JP2003061283A - Rotor and stator of dynamo-electric machine, and motor, compressor, and freezing cycle, and method of manufacturing rotor of dynamo-electric machine - Google Patents
Rotor and stator of dynamo-electric machine, and motor, compressor, and freezing cycle, and method of manufacturing rotor of dynamo-electric machineInfo
- Publication number
- JP2003061283A JP2003061283A JP2001248071A JP2001248071A JP2003061283A JP 2003061283 A JP2003061283 A JP 2003061283A JP 2001248071 A JP2001248071 A JP 2001248071A JP 2001248071 A JP2001248071 A JP 2001248071A JP 2003061283 A JP2003061283 A JP 2003061283A
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- rotor
- electric machine
- permanent
- rotor core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Permanent Magnet Type Synchronous Machine (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Compressor (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、回転子コアに永
久磁石を備えた永久磁石形回転電機の構造に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure of a permanent magnet type rotary electric machine in which a rotor core is provided with a permanent magnet.
【0002】[0002]
【従来の技術】近年、電動機の高性能化のために回転数
の制御が容易でかつ損失を低減した高効率な永久磁石形
DCブラシレスモータが広く用いられている。図20は
従来の一般的な永久磁石形電動機の回転子の断面図であ
る。図20において、(a)は回転子の平面断面図、
(b)は回転子の側面断面図である。図21は図20に
示す回転子を組み込んだ3相4極のDCブラシレスモー
タを示す断面図で、以下にその構造を説明する。図21
において、1は回転軸、2は回転軸1に嵌合された回転
子コア3に埋め込まれた永久磁石、4は永久磁石3側方
に形成され、永久磁石端部における磁束の短絡を防止す
るフラックスバリア、5は回転子コア3の端部において
永久磁石2を固定する端板である。14は回転軸1に永
久磁石2が埋め込まれた回転子コア3が嵌合固定されて
構成された回転子である。15は内部に回転子14がエ
アギャップ16を介して挿入された固定子で、ティース
13間に形成されたスロット17にコイル8が巻回され
ている。永久磁石2は、回転軸1を有する円筒状の回転
子コア3の内部に、N極S極が交互になるように配置し
て、固着することが一般的である。2. Description of the Related Art In recent years, in order to improve the performance of electric motors, highly efficient permanent magnet type DC brushless motors whose rotation speed is easily controlled and whose loss is reduced are widely used. FIG. 20 is a sectional view of a rotor of a conventional general permanent magnet type electric motor. 20, (a) is a plane cross-sectional view of the rotor,
(B) is a side sectional view of the rotor. FIG. 21 is a sectional view showing a three-phase four-pole DC brushless motor incorporating the rotor shown in FIG. 20, and the structure will be described below. Figure 21
In FIG. 1, 1 is a rotary shaft, 2 is a permanent magnet embedded in a rotor core 3 fitted to the rotary shaft 1, and 4 is formed on the side of the permanent magnet 3 to prevent short circuit of magnetic flux at the end of the permanent magnet. The flux barriers 5 are end plates that fix the permanent magnets 2 at the ends of the rotor core 3. Reference numeral 14 denotes a rotor configured by fitting and fixing a rotor core 3 in which a permanent magnet 2 is embedded in a rotating shaft 1. Reference numeral 15 is a stator in which a rotor 14 is inserted through an air gap 16, and a coil 8 is wound around a slot 17 formed between the teeth 13. In general, the permanent magnets 2 are arranged and fixed inside a cylindrical rotor core 3 having the rotating shaft 1 so that N poles and S poles alternate.
【0003】以上の構成で、図に示されていない駆動回
路によって固定子15に巻かれているコイル8に通電す
ると、コイル8は供給された電流に応じた磁束を発生す
る。この磁束はエアギャップ16を介して回転子14に
作用し、回転子14が有している永久磁石2はこの磁束
による磁界の極性に応じて反発あるいは吸引を繰り返し
て回転するものである。With the above structure, when the coil 8 wound around the stator 15 is energized by a drive circuit (not shown), the coil 8 generates a magnetic flux according to the supplied current. This magnetic flux acts on the rotor 14 via the air gap 16, and the permanent magnet 2 included in the rotor 14 rotates by repeatedly repelling or attracting depending on the polarity of the magnetic field due to this magnetic flux.
【0004】図22は特開平11−4555号公報に開
示された従来の永久磁石形回転電機を示す断面図であ
る。図22において、永久磁石形回転電機は回転子14
と固定子15からなり、固定子15は固定子コア7と固
定子コイル8とで構成されている。回転子14は、回転
子14の回転方向に分割され、かつ磁石幅τm1の単位磁
石群で構成された導電性永久磁石2が周方向に互いに異
なる極性となる様に配置した構成としている。すなわ
ち、N・Sの極性を持った単位磁石群で構成された導電
性永久磁石とS・Nの極性を持った単位磁石群で構成さ
れた導電性永久磁石が回転子コア3に形成された永久磁
石埋込孔18に挿入されて回転子14を構成している。FIG. 22 is a sectional view showing a conventional permanent magnet type rotary electric machine disclosed in Japanese Patent Laid-Open No. 11-4555. In FIG. 22, the permanent magnet type rotary electric machine has a rotor 14
And a stator 15, and the stator 15 is composed of a stator core 7 and a stator coil 8. The rotor 14 is divided in the rotation direction of the rotor 14, and the conductive permanent magnets 2 formed of a unit magnet group having a magnet width τ m1 are arranged so as to have polarities different from each other in the circumferential direction. That is, a conductive permanent magnet composed of a unit magnet group having N / S polarity and a conductive permanent magnet composed of a unit magnet group having S / N polarity were formed on the rotor core 3. The rotor 14 is formed by being inserted into the permanent magnet embedding hole 18.
【0005】図23は特開2000−209797号公
報に開示されてた従来の永久磁石形回転電機の回転子構
造を示す部分斜視図である。図23において、永久磁石
2aから2nで1極分の磁石を形成し、それぞれは同一寸
法であり、電気的に絶縁された永久磁石で構成されてい
る。Nd−Fe−B系の磁石では防錆のため、磁石単体で例
えばエポキシ塗料などで塗装されることがある。本従来
例では、この塗装を利用し電気的絶縁を行い、渦電流を
抑えようとしている。FIG. 23 is a partial perspective view showing a rotor structure of a conventional permanent magnet type rotary electric machine disclosed in Japanese Patent Laid-Open No. 2000-209797. In FIG. 23, permanent magnets 2a to 2n form a magnet for one pole, each of which has the same size and is composed of electrically insulated permanent magnets. Since Nd-Fe-B magnets are rustproof, the magnets alone may be coated with, for example, epoxy paint. In this conventional example, this coating is used to electrically insulate and suppress eddy currents.
【0006】図24は特開平9−140107号公報に
開示された従来の電動機を示す(a)側断面図、(b)
平面断面図である。図24において、31a、31b、
31cは2極の突極37a〜37cを有する円筒状コ
ア、32a、32b、32cはコアを絶縁するインシュ
レータ、33a、33b、33cは各コア突極に巻かれ
たコイル、34a、34b、34cはN・S2極の磁極
を有するマグネット、35はスペーサ36はシャフト、
40は有頂円筒形のフレームケース、38はブラケッ
ト、39a、39bは軸受、41は端子結線のための基
板、42はインシュレータに一体に固定された端子ピン
である。FIG. 24 is a sectional side view (a) showing a conventional electric motor disclosed in Japanese Patent Laid-Open No. 9-140107.
It is a plane sectional view. In FIG. 24, 31a, 31b,
31c is a cylindrical core having two salient poles 37a to 37c, 32a, 32b and 32c are insulators that insulate the core, 33a, 33b and 33c are coils wound around the respective salient poles, and 34a, 34b and 34c are A magnet having N and S2 magnetic poles, 35 is a spacer 36 is a shaft,
Reference numeral 40 is a topped cylindrical frame case, 38 is a bracket, 39a and 39b are bearings, 41 is a substrate for terminal connection, and 42 is a terminal pin integrally fixed to the insulator.
【0007】図24に示すようにロータ部は、中空円筒
のマグネット34a、34b、34cがスペーサ35を
挟んで、各マグネット34a、34b、34cの内円筒
部がシャフト36に挿入固定され、そのシャフト36の
一方端はフレームケース40に取り付けられた軸受け3
9aに支承され、もう一方のシャフト端はブラケット3
8に取り付けられた軸受け39bに支承された両持ち支
持構造のインナーロータとなっている。また、コア31
a、31b、31cは、プレス成形により珪素鋼板をス
ラスト方向に積層して構成し、樹脂製のインシュレータ
32a、32b、32cにより絶縁処理されている。そ
して、このコア31a、31b、31cは、インシュレ
ータ32a、32b、32cの一部を突出させて成形し
た位置決めピンを基準として3個直列に接続し、フレー
ムケース40の内周に挿入固定され、端子ピン42には
コイル33a、33b、33cを結線する基板41が半
田付けにより固定されている。フレームケース40の開
口部分には軸受け39bが固定されたブラケット38が
挿入固定されている構成となっている。As shown in FIG. 24, in the rotor portion, hollow cylindrical magnets 34a, 34b, 34c sandwich a spacer 35, and the inner cylindrical portion of each magnet 34a, 34b, 34c is inserted and fixed to a shaft 36. One end 36 of the bearing 3 mounted on the frame case 40
9a, the other shaft end is bracket 3
The inner rotor has a double-sided support structure supported by a bearing 39b attached to the shaft 8. Also, the core 31
The a, 31b, and 31c are formed by stacking silicon steel plates in the thrust direction by press molding, and are insulated by resin insulators 32a, 32b, and 32c. The cores 31a, 31b, 31c are connected in series with three positioning pins formed by projecting a part of the insulators 32a, 32b, 32c as a reference, and are inserted and fixed in the inner circumference of the frame case 40, and the terminals are fixed. A board 41 for connecting the coils 33a, 33b, 33c is fixed to the pin 42 by soldering. A bracket 38 to which a bearing 39b is fixed is inserted and fixed to the opening of the frame case 40.
【0008】[0008]
【発明が解決しようとする課題】上記のように構成され
た従来の永久磁石形電動機の構造においては、以下に述
べる課題があった。回転子表面付近に配置される永久磁
石形電動機は、運転状況により固定子により形成される
磁界によって渦電流が発生して性能低下を招く、また、
高回転、高負荷な運転状況においては永久磁石が高温と
なり、大きな性能低下や永久磁石が減磁する問題があっ
た。The structure of the conventional permanent magnet type electric motor configured as described above has the following problems. The permanent magnet type electric motor arranged near the surface of the rotor causes an eddy current due to the magnetic field formed by the stator depending on the operating condition, resulting in performance deterioration.
Under the operating conditions of high rotation and high load, the permanent magnet becomes high temperature, and there is a problem that the performance is greatly deteriorated and the permanent magnet is demagnetized.
【0009】また、永久磁石を回転子の表面付近に配置
する場合、高回転における強度的信頼性に不安があっ
た。Further, when the permanent magnet is arranged near the surface of the rotor, there is concern about the strength reliability at high rotation.
【0010】また、永久磁石を回転子コアの奥(中心寄
り)に埋め込む電動機においては、電動機の振動、騒音
が大きいという問題点があった。Further, in the electric motor in which the permanent magnet is embedded inside the rotor core (close to the center), there is a problem that vibration and noise of the electric motor are large.
【0011】本発明は、前述の問題点を解決するために
行なったものであり、始動時、運転時の駆動特性の改善
や永久磁石の減磁防止、高効率化、低騒音化を行うこと
ができる永久磁石形回転電機を提供することを目的とす
る。また、制御性が良く、運転範囲が広い高効率、低騒
音な圧縮機および冷凍サイクルを得ることを目的とす
る。The present invention was carried out in order to solve the above-mentioned problems, and to improve driving characteristics at the time of starting and running, to prevent demagnetization of permanent magnets, to improve efficiency and to reduce noise. It is an object of the present invention to provide a permanent magnet type rotating electric machine capable of performing the above. Another object of the present invention is to obtain a compressor and a refrigeration cycle that have good controllability, a wide operating range, high efficiency, and low noise.
【0012】[0012]
【課題を解決するための手段】この発明に係る永久磁石
形回転電機の回転子は、永久磁石をメッキレスにしたも
のである。A rotor of a permanent magnet type rotary electric machine according to the present invention is a permanent magnet without plating.
【0013】また、中央を回転軸が貫通した円柱状の回
転子コアと、この回転子コアに軸方向端部が開口部とな
るよう形成された永久磁石埋込孔と、この永久磁石埋込
孔に挿入されたメッキレス永久磁石と、前記開口部を閉
塞し、永久磁石埋込孔を気密状態に保持する端板とを備
えたものである。Further, a cylindrical rotor core having a rotary shaft passing through the center thereof, a permanent magnet embedding hole formed in the rotor core so that an end portion in the axial direction is an opening, and the permanent magnet embedding It is provided with a platingless permanent magnet inserted into the hole, and an end plate that closes the opening and holds the permanent magnet embedding hole in an airtight state.
【0014】また、この発明に係る回転電機の回転子製
造方法は、酸化防止状態に封印された容器を開封してメ
ッキレス永久磁石を取り出すステップと、回転子コアに
形成された永久磁石埋込孔に前記メッキレス永久磁石を
挿入するステップと、挿入後永久磁石埋込孔を気密状態
に閉塞するステップとを備え、これら各ステップをメッ
キレス永久磁石の酸化を防止または鈍化させる温湿度環
境下にて行なう。In the method of manufacturing a rotor for a rotary electric machine according to the present invention, a step of unsealing a container sealed in an antioxidant state to take out a platingless permanent magnet, and a permanent magnet embedding hole formed in the rotor core. And a step of closing the permanent magnet embedding hole in an airtight state after the insertion, and these steps are performed in a temperature and humidity environment that prevents or slows down the oxidation of the platingless permanent magnet. .
【0015】また、酸化防止状態に封印された容器を開
封してメッキレス永久磁石を取り出すステップと、回転
子コアに形成された永久磁石埋込孔に前記メッキレス永
久磁石を挿入するステップと、挿入後メッキレス永久磁
石を外気から遮断するステップとを備え、これら各ステ
ップをメッキレス永久磁石の酸化を防止または鈍化させ
る温湿度環境下にて行なう。In addition, a step of opening the container sealed in an antioxidant state to take out the platingless permanent magnet, a step of inserting the platingless permanent magnet into a permanent magnet embedding hole formed in the rotor core, and The step of shielding the platingless permanent magnet from the outside air is performed, and each of these steps is performed in a temperature and humidity environment that prevents or slows down the oxidation of the platingless permanent magnet.
【0016】また、この発明に係る回転電機の回転子
は、永久磁石を分割して回転子コア内に埋め込む又は永
久磁石を回転子コアの表面付近に配置した永久磁石形回
転電機の回転子において、分割した永久磁石同士又は永
久磁石と端板とを絶縁したものである。The rotor of the rotary electric machine according to the present invention is a rotor of a permanent magnet type rotary electric machine in which a permanent magnet is divided and embedded in the rotor core or the permanent magnet is arranged near the surface of the rotor core. The divided permanent magnets are insulated from each other or the permanent magnets and the end plates are insulated from each other.
【0017】また、永久磁石を分割して回転子コア内に
埋め込む又は永久磁石を回転子コアの表面付近に配置し
た永久磁石形回転電機の回転子において、永久磁石と回
転子コアを絶縁したものである。Further, in a rotor of a permanent magnet type rotary electric machine in which a permanent magnet is divided and embedded in the rotor core or the permanent magnet is arranged near the surface of the rotor core, the permanent magnet and the rotor core are insulated. Is.
【0018】また、円弧形状の永久磁石を回転子コア表
面付近に配置すると共に前記永久磁石の磁化方向をラジ
アル方向にしたものである。Further, an arc-shaped permanent magnet is arranged near the surface of the rotor core, and the permanent magnet is magnetized in the radial direction.
【0019】また、回転子の回転方向に沿って連続的ま
たは断続的に屈曲形成した永久磁石埋込孔と、この永久
磁石埋込孔の屈曲部分を挟んで極配置を遠心方向に同じ
にして複数枚埋め込まれ、擬似的にラジアル配向とした
平板上の永久磁石とを備えたものである。Further, the permanent magnet embedding hole which is continuously or intermittently bent and formed along the rotation direction of the rotor and the pole arrangement is the same in the centrifugal direction with the bent portion of the permanent magnet embedding hole interposed therebetween. A plurality of embedded permanent magnets on a flat plate having a pseudo radial orientation are embedded.
【0020】また、回転子の回転方向に沿って断続的に
形成された永久磁石埋込孔と、この永久磁石埋込孔にフ
ラックスバリア孔を残して埋め込まれた永久磁石とを備
えたものである。The permanent magnet embedding hole is formed intermittently along the direction of rotation of the rotor, and the permanent magnet is embedded in the permanent magnet embedding hole leaving a flux barrier hole. is there.
