JP2003060127A - Semiconductor device, substrate for mounting semiconductor chip, manufacturing method for them, adhesive agent and double-sided adhesive film - Google Patents

Semiconductor device, substrate for mounting semiconductor chip, manufacturing method for them, adhesive agent and double-sided adhesive film

Info

Publication number
JP2003060127A
JP2003060127A JP2002131897A JP2002131897A JP2003060127A JP 2003060127 A JP2003060127 A JP 2003060127A JP 2002131897 A JP2002131897 A JP 2002131897A JP 2002131897 A JP2002131897 A JP 2002131897A JP 2003060127 A JP2003060127 A JP 2003060127A
Authority
JP
Japan
Prior art keywords
adhesive
weight
film
semiconductor chip
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002131897A
Other languages
Japanese (ja)
Other versions
JP2003060127A5 (en
JP3617504B2 (en
Inventor
Kazunori Yamamoto
和徳 山本
Yasushi Shimada
靖 島田
Yasushi Kamishiro
恭 神代
Teiichi Inada
禎一 稲田
Hiroyuki Kuritani
弘之 栗谷
Aizo Kaneda
愛三 金田
Takeo Tomiyama
健男 富山
Yoshihiro Nomura
好弘 野村
Yoichi Hosokawa
羊一 細川
Hiroshi Kirihara
博 桐原
Akira Kageyama
晃 景山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002131897A priority Critical patent/JP3617504B2/en
Publication of JP2003060127A publication Critical patent/JP2003060127A/en
Application granted granted Critical
Publication of JP3617504B2 publication Critical patent/JP3617504B2/en
Publication of JP2003060127A5 publication Critical patent/JP2003060127A5/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/32013Structure relative to the bonding area, e.g. bond pad the layer connector being larger than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve resistance to heat cycle after mounting in a semiconductor device and resistance to moisture absorption reflow. SOLUTION: An adhesive agent which is used, when a semiconductor chip is mounted on an organic support substrate, and whose storage elastic modulus at 25 deg.C measured with a dynamic viscoelestic measuring instrument is 10-2,000 MPa and further the storage elastic modulus at 260 deg.C is 3-50 MPa, a double- sided adhesive film, the semiconductor device, a semiconductor chip mounted substrate using the adhesive agent, and a method for manufacturing them are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】(技術分野)本発明は、半導体装置、その
製造法並びに前記半導体装置の製造に好適に使用される
半導体チップ搭載用基板、その製造法、接着剤および両
面接着フィルムに関する。
TECHNICAL FIELD The present invention relates to a semiconductor device, a method for manufacturing the same, a semiconductor chip mounting substrate suitably used for manufacturing the semiconductor device, a method for manufacturing the same, an adhesive and a double-sided adhesive film.

【0002】(背景技術)近年、電子機器の小型化、高
周波数動作化の動向にともない、これに搭載する半導体
パッケージは基板に高密度で実装することが要求され、
小型・軽量化が進むとともに、外部端子がパッケージ下
部にエリアアレイ状配置されたマイクロBGA(ボール
グリッドアレイ)やCSP(チップサイズパッケージ)
と呼ばれる小型のパッケージの開発が進められている。
2. Description of the Related Art In recent years, along with the trend toward miniaturization of electronic equipment and high frequency operation, it is required that semiconductor packages mounted on the electronic equipment be mounted on a substrate at a high density.
As the size and weight are getting smaller, the external terminals are arranged in an area array at the bottom of the package in a micro BGA (ball grid array) or CSP (chip size package).
The development of a small package called a.

【0003】これらのパッケージは、2層配線構造を有
するガラスエポキシ基板や1層配線構造のポリイミド基
板などの有機基板の上に絶縁性接着剤を介してチップを
搭載し、チップ側の端子と配線板側端子とがワイヤボン
ドないしはTAB(テープオートメーテッドボンディン
グ)のインナーボンディング方式で接続され、接続部と
チップ上面部ないしは端面部とがエポキシ系封止材ない
しはエポキシ系液状封止材で封止し、配線基板裏面には
んだボールなど金属端子がエリアアレイ状に配置されて
いる構造が採用されている。そして、これらのパッケー
ジの複数個が電子機器の基板にはんだリフロー方式で高
密度で面付け一括実装する方式が採用されつつある。
In these packages, a chip is mounted via an insulating adhesive on an organic substrate such as a glass epoxy substrate having a two-layer wiring structure or a polyimide substrate having a one-layer wiring structure, and terminals and wiring on the chip side. The board-side terminals are connected by wire bonding or TAB (Tape Automated Bonding) inner bonding method, and the connection portion and the chip upper surface portion or end surface portion are sealed with an epoxy-based sealing material or an epoxy-based liquid sealing material. A structure in which metal terminals such as solder balls are arranged in an area array on the back surface of the wiring board is adopted. Then, a method of mounting a plurality of these packages on a substrate of an electronic device by a solder reflow method at a high density and in a batch is being adopted.

【0004】しかし、これらのパッケージに用いられる
絶縁性の接着剤の一例としては、動的粘弾性装置で測定
される25℃での貯蔵弾性率が3000MPa以上の液
状のエポキシダイボンド材が用いられていて、パッケー
ジを基板に実装した後のはんだボール接続部(2次側)
の接続信頼性が悪く、耐温度サイクル信頼性に劣ってい
た。
However, as an example of an insulating adhesive used for these packages, a liquid epoxy die bond material having a storage elastic modulus at 25 ° C. of 3000 MPa or more measured by a dynamic viscoelastic device is used. Solder ball connection part (secondary side) after mounting the package on the board
The connection reliability was poor and the temperature cycle resistance was poor.

【0005】さらに、他の事例では、絶縁性の接着剤と
して25℃での貯蔵弾性率が10MPa以下の液状シリ
コン系エラストマが提案されており、上記した耐温度サ
イクル性には優れるもものの配線基板表面に対する高温
時の接着性に劣り耐吸湿リフロー性に劣るという問題が
あった。
Further, in another case, a liquid silicon elastomer having a storage elastic modulus at 25 ° C. of 10 MPa or less has been proposed as an insulating adhesive, and the above-mentioned wiring board is excellent in temperature cycle resistance. There is a problem that the adhesiveness to the surface at high temperature is poor and the moisture absorption reflow resistance is poor.

【0006】特に、耐リフロー性については両者の事例
においても、液状の絶縁性接着剤を有機基板に塗布する
過程でボイドを巻き込み易く、ボイドが起点となって、
吸湿リフロー時にクラックが進展したり、有機基板が膨
れたりする不良モードが観察された。
In particular, regarding the reflow resistance, in both cases, voids are easily caught in the process of applying the liquid insulating adhesive to the organic substrate, and the voids become the starting points.
During the hygroscopic reflow, a defective mode in which cracks propagate and the organic substrate swells was observed.

【0007】また、電子機器の発達に伴い電子部品の搭
載密度が高くなり、低コストが期待できるプリント配線
板への半導体のベアチップ実装が進められてきている。
Further, with the development of electronic equipment, the mounting density of electronic parts is increasing, and bare chip mounting of semiconductors on a printed wiring board, which is expected to be low in cost, has been promoted.

【0008】半導体チップの実装用基板としてはアルミ
ナ等のセラミック基板が多く用いられてきた。これは、
半導体チップの熱膨張係数が約4ppm/℃と小さいの
で、接続信頼性を確保するために熱膨張係数の比較的小
さい実装用基板の使用が求められていたことと、半導体
チップが発生する熱を外部へ放熱させやすくするために
熱伝導率の比較的高い実装用基板の使用が求められてい
たことが主な理由であった。このようなセラミック基板
への半導体チップ実装には銀ペーストに代表される液状
の接着剤が使われている。
Ceramic substrates such as alumina have been often used as substrates for mounting semiconductor chips. this is,
Since the thermal expansion coefficient of the semiconductor chip is as low as about 4 ppm / ° C., it was required to use a mounting board with a relatively small thermal expansion coefficient in order to secure the connection reliability. The main reason was that it was required to use a mounting board having a relatively high thermal conductivity in order to facilitate heat dissipation to the outside. A liquid adhesive represented by a silver paste is used for mounting a semiconductor chip on such a ceramic substrate.

【0009】また、フィルム状接着剤は、フレキシブル
プリント配線板等で用いられており、アクリロニトリル
ブタジエンゴムを主成分とする系が多く用いられてい
る。
Film adhesives are used in flexible printed wiring boards and the like, and systems based on acrylonitrile butadiene rubber are often used.

【0010】プリント配線板関連材料としての検討で
は、吸湿後のはんだ耐熱性を向上させたものとしては、
特開昭60−243180号公報に示されるアクリル系
樹脂、エポキシ樹脂、ポリイソシアネートおよび無機フ
ィラーを含む接着剤があり、また特開昭61−1386
80号公報に示されるアクリル系樹脂、エポキシ樹脂、
分子中にウレタン結合を有する両末端が第1級アミン化
合物および無機フィラーを含む接着剤があるが、PCT
(プレッシャークッカーテスト)処理等の厳しい条件下
での耐湿性試験を行った場合には、劣化が大きく不十分
であった。
In the examination as a printed wiring board-related material, it is found that the solder heat resistance after absorbing moisture is improved.
There is an adhesive containing an acrylic resin, an epoxy resin, a polyisocyanate and an inorganic filler disclosed in JP-A-60-243180, and JP-A-61-1386.
No. 80, acrylic resin, epoxy resin,
There is an adhesive containing a primary amine compound having an urethane bond in its molecule at both ends and an inorganic filler.
(Pressure cooker test) When a moisture resistance test was conducted under severe conditions such as treatment, deterioration was large and insufficient.

【0011】セラミック基板への半導体チップ実装に銀
ペースト接着剤を使用すると、銀フィラーの沈降がある
ため分散が均一ではないこと、ペーストの保存安定性に
留意しなければならないこと、半導体チップ実装の作業
性がLOC(リードオンチップ)等に比較して劣ること
などの問題があった。
When a silver paste adhesive is used for mounting a semiconductor chip on a ceramic substrate, the dispersion of the silver filler is not uniform because of the sedimentation of the silver filler, and the storage stability of the paste must be taken into consideration. There is a problem that workability is inferior to that of LOC (lead-on-chip).

【0012】また、フィルム状接着剤は、アクリロニト
リルブタジエンゴムを主成分とする系が多く用いられて
いるものの、高温で長時間処理した後の接着力の低下が
大きいことや、耐電食性に劣ることなどの欠点があっ
た。特に、半導体関連部品の信頼性評価で用いられるP
CT処理等の厳しい条件下で耐湿性試験を行った場合の
劣化が大きかった。
As the film adhesive, a system containing acrylonitrile butadiene rubber as a main component is often used, but the adhesive strength after treatment for a long time at a high temperature is largely reduced and the electrolytic corrosion resistance is poor. There were drawbacks such as. In particular, P used for reliability evaluation of semiconductor-related parts
When the humidity resistance test was performed under severe conditions such as CT treatment, the deterioration was large.

【0013】特開昭60−243180号公報、特開昭
61−138680号公報に示されるものでは、PCT
処理等の厳しい条件下での耐湿性試験を行った場合に
は、劣化が大きく不十分であった。
In Japanese Patent Application Laid-Open No. 60-243180 and Japanese Patent Application Laid-Open No. 61-138680, PCT
When a moisture resistance test was conducted under severe conditions such as treatment, the deterioration was large and insufficient.

【0014】これらプリント配線板関連材料としての接
着剤を用いて半導体チップをプリント配線板に実装する
場合には、半導体チップとプリント配線板の熱膨張係数
の差が大きくリフロー時にクラックが発生するために使
用できなかった。また、温度サイクルテストやPCT処
理等の厳しい条件下での耐湿性試験を行った場合の劣化
が大きく、使用できなかった。 (発明の開示)本発明は、ガラスエポキシ基板やフレキ
シブル基板等のプリント配線板に熱膨張係数の差が大き
い半導体チップを実装する場合に必要な耐熱性、耐電食
性、耐湿性を有し、特に、PCT処理等、厳しい条件下
での耐湿性試験を行った場合の劣化が小さくなる接着
剤、接着フィルムおよびこの接着フィルムを用いて半導
体チップと配線板を接着させた半導体装置を提供するも
のである。
When a semiconductor chip is mounted on a printed wiring board by using an adhesive as a material related to the printed wiring board, a large difference in thermal expansion coefficient between the semiconductor chip and the printed wiring board causes cracks during reflow. Could not be used for. Further, when the humidity resistance test was conducted under severe conditions such as a temperature cycle test and a PCT treatment, the deterioration was large, and it could not be used. DISCLOSURE OF THE INVENTION The present invention has heat resistance, electrolytic corrosion resistance, and moisture resistance necessary for mounting a semiconductor chip having a large difference in thermal expansion coefficient on a printed wiring board such as a glass epoxy substrate or a flexible substrate, and particularly, Provided are an adhesive agent, an adhesive film, and a semiconductor device in which a semiconductor chip and a wiring board are adhered using the adhesive film, which is less likely to deteriorate when subjected to a moisture resistance test under severe conditions such as a PCT treatment. is there.

【0015】また本発明は、有機系支持基板に接着材を
介して半導体チップを搭載し、外部端子が基板裏面にエ
リアアレイ状に配列された半導体装置において、実装後
の耐温度サイクル性を向上するとともに、耐吸湿リフロ
ー性を向上する半導体装置、その製造法並びに前記半導
体装置の製造に好適に使用される半導体チップ搭載用基
板、その製造法、接着剤および両面接着フィルムを提供
するものである。
Further, according to the present invention, in a semiconductor device in which a semiconductor chip is mounted on an organic support substrate via an adhesive and external terminals are arranged in an area array on the back surface of the substrate, the temperature cycle resistance after mounting is improved. In addition, a semiconductor device having improved moisture absorption reflow resistance, a method for manufacturing the same, a semiconductor chip mounting substrate that is preferably used for manufacturing the semiconductor device, a method for manufacturing the same, an adhesive and a double-sided adhesive film are provided. .

