントの原料ガスをリアクタの
中に導入することを特徴とする3−5族化合物半導体の
製造方法。
1. An n-type or p-type on a support in a reactor.
Type step of placing a substrate made of a group III-V compound semiconductor, a second step of raising the temperature of the support to the crystal growth temperature, and a metal organic chemical vapor deposition method on the substrate. A method for manufacturing a Group 3-5 compound semiconductor, comprising a third step of growing an n-type or p-type Group 3-5 compound semiconductor in this order, and forming a substrate in the second step. 3. A method for producing a Group 3-5 compound semiconductor, which comprises introducing a source gas of a Group 5 element of a Group 5 compound semiconductor into a reactor together with a source gas of a dopant having the same conductivity type as the substrate.
【請求項2】 前記5族元素の原料ガスと前記ドーパン
トの原料ガスを、支持体の温度が500℃を超える前に
導入することを特徴とする請求項1記載の3−5族化合
物半導体の製造方法。
2. The group 3-5 compound semiconductor according to claim 1, wherein the group 5 element source gas and the dopant source gas are introduced before the temperature of the support exceeds 500 ° C. Production method.
【請求項3】 前記5族元素の原料ガスと前記ドーパン
トの原料ガスの流量を、支持体の温度が上昇するに従い
増加させることを特徴とする請求項1又は2記載の3−
5族化合物半導体の製造方法。
3. The method according to claim 1 or 2, wherein the flow rates of the source gas of the Group 5 element and the source gas of the dopant are increased as the temperature of the support increases.
Method for manufacturing Group 5 compound semiconductor.
JP2001259300A 2001-08-29 2001-08-29 Method for producing iii-v group compound semiconductor Pending JP2003063899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001259300A JP2003063899A (en) 2001-08-29 2001-08-29 Method for producing iii-v group compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001259300A JP2003063899A (en) 2001-08-29 2001-08-29 Method for producing iii-v group compound semiconductor

Publications (1)

Publication Number Publication Date
JP2003063899A true JP2003063899A (en) 2003-03-05

Family

ID=19086692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001259300A Pending JP2003063899A (en) 2001-08-29 2001-08-29 Method for producing iii-v group compound semiconductor

Country Status (1)

Country Link
JP (1) JP2003063899A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116701A1 (en) * 2009-04-07 2010-10-14 住友化学株式会社 Method for producing semiconductor substrate and semiconductor substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6257212A (en) * 1985-09-06 1987-03-12 Toshiba Corp Manufacture of semiconductor element
JP2000182969A (en) * 1998-12-17 2000-06-30 Sumitomo Metal Mining Co Ltd Crystal growth method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6257212A (en) * 1985-09-06 1987-03-12 Toshiba Corp Manufacture of semiconductor element
JP2000182969A (en) * 1998-12-17 2000-06-30 Sumitomo Metal Mining Co Ltd Crystal growth method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116701A1 (en) * 2009-04-07 2010-10-14 住友化学株式会社 Method for producing semiconductor substrate and semiconductor substrate
JP2010263198A (en) * 2009-04-07 2010-11-18 Sumitomo Chemical Co Ltd Method for producing semiconductor substrate and semiconductor substrate

Similar Documents

Publication Publication Date Title
JP3994623B2 (en) Method for producing group III nitride compound semiconductor device
JP2011238971A (en) Method of manufacturing nitride semiconductor light-emitting element
JP3198912B2 (en) Method for producing group 3-5 compound semiconductor
JP4940670B2 (en) Method for fabricating nitride semiconductor light emitting device
JP4333426B2 (en) Compound semiconductor manufacturing method and semiconductor device manufacturing method
JP2702889B2 (en) Semiconductor layer crystal growth method
JP4978577B2 (en) Method for manufacturing light emitting device
JPH08335715A (en) Epitaxial wafer and its manufacture
JPH08203837A (en) Manufacture of compound semiconductor crystal layer
JP2005129923A (en) Nitride semiconductor, light emitting element using it, light emitting diode, laser element, lamp, and manufacturing method for those
JP3288300B2 (en) Semiconductor manufacturing method
JP2003063899A (en) Method for producing iii-v group compound semiconductor
JP4998396B2 (en) Method for manufacturing light emitting device
JP3785059B2 (en) Manufacturing method of nitride semiconductor
JP3663722B2 (en) Compound semiconductor growth layer and manufacturing method thereof
JP3915584B2 (en) Method for producing group 3-5 compound semiconductor
JP4466642B2 (en) Method for producing group 3-5 compound semiconductor
JPH07254751A (en) Compound semiconductor element
JP4241051B2 (en) III-V compound semiconductor layer growth method and semiconductor light emitting device manufacturing method
JP4009043B2 (en) Method for producing p-type group III nitride semiconductor
JP2009054791A (en) Epitaxial wafer for light emitting element, its manufacturing method, and light emitting element
JP2006093681A (en) Germanium additional source for compound semiconductor, method of manufacturing compound semiconductor using the same, and compound semiconductor
JPH0936428A (en) Semiconductor device
JP2009177027A (en) Method of manufacturing compound semiconductor substrate, compound semiconductor substrate, and light-emitting element
JP5464057B2 (en) Epitaxial wafer manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080804

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080912

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111227