【0021】また、フラックスバリア孔に非磁性かつ非
導電性材料からなる永久磁石の位置決め部材を備えたも
のである。Further, the flux barrier hole is provided with a permanent magnet positioning member made of a non-magnetic and non-conductive material.
【0022】また、永久磁石埋込孔内に磁石の反発力に
よって互いに離間する複数の永久磁石を備えたものであ
る。Further, the permanent magnet embedding hole is provided with a plurality of permanent magnets separated from each other by the repulsive force of the magnets.
【0023】また、フラックスバリア孔と永久磁石間に
ブリッジを構成したものである。Further, a bridge is formed between the flux barrier hole and the permanent magnet.
【0024】また、永久磁石埋込孔端部のエッジを丸め
フラックスバリア孔を形成したものである。Further, the edges of the permanent magnet embedding holes are rounded to form flux barrier holes.
【0025】また、極配置を遠心方向に同じにして周方
向に隣り合う永久磁石同士の間にブリッジを構成したも
のである。Further, a bridge is formed between the permanent magnets adjacent to each other in the circumferential direction with the same pole arrangement in the centrifugal direction.
【0026】また、永久磁石に希土類磁石を用い、6極
のDCブラシレス電動機の回転子において、永久磁石を
埋め込む位置を、α=ロータ外径から永久磁石までの距
離/(ロータ外径)2×100とすると、α≦0.6と
なる位置に構成したものである。Further, in a rotor of a 6-pole DC brushless motor using a rare earth magnet as the permanent magnet, the position where the permanent magnet is embedded is expressed by α = distance from rotor outer diameter to permanent magnet / (rotor outer diameter) 2 × If it is 100, the position is such that α ≦ 0.6.
【0027】また、永久磁石による磁束の短絡を抑制す
る薄肉部またはフラックスバリア孔を構成し、q軸の磁
束が通る異極の永久磁石間の距離を永久磁石の厚さ以上
にしたものである。Further, a thin portion or a flux barrier hole for suppressing the short circuit of the magnetic flux due to the permanent magnet is formed, and the distance between the permanent magnets of different poles through which the q-axis magnetic flux passes is made equal to or more than the thickness of the permanent magnet. .
【0028】また、この発明に係る回転電機の固定子
は、コイルを銅棒等の分割した棒により構成したもので
ある。Further, the stator of the rotating electric machine according to the present invention comprises a coil made of a divided rod such as a copper rod.
【0029】また、回転子の回転軸方向に複数に分割
し、制御回路によってそれぞれを独立して選択、制御さ
れるものである。Further, the rotor is divided into a plurality of parts in the rotation axis direction, and each is independently selected and controlled by the control circuit.
【0030】また、この発明に係る電動機は、上記何れ
か記載の回転子および上記何れか記載の固定子を備えた
ものである。Further, an electric motor according to the present invention includes the rotor according to any one of the above and the stator according to any one of the above.
【0031】また、この発明に係る圧縮機は、上記電動
機を駆動用電動機として備えたものである。The compressor according to the present invention includes the above electric motor as a driving electric motor.
【0032】また、この発明に係る冷凍サイクル装置
は、圧縮機、凝縮器、絞り装置、蒸発器を備え、これら
を冷媒配管で接続した冷凍サイクル装置において、上記
圧縮機を備えたものである。Further, the refrigeration cycle apparatus according to the present invention comprises a compressor, a condenser, a throttle device, and an evaporator, and the refrigeration cycle apparatus in which these are connected by a refrigerant pipe is provided with the compressor.
【0033】[0033]
【発明の実施の形態】実施の形態1.以下、この発明の
実施の形態1を図面を参照して説明する。図1は本発明
の実施の形態1を示す回転電機の回転子の例で、(a)
は平面断面図、(b)は側面断面図である。図におい
て、1は回転軸、3は回転軸が中心を貫通する円柱状の
回転子コア、5は後述する永久磁石12を回転子コア3
の軸方向端部において固定するための端板、9は永久磁
石12の磁化方向を示す矢印で、ここでは平行方向であ
る。12は回転子コア3に形成された永久磁石埋込孔1
8に埋め込まれたメッキレスの希土類永久磁石、14は
これらで構成された回転子である。永久磁石埋込孔18
は、図1(a)に示すように、回転子コア3表面付近に
て回転子コア外周形状に沿って分割形成されている。BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. Embodiment 1 of the present invention will be described below with reference to the drawings. 1 is an example of a rotor of a rotary electric machine showing a first embodiment of the present invention.
Is a plan sectional view, and (b) is a side sectional view. In the figure, 1 is a rotary shaft, 3 is a cylindrical rotor core having the rotary shaft passing through the center, and 5 is a permanent magnet 12 described later.
An end plate for fixing at the axial end portion of, and 9 is an arrow indicating the magnetization direction of the permanent magnet 12, which is a parallel direction here. 12 is a permanent magnet embedding hole 1 formed in the rotor core 3
A platingless rare earth permanent magnet embedded in 8 and a rotor 14 composed of these. Permanent magnet embedding hole 18
As shown in FIG. 1 (a), is divided and formed in the vicinity of the surface of the rotor core 3 along the outer peripheral shape of the rotor core.
【0034】図4は同駆動条件下で、従来のメッキ仕
様、上記メッキレス仕様の希土類磁石を有する回転子を
備えた電動機の磁石温度と駆動時間との関係および、磁
束量と駆動時間との関係を示した相関図である。このよ
うに、電動機の駆動時間が経過するにしたがってメッキ
仕様とメッキレス仕様とで磁石温度に大きな温度差が生
じる。そして、永久磁石をメッキレスとすることで磁束
量の減少を抑えることができることが理解される。ま
た、メッキレス仕様にすることにより、同一温度状態に
おいても、メッキ仕様よりも大きな磁束量を得ることが
できる。FIG. 4 shows the relationship between the magnet temperature and the driving time and the relationship between the magnetic flux amount and the driving time of an electric motor equipped with a rotor having a rare earth magnet of the conventional plating specification and the platingless specification under the same driving condition. It is the correlation diagram which showed. Thus, as the driving time of the electric motor elapses, a large temperature difference occurs in the magnet temperature between the plating specification and the platingless specification. Further, it is understood that the reduction of the amount of magnetic flux can be suppressed by making the permanent magnet platingless. Further, by adopting the platingless specification, it is possible to obtain a larger amount of magnetic flux than the plating specification even in the same temperature condition.
【0035】図5はメッキ仕様とメッキレス仕様の希土
類磁石を有する回転子を備えた電動機のモータ効率とモ
ータ回転数との関係を示した相関図である。図5中●と
▲との比較でわかるように、メッキレス仕様とすること
で、メッキ仕様の場合に比べてモータ回転数の上昇に伴
うモータ効率の低下を防止できる。これは渦電流を低減
でき磁石の発熱を抑え、高効率な電動機が実現できるか
らである。尚、ここで示したメッキの材質は(1)銅+ニ
ッケル(銅を下塗りした後、ニッケルを塗る)または
(2)アルミが用いられる。FIG. 5 is a correlation diagram showing the relationship between the motor efficiency and the motor rotation speed of an electric motor equipped with a rotor having a rare earth magnet of a plating specification and a platingless specification. As can be seen from the comparison between ● and ▲ in FIG. 5, the platingless specification can prevent the motor efficiency from being lowered due to the increase in the motor rotation speed as compared with the plating specification. This is because an eddy current can be reduced, heat generation of the magnet can be suppressed, and a highly efficient electric motor can be realized. The plating materials shown here are (1) copper + nickel (undercoat copper, then nickel) or
(2) Aluminum is used.
【0036】従来は磁石が高温多湿の環境下で酸化して
腐食することを防止するため永久磁石表面にメッキを行
なっていたが、上述したようにメッキにより磁石温度の
上昇や磁束量の低下、モータ効率の低下が発生する。本
実施の形態では、永久磁石12が回転子の性能低下を引
き起こさない程度の温度・湿度環境下で永久磁石12を
永久磁石埋込孔18へ挿入し、端板5にて密閉状態にす
ることで、組み付け時および組み付け後の永久磁石酸化
による性能低下を防止できる。Conventionally, the surface of the permanent magnet was plated to prevent the magnet from being oxidized and corroded in a hot and humid environment. However, as described above, the plating causes an increase in magnet temperature and a decrease in the amount of magnetic flux. Motor efficiency will drop. In the present embodiment, the permanent magnet 12 is inserted into the permanent magnet embedding hole 18 under a temperature / humidity environment where the performance of the rotor is not degraded by the permanent magnet 12, and the end plate 5 is hermetically sealed. Thus, it is possible to prevent performance degradation due to oxidation of the permanent magnet during and after assembly.
【0037】メッキレス永久磁石12は空気中で酸化
し、特に希土類磁石の場合、酸化が著しい。そこで、永
久磁石埋込孔18の軸方向端部に開口した開口部を端板
5で塞ぐことで、永久磁石埋込孔18内を気密状態に保
持できるようにすれば、永久磁石12組み付け後の酸化
を防止することが可能になる。この場合、組み付け作業
現場の温度湿度環境を管理する。温度は室温に比べてあ
まり高温にならない程度とし、湿度は極力低く維持し、
永久磁石12の酸化を防止または回転子組み込みごの性
能低下が起きない程度にすれば良い。The platingless permanent magnet 12 oxidizes in the air, and particularly in the case of a rare earth magnet, the oxidation is remarkable. Therefore, if the end plate 5 closes the opening of the permanent magnet embedding hole 18 at the axial end, the interior of the permanent magnet embedding hole 18 can be kept airtight. It is possible to prevent the oxidation of. In this case, the temperature and humidity environment of the assembly work site is controlled. The temperature should not be too high compared to room temperature, and the humidity should be kept as low as possible.
It suffices to prevent oxidation of the permanent magnet 12 or to prevent deterioration of the performance of the rotor assembly.
【0038】このような作業環境下で、永久磁石12が
収納され、酸化防止状態に封印された袋や箱などの容器
を開封し、永久磁石12を取り出す。取り出した永久磁
石12を永久磁石埋込孔18に挿入し、挿入後永久磁石
埋込孔18の開口部を端板5にて閉塞し、永久磁石埋込
孔18内を気密状態に保持する。以降は回転子14を高
温多湿の空気中にさらしても永久磁石12の酸化を防止
することができる。Under such a working environment, the permanent magnet 12 is housed and the container such as a bag or a box sealed in an antioxidant state is opened and the permanent magnet 12 is taken out. The taken out permanent magnet 12 is inserted into the permanent magnet embedding hole 18, and after insertion, the opening of the permanent magnet embedding hole 18 is closed by the end plate 5 to keep the inside of the permanent magnet embedding hole 18 airtight. After that, even if the rotor 14 is exposed to hot and humid air, the permanent magnet 12 can be prevented from being oxidized.
【0039】また、冷凍サイクルを構成する圧縮機用モ
ータに本実施の形態の回転子14を適用する場合、圧縮
機が完成した状態になれば圧縮機内部は外気と遮断され
る。このような場合、上述の場合と同様に温湿度を管理
した作業空間で永久磁石12を永久磁石埋込孔18に挿
入した後も、圧縮機を組み立てる工程まで温湿度管理を
行ない、圧縮機内部を外気と遮断してしまえば、以降は
圧縮機を高温多湿の空気中にさらしても永久磁石12の
酸化を防止することができる。When the rotor 14 of the present embodiment is applied to the compressor motor constituting the refrigeration cycle, the inside of the compressor is shut off from the outside air when the compressor is in a completed state. In such a case, even after the permanent magnet 12 is inserted into the permanent magnet embedding hole 18 in the working space where the temperature and humidity are controlled as in the case described above, the temperature and humidity are controlled until the step of assembling the compressor, and the inside of the compressor is controlled. If the air is shut off from the outside air, the permanent magnet 12 can be prevented from being oxidized even after the compressor is exposed to hot and humid air.
【0040】さらにまた、永久磁石12を事前にガラス
やエポキシ系の有機塗料など、非磁性且つ非導電性のコ
ーティング材料によりコーティングしておけば、温湿度
管理を行なわなくても酸化防止が図れ、上述したメッキ
仕様の永久磁石による温度上昇や磁束量の減少を低減で
き、渦電流による影響を防止できる。尚、冷凍サイクル
を構成する圧縮機用モータにコーティング仕様の永久磁
石を用いる場合、耐冷媒性が必要であり、ガラスコー
ト、エポキシ系の有機塗料の使用が好ましい。特にエポ
キシ系の有機塗料はメッキ、ガラスに比べ膜が厚くなる
ため、永久磁石とコアとの間の距離が大きくなる。磁束
量を稼ぐという意味では、ガラスコートの方が有利であ
る。Furthermore, if the permanent magnet 12 is coated in advance with a non-magnetic and non-conductive coating material such as glass or an epoxy-based organic paint, oxidation can be prevented without controlling temperature and humidity. The temperature rise and the decrease in the amount of magnetic flux due to the above-mentioned plating specification permanent magnet can be reduced, and the influence of eddy current can be prevented. When a permanent magnet with a coating specification is used for a compressor motor that constitutes a refrigeration cycle, it is necessary to have resistance to a refrigerant, and it is preferable to use a glass coat or an epoxy-based organic paint. In particular, since the epoxy-based organic coating has a thicker film than plating and glass, the distance between the permanent magnet and the core becomes large. The glass coat is more advantageous in terms of gaining the amount of magnetic flux.
【0041】回転子コア3には鉄損が比較的小さい高透
磁率の無方向性珪素鋼板を使用し、無方向性珪素鋼板の
板厚は0.25mm〜0.5mmを用いる。尚、方向性または2方
向性珪素鋼板を使用しても良い。永久磁石12は希土類
磁石を使用しているが、希土類磁石は酸化が早いため本
発明のメリットが大きいということであり、永久磁石と
してはフェライト磁石やそれ以外の磁石でも良い。永久
磁石12は、外部で着磁し、その後回転子コア3に挿入
しても良いし、回転子コア3に未着磁の永久磁石を挿入
後、回転子ごと着磁を行っても良い。本実施の形態で
は、4極の回転子を例に挙げて説明したが、4極に限定
されるものではない。The rotor core 3 is made of a high magnetic permeability non-oriented silicon steel sheet having a relatively small iron loss, and the thickness of the non-oriented silicon steel sheet is 0.25 mm to 0.5 mm. Incidentally, a grain-oriented or bi-directional silicon steel sheet may be used. A rare earth magnet is used as the permanent magnet 12, but the rare earth magnet has a great advantage of the present invention because it is oxidized quickly, and the permanent magnet may be a ferrite magnet or another magnet. The permanent magnet 12 may be magnetized externally and then inserted into the rotor core 3, or the unmagnetized permanent magnet may be inserted into the rotor core 3 and then magnetized together with the rotor. In the present embodiment, a four-pole rotor has been described as an example, but the present invention is not limited to four poles.
【0042】上述の実施の形態1によれば、永久磁石を
メッキレスとする事により永久磁石の磁束量の減少を抑
え、低コストで高効率な永久磁石形電動機を実現でき
る。また、モータの発熱を抑えることができ、永久磁石
の減磁を防止した信頼性の高い電動機を実現できる。さ
らに、メッキを施さないため、リサイクル性が良い。According to the above-described first embodiment, by making the permanent magnets plating-free, it is possible to suppress a decrease in the amount of magnetic flux of the permanent magnets and to realize a highly efficient permanent magnet type electric motor at low cost. Further, heat generation of the motor can be suppressed, and a highly reliable electric motor that prevents demagnetization of the permanent magnet can be realized. Furthermore, since it is not plated, it has good recyclability.
【0043】実施の形態2.以下、この発明の実施の形
態2を図面を参照して説明する。図2は本発明の実施の
形態2を示す回転子の例で、(a)は平面断面図、
(b)は側面断面図である。図2において、10は回転
軸方向または回転子14の周方向に分割されたメッキ仕
様の永久磁石2間に設けられ、ポリエチレンテレフタレ
イト(PET)、ポリエチレンナフタレイト(PEN)、ポリ
ブチレンテレフタレイト(PBT)等の非導電性、非磁性
かつ耐熱性、耐冷媒性の絶縁フィルム10である。絶縁
フィルム10は回転軸方向および回転子14の周方向双
方の分割された永久磁石2間に設けても良いし、何れか
一方に設けても良い。その他の構成は実施の形態1と同
様であり、その説明を省略する。Embodiment 2. Embodiment 2 of the present invention will be described below with reference to the drawings. 2 is an example of a rotor showing a second embodiment of the present invention, (a) is a plan sectional view,
(B) is a side sectional view. In FIG. 2, 10 is provided between the plating specification permanent magnets 2 which are divided in the rotation axis direction or the circumferential direction of the rotor 14, and polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate is provided. It is a non-conductive, non-magnetic, heat-resistant, and refrigerant-resistant insulating film 10 such as a rate (PBT). The insulating film 10 may be provided between the divided permanent magnets 2 in both the rotation axis direction and the circumferential direction of the rotor 14, or may be provided on either one. The other configurations are similar to those of the first embodiment, and the description thereof will be omitted.