【0016】本発明の半導体装置は、有機系支持基板に
接着部材を介して半導体チップが搭載された半導体装置
であって、前記有機系支持基板の半導体チップが搭載さ
れる側には所定の配線が形成されており、前記有機系支
持基板の半導体チップが搭載される側の反対側には外部
接続用端子がエリアアレイ状に形成されており、前記所
定の配線は半導体チップ端子及び前記外部接続用端子と
接続されており、少なくとも前記半導体チップ端子と所
定の配線との接続部が樹脂封止されており、前記接着部
材は接着剤層を備えるもので、前記接着剤の動的粘弾性
測定装置で測定される25℃の貯蔵弾性率が10〜20
00MPaかつ260℃での貯蔵弾性率が3〜50MP
aであることを特徴とする。
The semiconductor device of the present invention is a semiconductor device in which a semiconductor chip is mounted on an organic support substrate via an adhesive member, and a predetermined wiring is provided on the side of the organic support substrate on which the semiconductor chip is mounted. External connection terminals are formed in an area array shape on the side opposite to the side of the organic support substrate on which the semiconductor chip is mounted, and the predetermined wiring is the semiconductor chip terminal and the external connection. Dynamic viscoelasticity measurement of the adhesive agent, in which at least a connecting portion between the semiconductor chip terminal and a predetermined wiring is resin-sealed, and the adhesive member includes an adhesive layer. Storage elastic modulus at 25 ° C. measured by the device is 10 to 20
Storage elastic modulus at 00 MPa and 260 ° C. is 3 to 50 MP
It is characterized by being a.

【0017】本発明の半導体チップ搭載用基板は、接着
部材を介して半導体チップが搭載される有機系基板の半
導体チップ搭載用基板であって、前記有機系基板の、半
導体チップが搭載される側および半導体チップが搭載さ
れる側の反対側の少なくともいずれかの側には所定の配
線が形成されており、前記有機系基板の半導体チップが
搭載される側の反対側には外部接続用端子がエリアアレ
イ状に形成されており、前記接着部材は接着剤層を備え
るもので、前記接着剤硬化物の動的粘弾性測定装置で測
定される25℃の貯蔵弾性率が10〜2000MPaか
つ260℃での貯蔵弾性率が3〜50MPaであり、前
記接着部材は所定の大きさで前記有機系基板上の所定の
箇所に形成されていることを特徴とする。
The semiconductor chip mounting substrate of the present invention is a semiconductor chip mounting substrate of an organic substrate on which the semiconductor chip is mounted via an adhesive member, and the side of the organic substrate on which the semiconductor chip is mounted. And a predetermined wiring is formed on at least one side opposite to the side on which the semiconductor chip is mounted, and an external connection terminal is provided on the opposite side of the organic substrate on which the semiconductor chip is mounted. The adhesive member is formed in an area array shape, and the adhesive member has an adhesive layer, and has a storage elastic modulus at 25 ° C. of 10 to 2000 MPa and 260 ° C. measured by a dynamic viscoelasticity measuring device of the adhesive cured product. Storage elastic modulus is 3 to 50 MPa, and the adhesive member is formed in a predetermined size at a predetermined location on the organic substrate.

【0018】本発明の半導体チップ搭載用基板の製造法
は、半導体チップが搭載される側および半導体チップが
搭載される側の反対側の少なくともいずれかの側には所
定の配線が形成され、半導体チップが搭載される側の反
対側には外部接続用端子がエリアアレイ状に形成された
有機系基板に、動的粘弾性測定装置で測定される硬化物
の25℃の貯蔵弾性率が10〜2000MPaかつ26
0℃での貯蔵弾性率が3〜50MPaである接着剤層を
備える接着部材であり前記接着剤がDSC(示差熱量
計)を用いて測定した場合の全硬化発熱量の10〜40
%の発熱を終えた半硬化状態のものである接着部材フィ
ルムを、所定の大きさに切断し前記有機系基板上に熱圧
着することを含むことを特徴とする。
According to the method of manufacturing a semiconductor chip mounting substrate of the present invention, a predetermined wiring is formed on at least one of the side on which the semiconductor chip is mounted and the side opposite to the side on which the semiconductor chip is mounted, On the side opposite to the side on which the chip is mounted, an external connection terminal is formed in an area array shape on an organic substrate, and the cured product of the cured product has a storage elastic modulus of 10 at 25 ° C. measured by a dynamic viscoelasticity measuring device. 2000 MPa and 26
An adhesive member having an adhesive layer having a storage elastic modulus at 0 ° C. of 3 to 50 MPa, wherein the adhesive has a total curing heat value of 10 to 40 when measured using a DSC (differential calorimeter).
% Of the semi-cured adhesive member film, which is cut into a predetermined size, and thermocompression-bonded onto the organic substrate.

【0019】本発明の半導体装置の製造法は、半導体チ
ップが搭載される側および半導体チップが搭載される側
の反対側の少なくともいずれかの側には所定の配線が形
成され半導体チップが搭載される側の反対側には外部接
続用端子がエリアアレイ状に形成された有機系基板の半
導体搭載用基板に、動的粘弾性測定装置で測定される硬
化物の25℃の貯蔵弾性率が10〜2000MPaかつ
260℃での貯蔵弾性率が3〜50MPaである接着剤
層を備える接着部材を接着する工程、接着部材を介して
半導体チップを搭載する工程、前記所定の配線を半導体
チップ端子及び前記外部接続用端子と接続する工程、少
なくとも前記半導体チップ端子と所定の配線との接続部
を樹脂封止する工程を備えることを特徴とする。
According to the method of manufacturing a semiconductor device of the present invention, a predetermined wiring is formed on at least one of the side on which the semiconductor chip is mounted and the side opposite to the side on which the semiconductor chip is mounted, and the semiconductor chip is mounted. On the side opposite to the side where the external connection terminals are formed in an area array shape, an organic substrate for semiconductor mounting has a storage elastic modulus of 25 ° C. at 25 ° C. measured by a dynamic viscoelasticity measuring device. ~ 2000 MPa and a step of adhering an adhesive member having an adhesive layer having a storage elastic modulus at 260 ° C of 3 to 50 MPa, a step of mounting a semiconductor chip via the adhesive member, the predetermined wiring to the semiconductor chip terminal and the The method is characterized by including a step of connecting to an external connection terminal, and a step of resin-sealing at least a connecting portion between the semiconductor chip terminal and a predetermined wiring.

【0020】本発明の接着剤は下記のA〜Dの組成より
なる。 A.(1)エポキシ樹脂及びその硬化剤100重量部に
対し、(2)グリシジル(メタ)アクリレート2〜6重
量%を含むTg(ガラス転移温度)が−10℃以上でか
つ重量平均分子量が80万以上であるエポキシ基含有ア
クリル系共重合体100〜300重量部ならびに(3)
硬化促進剤0.1〜5重量部を含む接着剤。 B.(1)エポキシ樹脂及びその硬化剤100重量部に
対し、(2)エポキシ樹脂と相溶性がありかつ重量平均
分子量が3万以上の高分子量樹脂10〜40重量部、
(3)グリシジル(メタ)アクリレート2〜6重量%を
含むTg(ガラス転移温度)が−10℃以上でかつ重量
平均分子量が80万以上であるエポキシ基含有アクリル
系共重合体100〜300重量部ならびに(4)硬化促
進剤0.1〜5重量部を含む接着剤。 C.(1)エポキシ樹脂及びフェノール樹脂100重量
部に対し、(2)グリシジル(メタ)アクリレート2〜
6重量%を含むTgが−10℃以上でかつ重量平均分子
量が80万以上であるエポキシ基含有アクリル系共重合
体100〜300重量部ならびに(3)硬化促進剤0.
1〜5重量部を含む接着剤。 D.(1)エポキシ樹脂及びフェノール樹脂100重量
部に対し、(2)フェノキシ樹脂10〜40重量部、
(3)グリシジル(メタ)アクリレート2〜6重量%を
含むTgが−10℃以上でかつ重量平均分子量が80万
以上であるエポキシ基含有アクリル系共重合体100〜
300重量部ならびに(4)硬化促進剤0.1〜5重量
部を含む接着剤。
The adhesive of the present invention has the following compositions A to D. A. (1) Tg (glass transition temperature) containing 2 to 6% by weight of glycidyl (meth) acrylate is −10 ° C. or more and weight average molecular weight is 800,000 or more based on 100 parts by weight of epoxy resin and its curing agent. 100 to 300 parts by weight of an epoxy group-containing acrylic copolymer and (3)
An adhesive containing 0.1 to 5 parts by weight of a curing accelerator. B. (1) With respect to 100 parts by weight of the epoxy resin and its curing agent, (2) 10 to 40 parts by weight of a high molecular weight resin compatible with the epoxy resin and having a weight average molecular weight of 30,000 or more,
(3) 100 to 300 parts by weight of an epoxy group-containing acrylic copolymer having a Tg (glass transition temperature) of -10 ° C or more and a weight average molecular weight of 800,000 or more containing 2 to 6% by weight of glycidyl (meth) acrylate And (4) an adhesive containing 0.1 to 5 parts by weight of a curing accelerator. C. (1) 2 parts of glycidyl (meth) acrylate 2 to 100 parts by weight of epoxy resin and phenol resin
100 to 300 parts by weight of an epoxy group-containing acrylic copolymer having a Tg of -6 ° C and a weight average molecular weight of 800,000 or more, and (3) a curing accelerator.
An adhesive containing 1 to 5 parts by weight. D. (1) Epoxy resin and phenol resin 100 parts by weight, (2) Phenoxy resin 10 to 40 parts by weight,
(3) Epoxy group-containing acrylic copolymer 100 having Tg of 2 to 6% by weight of glycidyl (meth) acrylate of −10 ° C. or more and a weight average molecular weight of 800,000 or more
An adhesive containing 300 parts by weight and 0.1 to 5 parts by weight of (4) a curing accelerator.

【0021】本発明の両面接着フィルムは、下記E〜H
の三層構造のものである。 E.耐熱性熱可塑性フィルムをコア材に用い、コア材の
両面に、(1)エポキシ樹脂及びその硬化剤100重量
部に対し、(2)グリシジル(メタ)アクリレート2〜
6重量%を含むTg(ガラス転移温度)が−10℃以上
でかつ重量平均分子量が80万以上であるエポキシ基含
有アクリル系共重合体100〜300重量部ならびに
(3)硬化促進剤0.1〜5重量部を含む接着剤を有す
る三層構造の両面接着フィルム。 F.耐熱性熱可塑性フィルムをコア材に用い、コア材の
両面に、(1)エポキシ樹脂及びその硬化剤100重量
部に対し、(2)エポキシ樹脂と相溶性がありかつ重量
平均分子量が3万以上の高分子量樹脂10〜40重量
部、(3)グリシジル(メタ)アクリレート2〜6重量
%を含むTg(ガラス転移温度)が−10℃以上でかつ
重量平均分子量が80万以上であるエポキシ基含有アク
リル系共重合体100〜300重量部ならびに(4)硬
化促進剤0.1〜5重量部を含む接着剤を有する三層構
造の両面接着フィルム。 G.耐熱性熱可塑性フィルムをコア材に用い、コア材の
両面に、(1)エポキシ樹脂及びフェノール樹脂100
重量部に対し、(2)グリシジル(メタ)アクリレート
2〜6重量%を含むTgが−10℃以上でかつ重量平均
分子量が80万以上であるエポキシ基含有アクリル系共
重合体100〜300重量部ならびに(3)硬化促進剤
0.1〜5重量部を含む接着剤を有する三層構造の両面
接着フィルム。 H.耐熱性熱可塑性フィルムをコア材に用い、コア材の
両面に、(1)エポキシ樹脂及びフェノール樹脂100
重量部に対し、(2)フェノキシ樹脂10〜40重量
部、(3)グリシジル(メタ)アクリレート2〜6重量
%を含むTgが−10℃以上でかつ重量平均分子量が8
0万以上であるエポキシ基含有アクリル系共重合体10
0〜300重量部ならびに(4)硬化促進剤0.1〜5
重量部を含む接着剤を有する三層構造の両面接着フィル
ム。
The double-sided adhesive film of the present invention has the following E to H:
It has a three-layer structure. E. A heat-resistant thermoplastic film is used as a core material, and (2) glycidyl (meth) acrylate 2 to 100 parts by weight of (1) epoxy resin and its curing agent on both sides of the core material.
100 to 300 parts by weight of an epoxy group-containing acrylic copolymer having a Tg (glass transition temperature) of 6% by weight or more and a weight average molecular weight of 800,000 or more, and (3) a curing accelerator 0.1. A three-layer double-sided adhesive film having an adhesive containing ˜5 parts by weight. F. A heat-resistant thermoplastic film is used for the core material, and (1) 100 parts by weight of the epoxy resin and its curing agent are (2) compatible with the epoxy resin and have a weight average molecular weight of 30,000 or more on both sides of the core material. Containing 10 to 40 parts by weight of the high molecular weight resin and (3) 2 to 6% by weight of glycidyl (meth) acrylate and having a Tg (glass transition temperature) of -10 ° C or higher and a weight average molecular weight of 800,000 or higher. A three-layer double-sided adhesive film having an adhesive containing 100 to 300 parts by weight of an acrylic copolymer and (4) 0.1 to 5 parts by weight of a curing accelerator. G. A heat-resistant thermoplastic film is used as the core material, and (1) epoxy resin and phenol resin 100 are provided on both sides of the core material.
100 to 300 parts by weight of an epoxy group-containing acrylic copolymer having a Tg of (2) 2 to 6% by weight of glycidyl (meth) acrylate of −10 ° C. or more and a weight average molecular weight of 800,000 or more based on parts by weight. And (3) a three-sided double-sided adhesive film having an adhesive containing 0.1 to 5 parts by weight of a curing accelerator. H. A heat-resistant thermoplastic film is used as the core material, and (1) epoxy resin and phenol resin 100 are provided on both sides of the core material.
Based on parts by weight, (2) 10 to 40 parts by weight of phenoxy resin and (3) 2 to 6% by weight of glycidyl (meth) acrylate, Tg is -10 ° C or higher and the weight average molecular weight is 8
Epoxy group-containing acrylic copolymer having a number of at least 100,000
0 to 300 parts by weight and (4) curing accelerator 0.1 to 5
A three-layer double-sided adhesive film having an adhesive containing parts by weight.