【0044】上記のような構成とすることにより、磁石
製造上の理由または渦電流低減のために永久磁石2を複
数の永久磁石埋込孔へ分割挿入して使用している永久磁
石形回転電機において、永久磁石2同士の接触、端板5
による短絡により渦電流が増加することを防止する。絶
縁フィルム10は、冷凍サイクル用圧縮機モータに使用
される回転子など冷媒中の使用であれば、耐冷媒性のも
のを選択するとよい。永久磁石2は、軸方向および周方
向に分割されていても良い。With the above-mentioned structure, the permanent magnet type rotating electric machine is used by dividing and inserting the permanent magnet 2 into a plurality of permanent magnet embedding holes for reasons of magnet manufacture or reduction of eddy current. In, contact between the permanent magnets 2 and the end plate 5
It prevents the eddy current from increasing due to a short circuit. If the insulating film 10 is used in a refrigerant such as a rotor used in a compressor motor for a refrigeration cycle, it is preferable to select a refrigerant resistant material. The permanent magnet 2 may be divided in the axial direction and the circumferential direction.
【0045】図5は永久磁石2間を絶縁した場合と絶縁
なしの場合の回転子を備えた電動機におけるモータ効率
とモータ回転数との関係を示した相関図である。図5中
□と▲との比較でわかるように、磁石間を絶縁すること
でモータ効率が上昇し、特に高回転時におけるモータ効
率低下を抑制できることがわかる。尚、永久磁石2を本
実施の形態におけるメッキ仕様の永久磁石に代え、メッ
キレス仕様の希土類またはその他の永久磁石にすれば、
図5中●の磁石間絶縁なしのメッキレス仕様永久磁石よ
りもさらにモータ効率が向上する。この場合、磁石の組
み付け工程において、実施の形態1と同様な温度・湿度
管理を行なう。FIG. 5 is a correlation diagram showing the relationship between the motor efficiency and the motor rotation speed in an electric motor having a rotor with and without insulation between the permanent magnets 2. As can be seen from the comparison between □ and ▲ in FIG. 5, the insulation between the magnets increases the motor efficiency, and it is possible to suppress a decrease in the motor efficiency particularly at high rotation speeds. If the permanent magnet 2 is replaced with a plating-less permanent magnet of the present embodiment and a plating-less rare earth or other permanent magnet is used,
In Fig. 5, the motor efficiency is further improved compared to the non-plating permanent magnet without magnet insulation shown in Fig. 5. In this case, in the magnet assembling process, the same temperature / humidity control as in the first embodiment is performed.
【0046】上述の実施の形態2によれば、永久磁石2
間を絶縁する事により永久磁石の渦電流を抑制し、簡単
に低コストで高効率な回転電機を実現できる。また、モ
ータの発熱を抑えることができ、永久磁石の減磁を防止
した信頼性の高い永久磁石形回転電機を実現できる。According to the second embodiment described above, the permanent magnet 2
By insulating the gaps from each other, the eddy current of the permanent magnet is suppressed, and a low-cost and highly efficient rotary electric machine can be easily realized. Further, heat generation of the motor can be suppressed, and a highly reliable permanent magnet type rotary electric machine that prevents demagnetization of the permanent magnet can be realized.
【0047】実施の形態3.以下、この発明の実施の形
態3を図面を参照して説明する。図3は本発明の実施の
形態3を示す回転子の平面拡大断面図である。図3にお
いて、10はメッキ仕様の永久磁石2表面と回転子コア
3との間に設けられ、ポリエチレンテレフタレイト(PE
T)、ポリエチレンナフタレイト(PEN)、ポリブチレン
テレフタレイト(PBT)等の非導電性、非磁性かつ耐熱
性、耐冷媒性の絶縁フィルム10である。絶縁フィルム
10は、冷凍サイクル用圧縮機モータに使用される回転
子など冷媒中の使用であれば、耐冷媒性のものを選択す
るとよい。永久磁石2は、軸方向および周方向に分割さ
れていても良い。その他の構成は実施の形態1と同様で
あり、その説明を省略する。Embodiment 3. Embodiment 3 of the present invention will be described below with reference to the drawings. Third Embodiment FIG. 3 is an enlarged plan sectional view of a rotor showing a third embodiment of the present invention. In FIG. 3, 10 is provided between the surface of the permanent magnet 2 of the plating specification and the rotor core 3, and is made of polyethylene terephthalate (PE
T), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), etc. are non-conductive, non-magnetic, heat resistant, and refrigerant resistant insulating films 10. If the insulating film 10 is used in a refrigerant such as a rotor used in a compressor motor for a refrigeration cycle, it is preferable to select a refrigerant resistant material. The permanent magnet 2 may be divided in the axial direction and the circumferential direction. The other configurations are similar to those of the first embodiment, and the description thereof will be omitted.
【0048】図5は永久磁石2表面と回転子コア3との
間を絶縁した場合と絶縁なしの場合の回転子を備えた電
動機におけるモータ効率とモータ回転数との関係を示し
た相関図である。図5中○と▲との比較でわかるよう
に、永久磁石2表面と回転子コア3間を絶縁することで
モータ効率が上昇し、特に高回転時におけるモータ効率
低下を抑制できることがわかる。尚、永久磁石2間に実
施の形態2のような絶縁フィルム10を設ければ、さら
にモータ効率が向上する。FIG. 5 is a correlation diagram showing the relationship between motor efficiency and motor rotation speed in an electric motor having a rotor with and without insulation between the surface of the permanent magnet 2 and the rotor core 3. is there. As can be seen from the comparison between ◯ and ▲ in FIG. 5, insulating the surface of the permanent magnet 2 from the rotor core 3 increases the motor efficiency, and it is possible to suppress the decrease in the motor efficiency particularly at high rotation speeds. If the insulating film 10 as in the second embodiment is provided between the permanent magnets 2, the motor efficiency is further improved.
【0049】また、永久磁石2を本実施の形態における
メッキ仕様の永久磁石に代え、メッキレス仕様の希土類
またはその他の永久磁石にすれば、図5中●の永久磁石
表面と回転子コア間絶縁なしのメッキレス仕様永久磁石
よりもさらにモータ効率が向上する。さらに、メッキレ
ス仕様の永久磁石間に実施の形態2のような絶縁フィル
ム10を設ければ、さらにモータ効率が向上する。この
場合、磁石の組み付け工程において、実施の形態1と同
様な温度・湿度管理を行なう。If the permanent magnet 2 is replaced with a plating-specific permanent magnet in this embodiment and a plating-less specification rare earth or other permanent magnet is used, there is no insulation between the surface of the permanent magnet and the rotor core in FIG. Motor efficiency is further improved compared to the non-plating permanent magnet of. Further, if the insulating film 10 as in the second embodiment is provided between the platingless permanent magnets, the motor efficiency is further improved. In this case, in the magnet assembling process, the same temperature / humidity control as in the first embodiment is performed.
【0050】上述の実施の形態3によれば、永久磁石2
表面と回転子コア3を絶縁することにより永久磁石の渦
電流を抑制し、低コストで高効率な回転電機を実現でき
る。また、モータの発熱を抑えることができ、永久磁石
の減磁を防止した信頼性の高い永久磁石形回転電機を実
現できる。According to the third embodiment described above, the permanent magnet 2
By insulating the surface and the rotor core 3 from each other, the eddy current of the permanent magnet can be suppressed, and a low-cost and highly efficient rotating electric machine can be realized. Further, heat generation of the motor can be suppressed, and a highly reliable permanent magnet type rotary electric machine that prevents demagnetization of the permanent magnet can be realized.
【0051】実施の形態4.以下、この発明の実施の形
態4を図面を参照して説明する。図6は本発明の実施の
形態4を示す回転子の平面拡大断面図である。図6にお
いて、2は円柱状の回転子コア3の周面に沿った形状
で、該周面の表面付近に配置された瓦状の永久磁石で、
ラジアル方向に着磁されている。永久磁石2は、実施の
形態1〜3のように軸方向および周方向に分割されてい
ても良く、本実施の形態では周方向に4分割されてい
る。また、実施の形態1のようなメッキレス仕様でも、
実施の形態2、3のようなメッキ仕様でも良い。本実施
の形態では材質として希土類磁石を使用している。その
他の構成は実施の形態1と同様でありその説明を省略す
る。Fourth Embodiment Hereinafter, a fourth embodiment of the present invention will be described with reference to the drawings. 6 is an enlarged sectional plan view of a rotor showing a fourth embodiment of the present invention. In FIG. 6, 2 is a shape along the peripheral surface of the cylindrical rotor core 3, which is a tile-shaped permanent magnet arranged near the surface of the peripheral surface,
It is magnetized in the radial direction. The permanent magnet 2 may be divided in the axial direction and the circumferential direction as in the first to third embodiments, and is divided into four in the circumferential direction in the present embodiment. In addition, even with the platingless specification as in the first embodiment,
The plating specifications as in Embodiments 2 and 3 may be used. In this embodiment, a rare earth magnet is used as the material. Other configurations are the same as those in the first embodiment, and the description thereof will be omitted.
【0052】回転子コア表面付近に配置された永久磁石
2は固定子に近い位置となるため渦電流の影響を受け磁
石温度が上昇しやすい。特に希土類磁石では体積抵抗率
が鉄とあまり変わらないため影響が大きい。この結果駆
動時間の経過に伴って磁石温度が上昇する。渦電流の影
響を小さくするためには永久磁石を回転軸近くに配置
し、固定子からの距離を長く確保すれば良いが、この場
合、騒音や振動が発生する。本実施の形態では永久磁石
2の磁化方向をラジアル方向にして回転子コア3の表面
付近に配置したため、回転子14そのものの効率が向上
し、同一能力であれば従来に比し渦電流の影響を小さく
できる。Since the permanent magnet 2 arranged near the surface of the rotor core is located near the stator, the magnet temperature is likely to rise under the influence of the eddy current. Especially in rare earth magnets, the volume resistivity is not so different from that of iron, which has a great influence. As a result, the magnet temperature rises as the driving time elapses. In order to reduce the influence of the eddy current, it is sufficient to dispose a permanent magnet near the rotating shaft and secure a long distance from the stator, but in this case, noise and vibration occur. In this embodiment, the permanent magnets 2 are arranged near the surface of the rotor core 3 with the magnetization direction of the permanent magnets 2 in the radial direction, so that the efficiency of the rotor 14 itself is improved. Can be made smaller.
【0053】上述の実施の形態4によれば、永久磁石2
をラジアル配向に着磁することにより、コストを上げる
ことなく高効率で低騒音、低振動さらに制御性の良い永
久磁石形回転電機を実現できる。According to the fourth embodiment described above, the permanent magnet 2
By magnetizing in a radial orientation, it is possible to realize a permanent magnet type rotating electric machine with high efficiency, low noise, low vibration and good controllability without increasing the cost.
【0054】実施の形態5.以下、この発明の実施の形
態5を図面を参照して説明する。図7は本発明の実施の
形態5を示す回転子の平面拡大断面図である。図7にお
いて、18は回転子14の回転方向(回転子コア3の周
方向)に沿って連続的に屈曲形成した永久磁石埋込孔
で、本実施の形態では周方向に2段階屈曲させ、2つの
屈曲部18aによって3つの平面状孔18bが連結され
て一つの永久磁石埋込孔18を形成している。尚、屈曲
部18aは連続していなくてもよく、周方向に複数断続
した平面状の孔が断続部で屈曲するようにしても良い。Embodiment 5. Embodiment 5 of the present invention will be described below with reference to the drawings. 7 is an enlarged plan sectional view of a rotor showing a fifth embodiment of the present invention. In FIG. 7, reference numeral 18 denotes a permanent magnet embedding hole that is formed by continuously bending along the rotation direction of the rotor 14 (the circumferential direction of the rotor core 3), and in this embodiment, is bent in two steps in the circumferential direction. The two bent portions 18 a connect the three planar holes 18 b to form one permanent magnet embedding hole 18. The bent portion 18a does not have to be continuous, and a plurality of planar holes interrupted in the circumferential direction may be bent at the interrupted portion.
【0055】2は各平面状孔18bにそれぞれ埋め込ま
れた平行配向で平板形状の永久磁石2で、同一の永久磁
石埋込孔18内ではSNの極配置を遠心方向において同
じとし、擬似的にラジアル配向となるよう配置してあ
る。また、永久磁石2は、隣り合う永久磁石埋込孔18
では極配置が逆になっている。その他の構成は実施の形
態4と同様で、さらに永久磁石をメッキ仕様またはメッ
キレス仕様にするなどの展開も実施の形態4と同様であ
り、その説明を省略する。Reference numeral 2 is a parallel-oriented and flat plate-shaped permanent magnet 2 embedded in each planar hole 18b. The pole arrangement of SN is the same in the centrifugal direction in the same permanent magnet embedding hole 18, which is pseudo. It is arranged so as to have a radial orientation. In addition, the permanent magnets 2 have the permanent magnet embedding holes 18 adjacent to each other.
Then the pole placement is reversed. Other configurations are the same as those of the fourth embodiment, and the development such as the permanent magnet having the plating specification or the platingless specification is the same as that of the fourth embodiment, and the description thereof will be omitted.
【0056】本実施の形態では永久磁石埋込孔18内で
永久磁石2の磁化方向を擬似的にラジアル方向にして回
転子コア3の表面付近に配置したため、実施の形態4の
場合と同様、回転子14そのものの効率が向上し、同一
能力であれば従来に比し渦電流の影響を小さくできる。
また、永久磁石2をラジアル配向に近い平行配向の着磁
とすることができるため、実施の形態4に比べ、コスト
を上げることなく高効率で低騒音、低振動さらに制御性
の良い永久磁石形回転電機を実現できる。In this embodiment, the permanent magnets 2 are arranged near the surface of the rotor core 3 in the permanent magnet embedding hole 18 with the magnetizing direction of the permanent magnets 2 in a pseudo radial direction. Therefore, as in the case of the fourth embodiment. The efficiency of the rotor 14 itself is improved, and the effect of eddy current can be reduced as compared with the conventional case if the rotor 14 has the same ability.
Further, since the permanent magnet 2 can be magnetized in a parallel orientation close to the radial orientation, a permanent magnet type with high efficiency, low noise, low vibration and good controllability can be obtained without increasing the cost as compared with the fourth embodiment. A rotating electric machine can be realized.
【0057】実施の形態6.以下、この発明の実施の形
態6を図面を参照して説明する。図8は本発明の実施の
形態6を示す回転子の平面部分拡大図である。図8にお
いて、18は回転子14の回転方向(回転子コア3の周
方向)に沿って断続的に形成した永久磁石埋込孔、2は
永久磁石埋込孔に埋め込まれた永久磁石である。本実施
の形態では、永久磁石2の磁束が回転子コア3内で短絡
しないよう、隣り合う永久磁石埋込孔18と永久磁石埋
込孔18との間の距離を0.25mm〜1mmと小さくして、永
久磁石2を永久磁石埋込孔18の周方向中央に、3分の
2くらいの幅にわたって挿入し、永久磁石埋込孔18の
周方向両側に形成された空隙部分をフラックスバリア孔
4としたものである。Sixth Embodiment Embodiment 6 of the present invention will be described below with reference to the drawings. FIG. 8 is an enlarged plan view of a rotor showing a sixth embodiment of the present invention. In FIG. 8, 18 is a permanent magnet embedding hole that is intermittently formed along the rotation direction of the rotor 14 (the circumferential direction of the rotor core 3), and 2 is a permanent magnet embedded in the permanent magnet embedding hole. . In the present embodiment, the distance between the adjacent permanent magnet embedding holes 18 is made as small as 0.25 mm to 1 mm so that the magnetic flux of the permanent magnets 2 is not short-circuited in the rotor core 3. Then, the permanent magnet 2 is inserted in the center of the permanent magnet embedding hole 18 in the circumferential direction over a width of about two-thirds, and the void portions formed on both sides of the permanent magnet embedding hole 18 in the circumferential direction are filled with the flux barrier hole 4. It is what
【0058】永久磁石2は、永久磁石埋込孔18内にコ
アで永久磁石位置決め部19を設けて固定している。永
久磁石位置決め部19を除き永久磁石埋込孔18内の奥
行寸法は同じである。また、図8では4極の回転子14
の場合であるが、4極に限定されるものではない。その
他の構成は実施の形態4と同様で、さらに永久磁石をメ
ッキ仕様またはメッキレス仕様にするなどの展開も実施
の形態4と同様であり、その説明を省略する。また、実
施の形態5のように永久磁石を擬似的にラジアル配置に
しても良い。The permanent magnet 2 is fixed by providing a permanent magnet positioning portion 19 with a core in the permanent magnet embedding hole 18. Except for the permanent magnet positioning portion 19, the depth dimension inside the permanent magnet embedding hole 18 is the same. In addition, in FIG.