【0022】本発明の半導体装置に於いて、所定の配線
は半導体チップ端子と、ワイヤボンド又はTAB(テー
プオートメーテッドボンディング)のインナーボンディ
ング方式等により直接に接続することができる。
In the semiconductor device of the present invention, the predetermined wiring can be directly connected to the semiconductor chip terminal by an inner bonding method such as wire bonding or TAB (tape automated bonding).

【0023】本発明の半導体装置で接着部材はフィルム
状であることが好ましく、接着部材は接着剤層を備える
もので、接着剤の樹脂成分としては、エポキシ樹脂、エ
ポキシ基含有アクリル共重合体、エポキシ樹脂硬化剤及
びエポキシ樹脂硬化促進剤を含むものが使用される。
In the semiconductor device of the present invention, the adhesive member is preferably in the form of a film, and the adhesive member has an adhesive layer. The resin component of the adhesive is epoxy resin, epoxy group-containing acrylic copolymer, Those containing an epoxy resin curing agent and an epoxy resin curing accelerator are used.

【0024】接着部材は、コア材としてポリイミド、ポ
リエーテルスルホン、ポリアミドイミドまたはポリエー
テルイミドフィルム等のガラス転移温度が200℃以上
の耐熱性熱可塑性フィルムを使用し、そのコア材の両面
に接着剤層が形成された構造のものが好ましい。耐熱性
熱可塑性フィルムとして液晶ポリマフィルムも使用され
る。接着剤層の中の残存溶媒量は5重量%以下が好まし
い。
As the adhesive member, a heat-resistant thermoplastic film having a glass transition temperature of 200 ° C. or higher, such as polyimide, polyether sulfone, polyamideimide or polyetherimide film, is used as the core material, and the adhesive is applied to both sides of the core material. A layered structure is preferred. Liquid crystal polymer films are also used as heat resistant thermoplastic films. The residual solvent amount in the adhesive layer is preferably 5% by weight or less.

【0025】本発明の半導体チップ搭載用基板に於い
て、接着部材はフィルム状であることが好ましく、接着
部材は接着剤層を備えるもので、接着剤の樹脂成分とし
ては、エポキシ樹脂、エポキシ基含有アクリル共重合
体、エポキシ樹脂硬化剤及びエポキシ樹脂硬化促進剤を
含むものが使用される。
In the substrate for mounting a semiconductor chip of the present invention, the adhesive member is preferably in the form of a film, and the adhesive member has an adhesive layer, and the resin component of the adhesive is epoxy resin or epoxy group. Those containing an acryl copolymer, an epoxy resin curing agent, and an epoxy resin curing accelerator are used.

【0026】接着部材は、コア材としてポリイミド、ポ
リエーテルスルホン、ポリアミドイミドまたはポリエー
テルイミドフィルム等のガラス転移温度が200℃以上
の耐熱性熱可塑性フィルムを使用し、そのコア材の両面
に接着剤層が形成された構造のものが好ましい。耐熱性
熱可塑性フィルムとして液晶ポリマフィルムも使用され
る。接着剤層の中の残存溶媒量は5重量%以下が好まし
い。
As the adhesive member, a heat-resistant thermoplastic film having a glass transition temperature of 200 ° C. or higher such as polyimide, polyether sulfone, polyamideimide or polyetherimide film is used as the core material, and the adhesive is applied to both sides of the core material. A layered structure is preferred. Liquid crystal polymer films are also used as heat resistant thermoplastic films. The residual solvent amount in the adhesive layer is preferably 5% by weight or less.

【0027】有機系基板上の所定の箇所に形成された接
着部材は所定の大きさに打ち抜き用金型で打ち抜かれた
フィルムが使用され、有機系基板上の所定の箇所に形成
された接着部材は、その接着部材の接着剤がDSCを用
いて測定した場合の全硬化発熱量の10〜40%の発熱
を終えた半硬化状態のフィルムであり、所定の大きさに
切断された後前記有機系基板上に熱圧着される。
The adhesive member formed at a predetermined position on the organic substrate is a film punched by a punching die to a predetermined size, and the adhesive member formed at a predetermined position on the organic substrate. Is a film in a semi-cured state in which the adhesive of the adhesive member has finished heat generation of 10 to 40% of the total heat generation of curing when measured using DSC, and is cut into a predetermined size, and then the organic film is formed. It is thermocompression bonded onto the system substrate.

【0028】本発明の半導体チップ搭載用基板の製造法
に於いて、切断した接着部材フィルムは、個々に精密位
置決め後、熱プレスで仮接着し、複数の接着部材フィル
ムを多連の有機系基板に載置した後、加熱した離型表面
処理金型で押圧し一括して接着することができる。離型
表面処理金型の表面離型材はテフロン及びシリコーンの
少なくとも一種が好ましい。接着部材フィルムの搬送時
に発生する静電気を除くエリミノスタット工程を接着部
材フィルム切断工程前に少なくとも1工程加えることが
できる。
In the method of manufacturing a substrate for mounting a semiconductor chip of the present invention, the cut adhesive member films are individually precisely positioned and then temporarily adhered by a hot press to form a plurality of organic adhesive member substrates. After being placed on the substrate, it can be adhered together by pressing with a heated release surface treatment die. Mold release surface treatment The surface mold release material of the mold is preferably at least one of Teflon and silicone. At least one step of removing the static electricity generated when the adhesive member film is conveyed can be added before the adhesive member film cutting step.

【0029】本発明の半導体装置の製造法に於いて、半
導体搭載用基板の下面側と半導体チップ側の両面から加
熱し、少なくともチップ側の温度を高くすることができ
る。
In the method of manufacturing a semiconductor device of the present invention, the temperature of at least the chip side can be raised by heating from both the lower surface side and the semiconductor chip side of the semiconductor mounting substrate.

【0030】本発明の接着剤に於いて、DSCを用いて
測定した場合の全硬化発熱量の10〜40%の発熱を終
えた状態にして使用するのが好ましく、動的粘弾性測定
装置を用いて測定した場合の接着剤硬化物の貯蔵弾性率
が25℃で10〜2000MPaであり、260℃で3
〜50MPaであることが好ましい。
In the adhesive of the present invention, it is preferable to use it after the heat generation of 10 to 40% of the total curing calorific value measured by DSC is finished, and the dynamic viscoelasticity measuring device is used. The storage elastic modulus of the cured adhesive when measured using is 10 to 2000 MPa at 25 ° C. and 3 at 260 ° C.
It is preferably ˜50 MPa.

【0031】無機フィラーが、接着剤樹脂成分100体
積部に対して2〜20体積部使用され、無機フィラーは
アルミナ、シリカが好ましい。
The inorganic filler is used in an amount of 2 to 20 parts by volume with respect to 100 parts by volume of the adhesive resin component, and the inorganic filler is preferably alumina or silica.

【0032】接着剤をベースフィルム上に形成して接着
フィルムとし、この接着フィルムを用いて半導体チップ
と配線板を接着させ半導体装置を得るこができる。
A semiconductor device can be obtained by forming an adhesive film on a base film to form an adhesive film, and using this adhesive film to bond a semiconductor chip and a wiring board.

【0033】本発明の両面接着フィルムに於いて、接着
剤はDSCを用いて測定した場合の全硬化発熱量の10
〜40%の発熱を終えた状態にして使用するのが好まし
く、動的粘弾性測定装置を用いて測定した場合の接着剤
硬化物の貯蔵弾性率が25℃で10〜2000MPaで
あり、260℃で3〜50MPaであることが好まし
い。無機フィラーが、接着剤樹脂成分100体積部に対
して2〜20体積部使用され、無機フィラーはアルミ
ナ、シリカが好ましい。
In the double-sided adhesive film of the present invention, the adhesive has a total curing heat value of 10 when measured by DSC.
It is preferable to use it after the heat generation of -40% is finished, and the storage elastic modulus of the cured adhesive is 10-2000 MPa at 25 ° C and 260 ° C when measured using a dynamic viscoelasticity measuring device. Is preferably 3 to 50 MPa. The inorganic filler is used in an amount of 2 to 20 parts by volume with respect to 100 parts by volume of the adhesive resin component, and the inorganic filler is preferably alumina or silica.

【0034】コア材に用いる耐熱性熱可塑性フィルムは
ガラス転移温度200℃以上であるものが好ましく、こ
のようなガラス転移温度200℃以上の耐熱性熱可塑性
フィルムとしては、ポリイミド、ポリエーテルスルホ
ン、ポリアミドイミドまたはポリエーテルイミドフィル
ムが好ましい。コア材に用いる耐熱性熱可塑性フィルム
として液晶ポリマフィルムも使用される。
The heat-resistant thermoplastic film used as the core material preferably has a glass transition temperature of 200 ° C. or higher. Examples of such a heat-resistant thermoplastic film having a glass transition temperature of 200 ° C. or higher include polyimide, polyether sulfone and polyamide. Imide or polyetherimide films are preferred. A liquid crystal polymer film is also used as the heat-resistant thermoplastic film used for the core material.

【0035】従来の技術で述べた課題を解決するため
に、まず有機配線基板上に絶縁性接着剤を介して半導体
チップを搭載し、チップ側端子と配線板側端子とが金ワ
イヤボンディングで接続され、はんだボール外部端子が
基板裏面にエリアアレイ状に配列された半導体パッケー
ジについて、これに用いる絶縁性接着剤の物性とマザー
ボード実装後の耐温度サイクル性との関係をFEM弾塑
性解析手法を用いて調べた。
In order to solve the problems described in the prior art, first, a semiconductor chip is mounted on an organic wiring substrate via an insulating adhesive, and the chip side terminal and the wiring board side terminal are connected by gold wire bonding. For the semiconductor package in which the solder ball external terminals are arranged in an area array on the back surface of the substrate, the relationship between the physical properties of the insulating adhesive used for the semiconductor package and the temperature cycle resistance after mounting on the motherboard is analyzed by the FEM elastic-plastic analysis method. I looked it up.

【0036】その結果、チップのCTE(線熱膨張係
数:3.5ppm)とマザーボードのCTE(14〜1
8ppm)との差から生ずる基板はんだボール外部端子
部にかかる応力は絶縁性接着剤の弾性率Eを低下させる
ほど少なくなり、動的粘弾性測定装置で測定される、弾
性率Eが2000MPa以下、望ましくは1000MP
a以下であれば、再外周部のはんだ端子の相当歪みは十
分小さく、Coffin−Manson則に当てはめて
も、−55℃〜125℃の温度サイクルで1000サイ
クル以上の疲労寿命があることがわかった。
As a result, the CTE of the chip (coefficient of linear thermal expansion: 3.5 ppm) and the CTE of the mother board (14 to 1)
The stress applied to the external terminals of the solder balls of the substrate caused by the difference of 8 ppm) decreases as the elastic modulus E of the insulating adhesive decreases, and the elastic modulus E measured by a dynamic viscoelasticity measuring device is 2000 MPa or less, Desirably 1000MP
It was found that if it was a or less, the equivalent strain of the solder terminal in the re-outer peripheral portion was sufficiently small, and even if it was applied to the Coffin-Manson rule, there was a fatigue life of 1000 cycles or more at a temperature cycle of -55 ° C to 125 ° C. .

【0037】逆に、通常のエポキシ系ダイボンディング
材の弾性率Eは3000MPa以上であり、はんだボー
ルの耐温度サイクル信頼性に対して問題があることがわ
かった。
On the contrary, the elastic modulus E of the usual epoxy type die bonding material is 3000 MPa or more, and it has been found that there is a problem in the temperature cycle reliability of the solder ball.

【0038】一方、絶縁性接着剤の弾性率Eをシリコン
エラストマ程度の10MPa以下に下げると、リフロー
温度の上限温度260℃では弾性率Eは測定限界を越え
るほど小さくなり、強度メンバーとしての機能がなくな
る領域になり、基板表面およびシリコンチップとの接着
保持を期待できなくなる。剪断接着強度の温度依存性は
弾性率の温度依存性と同様の傾向があり、温度が高くな
るほど小さくなる。すなはち、リフロー温度260℃で
の弾性率Eが少なくとも3MPa以上ないと剪断接着強
度が期待できない。リフロー温度260℃でチップある
いは基板との界面に剥離が生ずれば、その後に実施する
耐温度サイクル試験での金ワイヤー断線不良や耐湿性試
験での腐食断線不良に至る。
On the other hand, when the elastic modulus E of the insulating adhesive is reduced to 10 MPa or less, which is about the level of a silicone elastomer, the elastic modulus E becomes so small as to exceed the measurement limit at the reflow temperature upper limit temperature of 260 ° C., and the function as a strength member. It becomes a region that disappears, and it is not possible to expect adhesion and holding with the substrate surface and the silicon chip. The temperature dependence of the shear adhesive strength has the same tendency as the temperature dependence of the elastic modulus, and becomes smaller as the temperature rises. That is, unless the elastic modulus E at the reflow temperature of 260 ° C. is at least 3 MPa or more, the shear adhesive strength cannot be expected. If peeling occurs at the interface with the chip or the substrate at the reflow temperature of 260 ° C., the gold wire disconnection failure will occur in the temperature resistance cycle test and the corrosion disconnection failure will occur in the moisture resistance test.