However, the number of contacts is not limited to four. Other configurations are the same as those of the fourth embodiment, and the development such as the permanent magnet having the plating specification or the platingless specification is the same as that of the fourth embodiment, and the description thereof will be omitted. Further, the permanent magnets may be pseudo-radially arranged as in the fifth embodiment.
【0059】永久磁石2の配置では、永久磁石2を永久
磁石埋込孔18の一部分に挿入することにより、永久磁
石2を永久磁石埋込孔18全体に挿入する場合に比べ、
回転子コア3、固定子コア7の磁束飽和を抑制できる。
また、希土類磁石は高価な材料であるので、永久磁石量
の低減によりコストパフォーマンスを上げることができ
る。永久磁石2を永久磁石埋込孔18の一部分に挿入す
ることにより、低コストで高効率、低騒音、運転範囲の
広範囲な永久磁石形回転電機を提供できる。そして、減
磁の起こり易い部分には、永久磁石2を挿入せず、減磁
を避けることができる。In the arrangement of the permanent magnets 2, by inserting the permanent magnet 2 into a part of the permanent magnet embedding hole 18, as compared with the case where the permanent magnet 2 is inserted into the entire permanent magnet embedding hole 18,
The magnetic flux saturation of the rotor core 3 and the stator core 7 can be suppressed.
Further, since rare earth magnets are expensive materials, cost performance can be improved by reducing the amount of permanent magnets. By inserting the permanent magnet 2 into a part of the permanent magnet embedding hole 18, it is possible to provide a low-cost, high-efficiency, low-noise, permanent-magnet type rotary electric machine having a wide operating range. Then, the permanent magnet 2 is not inserted in a portion where demagnetization is likely to occur, so that demagnetization can be avoided.
【0060】実施の形態7.以下、この発明の実施の形
態7を図面を参照して説明する。図9は本発明の実施の
形態7を示す回転子の平面拡大断面図である。図9にお
いて、18は回転子14の回転方向(回転子コア3の周
方向)に断続的に形成した永久磁石埋込孔で、平面状の
孔の周方向両端が遠心方向に向いて屈曲しており、隣り
合う永久磁石埋込孔18の屈曲辺同士が平行になってい
る。20は永久磁石埋込孔18内のフラックスバリア孔
4に充填され、永久磁石2を永久磁石埋込孔18内の所
定位置に固定する非磁性且つ非導電性の永久磁石位置決
め部材である。その他の構成は実施の形態6と同様で、
さらに永久磁石をメッキ仕様またはメッキレス仕様にす
るなどの展開も実施の形態6と同様であり、その説明を
省略する。Embodiment 7. Hereinafter, a seventh embodiment of the present invention will be described with reference to the drawings. FIG. 9 is an enlarged plan sectional view of a rotor showing a seventh embodiment of the present invention. In FIG. 9, reference numeral 18 denotes a permanent magnet embedding hole which is intermittently formed in the rotation direction of the rotor 14 (the circumferential direction of the rotor core 3), and both circumferential ends of the planar hole are bent toward the centrifugal direction. The bent sides of the adjacent permanent magnet embedding holes 18 are parallel to each other. Reference numeral 20 is a non-magnetic and non-conductive permanent magnet positioning member that is filled in the flux barrier hole 4 in the permanent magnet embedding hole 18 and fixes the permanent magnet 2 at a predetermined position in the permanent magnet embedding hole 18. Other configurations are similar to those of the sixth embodiment,
Further, the expansion of the permanent magnet to the plating specification or the platingless specification is the same as in the sixth embodiment, and the description thereof will be omitted.
【0061】永久磁石位置決め部材20はポリエチレン
テレフタレイト(PET)、ポリエチレンナフタレイト(P
EN)、ポリブチレンテレフタレイト(PBT)等の耐熱
性、体冷媒性物質で作ることにより、冷凍サイクルに用
いられる圧縮機用モータ等にも容易に搭載することがで
きる。永久磁石位置決め部材20を用いることにより、
周方向の寸法に自由度があり、様々な機種に対応して永
久磁石2の周方向寸法を変更することができる。上述の
実施の形態7によれば、実施の形態6と同様の効果が得
られ、さらに、永久磁石2の周方向の寸法を変えられる
ので、様々な機種に対応した高効率な永久磁石形回転電
機を実現できる。The permanent magnet positioning member 20 is made of polyethylene terephthalate (PET) or polyethylene naphthalate (PET).
By using a heat-resistant and body-refrigerant substance such as EN) or polybutylene terephthalate (PBT), it can be easily mounted on a compressor motor used in a refrigeration cycle. By using the permanent magnet positioning member 20,
There is a degree of freedom in the circumferential dimension, and the circumferential dimension of the permanent magnet 2 can be changed according to various models. According to the seventh embodiment described above, the same effect as that of the sixth embodiment can be obtained, and further, since the dimension of the permanent magnet 2 in the circumferential direction can be changed, highly efficient permanent magnet type rotation corresponding to various models. An electric machine can be realized.
【0062】実施の形態8.以下、この発明の実施の形
態8を図面を参照して説明する。図10は本発明の実施
の形態8を示す回転子の平面拡大断面図である。図10
において、18は回転子14の回転方向(回転子コア3
の周方向)に沿って断続的に形成した永久磁石埋込孔、
2は永久磁石埋込孔に埋め込まれた永久磁石である。本
実施の形態では、永久磁石埋込孔18内に永久磁石2を
周方向に分割して挿入することで、永久磁石2の固定に
位置決め部材20等を使用せず、永久磁石2同士の反発
力で位置を固定している。そして、反発力によって生じ
た永久磁石2同士間をフラックスバリア孔4としてい
る。その他の構成は実施の形態6と同様で、さらに永久
磁石をメッキ仕様またはメッキレス仕様にするなどの展
開も実施の形態6と同様であり、その説明を省略する。Embodiment 8. Embodiment 8 of the present invention will be described below with reference to the drawings. 10 is an enlarged plan sectional view of a rotor showing an eighth embodiment of the present invention. Figure 10
In the rotating direction of the rotor 14 (rotor core 3
Permanent magnet embedding holes formed intermittently along the
Reference numeral 2 is a permanent magnet embedded in the permanent magnet embedding hole. In the present embodiment, the permanent magnet 2 is circumferentially divided and inserted into the permanent magnet embedding hole 18, so that the positioning member 20 or the like is not used to fix the permanent magnet 2 and the permanent magnets 2 are repulsed. The position is fixed by force. The flux barrier holes 4 are formed between the permanent magnets 2 generated by the repulsive force. Other configurations are the same as those of the sixth embodiment, and the development such as the permanent magnets having the plating specification or the platingless specification is the same as that of the sixth embodiment, and the description thereof will be omitted.
【0063】上述の構成によれば、実施の形態6と同様
の効果が得られ、さらに、永久磁石2の固定に永久磁石
固定部19等を構成しなくて良く、また、永久磁石2の
周方向の寸法を変えられるので、低コストで多仕様に対
応した高効率な永久磁石形回転電機を実現できる。According to the above configuration, the same effect as that of the sixth embodiment can be obtained, and further, the permanent magnet fixing portion 19 and the like need not be configured to fix the permanent magnet 2, and the circumference of the permanent magnet 2 can be obtained. Since the dimension in the direction can be changed, it is possible to realize a highly efficient permanent magnet type rotary electric machine that is compatible with multiple specifications at low cost.
【0064】実施の形態9.以下、この発明の実施の形
態9を図面を参照して説明する。図11は本発明の実施
の形態9を示す回転子の平面拡大断面図である。図11
において、11は永久磁石2とフラックスバリア孔4と
の間に設けられたブリッジである。その他の構成は実施
の形態6と同様で、さらに永久磁石をメッキ仕様または
メッキレス仕様にするなどの展開も実施の形態6と同様
であり、その説明を省略する。ブリッジ11の周方向の
幅は主にブリッジが永久磁石2の遠心力に耐えうる強さ
を持つことと、コアの打ち抜き技術から決まる。現在、
量産されている永久磁石形電動機の場合、最もブリッジ
の幅が小さいものは0.5mmで、120S-1まで回転させてい
る。ブリッジ11の形成について、永久磁石2を回転子
コア3表面付近に配置する場合、回転子コア打ち抜きは
技術的にコアの厚さと同じ0.35mm程度まで可能である。
一般的にブリッジは0.5mm〜2mm程度に設定される。Ninth Embodiment Embodiment 9 of the present invention will be described below with reference to the drawings. 11 is an enlarged plan sectional view of a rotor showing a ninth embodiment of the present invention. Figure 11
In the figure, 11 is a bridge provided between the permanent magnet 2 and the flux barrier hole 4. Other configurations are the same as those of the sixth embodiment, and the development such as the permanent magnets having the plating specification or the platingless specification is the same as that of the sixth embodiment, and the description thereof will be omitted. The circumferential width of the bridge 11 is mainly determined by the strength of the bridge to withstand the centrifugal force of the permanent magnet 2 and the core punching technique. Current,
In the case of mass-produced permanent magnet type motors, the one with the smallest bridge width is 0.5 mm and is rotated up to 120 S -1 . Regarding the formation of the bridge 11, when the permanent magnet 2 is arranged near the surface of the rotor core 3, the rotor core can be technically punched out up to about 0.35 mm, which is the same as the thickness of the core.
Generally, the bridge is set to about 0.5 mm to 2 mm.
【0065】図8に示す実施の形態6の形状は遠心力等
に耐えうる強度を有しているが、異常状況等を考慮した
場合、図8に比べ剛性の信頼性を向上させることができ
る。このような構成により90S-1以上の高回転まで駆動
する電動機において、高効率を維持し、永久磁石2およ
び回転子コア3の遠心力に耐えうる強固な回転子14を
実現することができる。上記構成により、上述した実施
の形態6と同様の効果が得られ、さらに、高回転まで駆
動可能で信頼性の高い高効率で低騒音な永久磁石形回転
電機を実現できる。The shape of the sixth embodiment shown in FIG. 8 is strong enough to withstand centrifugal force and the like, but in consideration of an abnormal situation, the reliability of rigidity can be improved as compared with FIG. . With such a configuration, it is possible to realize a strong rotor 14 that can maintain high efficiency and can withstand the centrifugal force of the permanent magnet 2 and the rotor core 3 in an electric motor that is driven up to a high rotation speed of 90 S -1 or more. With the above configuration, the same effects as those of the above-described sixth embodiment can be obtained, and further, it is possible to realize a highly reliable, highly efficient and low noise permanent magnet type rotating electric machine that can be driven up to high rotation.
【0066】実施の形態10.以下、この発明の実施の
形態10を図面を参照して説明する。図12は本発明の
実施の形態10を示す回転子の平面拡大断面図である。
図12において、18は回転子14の回転方向(回転子
コア3の周方向)に沿って断続的に形成した永久磁石埋
込孔、2は永久磁石埋込孔に埋め込まれた永久磁石であ
る。本実施の形態では、永久磁石2の磁束が回転子コア
3内で短絡しないよう、隣り合う永久磁石埋込孔18と
永久磁石埋込孔18との間の距離を最短部で0.25mm〜1m
mと小さくし、且つ隣り合う永久磁石埋込孔18端部の
エッジを丸めた形状にしている。Tenth Embodiment Embodiment 10 of the present invention will be described below with reference to the drawings. FIG. 12 is an enlarged plan sectional view of a rotor showing a tenth embodiment of the present invention.
In FIG. 12, 18 is a permanent magnet embedding hole that is intermittently formed along the rotation direction of the rotor 14 (the circumferential direction of the rotor core 3), and 2 is a permanent magnet embedded in the permanent magnet embedding hole. . In the present embodiment, in order to prevent the magnetic flux of the permanent magnet 2 from being short-circuited in the rotor core 3, the distance between the adjacent permanent magnet embedding holes 18 is set to be 0.25 mm to 1 m at the shortest part.
It is made as small as m, and the edges of the adjacent permanent magnet embedding holes 18 are rounded.
【0067】そして、永久磁石2を永久磁石埋込孔18
の周方向中央に、3分の2くらいの幅にわたって挿入
し、永久磁石埋込孔18の周方向両側に連続して形成さ
れた空隙部分をフラックスバリア孔4としたものであ
る。尚、磁石が周方向へ移動するのを規制するため、フ
ラックスバリア孔4の内周面および外周面が永久磁石埋
込孔18の内周面および外周面よりも若干遠心方向にず
れている。その他の構成は実施の形態6と同様であり、
さらに永久磁石をメッキ仕様またはメッキレス仕様にす
るなどの展開も実施の形態6と同様であり、その説明を
省略する。高回転まで駆動する電動機において、永久磁
石埋込孔18のエッジを丸めることにより、エッジに応
力集中することを防止でき、永久磁石2および回転子コ
ア3の遠心力に耐えうる回転子コア3の強度を増加さ
せ、磁束の流れを滑らかにし鉄損増加を抑制する。Then, the permanent magnet 2 is inserted into the permanent magnet embedding hole 18
The flux barrier hole 4 is a void portion which is inserted into the center in the circumferential direction over a width of about two-thirds and is continuously formed on both sides in the circumferential direction of the permanent magnet embedding hole 18. Since the magnet is restricted from moving in the circumferential direction, the inner and outer peripheral surfaces of the flux barrier hole 4 are slightly displaced from the inner and outer peripheral surfaces of the permanent magnet embedding hole 18 in the centrifugal direction. Other configurations are similar to those of the sixth embodiment,
Further, the expansion of the permanent magnet to the plating specification or the platingless specification is the same as in the sixth embodiment, and the description thereof will be omitted. By rounding the edges of the permanent magnet embedding holes 18 in an electric motor driven to a high speed, it is possible to prevent stress concentration on the edges and to prevent the rotor core 3 from withstanding the centrifugal force of the permanent magnets 2 and the rotor core 3. Increases strength, smoothes the flow of magnetic flux and suppresses iron loss increase.
【0068】上述の構成によれば、実施の形態6と同様
の効果が得られ、さらに、コア強度を増加させ高効率な
信頼性の高い永久磁石形回転電機を実現できる。According to the above-mentioned structure, the same effect as that of the sixth embodiment can be obtained, and further, the core strength can be increased and a highly efficient and highly reliable permanent magnet type rotating electric machine can be realized.
【0069】実施の形態11.以下、この発明の実施の
形態11を図面を参照して説明する。図13は本発明の
実施の形態11を示す回転子の平面拡大断面図である。
図13において、2は回転子コア3表面付近に配置さ
れ、極配置を遠心方向に同じにして周方向に分割した永
久磁石で、本実施の形態では2つ毎に極配置を逆にして
いる。11は極配置が同極および異極となる永久磁石2
間に設けられたブリッジである。その他の構成は実施の
形態7と同様であり、さらに永久磁石をメッキ仕様また
はメッキレス仕様にするなどの展開も実施の形態7と同
様であり、その説明を省略する。Eleventh Embodiment Embodiment 11 of the present invention will be described below with reference to the drawings. 13 is an enlarged plan sectional view of a rotor showing an eleventh embodiment of the present invention.
In FIG. 13, reference numeral 2 denotes a permanent magnet which is arranged near the surface of the rotor core 3 and is divided in the circumferential direction with the same pole arrangement in the centrifugal direction. In the present embodiment, the pole arrangement is reversed every two poles. . Reference numeral 11 is a permanent magnet 2 whose pole arrangement is the same pole or different poles.
It is a bridge between them. Other configurations are the same as those in the seventh embodiment, and the development such as the permanent magnet having the plating specification or the platingless specification is the same as that of the seventh embodiment, and the description thereof will be omitted.
【0070】上記のような構成により、極配置が同じ永
久磁石2間にブリッジ11を設けたので、回転子14の
剛性が向上する。この結果、90S-1以上の高回転まで駆
動する電動機において、低騒音、低振動を可能とし、永
久磁石2および回転子コア3の遠心力に耐えうる強固な
回転子14を実現することができる。上述の構成によれ
ば、高回転まで駆動可能で信頼性が高く、低騒音、低振
動で高効率な永久磁石形回転電機を実現できる。With the above structure, the bridge 11 is provided between the permanent magnets 2 having the same pole arrangement, so that the rigidity of the rotor 14 is improved. As a result, it is possible to realize a strong rotor 14 capable of withstanding the centrifugal force of the permanent magnet 2 and the rotor core 3 while enabling low noise and low vibration in an electric motor driven to a high rotation speed of 90 S -1 or higher. . According to the above configuration, it is possible to realize a highly reliable permanent magnet type rotary electric machine that can be driven up to a high rotation speed and has high reliability, low noise and low vibration.