【0039】したがって、チップを有機配線基板に搭載
するための絶縁性接着剤(接着剤硬化物)の常温時の弾
性率としては10〜2000MPaの範囲、望ましくは
50〜1500MPa、最も望ましくは100〜100
0MPaの範囲、リフロー温度260℃での弾性率とし
ては3〜50MPaの範囲のものを使用することが、耐
温度サイクル性および耐吸湿リフロー性を満足するため
の条件であることがわかった。
Therefore, the elastic modulus of the insulating adhesive (adhesive cured product) for mounting the chip on the organic wiring substrate is in the range of 10 to 2000 MPa, preferably 50 to 1500 MPa, and most preferably 100 to 100 MPa. 100
It has been found that the use of one having a range of 0 MPa and an elastic modulus of 3 to 50 MPa at a reflow temperature of 260 ° C. is a condition for satisfying the temperature cycle resistance and the moisture absorption reflow resistance.

【0040】上記した弾性率の温度依存性を持つ各種熱
硬化性樹脂を探索した結果、エポキシ基含有アクリル共
重合体が、その範囲の物性を具現できる好適な接着剤で
あることがわかった。
As a result of searching various thermosetting resins having the above-mentioned temperature dependence of elastic modulus, it was found that the epoxy group-containing acrylic copolymer is a suitable adhesive capable of realizing the physical properties in the range.

【0041】さらに、耐吸湿リフロー性を劣化させる要
因として、有機配線基板と絶縁性接着剤との界面に発生
するボイドがある。液状の熱硬化性接着剤を少量滴下さ
せ塗布する通常の方式では、ボイドを巻き込み易く、吸
湿リフロー時にクラック、基板膨れの原因になる。
Further, as a factor that deteriorates the moisture absorption reflow resistance, there is a void generated at the interface between the organic wiring board and the insulating adhesive. In a usual method in which a small amount of a liquid thermosetting adhesive is dropped and applied, voids are easily caught, which causes cracks and swelling of the substrate during moisture reflow.

【0042】そこで、上記したエポキシ含有アクリル共
重合体をフィルム状に加工し、残存溶媒量を5%以下、
望ましくは2%以下に乾燥するとともに、DSC(示差
熱量計)を用いて測定した場合の全硬化発熱量の10〜
40%のB−ステージ硬化状態にした接着フイルムを、
所定の寸法に切断し、有機配線基板に熱プレスにて貼付
けて、半導体搭載用基板を得る。
Therefore, the above epoxy-containing acrylic copolymer is processed into a film, and the residual solvent amount is 5% or less,
Desirably, it is dried to 2% or less, and 10 to 10% of the total curing heat value when measured using a DSC (differential calorimeter).
40% B-stage cured adhesive film,
The substrate is cut into a predetermined size and attached to an organic wiring substrate by hot pressing to obtain a semiconductor mounting substrate.

【0043】その後、チップを搭載・熱圧着し、ワイヤ
ーボンディング工程、封止工程をへて、パッケージ完成
品を得る。
After that, a chip is mounted and thermocompression bonded, and a wire bonding process and a sealing process are performed to obtain a package finished product.

【0044】このようにして得られたパッケージは、チ
ップおよび基板との界面に隙間やボイドが発生しにくい
が、チップの熱圧着時に半導体搭載用基板側のみならず
チップ側の両面からも加熱するほうがチップと接着剤と
の界面に隙間が発生しにくく、基板の配線部間に樹脂が
充分に埋め込まれ、耐吸湿リフロー性が向上することを
見いだした。さらに、上記した接着フィルムの残存溶媒
量を5%以下望ましくは2%以下にコントロールすれ
ば、接着フィルムの硬化過程で気泡が発生し、耐吸湿リ
フロー性が低下するようなことがないことを見いだし
た。
The package thus obtained is less likely to have gaps or voids at the interface between the chip and the substrate, but is heated not only on the semiconductor mounting substrate side but also on both sides of the chip side during thermocompression bonding of the chip. It was found that a gap is less likely to occur at the interface between the chip and the adhesive, the resin is sufficiently embedded between the wiring portions of the substrate, and the moisture absorption reflow resistance is improved. Further, it was found that when the residual solvent amount of the adhesive film is controlled to 5% or less, preferably 2% or less, bubbles are not generated during the curing process of the adhesive film and the moisture absorption reflow resistance is not deteriorated. It was

【0045】上記した物性を持つ接着フィルムの適用
は、チップ側端子と配線板側端子とが金ワイヤボンディ
ングで接続され、外部端子が基板裏面にエリアアレイ状
に配列された半導体パッケージについてのみならず、チ
ップ側端子と配線板側端子とがTAB(テープオートメ
ーテッドボンディング)のインナーボンディング方式で
接続されたパッケージ(チップ側端子と配線板側端子と
が直接接続された方式のパッケージ)にも同じ作用と効
果があり、半導体チップが接着剤を介して有機配線基板
に接着されている構造を持つエリアアレイパッケージ全
ての耐温度サイクル性および耐吸湿リフロー性を同時に
満足する。外部接続用端子はエリアアレイ状、すなわ
ち、基板裏面の、全面に格子状にまたは周辺部に一列あ
るいは数列配置されている。
The application of the adhesive film having the above-mentioned physical properties is not limited to the semiconductor package in which the chip side terminals and the wiring board side terminals are connected by gold wire bonding and the external terminals are arranged on the back surface of the substrate in an area array form. , The same effect also applies to a package in which the chip side terminal and the wiring board side terminal are connected by a TAB (tape automated bonding) inner bonding method (a package in which the chip side terminal and the wiring board side terminal are directly connected). And the semiconductor chip is bonded to the organic wiring board via an adhesive, and the temperature cycle resistance and the moisture absorption reflow resistance of all area array packages are simultaneously satisfied. The external connection terminals are arranged in an area array, that is, in a grid pattern on the entire back surface of the substrate or in a row or several rows in the peripheral portion.

【0046】有機配線基板としては、BT(ビスマレイ
ミド)基板、ガラスエポキシ基板などFR−4基板であ
っても、ポリイミドフィルム基板など基板材質に限定さ
れない。また、上記した接着フィルムは上記した物性を
持つ熱硬化性接着剤で形成することも出来るが、テープ
として巻いたり、送ったりする時の剛性を確保するため
に、ポリイミドフィルムの両面に塗布した3層構造にし
てもよい。上記した同じ作用と効果があることを見いだ
した。
The organic wiring substrate is not limited to a substrate material such as a polyimide film substrate even if it is a FR-4 substrate such as a BT (bismaleimide) substrate or a glass epoxy substrate. The above-mentioned adhesive film may be formed of a thermosetting adhesive having the above-mentioned physical properties, but it is applied to both sides of the polyimide film in order to secure rigidity when wound or fed as a tape. You may make it a layered structure. It has been found that it has the same action and effect as described above.

【0047】接着フィルムの有機配線基板への接着方法
は、接着フィルムを所定の形状に切断し、その後、切断
させたフィルムの正確な位置合わせを行い、有機配線基
板に熱圧着する。
As a method for adhering the adhesive film to the organic wiring board, the adhesive film is cut into a predetermined shape, then the cut film is accurately aligned and thermocompression bonded to the organic wiring board.

【0048】接着フィルムの切断方法は、フィルムを所
定の形状に正確に切断する方法ならいずれの方法でも良
いが、作業性、貼り付け性を考えると、打ち抜き金型を
用いて接着フィルムを切断し、その後有機配線基板に仮
圧着、または本圧着させるのが好ましい。
The method for cutting the adhesive film may be any method as long as it accurately cuts the film into a predetermined shape, but in consideration of workability and adhesiveness, the adhesive film is cut using a punching die. After that, it is preferable to perform temporary pressure bonding or final pressure bonding to the organic wiring board.

【0049】切断された接着フィルムの有機配線基板へ
の熱圧着は、接着フィルム切断後、プレス材に吸引によ
り吸着させ位置合わせを正確に行った後、有機配線基板
上に仮圧着し、その後熱プレスで本圧着する方法と、打
ち抜き用金型で接着フィルムを打ち抜き後仮圧着し、そ
の後熱プレスで本圧着する方法がある。また、打ち抜き
金型を用いた場合は、打ち抜き金型で打ち抜かれたテー
プをそのまま本圧着する方法がある。
The thermo-compression bonding of the cut adhesive film to the organic wiring board is performed by cutting the adhesive film, adhering to the press material by suction and accurately aligning it, and then temporarily press-bonding it on the organic wiring board, and then performing thermocompression bonding. There are a method of main press-bonding with a press and a method of punching an adhesive film with a punching die and then performing temporary pressure-bonding, and then performing main press-bonding with a hot press. Further, when a punching die is used, there is a method in which the tape punched by the punching die is directly pressure-bonded as it is.

【0050】仮圧着は打ち抜かれた接着テープが有機配
線基板に接着すれば良く、特に条件は限定しない。
Temporary pressure bonding may be performed by adhering the punched adhesive tape to the organic wiring substrate, and the conditions are not particularly limited.

【0051】本圧着時の接着フィルムの圧着温度は30
〜250℃が好ましく、70〜150℃が更に好まし
い。圧着温度圧が30℃以下では接着フィルムの弾性率
が高く、接着力が低いばかりか、有機配線基板の配線上
に接着させる時には、配線の周りへの接着剤の埋め込み
性が悪く好ましくない。接着温度が250℃以上では配
線が酸化され、また有機配線基板が柔らかくなり作業性
上好ましくない。
At the time of main pressure bonding, the pressure bonding temperature of the adhesive film is 30.
-250 degreeC is preferable and 70-150 degreeC is more preferable. When the pressure-bonding temperature is 30 ° C. or lower, the elastic modulus of the adhesive film is high and the adhesive strength is low, and when the adhesive film is adhered to the wiring of the organic wiring substrate, the embedding property of the adhesive around the wiring is poor, which is not preferable. When the bonding temperature is 250 ° C. or higher, the wiring is oxidized and the organic wiring board becomes soft, which is not preferable in terms of workability.

【0052】本圧着の圧力は1〜20kg/cm2が好
ましく、3〜10kg/cm2が更に好ましい。圧着圧
力が1kg/cm2以下では接着フィルムの接着力、配
線周りの埋め込み性が悪く、20kg/cm2以上では接着
剤が所定の位置以外にはみ出し接着剤の寸法精度が悪く
なる。
[0052] The pressure of the crimping is preferably 1~20kg / cm 2, more preferably 3~10kg / cm 2. When the pressure bonding pressure is 1 kg / cm 2 or less, the adhesive force of the adhesive film and the embedding property around the wiring are poor, and when the pressure is 20 kg / cm 2 or more, the adhesive sticks out at a position other than a predetermined position, and the dimensional accuracy of the adhesive becomes poor.

【0053】本圧着時間は前記圧着温度、圧着時間で接
着出来る時間なら良いが、作業性を考えると0.3〜6
0秒が好ましく、0.5〜10秒が更に好ましい。
The main pressure bonding time may be any time that can be bonded at the above pressure bonding temperature and pressure bonding time, but in consideration of workability, it is 0.3 to 6
0 second is preferable, and 0.5 to 10 seconds is more preferable.

【0054】本圧着用熱プレスは接着剤がプレス表面に
接着しない様に表面に離型剤したものが好ましく、特に
テフロン、シリコーンを用いたものが離型性や作業性上
好ましい。
It is preferable that the hot pressing for main pressure bonding has a release agent on the surface so that the adhesive does not adhere to the surface of the press, and that using Teflon or silicone is particularly preferable from the viewpoint of mold release property and workability.

【0055】本発明において使用されるエポキシ樹脂
は、硬化して接着作用を呈するものであればよい。二官
能以上で、好ましくは分子量が5000未満、より好ま
しくは3000未満のエポキシ樹脂が使用される。特
に、分子量が500以下のビスフェノールA型またはビ
スフェノールF型液状樹脂を用いると積層時の流動性を
向上することができて好ましい。分子量が500以下の
ビスフェノールA型またはビスフェノールF型液状樹脂
は、油化シェルエポキシ株式会社から、エピコート80
7、エピコート827、エピコート828という商品名
で市販されている。また、ダウケミカル日本株式会社か
らは、D.E.R.330、D.E.R.331、D.
E.R.361という商品名で市販されている。さら
に、東都化成株式会社から、YD128、YDF170
という商品名で市販されている。
The epoxy resin used in the present invention may be any resin that cures and exhibits an adhesive action. An epoxy resin having a functionality of two or more and having a molecular weight of less than 5000, preferably less than 3000, is used. Particularly, it is preferable to use a bisphenol A type or bisphenol F type liquid resin having a molecular weight of 500 or less because the fluidity at the time of lamination can be improved. Bisphenol A type or bisphenol F type liquid resin having a molecular weight of 500 or less is available from Yuka Shell Epoxy Co., Ltd.
7, Epikote 827, and Epikote 828 are commercially available. Also, from Dow Chemical Japan Co., Ltd., E. R. 330, D.I. E. R. 331, D.I.
E. R. It is marketed under the trade name of 361. In addition, YD128, YDF170 from Tohto Kasei Co., Ltd.
It is marketed under the product name.