【0071】実施の形態12.以下、この発明の実施の
形態12を図面を参照して説明する。図14は本発明の
実施の形態12を示す回転子の平面拡大断面図である。
本実施の形態は永久磁石に希土類磁石を用いた6極DC
ブラシレスモータに関し、回転子コアに埋め込む永久磁
石の位置を規定したものである。回転子の構造は図9に
示す実施の形態7と同様であり、その説明を省略する。
尚、回転子形状は実施の形態7に限定されない。Twelfth Embodiment Embodiment 12 of the present invention will be described below with reference to the drawings. 14 is an enlarged plan sectional view of a rotor showing a twelfth embodiment of the present invention.
This embodiment is a 6-pole DC using a rare earth magnet as a permanent magnet.
With respect to the brushless motor, the position of the permanent magnet embedded in the rotor core is defined. Since the structure of the rotor is the same as that of the seventh embodiment shown in FIG. 9, the description thereof will be omitted.
The rotor shape is not limited to the seventh embodiment.
【0072】図15は永久磁石体積を一定、コイルの巻
数、電流値を一定とした条件での永久磁石2の位置αと
平均トルクとの関係を示す相関図である。ここでαは
α=(ロータ外径から永久磁石までの距離l)/(ロー
タ外径r)2×100
である。このようなαについて、α=0.4くらいまでは
その値が大きくなるに従って平均トルクが増大し、そこ
からαが大きくなるに従って平均トルクが減少してい
く。そしてα=0.6くらいでα=0.03くらいの場合とほ
ぼ等しい値まで平均トルクが減少する。ここでα≒0.03
は回転子コア表面付近に周面形状に沿った瓦形永久磁石
を配置した場合の値である。即ち、α≦0.6となるよう
にすれば、永久磁石2が平板磁石であっても瓦形永久磁
石を配置した場合と同様な平均トルクの回転子とするこ
とができ、平板磁石をα≦0.6の条件を満たす程度の長
さで周方向に分割してやれば、モータ効率が高い電動機
を実現できる。FIG. 15 is a correlation diagram showing the relationship between the position α of the permanent magnet 2 and the average torque under the conditions where the volume of the permanent magnet is constant, the number of turns of the coil, and the current value are constant. Here, α is α = (distance 1 from rotor outer diameter to permanent magnet) / (rotor outer diameter r) 2 × 100. For such α, the average torque increases as α increases until α = 0.4, and the average torque decreases as α increases. Then, at α = 0.6, the average torque decreases to a value almost equal to that at α = 0.03. Where α ≈ 0.03
Is a value when roof tile-shaped permanent magnets are arranged along the peripheral shape near the surface of the rotor core. That is, if α ≦ 0.6, even if the permanent magnet 2 is a flat plate magnet, a rotor having an average torque similar to the case where the tile-shaped permanent magnets are arranged can be obtained, and the flat plate magnet can be set to α ≦ 0.6. If the motor is divided in the circumferential direction with a length that satisfies the condition (1), an electric motor with high motor efficiency can be realized.
【0073】本実施の形態では回転子コア3に鉄損が比
較的小さい高透磁率の無方向性珪素鋼板を使用し、無方
向性珪素鋼板の板厚は0.25mm〜0.5mmにしている。尚、
方向性または2方向性珪素鋼板を使用しても良い。永久
磁石2は外部で着磁し、その後、回転子コア3に挿入し
ても良いし、回転子コア3に未着磁の永久磁石を挿入
後、回転子ごと着磁を行っても良い。上述の構成によれ
ば、高効率で低コストなコストパフォーマンスに優れた
永久磁石形回転電機を実現できる。In the present embodiment, a non-oriented silicon steel sheet of high magnetic permeability having a relatively small iron loss is used for the rotor core 3, and the thickness of the non-oriented silicon steel sheet is set to 0.25 mm to 0.5 mm. still,
A grain-oriented or bi-directional silicon steel sheet may be used. The permanent magnet 2 may be magnetized outside and then inserted into the rotor core 3, or after the unmagnetized permanent magnet is inserted into the rotor core 3, the rotor may be magnetized together. According to the above configuration, it is possible to realize a permanent magnet type rotating electric machine that is highly efficient, low cost, and excellent in cost performance.
【0074】実施の形態13.以下、この発明の実施の
形態13を図面を参照して説明する。図16は本発明の
実施の形態13を示す回転子の平面拡大断面図である。
図16において、永久磁石埋込孔18は端部が遠心方向
を向いたフラックスバリア孔4を形成し、端面が回転子
コア3表面とで薄肉部3aを形成している。そして、薄
肉部3aで永久磁石2の磁束の短絡を抑制しつつ、遠心
方向に対する極配置が逆の永久磁石が埋め込まれた隣り
合う永久磁石埋込孔18間の距離を広げ、この部分のq
軸(磁束と垂直な方向)の磁束の通りを良くし、リラク
タンストルクを増加させ、モータ効率を向上させてい
る。この永久磁石埋込孔18間の距離は永久磁石2の遠
心方向厚さ以上に設定され、一般には0.35mm〜2mmであ
る。Thirteenth Embodiment The thirteenth embodiment of the present invention will be described below with reference to the drawings. 16 is an enlarged plan sectional view of a rotor showing a thirteenth embodiment of the present invention.
In FIG. 16, the permanent magnet embedding hole 18 forms a flux barrier hole 4 whose end faces the centrifugal direction, and the end face forms a thin portion 3 a with the surface of the rotor core 3. Then, while suppressing the short circuit of the magnetic flux of the permanent magnet 2 in the thin portion 3a, the distance between the adjacent permanent magnet embedding holes 18 in which the permanent magnets having the opposite pole arrangement with respect to the centrifugal direction are embedded is widened, and q of this portion is increased.
It improves the flow of magnetic flux along the axis (direction perpendicular to the magnetic flux), increases reluctance torque, and improves motor efficiency. The distance between the permanent magnet embedding holes 18 is set to be equal to or greater than the thickness of the permanent magnet 2 in the centrifugal direction, and is generally 0.35 mm to 2 mm.
【0075】一般的にトルクTは数式1で表される。 T=Pn{Ψa+(Ld−Lq)id}iq ・・・ (式1) Pn:極対数 Ψa:永久磁石による磁束 Ld、Lq:d軸(磁束方向)、q軸インダクタンス id、iq:モータ電流のd軸、q軸成分Generally, the torque T is expressed by the equation 1. T = Pn {Ψa + (Ld−Lq) id} iq (Equation 1) Pn: number of pole pairs Ψa: Magnetic flux from a permanent magnet Ld, Lq: d-axis (magnetic flux direction), q-axis inductance id, iq: d-axis and q-axis components of motor current
【0076】式1より、d軸方向の磁気通路には永久磁
石2が存在するためLd<Lqとなり、iqを負とする
ことで、トルクを大きくできる。ここで、q軸方向の磁
気通路は回転子コア3の外径側のみであるため、q軸方
向の磁束は磁気飽和しやすい。そこで、磁束の短絡を抑
制する薄肉部を構成しつつ、隣り合う永久磁石埋込孔1
8と永久磁石埋込孔18との距離を広げ、q軸の磁束の
通りを良くし、磁気飽和を避けることにより、トルクを
向上させる。また、磁束の短絡を抑制する薄肉部は、ス
リット等で磁束の短絡を抑制する構造としても良い。From the equation (1), since the permanent magnet 2 exists in the magnetic path in the d-axis direction, Ld <Lq holds. By making iq negative, the torque can be increased. Here, since the magnetic path in the q-axis direction is only on the outer diameter side of the rotor core 3, the magnetic flux in the q-axis direction is easily magnetically saturated. Therefore, adjacent permanent magnet embedding holes 1 are formed while forming a thin portion that suppresses a short circuit of magnetic flux.
The torque is improved by increasing the distance between the permanent magnet 8 and the permanent magnet embedding hole 18, improving the flow of the q-axis magnetic flux, and avoiding magnetic saturation. Further, the thin portion that suppresses the short circuit of the magnetic flux may have a structure that suppresses the short circuit of the magnetic flux with a slit or the like.
【0077】上述の構成によれば、回転子強度を確保
し、低騒音、低振動で高効率な永久磁石形回転電機を実
現できる。According to the above construction, it is possible to realize a permanent magnet type rotary electric machine which secures rotor strength, has low noise and low vibration, and is highly efficient.
【0078】実施の形態14.以下、この発明の実施の
形態14を図面を参照して説明する。図17は本発明の
実施の形態14を示す固定子の側面図である。図17に
おいて、6は銅棒で、一側が開放したU字状部材6a
と、U字状部材6aの二つの端部に連結されるI字状部
材6bとから成り、これらが連結されることでO字状に
なる。U字状部材6aとI字状部材6bとの連結面の一
方にはそれぞれ絶縁部6c、6dが形成されている。そ
して、結線の一方をU字状部材6aに接続し、他方をI
字状部材6bに接続する。このようにして構成された銅
棒6がコイルに相当する。7は固定子コアで、図21に
示す断面形状と同様である。その他の固定子の構成は図
21と同様であり、また、回転子の構成は上述した実施
の形態1乃至14の何れかの構成のものが用いられてい
るため、その説明を省略する。回転子は従来周知の構成
でも良い。Fourteenth Embodiment Hereinafter, a fourteenth embodiment of the present invention will be described with reference to the drawings. 17 is a side view of a stator showing a fourteenth embodiment of the present invention. In FIG. 17, 6 is a copper rod, which is a U-shaped member 6a whose one side is open.
And an I-shaped member 6b connected to two ends of the U-shaped member 6a, and by connecting them, an O-shaped member is formed. Insulating portions 6c and 6d are formed on one of the connecting surfaces of the U-shaped member 6a and the I-shaped member 6b, respectively. Then, one of the wirings is connected to the U-shaped member 6a, and the other is I
It is connected to the character-shaped member 6b. The copper rod 6 thus configured corresponds to a coil. Reference numeral 7 denotes a stator core, which has the same sectional shape as that shown in FIG. Other configurations of the stator are the same as those in FIG. 21, and the configuration of the rotor is the configuration of any one of the above-described first to fourteenth embodiments, and the description thereof will be omitted. The rotor may have a conventionally known configuration.
【0079】銅棒6の組み付けに際しては、U字状部材
6aの平行な棒状部分がティース13を挟むようにスロ
ット17を通し、次にI字状部材6bを圧着、半田付
け、カシメ、溶接等所定の方法でU字状b卯材6aの二
つの端部に圧着、半田付け、カシメ、溶接等所定の方法
でそれぞれ連結することによりO字状に構成される。連
結の際、絶縁部6cと6dを一致させて当該連結部分を
絶縁状態にし、他方の連結部分を導通状態にする。そし
て、結線の一方をU字状部材6aの絶縁部6c付近に接
続し、他方をI字状部材6bの絶縁部6d付近に接続す
ることで、電流の入口と出口とがそれぞれU字状部材6
aとI字状部材6bとに振り分けられる。図17でU字
状部材6aとI字状部材6bとの連結方向は上下方向で
あり、U字状部材6aとティース13との密着方向とは
垂直方向であるため、U字状部材6aとI字状部材6b
との連結度合いによって密着力が大きく変化することが
ない。When the copper rod 6 is assembled, the parallel rod portions of the U-shaped member 6a pass through the slots 17 so that the teeth 13 are sandwiched, and then the I-shaped member 6b is crimped, soldered, crimped, welded, etc. The two ends of the U-shaped b-shaped material 6a are connected to each other by a predetermined method such as pressure bonding, soldering, caulking, and welding to form an O-shape. At the time of connection, the insulating portions 6c and 6d are aligned with each other to bring the connected portion into an insulating state and the other connecting portion into a conductive state. Then, by connecting one of the wirings to the vicinity of the insulating portion 6c of the U-shaped member 6a and connecting the other to the vicinity of the insulating portion 6d of the I-shaped member 6b, the current inlet and outlet are respectively U-shaped members. 6
a and the I-shaped member 6b. In FIG. 17, the connecting direction between the U-shaped member 6a and the I-shaped member 6b is the vertical direction, and the contact direction between the U-shaped member 6a and the teeth 13 is the vertical direction. I-shaped member 6b
Adhesion does not change significantly depending on the degree of connection with.
【0080】このような銅棒6の構成および固定子7の
製造方法により、固定子7の製造工程を簡素化し生産性
の向上、低コスト化を図ることができる。また、コイル
占積率向上により銅損を低減しモータ効率を向上させる
ことができる。本実施の形態ではコイル占有率をほぼ1
00%にまで向上させている。尚、銅棒6は平形状と
し、径方向に絶縁積層しても良い。また、銅棒は一つ一
つのティースにコイルを巻く集中巻および複数のティー
スを跨いでコイルを巻く分布巻の何れにも適用可能であ
る。上述の構成によれば、製造工程を簡素化し自動化、
生産性の向上、低コスト化が可能で、高効率な回転電機
を実現できる。With the configuration of the copper rod 6 and the manufacturing method of the stator 7 as described above, the manufacturing process of the stator 7 can be simplified, and the productivity can be improved and the cost can be reduced. Further, by improving the coil space factor, copper loss can be reduced and motor efficiency can be improved. In the present embodiment, the coil occupancy rate is almost 1
It has been improved to 00%. The copper rod 6 may be flat and may be laminated insulatively in the radial direction. Further, the copper rod is applicable to both concentrated winding in which a coil is wound around each tooth and distributed winding in which a coil is wound over a plurality of teeth. According to the above configuration, the manufacturing process is simplified and automated,
A highly efficient rotating electric machine can be realized with improved productivity and cost reduction.
【0081】実施の形態15.以下、この発明の実施の
形態15を図面を参照して説明する。図18は本発明の
実施の形態15を示す電動機の側面図である。図18に
おいて、14は上述した実施の形態1乃至13の何れか
の構成である回転子、15は固定子で、図21に示すも
のと同様な構造であり、回転子および固定子ともその詳
細な説明を省略する。固定子15は回転軸方向(図18
の上下方向)に複数に分割し、負荷、回転数等駆動条件
に応じて駆動する固定子を選択、制御可能に構成されて
いる。30は複数に分割された固定子15をそれぞれ独
立して選択、回転制御する制御回路である。また、本実
施の形態では軸方向について分割された固定子の単位で
回転子14の永久磁石が周方向にスキューを構成する。Fifteenth Embodiment The fifteenth embodiment of the present invention will be described below with reference to the drawings. Fifteenth Embodiment FIG. 18 is a side view of an electric motor showing a fifteenth embodiment of the present invention. In FIG. 18, 14 is a rotor having the configuration according to any of the above-described first to 13th embodiments, and 15 is a stator, which has the same structure as that shown in FIG. 21, and the details of both the rotor and the stator are shown. Description is omitted. The stator 15 is rotated in the rotation axis direction (see FIG.
It is configured so that a stator to be driven can be selected and controlled according to driving conditions such as load and rotation speed. Reference numeral 30 is a control circuit for independently selecting and rotating each of the plurality of divided stators 15. Further, in this embodiment, the permanent magnets of the rotor 14 form a skew in the circumferential direction in units of the stator divided in the axial direction.
【0082】固定子および回転子が一つの場合、負荷や
回転数等の駆動条件に応じて電流または電圧を制御する
ことができるが、効率の良いポイントは限られており、
運転範囲(回転数の範囲)を広くしようとすれば、効率
の悪い領域へ広げざるを得ない。上記構成では、固定子
15を回転軸方向に分割し、制御回路によってそれぞれ
が独立して選択、制御可能であるため、各固定子15に
ついての運転範囲を狭くしながら、トータルでは広い運
転範囲を確保できる。When the number of stators and rotors is one, the current or voltage can be controlled according to the driving conditions such as the load and the number of rotations, but the points of good efficiency are limited.
In order to widen the operating range (range of the number of revolutions), there is no choice but to expand to an inefficient area. In the above configuration, the stator 15 is divided in the rotation axis direction, and each can be independently selected and controlled by the control circuit. Therefore, while the operating range of each stator 15 is narrowed, the total operating range is wide. Can be secured.
【0083】即ち、負荷が小さいときには複数の固定子
15の一部を選択して駆動させることで、全ての固定子
に通電して駆動させる場合よりも一つ一つの固定子15
の通電量は大きくなる。負荷が大きいときは複数の固定
子15の全てに駆動させることで、一部の固定子に通電
して駆動させる場合よりも一つ一つの固定子15の通電
量は小さくなる。通電すべく選択する固定子15の数は
負荷と効率との関係を予め記憶させ、負荷検出をするこ
とで制御回路30が適宜行なえば良い。本実施の形態に
おける電動機は3相モータであったが、その他のモータ
でもよい。That is, by selecting and driving a part of the plurality of stators 15 when the load is small, each stator 15 can be driven as compared with the case where all the stators are energized and driven.
The energization amount of becomes large. When the load is large, by driving all of the plurality of stators 15, the energization amount of each of the stators 15 becomes smaller than that when a part of the stators is energized and driven. The number of the stators 15 selected to be energized may be appropriately stored in the control circuit 30 by previously storing the relationship between the load and the efficiency and detecting the load. Although the electric motor in this embodiment is a three-phase motor, other motors may be used.
【0084】上述の構成によれば、負荷、回転数等駆動
条件に応じて駆動する回転子を選択、制御するので、高
効率で運転範囲の広い永久卯磁石形回転電機を実現でき
る。また、回転子はスキューを構成できるので、低騒
音、低振動な永久卯磁石形回転電機を実現できる。尚、
永久磁石形の回転子でのスキューが製作上容易でない場
合には、固定子の方を段毎に周方向へずらしてスキュー
をつけても良い。According to the above-mentioned structure, the rotor to be driven is selected and controlled according to the driving conditions such as the load and the number of rotations, so that it is possible to realize a permanent magnet type rotary electric machine with high efficiency and a wide operating range. Further, since the rotor can form a skew, it is possible to realize a low-noise, low-vibration permanent-magnet-type rotating electric machine. still,
When the skew in the permanent magnet type rotor is not easy to manufacture, the stator may be shifted in the circumferential direction for each stage to add the skew.
【0085】実施の形態16.図19は上記実施の形態
1乃至13の何れかに記載された回転子と実施の形態1
4乃至15何れかに記載された固定子とを用いた電動機
を搭載した圧縮機を備えた冷凍サイクル装置を示す概念
図である。図19において、21は電動機で、インバー
タ主回路22によってインバータ駆動される3相モータ
である。23は電動機21により駆動される圧縮機、3
0はインバータ22を通じて電動機21を制御する制御
回路である。Sixteenth Embodiment FIG. 19 shows a rotor according to any one of the first to thirteenth embodiments and the first embodiment.
It is a conceptual diagram which shows the refrigerating-cycle apparatus provided with the compressor which mounts the electric motor using the stator described in any one of 4 thru | or 15. In FIG. 19, reference numeral 21 denotes an electric motor, which is a three-phase motor driven by an inverter by a main inverter circuit 22. 23 is a compressor driven by the electric motor 21;
Reference numeral 0 is a control circuit that controls the electric motor 21 through the inverter 22.
【0086】この圧縮機23は一般に用いられる冷凍サ
イクル(圧縮機23→四方弁25→凝縮器26又は蒸発
器28→絞り装置27→蒸発器28又は凝縮器26→四
方弁25→圧縮機23の順に冷媒配管29で順次接続さ
れた冷凍サイクル)中に組み込まれ、冷媒としてはR1
34a、R410a、R407c等に代表されるHFC
系冷媒が、冷凍機油としてはアルキルベンゼン系油に代
表される弱相溶性の油又はエステル油に代表される相溶
性の油が使用される。圧縮機はレシプロ、ロータリ、ス
クリュー式などが使用可能である。圧縮機23に組み込
まれた電動機21は外気と遮断され、酸化の心配は無い
が、冷媒が充填されているため、耐冷媒性の仕様とする
必要がある。This compressor 23 is a refrigerating cycle generally used (compressor 23 → four-way valve 25 → condenser 26 or evaporator 28 → throttle device 27 → evaporator 28 or condenser 26 → four-way valve 25 → compressor 23 Refrigeration cycle sequentially connected by the refrigerant pipe 29), and the refrigerant is R1.
HFC represented by 34a, R410a, R407c, etc.
As the refrigerating machine oil, a weakly compatible oil represented by alkylbenzene series oil or a compatible oil represented by ester oil is used as the refrigeration oil. A reciprocating, rotary, screw type compressor can be used as the compressor. The electric motor 21 incorporated in the compressor 23 is shielded from the outside air and there is no fear of oxidation, but since it is filled with a refrigerant, it is necessary to have a refrigerant resistance specification.
【0087】上記のように構成された圧縮機では、駆動
用の電動機21が動力性能、制御性を向上させ、高効率
化、低騒音化を実現している。インバータ駆動による圧
縮機では各周波数毎に入力と効率の最適値が変動する
が、本実施の形態の圧縮機23では、インバータ駆動に
よる広い圧縮機周波数範囲にわたって高効率化が図られ
るため、全体的に効率を上げることが可能になる。ま
た、低振動・低騒音化、周波数範囲を広げることができ
るので、圧縮機23の利用価値を高められる。さらに、
R410aなどの様な従来のR22に対して高圧な冷媒
を用いた場合、冷凍サイクル起動時等の高圧状態となる
時間を短くできるので、冷凍サイクルの信頼性を向上さ
せることができる。In the compressor constructed as described above, the driving electric motor 21 improves power performance and controllability, and realizes high efficiency and low noise. In the inverter driven compressor, the optimum values of the input and the efficiency fluctuate for each frequency. However, in the compressor 23 of the present embodiment, the efficiency is improved over a wide compressor frequency range driven by the inverter. It is possible to improve efficiency. Further, since the vibration and noise can be reduced and the frequency range can be widened, the utility value of the compressor 23 can be enhanced. further,
When a refrigerant having a higher pressure than that of the conventional R22 such as R410a is used, it is possible to shorten the time in which the refrigerant is in a high pressure state at the time of starting the refrigeration cycle, so that the reliability of the refrigeration cycle can be improved.
【0088】[0088]
【発明の効果】以上のように、この発明によれば、永久
磁石形回転電機の回転子において、永久磁石をメッキレ
スにしたので、永久磁石の磁束量の減少を抑え、低コス
トで高効率な永久磁石形回転電機を実現できる。また、
電動機として利用した場合、発熱を抑えることができ、
永久磁石の減磁を防止した信頼性の高い電動機を実現で
きる。さらに、メッキを施さないため、リサイクル性が
良い。As described above, according to the present invention, in the rotor of the permanent magnet type rotary electric machine, the permanent magnets are plated-less, so that the reduction of the magnetic flux amount of the permanent magnets is suppressed, the cost is low and the efficiency is high. A permanent magnet type rotating electric machine can be realized. Also,
When used as an electric motor, heat generation can be suppressed,
It is possible to realize a highly reliable electric motor that prevents demagnetization of the permanent magnet. Furthermore, since it is not plated, it has good recyclability.
【0089】また、中央を回転軸が貫通した円柱状の回
転子コアと、この回転子コアに軸方向端部が開口部とな
るよう形成された永久磁石埋込孔と、この永久磁石埋込
孔に挿入されたメッキレス永久磁石と、前記開口部を閉
塞し、永久磁石埋込孔を気密状態に保持する端板とを備
えたので、永久磁石に表面処理を施さなくても組み付け
後の性能劣化を防止できる。Further, a cylindrical rotor core having a rotary shaft passing through the center thereof, a permanent magnet embedding hole formed in the rotor core so that an end portion in the axial direction is an opening, and the permanent magnet embedding Since the platingless permanent magnet inserted into the hole and the end plate that closes the opening and keeps the permanent magnet embedding hole airtight, the performance after assembly without surface treatment of the permanent magnet is provided. Deterioration can be prevented.
【0090】また、酸化防止状態に封印された容器を開
封してメッキレス永久磁石を取り出すステップと、回転
子コアに形成された永久磁石埋込孔に前記メッキレス永
久磁石を挿入するステップと、挿入後永久磁石埋込孔を
気密状態に閉塞するステップとを備え、これら各ステッ
プをメッキレス永久磁石の酸化を防止または鈍化させる
温湿度環境下にて行なうので、永久磁石に表面処理を施
さなくても組み付け後の性能劣化を防止できる。Further, the steps of unsealing the container sealed in the antioxidant state and taking out the platingless permanent magnet, the step of inserting the platingless permanent magnet into the permanent magnet embedding hole formed in the rotor core, and Steps for closing the permanent magnet embedding hole in an airtight state are performed.Each step is performed in a temperature and humidity environment that prevents or slows down the oxidation of the platingless permanent magnet, so that the permanent magnet can be assembled without surface treatment. It is possible to prevent later performance deterioration.
【0091】また、酸化防止状態に封印された容器を開
封してメッキレス永久磁石を取り出すステップと、回転
子コアに形成された永久磁石埋込孔に前記メッキレス永
久磁石を挿入するステップと、挿入後メッキレス永久磁
石を外気から遮断するステップとを備え、これら各ステ
ップをメッキレス永久磁石の酸化を防止または鈍化させ
る温湿度環境下にて行なうので、永久磁石に表面処理を
施さなくても組み付け後の外気による性能劣化を防止で
きる。In addition, the step of opening the container sealed in the antioxidant state and taking out the platingless permanent magnet, the step of inserting the platingless permanent magnet into the permanent magnet embedding hole formed in the rotor core, and The step of shutting off the platingless permanent magnet from the outside air is performed, and since each of these steps is performed in a temperature and humidity environment that prevents or slows down the oxidation of the platingless permanent magnet, the outside air after assembling is not required even if the permanent magnet is not surface-treated. The performance deterioration due to can be prevented.
【0092】また、永久磁石を分割して回転子コア内に
埋め込む又は永久磁石を回転子コアの表面付近に配置し
た永久磁石形回転電機の回転子において、分割した永久
磁石同士又は永久磁石と端板とを絶縁したので、永久磁
石の渦電流を抑制し、簡単に低コストで高効率な回転電
機を実現できる。また、電動機として利用した場合、発
熱を抑えることができ、永久磁石の減磁を防止した信頼
性の高い永久磁石形電動機を実現できる。Further, in a rotor of a permanent magnet type rotary electric machine in which permanent magnets are divided and embedded in the rotor core or the permanent magnets are arranged near the surface of the rotor core, the divided permanent magnets or the end portions of the permanent magnets are separated from each other. Since it is insulated from the plate, the eddy current of the permanent magnet is suppressed, and it is possible to easily realize a highly efficient rotary electric machine at low cost. When used as an electric motor, heat generation can be suppressed, and a highly reliable permanent magnet type electric motor that prevents demagnetization of the permanent magnet can be realized.
【0093】また、永久磁石を分割して回転子コア内に
埋め込む又は永久磁石を回転子コアの表面付近に配置し
た永久磁石形回転電機の回転子において、永久磁石と回
転子コアを絶縁したので、永久磁石の渦電流を抑制し、
低コストで高効率な回転電機を実現できる。また、電動
機として利用した場合、発熱を抑えることができ、永久
磁石の減磁を防止した信頼性の高い永久磁石形電動機を
実現できる。In a rotor of a permanent magnet type rotary electric machine in which the permanent magnet is divided and embedded in the rotor core or the permanent magnet is arranged near the surface of the rotor core, the permanent magnet and the rotor core are insulated. , Suppress the eddy current of the permanent magnet,
A highly efficient rotary electric machine can be realized at low cost. When used as an electric motor, heat generation can be suppressed, and a highly reliable permanent magnet type electric motor that prevents demagnetization of the permanent magnet can be realized.
【0094】また、円弧形状の永久磁石を回転子コア表
面付近に配置すると共に前記永久磁石の磁化方向をラジ
アル方向にしたので、コストを上げることなく高効率で
低騒音、低振動さらに制御性の良い永久磁石形回転電機
を実現できる。Further, since the arc-shaped permanent magnets are arranged near the rotor core surface and the permanent magnets are magnetized in the radial direction, high efficiency, low noise, low vibration and controllability can be achieved without increasing the cost. A good permanent magnet type rotary electric machine can be realized.
【0095】また、回転子の回転方向に沿って連続的ま
たは断続的に屈曲形成した永久磁石埋込孔と、この永久
磁石埋込孔の屈曲部分を挟んで極配置を遠心方向に同じ
にして複数枚埋め込まれ、擬似的にラジアル配向とした
平板上の永久磁石とを備えたので、低コストで高効率、
低騒音・低振動、さらに制御性の良い永久磁石形回転電
機を実現できる。Further, the permanent magnet embedding hole which is continuously or intermittently bent and formed along the rotation direction of the rotor and the pole arrangement is the same in the centrifugal direction with the bent portion of the permanent magnet embedding hole sandwiched. Since it is equipped with multiple permanent magnets on a flat plate that are embedded in a pseudo-radial orientation, low cost and high efficiency,
It is possible to realize a permanent magnet type rotary electric machine that has low noise and vibration and good controllability.
【0096】また、回転子の回転方向に沿って断続的に
形成された永久磁石埋込孔と、この永久磁石埋込孔にフ
ラックスバリア孔を残して埋め込まれた永久磁石とを備
えたので、低コストで高効率、運転範囲の広範囲な永久
磁石形回転電機を提供できる。また、減磁の起こり易い
部分には、永久磁石を挿入せず、減磁を避けることがで
きる。Since the permanent magnet embedding hole which is intermittently formed along the rotation direction of the rotor and the permanent magnet which is embedded in the permanent magnet embedding hole leaving the flux barrier hole, are provided. It is possible to provide a permanent magnet type rotary electric machine having a low cost, high efficiency, and a wide operating range. Further, the permanent magnet is not inserted in a portion where demagnetization is likely to occur, so that demagnetization can be avoided.
【0097】また、フラックスバリア孔に非磁性かつ非
導電性材料からなる永久磁石の位置決め部材を備えたの
で、低コストで高効率、運転範囲の広範囲な永久磁石形
回転電機を提供できる。さらに、永久磁石の周方向の寸
法を変えられるので、減磁を避けることができ、様々な
機種に対応した高効率な永久磁石形回転電機を実現でき
る。Further, since the flux barrier hole is provided with a permanent magnet positioning member made of a non-magnetic and non-conductive material, it is possible to provide a low-cost, high-efficiency, permanent magnet type rotary electric machine having a wide operating range. Furthermore, since the circumferential dimension of the permanent magnet can be changed, demagnetization can be avoided, and a highly efficient permanent magnet type rotary electric machine compatible with various models can be realized.
【0098】また、永久磁石埋込孔内に磁石の反発力に
よって互いに離間する複数の永久磁石を備えたので、低
コストで高効率、運転範囲の広範囲な永久磁石形回転電
機を提供できる。さらに、永久磁石の周方向の寸法を容
易に変えられるので、減磁を避けることができ、様々な
機種に対応した高効率な永久磁石形回転電機を実現でき
る。また、リサイクル性がよい。Further, since a plurality of permanent magnets separated from each other by the repulsive force of the magnets are provided in the permanent magnet embedding holes, it is possible to provide a low cost, high efficiency, and permanent magnet type rotary electric machine having a wide operating range. Further, since the circumferential dimension of the permanent magnet can be easily changed, demagnetization can be avoided, and a highly efficient permanent magnet type rotary electric machine corresponding to various models can be realized. It also has good recyclability.
【0099】また、フラックスバリア孔と永久磁石間に
ブリッジを構成したので、低コストで高回転まで駆動可
能で信頼性の高い高効率で低騒音、低振動な永久磁石形
回転電機を実現できる。Further, since the bridge is formed between the flux barrier hole and the permanent magnet, it is possible to realize a highly reliable, highly efficient, low noise, low vibration permanent magnet type rotating electric machine that can be driven at high cost and at low cost.
【0100】また、永久磁石埋込孔端部のエッジを丸め
フラックスバリア孔を形成したので、コア強度を増加さ
せ、また、磁束の流れを滑らかにし、低コストで高効率
かつ信頼性の高い永久磁石形回転電機を実現できる。Further, since the end of the permanent magnet embedding hole is rounded to form the flux barrier hole, the core strength is increased and the flow of the magnetic flux is smoothed, so that the permanent magnet of low cost, high efficiency and high reliability can be obtained. A magnet type rotating electric machine can be realized.
【0101】また、極配置を遠心方向に同じにして周方
向に隣り合う永久磁石同士の間にブリッジを構成したの
で、、高回転まで駆動可能で信頼性が高く、低騒音、低
振動で高効率な永久磁石形回転電機を実現できる。Further, since the poles are arranged in the same direction in the centrifugal direction and a bridge is formed between the permanent magnets adjacent to each other in the circumferential direction, it is possible to drive up to a high rotation speed and have high reliability, low noise and low vibration. An efficient permanent magnet type rotary electric machine can be realized.
【0102】また、永久磁石に希土類磁石を用い、6極
のDCブラシレス電動機の回転子において、永久磁石を
埋め込む位置を、α=ロータ外径から永久磁石までの距
離/(ロータ外径)2×100とすると、α≦0.6と
なる位置に構成したので、高効率で低コストなコストパ
フォーマンスに優れた回転電機を実現できる。In a rotor of a 6-pole DC brushless motor using a rare earth magnet as the permanent magnet, the position where the permanent magnet is embedded is expressed by α = distance from rotor outer diameter to permanent magnet / (rotor outer diameter) 2 × When it is set to 100, since the configuration is such that α ≦ 0.6, it is possible to realize a rotary electric machine that is highly efficient, low cost, and excellent in cost performance.