【0056】エポキシ樹脂としては、高Tg(ガラス転
移温度)化を目的に多官能エポキシ樹脂を加えてもよ
く、多官能エポキシ樹脂としては、フェノールノボラッ
ク型エポキシ樹脂、クレゾールノボラック型エポキシ樹
脂等が例示される。
As the epoxy resin, a polyfunctional epoxy resin may be added for the purpose of increasing the Tg (glass transition temperature). Examples of the polyfunctional epoxy resin include phenol novolac type epoxy resin and cresol novolac type epoxy resin. To be done.

【0057】フェノールノボラック型エポキシ樹脂は、
日本化薬株式会社から、EPPN−201という商品名
で市販されている。また、クレゾールノボラック型エポ
キシ樹脂は、住友化学工業株式会社から、ESCN−0
01、ESCN−195という商品名で、また、前記日
本化薬株式会社から、EOCN1012、EOCN10
25、EOCN1027という商品名で市販されてい
る。また、エポキシ樹脂として、ブロム化エポキシ樹
脂、ブロム化ビスフェノールA型エポキシ樹脂(例えば
住友化学工業株式会社製商品名ESB−400)、ブロ
ム化フェノールノボラック型エポキシ樹脂(例えば日本
化薬株式会社製商品名BREN−105,BREN−
S)等が使用できる。
The phenol novolac type epoxy resin is
It is marketed by Nippon Kayaku Co., Ltd. under the trade name of EPPN-201. In addition, cresol novolac type epoxy resin is ESCN-0 from Sumitomo Chemical Co., Ltd.
01, ESCN-195, and from the above-mentioned Nippon Kayaku Co., Ltd., EOCN1012, EOCN10
25, and is marketed under the trade name of EOCN1027. Further, as the epoxy resin, a brominated epoxy resin, a brominated bisphenol A type epoxy resin (for example, Sumitomo Chemical Co., Ltd., trade name ESB-400), a brominated phenol novolac type epoxy resin (for example, Nippon Kayaku Co., Ltd. trade name BREN-105, BREN-
S) etc. can be used.

【0058】エポキシ樹脂の硬化剤は、エポキシ樹脂の
硬化剤として通常用いられているものを使用でき、アミ
ン、ポリアミド、酸無水物、ポリスルフィッド、三弗化
硼素及びフェノール性水酸基を1分子中に2個以上有す
る化合物であるビスフェノールA、ビスフェノールF、
ビスフェノールS等が挙げられる。特に吸湿時の耐電食
性に優れるためフェノール樹脂であるフェノールノボラ
ック樹脂、ビスフェノールノボラック樹脂またはクレゾ
ールノボラック樹脂等を用いるのが好ましい。
As the curing agent for the epoxy resin, those generally used as a curing agent for the epoxy resin can be used, and amine, polyamide, acid anhydride, polysulfide, boron trifluoride and phenolic hydroxyl group are contained in 2 molecules per molecule. Bisphenol A, bisphenol F, which is a compound having one or more
Examples include bisphenol S and the like. In particular, it is preferable to use a phenol resin such as phenol novolac resin, bisphenol novolac resin, cresol novolac resin or the like because it has excellent resistance to electrolytic corrosion when absorbing moisture.

【0059】このような好ましいとした硬化剤は、大日
本インキ化学工業株式会社から、フェノライトLF28
82、フェノライトLF2822、フェノライトTD−
2090、フェノライトTD−2149、フェノライト
VH4150、フェノライトVH4170という商品名
で市販されている。また、硬化剤として、ブロム化フェ
ノール化合物であるテトラブロモビスフェノールA(帝
人化成株式会社製商品名ファイヤーガードFG−200
0)等が使用できる。
Such a preferred curing agent is Phenolite LF28 from Dainippon Ink and Chemicals, Inc.
82, Phenolite LF2822, Phenolite TD-
2090, Phenolite TD-2149, Phenolite VH4150, and Phenolite VH4170 are commercially available. Further, as a curing agent, tetrabromobisphenol A which is a brominated phenol compound (trade name Fireguard FG-200 manufactured by Teijin Chemicals Ltd.)
0) etc. can be used.

【0060】硬化剤とともに硬化促進剤を用いるのが好
ましく、硬化促進剤としては、各種イミダゾール類を用
いるのが好ましい。イミダゾールとしては、2−メチル
イミダゾール、2−エチル−4−メチルイミダゾール、
1−シアノエチル−2−フェニルイミダゾール、1−シ
アノエチル−2−フェニルイミダゾリウムトリメリテー
ト等が挙げられる。
It is preferable to use a curing accelerator together with the curing agent, and it is preferable to use various imidazoles as the curing accelerator. As the imidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole,
1-Cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate and the like can be mentioned.

【0061】イミダゾール類は、四国化成工業株式会社
から、2E4MZ、2PZ−CN、2PZ−CNSとい
う商品名で市販されている。
Imidazoles are commercially available from Shikoku Chemicals Co., Ltd. under the trade names of 2E4MZ, 2PZ-CN and 2PZ-CNS.

【0062】エポキシ樹脂と相溶性がありかつ重量平均
分子量が3万以上の高分子量樹脂としては、フェノキシ
樹脂、高分子量エポキシ樹脂、超高分子量エポキシ樹
脂、極性の大きい官能基含有ゴム、極性の大きい官能基
含有反応性ゴムなどが挙げられる。Bステージにおける
接着剤のタック性の低減や硬化時の可撓性を向上させる
ため重量平均分子量が3万以上とされる。前記極性の大
きい官能基含有反応性ゴムは、アクリルゴムにカルボキ
シル基のような極性が大きい官能基を付加したゴムが挙
げられる。ここで、エポキシ樹脂と相溶性があるとは、
硬化後にエポキシ樹脂と分離して二つ以上の相に分かれ
ることなく、均質混和物を形成する性質を言う。
As the high molecular weight resin which is compatible with the epoxy resin and has a weight average molecular weight of 30,000 or more, a phenoxy resin, a high molecular weight epoxy resin, an ultra high molecular weight epoxy resin, a functional group-containing rubber having a large polarity, and a large polarity. Examples thereof include functional group-containing reactive rubber. The weight average molecular weight is set to 30,000 or more in order to reduce tackiness of the adhesive in the B stage and improve flexibility at the time of curing. Examples of the functional group-containing reactive rubber having a large polarity include a rubber obtained by adding a functional group having a large polarity such as a carboxyl group to acrylic rubber. Here, having compatibility with epoxy resin means
It refers to the property of forming a homogenous mixture without being separated from the epoxy resin after curing and separating into two or more phases.

【0063】フェノキシ樹脂は、東都化成株式会社か
ら、フェノトートYP−40、フェノトートYP−5
0、フェノトートYP−60等の商品名で市販されてい
る。高分子量エポキシ樹脂は、分子量が3万〜8万の高
分子量エポキシ樹脂、さらには、分子量が8万を超える
超高分子量エポキシ樹脂(特公平7−59617号、特
公平7−59618号、特公平7−59619号、特公
平7−59620号、特公平7−64911号、特公平
7−68327号公報参照)があり、何れも日立化成工
業株式会社で製造している。極性の大きい官能基含有反
応性ゴムとして、カルボキシル基含有アクリルゴムは、
帝国化学産業株式会社から、HTR−860Pという商
品名で市販されている。
Phenoxy resins are available from Tohto Kasei Co., Ltd. as Phenotote YP-40 and Phenotote YP-5.
It is marketed under the trade name of No. 0, Phenothote YP-60 and the like. The high molecular weight epoxy resin is a high molecular weight epoxy resin having a molecular weight of 30,000 to 80,000, and further, an ultra high molecular weight epoxy resin having a molecular weight of more than 80,000 (Japanese Patent Publication No. 7-59617, Japanese Patent Publication No. 7-59618, Japanese Patent Publication No. 7-59619, Japanese Patent Publication No. 7-59620, Japanese Patent Publication No. 7-64911, and Japanese Patent Publication No. 7-68327), all of which are manufactured by Hitachi Chemical Co., Ltd. As a functional group-containing reactive rubber having a large polarity, a carboxyl group-containing acrylic rubber is
It is marketed by Teikoku Chemical Industry Co., Ltd. under the trade name of HTR-860P.

【0064】上記エポキシ樹脂と相溶性がありかつ重量
平均分子量が3万以上の高分子量樹脂の添加量は、エポ
キシ樹脂を主成分とする相(以下エポキシ樹脂相とい
う)の可撓性の不足、タック性の低減やクラック等によ
る絶縁性の低下を防止するため10重量部以上、エポキ
シ樹脂相のTgの低下を防止するため40重量部以下と
される。
The addition amount of the high molecular weight resin which is compatible with the above-mentioned epoxy resin and has a weight average molecular weight of 30,000 or more means that the phase containing the epoxy resin as a main component (hereinafter referred to as the epoxy resin phase) lacks flexibility. The amount is 10 parts by weight or more in order to prevent the decrease in tackiness and the decrease in insulating property due to cracks and the like, and is 40 parts by weight or less in order to prevent the decrease in Tg of the epoxy resin phase.

【0065】グリシジル(メタ)アクリレート2〜6重
量%を含む、Tgが−10℃以上でかつ重量平均分子量
が80万以上であるエポキシ基含有アクリル系共重合体
は、帝国化学産業株式会社から市販されている商品名H
TR−860P−3を使用することができる。官能基モ
ノマーが、カルボン酸タイプのアクリル酸や、水酸基タ
イプのヒドロキシメチル(メタ)アクリレートを用いる
と、架橋反応が進行しやすく、ワニス状態でのゲル化、
Bステージ状態での硬化度の上昇による接着力の低下等
の問題があるため好ましくない。また、官能基モノマー
として用いるグリシジル(メタ)アクリレートの量は、
2〜6重量%の共重合体比とする。接着力を得るため、
2重量%以上とし、ゴムのゲル化を防止するために6重
量%以下とされる。残部はエチル(メタ)アクリレート
やブチル(メタ)アクリレートまたは両者の混合物を用
いることができるが、混合比率は、共重合体のTgを考
慮して決定する。Tgが−10℃未満であるとBステー
ジ状態での接着フィルムのタック性が大きくなり取扱性
が悪化するので、−10℃以上とされる。重合方法はパ
ール重合、溶液重合等が挙げられ、これらにより得るこ
とができる。
An epoxy group-containing acrylic copolymer containing 2 to 6% by weight of glycidyl (meth) acrylate and having a Tg of -10 ° C or more and a weight average molecular weight of 800,000 or more is commercially available from Teikoku Chemical Industry Co., Ltd. Product name H
TR-860P-3 can be used. When the functional group monomer is a carboxylic acid type acrylic acid or a hydroxyl group type hydroxymethyl (meth) acrylate, the crosslinking reaction easily proceeds, and gelation in a varnish state occurs,
There is a problem such as a decrease in adhesive strength due to an increase in curing degree in the B stage state, which is not preferable. The amount of glycidyl (meth) acrylate used as the functional group monomer is
The copolymer ratio is 2 to 6% by weight. To get the adhesive strength,
The content is 2% by weight or more, and 6% by weight or less to prevent gelation of rubber. The balance may be ethyl (meth) acrylate, butyl (meth) acrylate, or a mixture of both, and the mixing ratio is determined in consideration of the Tg of the copolymer. If the Tg is less than -10 ° C, the tackiness of the adhesive film in the B-stage state becomes large and the handleability deteriorates. Examples of the polymerization method include pearl polymerization and solution polymerization, which can be obtained.

【0066】エポキシ基含有アクリル系共重合体の重量
平均分子量は、80万以上とされ、この範囲では、シー
ト状、フィルム状での強度や可撓性の低下やタック性の
増大が少ないからである。
The weight average molecular weight of the epoxy group-containing acrylic copolymer is set to 800,000 or more. In this range, the strength and flexibility of the sheet or film are not significantly reduced and the tackiness is not increased. is there.

【0067】上記エポキシ基含有アクリル系共重合体添
加量は、フィルムの強度の低下やタック性が大きくなる
のを防止するため100重量部以上とされ、エポキシ基
含有アクリルゴムの添加量が増えると、ゴム成分の相が
多くなり、エポキシ樹脂相が少なくなるため、高温での
取扱い性の低下が起こるため、300重量部以下とされ
る。
The amount of the epoxy group-containing acrylic copolymer added is 100 parts by weight or more in order to prevent the strength of the film from decreasing and the tackiness of the film to increase. When the amount of the epoxy group-containing acrylic rubber added increases. Since the amount of the rubber component is increased and the amount of the epoxy resin phase is reduced, the handling property at high temperature is deteriorated, so that the amount is 300 parts by weight or less.

【0068】接着剤には、異種材料間の界面結合をよく
するために、カップリング剤を配合することもできる。
カップリング剤としては、シランカップリング剤が好ま
しい。
A coupling agent may be added to the adhesive in order to improve interfacial bonding between different materials.
A silane coupling agent is preferable as the coupling agent.

【0069】シランカップリング剤としては、γ−グリ
シドキシプロピルトリメトキシシラン、γ−メルカプト
プロピルトリメトキシシラン、γ−アミノプロピルトリ
エトキシシラン、γ−ウレイドプロピルトリエトキシシ
ラン、N−β−アミノエチル−γ−アミノプロピルトリ
メトキシシラン等が挙げられる。
Examples of the silane coupling agent include γ-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-ureidopropyltriethoxysilane and N-β-aminoethyl. Examples include -γ-aminopropyltrimethoxysilane and the like.