【0103】また、永久磁石による磁束の短絡を抑制す
る薄肉部またはフラックスバリア孔を構成し、q軸の磁
束が通る異極の永久磁石間の距離を永久磁石の厚さ以上
にしたので、リラクタンストルクを増加させ、回転子強
度を確保しつつ、低騒音、低振動で高効率な回転電機を
実現できる。Further, the thin portion or the flux barrier hole for suppressing the short circuit of the magnetic flux due to the permanent magnet is formed, and the distance between the permanent magnets of different poles through which the q-axis magnetic flux passes is set to be equal to or more than the thickness of the permanent magnet. It is possible to realize a highly efficient rotary electric machine with low noise and low vibration while increasing torque and ensuring rotor strength.
【0104】また、永久磁石形回転電機の固定子におい
て、コイルを銅棒等の分割した棒により構成したので、
製造工程を簡素化し自動化、生産性の向上、低コスト化
が可能である。また、高効率な回転電機を実現できる。Further, in the stator of the permanent magnet type rotary electric machine, since the coil is constituted by the divided rods such as copper rods,
It is possible to simplify the manufacturing process, automate it, improve productivity, and reduce costs. Moreover, a highly efficient rotating electric machine can be realized.
【0105】また、電動機の固定子において、回転子の
回転軸方向に複数に分割し、制御回路によってそれぞれ
を独立して選択、制御されるので、高効率で運転範囲の
広い電動機を実現できる。また、スキューを構成できる
ので、低騒音、低振動な電動機を実現できる。Further, in the stator of the electric motor, the electric motor is divided into a plurality of parts in the rotational axis direction of the rotor, and each is independently selected and controlled by the control circuit, so that the electric motor with high efficiency and wide operating range can be realized. Further, since the skew can be configured, it is possible to realize an electric motor with low noise and low vibration.
【0106】また、電動機として上記何れか記載の回転
子および上記何れか記載の固定子を備えたので、低コス
トで、高効率、制御性の良い、騒音の低減が可能な電動
機を実現できる。Further, since the rotor according to any one of the above and the stator according to any one of the above is provided as the electric motor, it is possible to realize an electric motor that is low in cost, high in efficiency, good in controllability, and capable of reducing noise.
【0107】また、上記電動機を圧縮機駆動用電動機と
したので、運転領域が広範囲で、高効率、制御性の良
い、騒音の低減が可能な圧縮機を実現できる。また、装
置が簡単となりコスト削減ができる。Further, since the electric motor is a compressor driving electric motor, it is possible to realize a compressor having a wide operating range, high efficiency, good controllability, and noise reduction. In addition, the device is simple and the cost can be reduced.
【0108】また、圧縮機、凝縮器、絞り装置、蒸発器
を備え、これらを冷媒配管で接続した冷凍サイクル装置
において、上記圧縮機を備えたので、高効率、低騒音な
冷凍サイクルを実現できる。Further, in the refrigeration cycle apparatus including the compressor, the condenser, the expansion device, and the evaporator, which are connected by the refrigerant pipe, the above-mentioned compressor is provided, so that the refrigeration cycle with high efficiency and low noise can be realized. .
【図1】 この発明の実施の形態1による回転子の(a)
平面断面図、(b)側面断面図である。FIG. 1 (a) of a rotor according to Embodiment 1 of the present invention
It is a plane sectional view and (b) side sectional view.
【図2】 この発明の実施の形態2による回転子の(a)
平面断面図、(b)側面断面図である。FIG. 2 (a) of a rotor according to Embodiment 2 of the present invention
It is a plane sectional view and (b) side sectional view.
【図3】 この発明の実施の形態3による回転子の平面
断面拡大図である。FIG. 3 is an enlarged plan sectional view of a rotor according to a third embodiment of the present invention.
【図4】 メッキ仕様とメッキレス仕様の永久磁石温度
と経過時間との関係および磁束量と経過時間との関係を
示す相関図である。FIG. 4 is a correlation diagram showing a relationship between a permanent magnet temperature and an elapsed time, and a relationship between a magnetic flux amount and an elapsed time in a plating specification and a platingless specification.
【図5】 メッキ仕様とメッキレス仕様のモータ効率と
回転数との関係を示す相関図である。FIG. 5 is a correlation diagram showing a relationship between a motor efficiency and a rotation speed of a plating specification and a platingless specification.
【図6】 この発明の実施の形態4による回転子の平面
拡大断面図である。FIG. 6 is an enlarged plan sectional view of a rotor according to a fourth embodiment of the present invention.
【図7】 この発明の実施の形態5による回転子の平面
拡大断面図である。FIG. 7 is an enlarged sectional plan view of a rotor according to a fifth embodiment of the present invention.
【図8】 この発明の実施の形態6による回転子の平面
拡大断面図である。FIG. 8 is an enlarged plan sectional view of a rotor according to a sixth embodiment of the present invention.
【図9】 この発明の実施の形態7による回転子の平面
拡大断面図である。FIG. 9 is an enlarged plan sectional view of a rotor according to a seventh embodiment of the present invention.
【図10】 この発明の実施の形態8による回転子の平
面拡大断面図である。FIG. 10 is a plane enlarged sectional view of a rotor according to an eighth embodiment of the present invention.
【図11】 この発明の実施の形態9による回転子の平
面拡大断面図である。FIG. 11 is an enlarged plan sectional view of a rotor according to a ninth embodiment of the present invention.
【図12】 この発明の実施の形態10による回転子の
平面拡大断面図である。FIG. 12 is an enlarged plan sectional view of a rotor according to a tenth embodiment of the present invention.
【図13】 この発明の実施の形態11による回転子の
平面拡大断面図である。FIG. 13 is an enlarged plan sectional view of a rotor according to an eleventh embodiment of the present invention.
【図14】 この発明の実施の形態12を説明する回転
子の平面拡大断面図である。FIG. 14 is an enlarged plan sectional view of a rotor for explaining a twelfth embodiment of the present invention.
【図15】 永久磁石の体積を一定、コイルの巻数、電
流値を一定とした条件での永久磁石と平均トルクの関係
を示す相関図である。FIG. 15 is a correlation diagram showing the relationship between the permanent magnet and the average torque under the conditions where the volume of the permanent magnet is constant, the number of turns of the coil, and the current value are constant.
【図16】 この発明の実施の形態13による回転子の
平面拡大断面図である。FIG. 16 is an enlarged plan sectional view of a rotor according to a thirteenth embodiment of the present invention.
【図17】 この発明の実施の形態14による固定子の
側面図である。FIG. 17 is a side view of a stator according to a fourteenth embodiment of the present invention.
【図18】 この発明の実施の形態15による電動機の
側面図である。FIG. 18 is a side view of an electric motor according to a fifteenth embodiment of the present invention.
【図19】 この発明の実施の形態16による冷凍サイ
クル装置の概念図である。FIG. 19 is a conceptual diagram of a refrigeration cycle apparatus according to Embodiment 16 of the present invention.
【図20】 従来の永久磁石形電動機の(a)平面断面
図、(b)側面断面図である。FIG. 20 is (a) a plane sectional view and (b) a side sectional view of a conventional permanent magnet type electric motor.
【図21】 従来の永久磁石形電動機の平面断面図であ
る。FIG. 21 is a plan sectional view of a conventional permanent magnet type electric motor.
【図22】 従来の永久磁石形電動機の平面断面図であ
る。FIG. 22 is a plan sectional view of a conventional permanent magnet type electric motor.
【図23】 従来の永久磁石形電動機回転子の断面拡大
図である。FIG. 23 is an enlarged cross-sectional view of a conventional permanent magnet type motor rotor.
【図24】 従来の永久磁石形電動機の(a)側面断面
図、(b)平面断面図である。FIG. 24 is (a) a side sectional view and (b) a plane sectional view of a conventional permanent magnet type electric motor.
1 回転軸、 2 永久磁石、 3 回転子コア、 4
フラックスバリア孔、 5 端板、 6 銅棒、 7
固定子コア、 8 コイル、 9 磁化方向、 10
絶縁シート、 11 ブリッジ、 12 メッキレス
希土類磁石、13 ティース 、 14 回転子、 1
5 固定子、 16 エアギャップ、17 スロット、
18 永久磁石埋込孔、 19 永久磁石位置決め
部、20 永久磁石位置決め部材、 21 永久磁石形
電動機、 22 インバータ主回路、 23 圧縮機、
24 q軸方向の磁束。1 rotating shaft, 2 permanent magnets, 3 rotor core, 4
Flux barrier hole, 5 end plate, 6 copper rod, 7
Stator core, 8 coils, 9 magnetization direction, 10
Insulation sheet, 11 bridge, 12 platingless rare earth magnet, 13 teeth, 14 rotor, 1
5 stators, 16 air gaps, 17 slots,
18 permanent magnet embedding hole, 19 permanent magnet positioning part, 20 permanent magnet positioning member, 21 permanent magnet type electric motor, 22 inverter main circuit, 23 compressor,
24 q-axis magnetic flux.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02K 15/03 H02K 15/03 Z 16/04 16/04 21/14 21/14 M (72)発明者 吉野 勇人 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 3H003 AA02 AA05 AB04 AC03 AD01 CF04 3H029 AA03 AA04 AA12 AB03 BB11 BB21 BB31 BB32 BB41 CC07 CC27 5H621 AA02 BB01 BB02 GB10 HH01 HH10 JK03 JK08 5H622 AA04 CA02 CA05 CA10 CA13 CB01 CB04 DD02 PP03 PP16 PP18 QA08 QB03 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H02K 15/03 H02K 15/03 Z 16/04 16/04 21/14 21/14 M (72) Inventor Yoshino Hayato 2-3 Marunouchi, Chiyoda-ku, Tokyo Sanryo Electric Co., Ltd. F term (reference) 3H003 AA02 AA05 AB04 AC03 AD01 CF04 3H029 AA03 AA04 AA12 AB03 BB11 BB21 BB31 BB32 BB41 BB41 CC07 CC27 5H621 AA02 GB10H01BB02 JK03 JK08 5H622 AA04 CA02 CA05 CA10 CA13 CB01 CB04 DD02 PP03 PP16 PP18 QA08 QB03
Claims (21)
永久磁石をメッキレスにしたことを特徴とする回転電機
の回転子。1. A rotor of a permanent magnet type rotary electric machine,
A rotor for a rotary electric machine, which is characterized in that a permanent magnet is plated-less.
コアと、この回転子コアに軸方向端部が開口部となるよ
う形成された永久磁石埋込孔と、この永久磁石埋込孔に
挿入されたメッキレス永久磁石と、前記開口部を閉塞
し、永久磁石埋込孔を気密状態に保持する端板とを備え
たことを特徴とする請求項1記載の回転電機の回転子。2. A cylindrical rotor core having a rotating shaft passing through the center thereof, a permanent magnet embedding hole formed in the rotor core so that an end portion in the axial direction is an opening, and the permanent magnet embedding. The rotor of a rotary electric machine according to claim 1, further comprising: a platingless permanent magnet inserted into the hole; and an end plate that closes the opening and holds the permanent magnet embedding hole in an airtight state.
てメッキレス永久磁石を取り出すステップと、回転子コ
アに形成された永久磁石埋込孔に前記メッキレス永久磁
石を挿入するステップと、挿入後永久磁石埋込孔を気密
状態に閉塞するステップとを備え、これら各ステップを
メッキレス永久磁石の酸化を防止または鈍化させる温湿
度環境下にて行なうことを特徴とする回転電機の回転子
製造方法。3. A step of unsealing a container sealed in an antioxidation state to take out a platingless permanent magnet; a step of inserting the platingless permanent magnet into a permanent magnet embedding hole formed in a rotor core; A step of closing the permanent magnet embedding hole in an airtight state, and performing each of these steps in a temperature and humidity environment that prevents or slows down oxidation of the platingless permanent magnet.
てメッキレス永久磁石を取り出すステップと、回転子コ
アに形成された永久磁石埋込孔に前記メッキレス永久磁
石を挿入するステップと、挿入後メッキレス永久磁石を
外気から遮断するステップとを備え、これら各ステップ
をメッキレス永久磁石の酸化を防止または鈍化させる温
湿度環境下にて行なうことを特徴とする回転電機の回転
子製造方法。4. A step of removing a platingless permanent magnet by opening a container sealed in an antioxidant state, a step of inserting the platingless permanent magnet into a permanent magnet embedding hole formed in a rotor core, and And a step of shutting off the platingless permanent magnet from the outside air, and performing each of these steps in a temperature and humidity environment that prevents or slows down the oxidation of the platingless permanent magnet.
込む又は永久磁石を回転子コアの表面付近に配置した永
久磁石形回転電機の回転子において、分割した永久磁石
同士又は永久磁石と端板とを絶縁したことを特徴とする
回転電機の回転子。5. In a rotor of a permanent magnet type rotary electric machine in which a permanent magnet is divided and embedded in a rotor core or the permanent magnet is arranged near the surface of the rotor core, the divided permanent magnets are separated from each other or the permanent magnet and the end. A rotor of a rotating electric machine, characterized by being insulated from a plate.
込む又は永久磁石を回転子コアの表面付近に配置した永
久磁石形回転電機の回転子において、永久磁石と回転子
コアを絶縁したことを特徴とする回転電機の回転子。6. In a rotor of a permanent magnet type rotary electric machine, wherein a permanent magnet is divided and embedded in the rotor core or the permanent magnet is arranged near the surface of the rotor core, the permanent magnet is insulated from the rotor core. A rotor of a rotating electric machine characterized by.
近に配置すると共に前記永久磁石の磁化方向をラジアル
方向にしたことを特徴とする回転電機の回転子。7. A rotor for a rotating electric machine, wherein arc-shaped permanent magnets are arranged near the surface of a rotor core and the permanent magnets are magnetized in a radial direction.
回転子の回転方向に沿って連続的または断続的に屈曲形
成した永久磁石埋込孔と、この永久磁石埋込孔の屈曲部
分を挟んで極配置を遠心方向に同じにして複数枚埋め込
まれ、擬似的にラジアル配向とした平板上の永久磁石と
を備えたことを特徴とする回転電機の回転子。8. A rotor of a permanent magnet type rotating electric machine,
A plurality of permanent magnet embedding holes formed by continuously or intermittently bending along the rotation direction of the rotor and a plurality of permanent magnet embedding holes having the same pole arrangement in the centrifugal direction sandwiching the bent portion of the permanent magnet embedding holes are embedded. A rotor for a rotating electric machine, comprising: a flat permanent magnet on a pseudo radial orientation.
回転子の回転方向に沿って断続的に形成された永久磁石
埋込孔と、この永久磁石埋込孔にフラックスバリア孔を
残して埋め込まれた永久磁石とを備えたことを特徴とす
る回転電機の回転子。9. A rotor of a permanent magnet type rotary electric machine,
A rotating electric machine comprising: a permanent magnet embedding hole which is intermittently formed along a rotation direction of a rotor; and a permanent magnet which is embedded in the permanent magnet embedding hole with a flux barrier hole left. Rotor.
電性材料からなる永久磁石の位置決め部材を備えたこと
を特徴とする請求項9記載の回転電機の回転子。10. The rotor of a rotating electric machine according to claim 9, wherein the flux barrier hole is provided with a permanent magnet positioning member made of a non-magnetic and non-conductive material.
って互いに離間する複数の永久磁石を備えたことを特徴
とする請求項9記載の回転電機の回転子。11. The rotor of a rotating electric machine according to claim 9, wherein a plurality of permanent magnets are provided inside the permanent magnet embedding hole and are separated from each other by the repulsive force of the magnets.
リッジを構成したことを特徴とする請求項9記載の回転
電機の回転子。12. The rotor of a rotating electric machine according to claim 9, wherein a bridge is formed between the flux barrier hole and the permanent magnet.
ラックスバリア孔を形成したことを特徴とする請求項9
記載の回転電機の回転子。13. A flux barrier hole is formed by rounding an edge of an end portion of a permanent magnet embedding hole.
The rotor of the rotating electric machine described.
て、極配置を遠心方向に同じにして周方向に隣り合う永
久磁石同士の間にブリッジを構成したことを特徴とする
回転電機の回転子。14. The rotor of a permanent magnet type rotating electric machine according to claim 1, wherein the poles are arranged in the same direction in the centrifugal direction, and a bridge is formed between circumferentially adjacent permanent magnets.
DCブラシレス電動機の回転子において、永久磁石を埋
め込む位置を、α=ロータ外径から永久磁石までの距離
/(ロータ外径)2×100とすると、α≦0.6とな
る位置に構成することを特徴とする回転電機の回転子。15. A rare earth magnet is used as the permanent magnet, and in a rotor of a 6-pole DC brushless motor, a position where the permanent magnet is embedded is defined as α = distance from rotor outer diameter to permanent magnet / (rotor outer diameter) 2 × A rotor of a rotating electric machine, characterized in that it is arranged at a position where α ≦ 0.6 when 100 is set.