【0070】前記したシランカップリング剤は、γ−グ
リシドキシプロピルトリメトキシシランがNUC A−
187、γ−メルカプトプロピルトリメトキシシランが
NUC A−189、γ−アミノプロピルトリエトキシ
シランがNUC A−1100、γ−ウレイドプロピル
トリエトキシシランがNUC A−1160、N−β−
アミノエチル−γ−アミノプロピルトリメトキシシラン
がNUC A−1120という商品名で、いずれも日本
ユニカー株式会社から市販されており、好適に使用する
ことができる。
As the silane coupling agent described above, γ-glycidoxypropyltrimethoxysilane is NUC A-
187, γ-mercaptopropyltrimethoxysilane is NUC A-189, γ-aminopropyltriethoxysilane is NUC A-1100, and γ-ureidopropyltriethoxysilane is NUC A-1160, N-β-.
Aminoethyl-γ-aminopropyltrimethoxysilane, which is a product name of NUC A-1120, is commercially available from Nippon Unicar Co., Ltd. and can be preferably used.

【0071】カップリング剤の配合量は、添加による効
果や耐熱性およびコストから、樹脂100重量部に対し
0.1〜10重量部を添加するのが好ましい。
From the effect of addition, heat resistance and cost, it is preferable to add 0.1 to 10 parts by weight of the coupling agent to 100 parts by weight of the resin.

【0072】さらに、イオン性不純物を吸着して、吸湿
時の絶縁信頼性をよくするために、イオン捕捉剤を配合
することができる。イオン捕捉剤の配合量は、添加によ
る効果や耐熱性、コストより、5〜10重量部が好まし
い。イオン捕捉剤としては、銅がイオン化して溶け出す
のを防止するため銅害防止剤として知られる化合物例え
ば、トリアジンチオール化合物、ビスフェノール系還元
剤を配合することもできる。ビスフェノール系還元剤と
しては、2,2’−メチレン−ビス−(4−メチル−6
−第3−ブチルフェノール)、4,4’−チオ−ビス−
(3−メチル−6−第3−ブチルフェノール)等が挙げ
られる。
Further, in order to adsorb ionic impurities and improve insulation reliability when absorbing moisture, an ion trapping agent can be added. The compounding amount of the ion scavenger is preferably 5 to 10 parts by weight from the effects of addition, heat resistance, and cost. As the ion scavenger, a compound known as a copper damage inhibitor, such as a triazine thiol compound or a bisphenol-based reducing agent, may be added to prevent copper from being ionized and dissolved. Examples of the bisphenol-based reducing agent include 2,2′-methylene-bis- (4-methyl-6)
-Tert-butylphenol), 4,4'-thio-bis-
(3-methyl-6-tert-butylphenol) and the like.

【0073】トリアジンチオール化合物を成分とする銅
害防止剤は、三協製薬株式会社から、ジスネットDBと
いう商品名で市販されている。またビスフェノール系還
元剤を成分とする銅害防止剤は、吉富製薬株式会社か
ら、ヨシノックスBBという商品名で市販されている。
A copper damage inhibitor containing a triazine thiol compound as a component is commercially available from Sankyo Pharmaceutical Co., Ltd. under the trade name of Disnet DB. A copper damage inhibitor containing a bisphenol-based reducing agent as a component is commercially available from Yoshitomi Pharmaceutical Co., Ltd. under the trade name of Yoshinox BB.

【0074】さらに、接着剤の取扱い性や熱伝導性をよ
くすること、難燃性を与えること、溶融粘度を調整する
こと、チクソトロピック性を付与すること、表面硬度の
向上などを目的として、無機フィラーを接着剤樹脂成分
100体積部に対して2〜20体積部配合することが好
ましい。配合の効果の点から配合量が2体積部以上、配
合量が多くなると、接着剤の貯蔵弾性率の上昇、接着性
の低下、ボイド残存による電気特性の低下等の問題を起
こすので20体積部以下とされる。
Further, for the purpose of improving the handleability and heat conductivity of the adhesive, imparting flame retardancy, adjusting melt viscosity, imparting thixotropic property, improving surface hardness, etc. It is preferable to mix 2 to 20 parts by volume of the inorganic filler with respect to 100 parts by volume of the adhesive resin component. From the viewpoint of the effect of compounding, if the compounding amount is 2 parts by volume or more, and if the compounding amount is increased, problems such as an increase in the storage elastic modulus of the adhesive, a decrease in the adhesiveness, and a decrease in the electrical properties due to the remaining voids will occur. It is considered as follows.

【0075】無機フィラーとしては、水酸化アルミニウ
ム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネ
シウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化
カルシウム、酸化マグネシウム、アルミナ粉末、窒化ア
ルミニウム粉末、ほう酸アルミウイスカ、窒化ホウ素粉
末、結晶性シリカ、非晶性シリカなどが挙げられる。
As the inorganic filler, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, alumina powder, aluminum nitride powder, aluminum borate whiskers, boron nitride powder. , Crystalline silica, amorphous silica and the like.

【0076】熱伝導性をよくするためには、アルミナ、
窒化アルミニウム、窒化ホウ素、結晶性シリカ、非晶性
シリカ等が好ましい。
In order to improve the thermal conductivity, alumina,
Aluminum nitride, boron nitride, crystalline silica, amorphous silica and the like are preferable.

【0077】この内、アルミナは、放熱性が良く、耐熱
性、絶縁性が良好な点で好適である。また、結晶性シリ
カまたは非晶性シリカは、放熱性の点ではアルミナより
劣るが、イオン性不純物が少ないため、PCT処理時の
絶縁性が高く、銅箔、アルミ線、アルミ板等の腐食が少
ない点で好適である。
Of these, alumina is preferable because it has good heat dissipation, heat resistance, and insulation. In addition, crystalline silica or amorphous silica is inferior to alumina in terms of heat dissipation, but since it has less ionic impurities, it has high insulation during PCT treatment and corrosion of copper foil, aluminum wire, aluminum plate, etc. It is suitable because of its small number.

【0078】難燃性を与えるためには、水酸化アルミニ
ウム、水酸化マグネシウム、三酸化アンチモン等が好ま
しい。
Aluminum hydroxide, magnesium hydroxide, antimony trioxide and the like are preferable for imparting flame retardancy.

【0079】溶融粘度の調整やチクソトロピック性の付
与の目的には、水酸化アルミニウム、水酸化マグネシウ
ム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシ
ウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグ
ネシウム、アルミナ、結晶性シリカ、非晶性シリカ等が
好ましい。
For the purpose of adjusting melt viscosity and imparting thixotropic properties, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, alumina, crystallinity Silica, amorphous silica and the like are preferable.

【0080】表面硬度の向上に関しては、短繊維アルミ
ナ、ほう酸アルミウイスカ等が好ましい。
For improving the surface hardness, short fiber alumina, aluminum borate whiskers and the like are preferable.

【0081】本発明の接着フィルムは、接着剤の各成分
を溶剤に溶解ないし分散してワニスとし、ベースフィル
ム上に塗布、加熱し溶剤を除去することにより、接着剤
層をベースフィルム上に形成して得られる。ベースフィ
ルムとしては、ポリテトラフルオロエチレンフィルム、
ポリエチレンテレフタレートフィルム、離型処理したポ
リエチレンテレフタレートフィルム、ポリエチレンフィ
ルム、ポリプロピレンフィルム、ポリメチルペンテンフ
ィルム、ポリイミドフィルムなどのプラスチックフィル
ムが使用できる。ベースフィルムは、使用時に剥離して
接着フィルムのみを使用することもできるし、ベースフ
ィルムとともに使用し、後で除去することもできる。
In the adhesive film of the present invention, each component of the adhesive is dissolved or dispersed in a solvent to form a varnish, which is applied onto the base film and heated to remove the solvent to form an adhesive layer on the base film. Obtained. As the base film, polytetrafluoroethylene film,
A plastic film such as a polyethylene terephthalate film, a release-treated polyethylene terephthalate film, a polyethylene film, a polypropylene film, a polymethylpentene film, or a polyimide film can be used. The base film can be peeled off at the time of use and the adhesive film alone can be used, or can be used together with the base film and removed later.

【0082】本発明で用いるプラスチックフィルムとし
ては、例えば、カプトン(東レ、デュポン株式会社製商
品名)、アピカル(鐘淵化学工業株式会社製商品名)等
のポリイミドフィルム、ルミラー(東レ、デュポン株式
会社製商品名)、ピューレックス(帝人株式会社製商品
名)等のポリエチレンテレフタレートフィルムなどを使
用することができる。
Examples of the plastic film used in the present invention include polyimide films such as Kapton (trade name, manufactured by DuPont Co., Ltd. Toray), Apical (trade name, manufactured by Kanegafuchi Chemical Industry Co., Ltd.), and Lumirror (Toray, DuPont Co., Ltd.). Polyethylene terephthalate film such as PUREX (trade name, manufactured by Teijin Limited) and the like can be used.

【0083】ワニス化の溶剤は、比較的低沸点の、メチ
ルエチルケトン、アセトン、メチルイソブチルケトン、
2−エトキシエタノール、トルエン、ブチルセルソル
ブ、メタノール、エタノール、2−メトキシエタノール
などを用いるのが好ましい。また、塗膜性を向上するな
どの目的で、高沸点溶剤を加えても良い。高沸点溶剤と
しては、ジメチルアセトアミド、ジメチルホルムアミ
ド、メチルピロリドン、シクロヘキサノンなどが挙げら
れる。
The solvent for varnishing is methyl ethyl ketone, acetone, methyl isobutyl ketone, which has a relatively low boiling point.
It is preferable to use 2-ethoxyethanol, toluene, butyl cellosolve, methanol, ethanol, 2-methoxyethanol or the like. A high boiling point solvent may be added for the purpose of improving the coating property. Examples of the high boiling point solvent include dimethylacetamide, dimethylformamide, methylpyrrolidone and cyclohexanone.

【0084】ワニスの製造は、無機フィラーの分散を考
慮した場合には、らいかい機、3本ロール及びビーズミ
ル等により、またこれらを組み合わせて行なうことがで
きる。フィラーと低分子量物をあらかじめ混合した後、
高分子量物を配合することにより、混合に要する時間を
短縮することも可能となる。また、ワニスとした後、真
空脱気によりワニス中の気泡を除去することが好まし
い。
When the dispersion of the inorganic filler is taken into consideration, the production of the varnish can be carried out by using a raider, a three-roll mill, a bead mill or the like, or a combination thereof. After pre-mixing the filler and low molecular weight material,
By blending a high molecular weight substance, it becomes possible to shorten the time required for mixing. Further, after forming the varnish, it is preferable to remove air bubbles in the varnish by vacuum deaeration.

【0085】上記プラスチックフィルム等のベースフィ
ルム上に接着剤ワニスを塗布し、加熱乾燥して溶剤を除
去するが、これにより得られる接着剤は、DSCを用い
て測定した全硬化発熱量の10〜40%の発熱を終えた
状態とされる。溶剤を除去する際に加熱するが、この
時、接着剤組成物の硬化反応が進行しゲル化してくる。
その際の硬化状態が接着剤の流動性に影響し、接着性や
取扱い性を適正化する。DSC(示差走査熱分析)は、
測定温度範囲内で、発熱、吸熱の無い標準試料との温度
差をたえず打ち消すように熱量を供給または除去するゼ
ロ位法を測定原理とするものであり、測定装置が市販さ
れておりそれを用いて測定できる。樹脂組成物の反応
は、発熱反応であり、一定の昇温速度で試料を昇温して
いくと、試料が反応し熱量が発生する。その発熱量をチ
ャートに出力し、ベースラインを基準として発熱曲線と
ベースラインで囲まれた面積を求め、これを発熱量とす
る。室温から250℃まで5〜10℃/分の昇温速度で
測定し、上記した発熱量を求める。これらは、全自動で
行なうものもあり、それを使用すると容易に行なうこと
ができる。つぎに、上記ベースフィルムに塗布し、乾燥
して得た接着剤の発熱量は、つぎのようにして求める。
まず、25℃で真空乾燥器を用いて溶剤を乾燥させた未
硬化試料の全発熱量を測定し、これをA(J/g)とす
る。つぎに、塗工、乾燥した試料の発熱量を測定し、こ
れをBとする。試料の硬化度C(%)(加熱、乾燥によ
り発熱を終えた状態)は、つぎの数式(1)で与えられ
る。
An adhesive varnish is applied on the base film such as the plastic film and dried by heating to remove the solvent. The adhesive thus obtained has a total calorific value of 10 to 10 which is measured by DSC. It is assumed that the heat generation of 40% has been completed. When the solvent is removed, it is heated. At this time, the curing reaction of the adhesive composition proceeds and gelation occurs.
The cured state at that time affects the fluidity of the adhesive, and optimizes the adhesiveness and handleability. DSC (Differential Scanning Calorimetry)
The principle of measurement is the zero method, which supplies or removes the amount of heat so as to cancel out the temperature difference from a standard sample that does not generate heat or absorb heat within the measurement temperature range. Can be measured. The reaction of the resin composition is an exothermic reaction, and when the temperature of the sample is raised at a constant temperature rising rate, the sample reacts to generate heat. The amount of heat generated is output to a chart, the heat generation curve and the area surrounded by the baseline are obtained with the baseline as the reference, and this is taken as the amount of heat generated. The heating value is measured from room temperature to 250 ° C. at a temperature rising rate of 5 to 10 ° C./min, and the calorific value is obtained. Some of these are fully automatic and can be easily performed using them. Next, the calorific value of the adhesive obtained by coating and drying the base film is obtained as follows.
First, the total calorific value of the uncured sample obtained by drying the solvent at 25 ° C. using a vacuum dryer is measured, and this is designated as A (J / g). Next, the calorific value of the coated and dried sample is measured and designated as B. The degree of cure C (%) of the sample (a state in which heat generation has ended by heating and drying) is given by the following mathematical expression (1).