て、永久磁石による磁束の短絡を抑制する薄肉部または
フラックスバリア孔を構成し、q軸の磁束が通る異極の
永久磁石間の距離を永久磁石の厚さ以上にしたことを特
徴とする回転電機の回転子。16. In a rotor of a permanent magnet type rotating electric machine, a thin portion or a flux barrier hole that suppresses a short circuit of magnetic flux due to a permanent magnet is formed, and a distance between permanent magnets of different poles through which a q-axis magnetic flux passes is permanent. A rotor for a rotating electric machine, characterized by having a thickness greater than that of a magnet.
て、コイルを銅棒等の分割した棒により構成したことを
特徴とする回転電機の固定子。17. The stator of a permanent magnet type rotating electric machine according to claim 1, wherein the coil is composed of divided rods such as copper rods.
転軸方向に複数に分割し、制御回路によってそれぞれを
独立して選択、制御されることを特徴とする回転電機の
固定子。18. A stator of an electric motor, wherein the stator of an electric motor is divided into a plurality of parts in a direction of a rotation axis of the rotor, and each is independently selected and controlled by a control circuit.
子および請求項17乃至18の何れか記載の固定子を備
えたことを特徴とする電動機。19. An electric motor comprising the rotor according to any one of claims 1 to 16 and the stator according to any one of claims 17 to 18.
機として備えたことを特徴とする圧縮機。20. A compressor comprising the electric motor according to claim 19 as a driving electric motor.
備え、これらを冷媒配管で接続した冷凍サイクル装置に
おいて、請求項20記載の圧縮機を備えたことを特徴と
する冷凍サイクル装置。21. A refrigeration cycle apparatus comprising a compressor, a condenser, a throttle device, and an evaporator, and a refrigeration cycle device in which these are connected by a refrigerant pipe, comprising the compressor according to claim 20.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001248071A JP2003061283A (en) | 2001-08-17 | 2001-08-17 | Rotor and stator of dynamo-electric machine, and motor, compressor, and freezing cycle, and method of manufacturing rotor of dynamo-electric machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001248071A JP2003061283A (en) | 2001-08-17 | 2001-08-17 | Rotor and stator of dynamo-electric machine, and motor, compressor, and freezing cycle, and method of manufacturing rotor of dynamo-electric machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003061283A true JP2003061283A (en) | 2003-02-28 |
JP2003061283A5 JP2003061283A5 (en) | 2008-03-13 |
Family
ID=19077295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001248071A Pending JP2003061283A (en) | 2001-08-17 | 2001-08-17 | Rotor and stator of dynamo-electric machine, and motor, compressor, and freezing cycle, and method of manufacturing rotor of dynamo-electric machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003061283A (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005117771A (en) * | 2003-10-07 | 2005-04-28 | Hitachi Ltd | Permanent magnet type synchronous motor and compressor using it |
JP2006020376A (en) * | 2004-06-30 | 2006-01-19 | Okuma Corp | Motor |
JP2006238678A (en) * | 2005-02-28 | 2006-09-07 | Daikin Ind Ltd | Magnetic material, rotor, electric motor |
WO2006092924A1 (en) * | 2005-02-28 | 2006-09-08 | Daikin Industries, Ltd. | Magnetic body, rotor, motor, compressor, fan, air conditioner, and on-vehicle air conditioner |
WO2007072707A1 (en) * | 2005-12-19 | 2007-06-28 | Daikin Industries, Ltd. | Electric motor and its rotor, and magnetic core for the rotor |
JP2007181254A (en) * | 2005-12-27 | 2007-07-12 | Mitsubishi Electric Corp | Rotor for permanent magnet embedded motor |
EP1983040A1 (en) | 2007-03-29 | 2008-10-22 | NOF Corporation | Refrigeration lubricant composition and refrigerant working fluid composition |
JP2008271622A (en) * | 2007-04-16 | 2008-11-06 | Daikin Ind Ltd | Rotor |
WO2009014172A1 (en) * | 2007-07-26 | 2009-01-29 | Meidensha Corporation | Wide range constant output permanent magnet motor |
JP2009050148A (en) * | 2007-07-26 | 2009-03-05 | Meidensha Corp | Permanent-magnet electric motor with constant output in wide range |
JP2009219314A (en) * | 2008-03-12 | 2009-09-24 | Toyota Industries Corp | Rotator of rotary electric machine, and method of manufacturing the same |
JP2010068705A (en) * | 2008-08-15 | 2010-03-25 | Ihi Corp | Motor |
JP2011147289A (en) * | 2010-01-15 | 2011-07-28 | Honda Motor Co Ltd | Rotary electric machine |
JP2012115070A (en) * | 2010-11-25 | 2012-06-14 | Yaskawa Electric Corp | Rotary electric machine |
WO2012141414A1 (en) * | 2011-04-13 | 2012-10-18 | New Motech Co.,Ltd. | Rotor of motor |
JP2013538551A (en) * | 2010-09-10 | 2013-10-10 | 日産自動車株式会社 | Rotor for rotating electrical machines |
JP2014054155A (en) * | 2012-09-10 | 2014-03-20 | Nsk Ltd | Electric motor and electric power steering device |
CN103683600A (en) * | 2012-09-21 | 2014-03-26 | 山洋电气株式会社 | Permanent magnet-embedded motor and rotor thereof |
CN103973008A (en) * | 2013-01-31 | 2014-08-06 | 山洋电气株式会社 | Rotor for permanent magnet type motor, method of manufacturing rotor for permanent magnet type motor, and permanent magnet type motor |
JP2014173510A (en) * | 2013-03-11 | 2014-09-22 | Mitsubishi Electric Corp | Compressor |
JP2015195650A (en) * | 2014-03-31 | 2015-11-05 | ダイキン工業株式会社 | Rotor structure of magnet embedded rotary electric machine |
JP2017005964A (en) * | 2015-06-16 | 2017-01-05 | トヨタ自動車株式会社 | Rotor for rotary electric machine |
JP2017055501A (en) * | 2015-09-07 | 2017-03-16 | アイチエレック株式会社 | Permanent magnet motor |
JP2017055502A (en) * | 2015-09-07 | 2017-03-16 | アイチエレック株式会社 | Permanent magnet motor |
JP2017055504A (en) * | 2015-09-07 | 2017-03-16 | アイチエレック株式会社 | Permanent magnet motor |
WO2022259839A1 (en) * | 2021-06-10 | 2022-12-15 | 株式会社日立製作所 | Rotating electric machine |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11136912A (en) * | 1997-10-31 | 1999-05-21 | Toshiba Corp | Permanent magnet type reluctance type rotary electric machine |
JP2000050546A (en) * | 1998-07-23 | 2000-02-18 | Aichi Emerson Electric Co Ltd | Rotor of permanent magnet motor |
JP2000197291A (en) * | 1998-12-25 | 2000-07-14 | Fuji Electric Co Ltd | Permanent magnet mounted synchronizer |
JP2000324736A (en) * | 1999-05-12 | 2000-11-24 | Mitsubishi Electric Corp | Permanent magnet mounted motor |
JP2001115125A (en) * | 1999-10-01 | 2001-04-24 | Three M Innovative Properties Co | Adhesive for neodymium magnet, and motor |
JP2001178047A (en) * | 2000-10-31 | 2001-06-29 | Hitachi Ltd | Permanent-magnet dynamo-electric machine, and motor vehicle using the permanent-magnet dynamo-electric machine |
JP2001194014A (en) * | 2000-01-13 | 2001-07-17 | Mitsubishi Electric Corp | Freezing cycle apparatus and freezing refrigerator |
JP2001218398A (en) * | 2000-01-31 | 2001-08-10 | Sanyo Electric Co Ltd | Rotor for permanent magnet-type motor |
-
2001
- 2001-08-17 JP JP2001248071A patent/JP2003061283A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11136912A (en) * | 1997-10-31 | 1999-05-21 | Toshiba Corp | Permanent magnet type reluctance type rotary electric machine |
JP2000050546A (en) * | 1998-07-23 | 2000-02-18 | Aichi Emerson Electric Co Ltd | Rotor of permanent magnet motor |
JP2000197291A (en) * | 1998-12-25 | 2000-07-14 | Fuji Electric Co Ltd | Permanent magnet mounted synchronizer |
JP2000324736A (en) * | 1999-05-12 | 2000-11-24 | Mitsubishi Electric Corp | Permanent magnet mounted motor |
JP2001115125A (en) * | 1999-10-01 | 2001-04-24 | Three M Innovative Properties Co | Adhesive for neodymium magnet, and motor |
JP2001194014A (en) * | 2000-01-13 | 2001-07-17 | Mitsubishi Electric Corp | Freezing cycle apparatus and freezing refrigerator |
JP2001218398A (en) * | 2000-01-31 | 2001-08-10 | Sanyo Electric Co Ltd | Rotor for permanent magnet-type motor |
JP2001178047A (en) * | 2000-10-31 | 2001-06-29 | Hitachi Ltd | Permanent-magnet dynamo-electric machine, and motor vehicle using the permanent-magnet dynamo-electric machine |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005117771A (en) * | 2003-10-07 | 2005-04-28 | Hitachi Ltd | Permanent magnet type synchronous motor and compressor using it |
WO2005046022A1 (en) * | 2003-10-07 | 2005-05-19 | Hitachi Air Conditioning Systems Co., Ltd. | Permanent-magnet synchronous motor and compressor using this |
JP2006020376A (en) * | 2004-06-30 | 2006-01-19 | Okuma Corp | Motor |
JP2006238678A (en) * | 2005-02-28 | 2006-09-07 | Daikin Ind Ltd | Magnetic material, rotor, electric motor |
WO2006092924A1 (en) * | 2005-02-28 | 2006-09-08 | Daikin Industries, Ltd. | Magnetic body, rotor, motor, compressor, fan, air conditioner, and on-vehicle air conditioner |
US7902712B2 (en) | 2005-02-28 | 2011-03-08 | Daikin Industries, Ltd. | Magnetic member, rotor, motor, compressor, blower, air conditioner and vehicle-mounted air conditioner |
US8853909B2 (en) | 2005-12-19 | 2014-10-07 | Daikin Industries, Ltd. | Motor and its rotor and magnetic core for rotor having arrangement of non-magnetic portions |
KR101025084B1 (en) * | 2005-12-19 | 2011-03-25 | 다이킨 고교 가부시키가이샤 | Electric motor and its rotor, and magnetic core for the rotor |
WO2007072707A1 (en) * | 2005-12-19 | 2007-06-28 | Daikin Industries, Ltd. | Electric motor and its rotor, and magnetic core for the rotor |
JP2007181254A (en) * | 2005-12-27 | 2007-07-12 | Mitsubishi Electric Corp | Rotor for permanent magnet embedded motor |
JP4666500B2 (en) * | 2005-12-27 | 2011-04-06 | 三菱電機株式会社 | Rotor of permanent magnet embedded motor |
EP1983040A1 (en) | 2007-03-29 | 2008-10-22 | NOF Corporation | Refrigeration lubricant composition and refrigerant working fluid composition |
US7794619B2 (en) | 2007-03-29 | 2010-09-14 | Nof Corporation | Refrigeration lubricant composition and refrigerant working fluid composition |
JP2008271622A (en) * | 2007-04-16 | 2008-11-06 | Daikin Ind Ltd | Rotor |
WO2009014172A1 (en) * | 2007-07-26 | 2009-01-29 | Meidensha Corporation | Wide range constant output permanent magnet motor |
JP2009050148A (en) * | 2007-07-26 | 2009-03-05 | Meidensha Corp | Permanent-magnet electric motor with constant output in wide range |
JP2009219314A (en) * | 2008-03-12 | 2009-09-24 | Toyota Industries Corp | Rotator of rotary electric machine, and method of manufacturing the same |
JP2010068705A (en) * | 2008-08-15 | 2010-03-25 | Ihi Corp | Motor |
JP2011147289A (en) * | 2010-01-15 | 2011-07-28 | Honda Motor Co Ltd | Rotary electric machine |
JP2013538551A (en) * | 2010-09-10 | 2013-10-10 | 日産自動車株式会社 | Rotor for rotating electrical machines |
JP2012115070A (en) * | 2010-11-25 | 2012-06-14 | Yaskawa Electric Corp | Rotary electric machine |
WO2012141414A1 (en) * | 2011-04-13 | 2012-10-18 | New Motech Co.,Ltd. | Rotor of motor |
JP2014054155A (en) * | 2012-09-10 | 2014-03-20 | Nsk Ltd | Electric motor and electric power steering device |
CN103683600A (en) * | 2012-09-21 | 2014-03-26 | 山洋电气株式会社 | Permanent magnet-embedded motor and rotor thereof |
JP2014064395A (en) * | 2012-09-21 | 2014-04-10 | Sanyo Denki Co Ltd | Embedded permanent magnet motor and rotor |
US10014736B2 (en) | 2012-09-21 | 2018-07-03 | Sanyo Denki Co., Ltd. | Permanent magnet-embedded motor and rotor thereof |
CN103973008A (en) * | 2013-01-31 | 2014-08-06 | 山洋电气株式会社 | Rotor for permanent magnet type motor, method of manufacturing rotor for permanent magnet type motor, and permanent magnet type motor |
JP2014150626A (en) * | 2013-01-31 | 2014-08-21 | Sanyo Denki Co Ltd | Rotor for permanent magnet motor, method of manufacturing rotor for permanent magnet motor, and permanent magnet motor |
JP2014173510A (en) * | 2013-03-11 | 2014-09-22 | Mitsubishi Electric Corp | Compressor |
JP2015195650A (en) * | 2014-03-31 | 2015-11-05 | ダイキン工業株式会社 | Rotor structure of magnet embedded rotary electric machine |
JP2017005964A (en) * | 2015-06-16 | 2017-01-05 | トヨタ自動車株式会社 | Rotor for rotary electric machine |
JP2017055501A (en) * | 2015-09-07 | 2017-03-16 | アイチエレック株式会社 | Permanent magnet motor |
JP2017055502A (en) * | 2015-09-07 | 2017-03-16 | アイチエレック株式会社 | Permanent magnet motor |
JP2017055504A (en) * | 2015-09-07 | 2017-03-16 | アイチエレック株式会社 | Permanent magnet motor |
WO2022259839A1 (en) * | 2021-06-10 | 2022-12-15 | 株式会社日立製作所 | Rotating electric machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003061283A (en) | Rotor and stator of dynamo-electric machine, and motor, compressor, and freezing cycle, and method of manufacturing rotor of dynamo-electric machine | |
CN109075681B (en) | Motor and air conditioner | |
US11394260B2 (en) | Rotor, motor, fan, and air conditioning apparatus | |
US20150084468A1 (en) | Rotor for permanent-magnet-embedded electric motor, electric motor including the rotor, compressor including the electric motor, and air conditioner including the compressor | |
CN108475972B (en) | Rotor, magnetizing method, motor, and scroll compressor | |
CN108886276B (en) | Motor, blower, compressor, and air conditioner | |
JP5208088B2 (en) | Permanent magnet embedded motor and blower | |
JP6942246B2 (en) | Rotors, motors, compressors and air conditioners | |
CN109565195B (en) | Commutating pole rotor, motor, and air conditioner | |
CN108475971B (en) | Magnetizing method, rotor, motor and scroll compressor | |
GB2565473A (en) | Consequent-pole rotor, electric motor, and air conditioner | |
JPH10322948A (en) | Permanent magnet buried type of rotor | |
JP2002064949A (en) | Motor | |
EP4187759A1 (en) | Electric motor | |
JP3828015B2 (en) | Permanent magnet type motor, method of manufacturing permanent magnet type motor, compressor and refrigeration cycle apparatus | |
JPWO2022019074A5 (en) | ||
CN111903038B (en) | Motor, compressor and air conditioning device | |
JP2002291209A (en) | Electric motor for sealed compressor, its manufacturing method and refrigerating cycle | |
JP2002101579A (en) | Motor and compressor using thereof | |
JP2006345692A (en) | Permanent magnet motor | |
JP2006034100A (en) | Permanent magnet type motor | |
WO2021161409A1 (en) | Stator, motor, compressor, air conditioner, and method for manufacturing stator | |
JP2002238190A (en) | Rotor of permanent-magnet motor, manufacturing method for the rotor of permanent-magnet motor, the permanent-magnet motor, compressor, and refrigeration cycle | |
JP4080277B2 (en) | DC brushless motor, compressor, refrigeration cycle apparatus, and built-in magnetization method of DC brushless motor | |
JP2011250585A (en) | Axial gap type motor, stator thereof, method of manufacturing the same, and air conditioner using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20040705 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080125 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100805 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100817 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110405 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110419 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110927 |