【0086】 C(%)=(A−B)×100/A …(1) 本発明の接着剤の動的粘弾性測定装置で測定した貯蔵弾
性率は、25℃で20〜2,000MPaで、260℃
で3〜50MPaという低弾性率でなければならない。
貯蔵弾性率の測定は、接着剤硬化物(DSCを用いて測
定した場合の全硬化発熱量の95〜100%の発熱を終
えた接着剤)に引張り荷重をかけて、周波数10Hz、
昇温速度5〜10℃/分で−50℃から300℃まで測
定する温度依存性測定モードで行った。25℃での貯蔵
弾性率が2,000MPaを超えるものでは、半導体チ
ップとプリント配線板の熱膨張係数の差によってリフロ
ー時に発生する応力を緩和させる効果が小さくなるため
クラックを発生させてしまう。一方、貯蔵弾性率が20
MPa未満では、接着剤の取扱性が悪くなる。好ましく
は50〜1000MPaである。
C (%) = (A−B) × 100 / A (1) The storage elastic modulus of the adhesive of the present invention measured by a dynamic viscoelasticity measuring device is 20 to 2,000 MPa at 25 ° C. 260 ° C
It must have a low elastic modulus of 3 to 50 MPa.
The storage elastic modulus is measured by applying a tensile load to an adhesive cured product (an adhesive that has finished generating heat of 95 to 100% of the total curing calorific value when measured using DSC), and a frequency of 10 Hz,
The measurement was performed in the temperature dependence measurement mode in which the temperature was raised from -50 ° C to 300 ° C at a heating rate of 5 to 10 ° C / min. If the storage elastic modulus at 25 ° C. exceeds 2,000 MPa, the effect of alleviating the stress generated at the time of reflow due to the difference in the thermal expansion coefficient between the semiconductor chip and the printed wiring board becomes small, so that cracks occur. On the other hand, the storage elastic modulus is 20
When it is less than MPa, the handling property of the adhesive is deteriorated. It is preferably 50 to 1000 MPa.

【0087】本発明は、エポキシ基含有アクリル系共重
合体とエポキシ樹脂系接着剤において、室温付近での弾
性率が低いことを特徴としている。エポキシ基含有アク
リル系共重合体は、室温付近での弾性率が低いため、エ
ポキシ基含有アクリル系共重合体の混合比を大きくする
ことで、半導体チップとプリント配線板の熱膨張係数の
差に起因して、リフロー時の加熱冷却過程で発生する応
力を緩和する効果によりクラックを抑制することができ
る。また、エポキシ基含有アクリル系共重合体はエポキ
シ樹脂との反応性に優れるため、接着剤硬化物が化学
的、物理的に安定するためPCT処理に代表される耐湿
性試験に優れた性能を示す。また、下記の方法により、
従来の接着フィルムの強度の低下、可撓性の低下、タッ
ク性の増大等取り扱い性の点での問題を解決した。 1)本発明で規定したエポキシ基含有アクリル系共重合
体を使用することにより、リフロー時のクラック発生を
抑制できる。 2)分子量の大きいアクリル系共重合体を使用すること
で共重合体の添加量が少ない場合でも、接着フィルムの
フィルム強度、可撓性を確保できる。 3)エポキシ樹脂と相溶性がありかつ重量平均分子量3
万以上の高分子量樹脂を加えることで、タック性を低減
することができる。
The present invention is characterized in that the epoxy group-containing acrylic copolymer and the epoxy resin adhesive have a low elastic modulus near room temperature. Since the epoxy group-containing acrylic copolymer has a low elastic modulus near room temperature, increasing the mixing ratio of the epoxy group-containing acrylic copolymer reduces the difference in thermal expansion coefficient between the semiconductor chip and the printed wiring board. Due to this, cracks can be suppressed by the effect of relaxing the stress generated in the heating and cooling process during reflow. Further, since the epoxy group-containing acrylic copolymer is excellent in reactivity with the epoxy resin, the cured adhesive is chemically and physically stable, and therefore exhibits excellent performance in a moisture resistance test represented by PCT treatment. . Also, by the following method
It has solved problems in handling such as reduction in strength, reduction in flexibility, and increase in tackiness of conventional adhesive films. 1) By using the epoxy group-containing acrylic copolymer specified in the present invention, it is possible to suppress the occurrence of cracks during reflow. 2) By using an acrylic copolymer having a large molecular weight, the film strength and flexibility of the adhesive film can be secured even when the amount of the copolymer added is small. 3) Weight average molecular weight 3 compatible with epoxy resin
The tackiness can be reduced by adding more than 10,000 high molecular weight resins.

【0088】さらに、本発明の接着剤では、エポキシ樹
脂と高分子量樹脂とが相溶性が良く均一になっており、
アクリル系共重合体に含まれるエポキシ基がそれらと部
分的に反応し、未反応のエポキシ樹脂を含んで全体が架
橋してゲル化するために、それが流動性を抑制し、エポ
キシ樹脂等を多く含む場合においても取扱い性を損なう
ことがない。また、未反応のエポキシ樹脂がゲル中に多
数残存しているため、圧力がかかった場合、ゲル中より
未反応成分がしみだすため、全体がゲル化した場合で
も、接着性の低下が少なくなる。
Further, in the adhesive of the present invention, the epoxy resin and the high molecular weight resin have good compatibility and are uniform,
The epoxy group contained in the acrylic copolymer partially reacts with them, and the whole epoxy resin including unreacted epoxy resin crosslinks and gels. Even when a large amount is contained, the handleability is not impaired. In addition, since a large amount of unreacted epoxy resin remains in the gel, when pressure is applied, unreacted components seep out from the gel, and even if the whole gels, there is less deterioration in adhesiveness. .

【0089】接着剤の乾燥時には、エポキシ基含有アク
リル系共重合体に含まれるエポキシ基やエポキシ樹脂が
ともに反応するが、エポキシ基含有アクリル系共重合体
は分子量が大きく、1分子鎖中にエポキシ基が多く含ま
れるため、反応が若干進んだ場合でもゲル化する。通
常、DSCを用いて測定した場合の全硬化発熱量の10
から40%の発熱を終えた状態、すなわちAまたはBス
テージ前半の段階でゲル化がおこる。そのため、エポキ
シ樹脂等の未反応成分を多く含んだ状態でゲル化してお
り、溶融粘度がゲル化していない場合に比べて、大幅に
増大しており、取扱い性を損なうことがない。また圧力
がかかった場合、ゲル中より未反応成分がしみだすた
め、ゲル化した場合でも、接着性の低下が少ない。さら
に、接着剤がエポキシ樹脂等の未反応成分を多く含んだ
状態でフィルム化できるため、接着フィルムのライフ
(有効使用期間)が長くなるという利点がある。
When the adhesive is dried, the epoxy group and the epoxy resin contained in the epoxy group-containing acrylic copolymer react with each other. However, the epoxy group-containing acrylic copolymer has a large molecular weight and the epoxy group in one molecular chain is large. Since it contains many groups, it gels even if the reaction proceeds slightly. Generally, the total curing heat value of 10 when measured using DSC
Gelation occurs in the state where heat generation of 40% to 40% is finished, that is, in the first half of the A or B stage. Therefore, gelation occurs in a state where a large amount of unreacted components such as epoxy resin are contained, and the melt viscosity is significantly increased as compared with the case where gelation is not performed, and handleability is not impaired. Further, when pressure is applied, unreacted components exude from the gel, so that even when gelled, the adhesiveness is not significantly reduced. Further, since the adhesive can be formed into a film in a state where it contains a large amount of unreacted components such as epoxy resin, there is an advantage that the life (effective use period) of the adhesive film is extended.

【0090】従来のエポキシ樹脂系接着剤ではBステー
ジの後半から、Cステージ状態で初めてゲル化が起こ
り、ゲル化が起こった段階でのエポキシ樹脂等の未反応
成分が少ないため、流動性が低く、圧力がかかった場合
でも、ゲル中よりしみだす未反応成分が少ないため、接
着性が低下する。
In the conventional epoxy resin adhesive, since the gelation occurs for the first time in the C stage state from the latter half of the B stage, and the unreacted components such as the epoxy resin at the stage of the gelation are small, the fluidity is low. Even when pressure is applied, the amount of unreacted components exuding is lower than that in the gel, and the adhesiveness is reduced.

【0091】なお、アクリル系共重合体に含まれるエポ
キシ基と低分子量のエポキシ樹脂のエポキシ基の反応し
やすさについては明らかではないが、少なくとも同程度
の反応性を有していればよく、アクリル系共重合体に含
まれるエポキシ基のみが選択的に反応するものである必
要はない。
Although the reactivity of the epoxy groups contained in the acrylic copolymer with the epoxy groups of the low molecular weight epoxy resin is not clear, it is sufficient that they have at least the same reactivity. It is not necessary that only the epoxy groups contained in the acrylic copolymer react selectively.

【0092】なおこの場合、A、B、Cステージは、接
着剤の硬化の程度を示す。Aステージはほぼ未硬化でゲ
ル化していない状態であり、DSCを用いて測定した場
合の全硬化発熱量の0〜20%の発熱を終えた状態であ
る。Bステージは若干硬化、ゲル化が進んだ状態であり
全硬化発熱量の20〜60%の発熱を終えた状態であ
る。Cステージはかなり硬化が進み、ゲル化した状態で
あり、全硬化発熱量の60〜100%の発熱を終えた状
態である。
In this case, the A, B and C stages show the degree of curing of the adhesive. The A stage is in a substantially uncured state and has not gelled, and is in a state in which heat generation of 0 to 20% of the total heat generation amount of curing when measured using DSC is finished. The B stage is in a state where it is slightly cured and gelled, and the heat generation of 20 to 60% of the total curing heat value is finished. The C stage is in a state in which the curing has progressed considerably and has gelled, and the heat generation of 60 to 100% of the total curing heat value has finished.

【0093】ゲル化の判定については、THF(テトラ
ヒドロフラン)等の浸透性の大きい溶剤中に接着剤を浸
し、25℃で20時間放置した後、接着剤が完全に溶解
しないで膨潤した状態にあるものをゲル化したと判定し
た。なお、実験的には、以下のように判定した。
Regarding the determination of gelation, after immersing the adhesive in a solvent having a high permeability such as THF (tetrahydrofuran) and allowing it to stand at 25 ° C. for 20 hours, the adhesive is not completely dissolved and is in a swollen state. It was determined that the product gelled. In addition, it experimentally determined as follows.

【0094】THF中に接着剤(重量W1)を浸し、2
5℃で20時間放置した後、非溶解分を200メッシュ
のナイロン布で濾過し、これを乾燥した後の重量を測定
(重量W2)した。THF抽出率(%)をつぎの数式
(2)のように算出した。THF抽出率が80重量%を
越えるものをゲル化していないとし、80重量%以下の
ものをゲル化していると判定した。
Dip the adhesive (weight W1) in THF and
After standing at 5 ° C. for 20 hours, the non-dissolved content was filtered through a 200-mesh nylon cloth, and the weight after drying was measured (weight W2). The THF extraction rate (%) was calculated as in the following mathematical expression (2). Those with a THF extraction rate of more than 80% by weight were determined not to be gelled, and those with a THF extraction rate of 80% by weight or less were determined to be gelled.

【0095】本発明では、フィラーを添加することによ
り、溶融粘度が大きくでき、さらにチクソトロピック性
を発現できるために、上記効果をさらに大きくすること
が可能となる。
In the present invention, by adding a filler, the melt viscosity can be increased and the thixotropic property can be exhibited, so that the above effect can be further increased.

【0096】さらに、上記の効果に加えて、接着剤の放
熱性向上、接着剤に難燃性を付与、接着時の温度におい
て適正な粘度をもたせること、表面硬度の向上等の特性
も付与できる。本発明の接着フィルムを用いて半導体チ
ップと配線板を接着させた半導体装置は、耐リフロー
性、温度サイクルテスト、耐電食性、耐湿性(耐PCT
性)等に優れていた。
Further, in addition to the above effects, properties such as improvement of heat dissipation of the adhesive, imparting flame retardancy to the adhesive, giving proper viscosity at the temperature at the time of adhesion, and improving surface hardness can be imparted. . A semiconductor device obtained by adhering a semiconductor chip and a wiring board using the adhesive film of the present invention has reflow resistance, temperature cycle test, electrolytic corrosion resistance, and moisture resistance (PCT resistance).
It was excellent in sex.

【0097】本発明でコア材に用いられる耐熱性熱可塑
性フィルムは、ガラス転移温度Tgが200℃以上のポ
リマまたは液晶ポリマを用いたフィルムであることが好
ましく、ポリイミド、ポリエーテルスルホン、ポリアミ
ドイミド、ポリエーテルイミドまたは全芳香族ポリエス
テルなどが好適に用いられる。フィルムの厚みは、5〜
200μmの範囲内で用いるのが好ましいが、限定する
ものではない。Tgが200℃以下の熱可塑性フィルム
をコア材に用いた場合は、はんだリフロー時などの高温
時に塑性変形を起こす場合があり、好ましくない。
The heat-resistant thermoplastic film used as the core material in the present invention is preferably a film using a polymer or a liquid crystal polymer having a glass transition temperature Tg of 200 ° C. or higher, such as polyimide, polyether sulfone, polyamide imide, Polyetherimide or wholly aromatic polyester is preferably used. The film thickness is 5
It is preferably used within the range of 200 μm, but not limited thereto. When a thermoplastic film having a Tg of 200 ° C. or less is used as the core material, plastic deformation may occur at high temperatures such as solder reflow, which is not preferable.

【0098】本発明でコア材の両面に形成される接着剤
は、接着剤の各成分を溶剤に溶解ないし分散してワニス
とし、コア材となる耐熱性熱可塑性フィルム上に塗布、
加熱し溶剤を除去することにより作製することができ、
接着剤層をコア材となる耐熱性熱可塑性フィルム上に形
成することにより三層構造の両面接着フィルムを得るこ
とができる。接着剤の厚みは、2〜150μmの範囲で
用いられ、これより薄いと接着性や熱応力緩衝効果に乏
しく、厚いと経済的でなくなるが、制限するものでな
い。
The adhesive formed on both sides of the core material in the present invention is a varnish prepared by dissolving or dispersing each component of the adhesive in a solvent, and coating it on a heat-resistant thermoplastic film as the core material.
It can be produced by heating and removing the solvent,
A double-sided adhesive film having a three-layer structure can be obtained by forming the adhesive layer on the heat-resistant thermoplastic film serving as the core material. The thickness of the adhesive is used in the range of 2 to 150 μm, and if it is thinner than this, adhesiveness and thermal stress buffering effect are poor, and if it is thicker, it is not economical, but it is not limited.

【0099】また、接着剤の各成分を溶剤に溶解ないし
分散してワニスとし、このワニスをベースフィルム上に
塗布、加熱し溶剤を除去することにより接着剤成分のみ
からなる接着フィルムを作製し、この接着剤成分のみか
らなる接着フィルムをコア材となる耐熱性熱可塑性フィ
ルムの両面に貼り合わせることにより三層構造の両面接
着フィルムを得ることもできる。ここで、接着剤成分の
みからなる接着フィルムを作製するためのベースフィル
ムとしては、ポリテトラフルオロエチレンフィルム、ポ
リエチレンテレフタレートフィルム、離型処理したポリ
エチレンテレフタレートフィルム、ポリエチレンフィル
ム、ポリプロピレンフィルム、ポリメチルペンテンフィ
ルム、ポリイミドフィルムなどのプラスチックフィルム
が使用できる。プラスチックフィルムとしては、例え
ば、カプトン(東レ、デュポン株式会社製商品名)、ア
ピカル(鐘淵化学工業株式会社製商品名)等のポリイミ
ドフィルム、ルミラー(東レ、デュポン株式会社製商品
名)、ピューレックス(帝人株式会社製商品名)等のポ
リエチレンテレフタレートフィルムなどを使用すること
ができる。
Further, each component of the adhesive is dissolved or dispersed in a solvent to form a varnish, and the varnish is applied on a base film and heated to remove the solvent to produce an adhesive film consisting of only the adhesive component. It is also possible to obtain a double-sided adhesive film having a three-layer structure by bonding the adhesive film consisting of this adhesive component alone to both sides of the heat-resistant thermoplastic film serving as the core material. Here, as the base film for producing an adhesive film consisting only of the adhesive component, a polytetrafluoroethylene film, a polyethylene terephthalate film, a release-treated polyethylene terephthalate film, a polyethylene film, a polypropylene film, a polymethylpentene film, A plastic film such as a polyimide film can be used. Examples of the plastic film include polyimide films such as Kapton (Toray, a product name manufactured by DuPont), Apical (a product name manufactured by Kanegafuchi Chemical Co., Ltd.), Lumirror (Toray, a product name manufactured by DuPont), Purex Polyethylene terephthalate film such as (Teijin Co., Ltd. product name) can be used.

【0100】ワニス化の溶剤は、比較的低沸点の、メチ
ルエチルケトン、アセトン、メチルイソブチルケトン、
2−エトキシエタノール、トルエン、ブチルセルソル
ブ、メタノール、エタノール、2−メトキシエタノール
などを用いるのが好ましい。また、塗膜性を向上するな
どの目的で、高沸点溶剤を加えても良い。高沸点溶剤と
しては、ジメチルアセトアミド、ジメチルホルムアミ
ド、メチルピロリドン、シクロヘキサノンなどが挙げら
れる。
The solvent for varnishing is methyl ethyl ketone, acetone, methyl isobutyl ketone, which has a relatively low boiling point.
It is preferable to use 2-ethoxyethanol, toluene, butyl cellosolve, methanol, ethanol, 2-methoxyethanol or the like. A high boiling point solvent may be added for the purpose of improving the coating property. Examples of the high boiling point solvent include dimethylacetamide, dimethylformamide, methylpyrrolidone and cyclohexanone.

【0101】ワニスの製造は、無機フィラーの分散を考
慮した場合には、らいかい機、3本ロール及びビーズミ
ル等により、またこれらを組み合わせて行なうことがで
きる。フィラーと低分子量物をあらかじめ混合した後、
高分子量物を配合することにより、混合に要する時間を
短縮することも可能となる。また、ワニスとした後、真
空脱気によりワニス中の気泡を除去することが好まし
い。
The production of the varnish can be carried out by using a mill, a three-roll mill, a bead mill and the like, or a combination thereof, in consideration of the dispersion of the inorganic filler. After pre-mixing the filler and low molecular weight material,
By blending a high molecular weight substance, it becomes possible to shorten the time required for mixing. Further, after forming the varnish, it is preferable to remove air bubbles in the varnish by vacuum deaeration.

【0102】上記接着剤は、コア材となる耐熱性熱可塑
性フィルムまたはプラスチックフィルム等のベースフィ
ルム上に接着剤ワニスを塗布し、加熱乾燥して溶剤を除
去することにより得られるが、これにより得られる接着
剤は、DSCを用いて測定した全硬化発熱量の10〜4
0%の発熱を終えた状態とするのが好ましい。溶剤を除
去する際に加熱するが、この時、接着剤組成物の硬化反
応が進行しゲル化してくる。その際の硬化状態が接着剤
の流動性に影響し、接着性や取扱い性を適正化する。D
SC(示差走査熱分析)は、測定温度範囲内で、発熱、
吸熱の無い標準試料との温度差をたえず打ち消すように
熱量を供給または除去するゼロ位法を測定原理とするも
のであり、測定装置が市販されておりそれを用いて測定
できる。樹脂組成物の反応は、発熱反応であり、一定の
昇温速度で試料を昇温していくと、試料が反応し熱量が
発生する。その発熱量をチャートに出力し、ベースライ
ンを基準として発熱曲線とベースラインで囲まれた面積
を求め、これを発熱量とする。室温から250℃まで5
〜10℃/分の昇温速度で測定し、上記した発熱量を求
める。これらは、全自動で行なうものもあり、それを使
用すると容易に行なうことができる。
The above-mentioned adhesive can be obtained by applying an adhesive varnish on a base film such as a heat-resistant thermoplastic film or a plastic film as a core material, and heating and drying to remove the solvent. The adhesive used has a total calorific value of 10 to 4 which is measured by DSC.
It is preferable that the heat generation of 0% is completed. When the solvent is removed, it is heated. At this time, the curing reaction of the adhesive composition proceeds and gelation occurs. The cured state at that time affects the fluidity of the adhesive, and optimizes the adhesiveness and handleability. D
SC (Differential Scanning Calorimetry) is a method of generating heat within the measurement temperature range.
The principle of measurement is the zero-position method in which the amount of heat is supplied or removed so as to constantly cancel out the temperature difference from the standard sample having no endotherm, and a measuring device is commercially available and can be used for measurement. The reaction of the resin composition is an exothermic reaction, and when the temperature of the sample is raised at a constant temperature rising rate, the sample reacts to generate heat. The amount of heat generated is output to a chart, the heat generation curve and the area surrounded by the baseline are obtained with the baseline as the reference, and this is taken as the amount of heat generated. From room temperature to 250 ° C 5
The heating value is measured at a temperature rising rate of -10 ° C / min to obtain the above-mentioned calorific value. Some of these are fully automatic and can be easily performed using them.

【0103】上記コア材となる耐熱性熱可塑性フィルム
またはベースフィルムに塗布し、乾燥して得た接着剤の
発熱量は、つぎのようにして求める。まず、接着剤成分
のみを取り出し、25℃で真空乾燥器を用いて溶剤を乾
燥させた未硬化試料の全発熱量を測定し、これをA(J
/g)とする。つぎに、塗工、乾燥した試料の発熱量を
測定し、これをBとする。試料の硬化度C(%)(加
熱、乾燥により発熱を終えた状態)は、つぎの数式
(1)で与えられる。
The calorific value of the adhesive obtained by coating and drying the heat-resistant thermoplastic film or base film as the core material is determined as follows. First, only the adhesive component was taken out, and the total calorific value of the uncured sample obtained by drying the solvent at 25 ° C. using a vacuum dryer was measured.
/ G). Next, the calorific value of the coated and dried sample is measured and designated as B. The degree of cure C (%) of the sample (a state in which heat generation has ended by heating and drying) is given by the following mathematical expression (1).

【0104】 C(%)=(A−B)×100/A …(1) 本発明の接着剤成分の動的粘弾性測定装置で測定した貯
蔵弾性率は、25℃で20〜2,000MPaで、26
0℃で3〜50MPaという低弾性率であることが好ま
しい。貯蔵弾性率の測定は、接着剤硬化物に引張り荷重
をかけて、周波数10Hz、昇温速度5〜10℃/分で
−50℃から300℃まで測定する温度依存性測定モー
ドで行った。25℃での貯蔵弾性率が2,000MPa
を超えるものでは、半導体チップとプリント配線板の熱
膨張係数の差によってリフロー時に発生する応力を緩和
させる効果が小さくなるためクラックを発生させてしま
う。一方、貯蔵弾性率が20MPa未満では、取扱性が
悪くなる。
C (%) = (A−B) × 100 / A (1) The storage elastic modulus of the adhesive component of the present invention measured by a dynamic viscoelasticity measuring device is 20 to 2,000 MPa at 25 ° C. So 26
It is preferable that the elastic modulus is as low as 3 to 50 MPa at 0 ° C. The storage elastic modulus was measured in a temperature-dependent measurement mode in which a tensile load was applied to the cured adhesive, and the temperature was measured from −50 ° C. to 300 ° C. at a heating rate of 5 to 10 ° C./min. Storage elastic modulus at 25 ° C is 2,000 MPa
If it exceeds, the effect of alleviating the stress generated at the time of reflow due to the difference in thermal expansion coefficient between the semiconductor chip and the printed wiring board becomes small, and cracks are generated. On the other hand, when the storage elastic modulus is less than 20 MPa, handleability becomes poor.

【0105】本発明では、コア材に耐熱性熱可塑性フィ
ルムを用いる三層構造をとることで、エポキシ基含有ア
クリル系共重合体とエポキシ樹脂系接着剤において、室
温付近での弾性率が低いことに起因する接着フィルムの
取り扱い性を容易にすることを特徴としている。すなわ
ち、本発明の三層構造により、室温付近での剛性のない
接着フィルムの位置合せ等の作業を容易に自動化するこ
とができ、しかも、本接着剤系の優れた熱応力緩和効果
を発現することができる。本発明では、下記の方法によ
り、従来の低弾性率接着フィルムの剛性の低下等による
取り扱い性の点での問題を解決した。 1)コア材に耐熱性熱可塑性フィルムを配した三層構造
をとることで低弾性率の接着剤をフィルム状で容易に取
り扱うことができる。 2)本発明で規定したコア材となる耐熱性熱可塑性フィ
ルムを用いることにより、リフロー時の接着フィルムの
塑性変形を抑制できる。
In the present invention, by adopting a three-layer structure in which a heat resistant thermoplastic film is used as the core material, the epoxy group-containing acrylic copolymer and the epoxy resin adhesive have a low elastic modulus near room temperature. Is characterized by facilitating handling of the adhesive film. That is, with the three-layer structure of the present invention, it is possible to easily automate the work such as alignment of the non-rigid adhesive film near room temperature, and yet to exhibit the excellent thermal stress relaxation effect of the present adhesive system. be able to. In the present invention, the following method has solved the problem in handleability due to the decrease in rigidity of the conventional low elastic modulus adhesive film. 1) By adopting a three-layer structure in which a heat resistant thermoplastic film is arranged on a core material, an adhesive having a low elastic modulus can be easily handled in a film form. 2) By using the heat-resistant thermoplastic film as the core material defined in the present invention, plastic deformation of the adhesive film during reflow can be suppressed.

【0106】さらに、本発明では、エポキシ樹脂と高分
子量樹脂とが相溶性が良く均一になっており、アクリル
系共重合体に含まれるエポキシ基がそれらと部分的に反
応し、未反応のエポキシ樹脂を含んで全体が架橋してゲ
ル化するために、それが流動性を抑制し、エポキシ樹脂
等を多く含む場合においても取扱い性を損なうことがな
い。また、未反応のエポキシ樹脂がゲル中に多数残存し
ているため、圧力がかかった場合、ゲル中より未反応成
分がしみだすため、全体がゲル化した場合でも、接着性
の低下が少なくなる。
Furthermore, in the present invention, the epoxy resin and the high molecular weight resin have good compatibility and are uniform, and the epoxy groups contained in the acrylic copolymer partially react with them to form an unreacted epoxy resin. Since the whole including the resin crosslinks and gels, it suppresses the fluidity and does not impair the handleability even when it contains a large amount of epoxy resin and the like. In addition, since a large amount of unreacted epoxy resin remains in the gel, when pressure is applied, unreacted components seep out from the gel, and even if the whole gels, there is less deterioration in adhesiveness. .

【0107】接着剤の乾燥時には、エポキシ基含有アク
リル系共重合体に含まれるエポキシ基やエポキシ樹脂が
ともに反応するが、エポキシ基含有アクリル系共重合体
は分子量が大きく、1分子鎖中にエポキシ基が多く含ま
れるため、反応が若干進んだ場合でもゲル化する。通
常、DSCを用いて測定した場合の全硬化発熱量の10
から40%の発熱を終えた状態、すなわちAまたはBス
テージ前半の段階でゲル化がおこる。そのため、エポキ
シ樹脂等の未反応成分を多く含んだ状態でゲル化してお
り、溶融粘度がゲル化していない場合に比べて、大幅に
増大しており、取扱い性を損なうことがない。また圧力
がかかった場合、ゲル中より未反応成分がしみだすた
め、ゲル化した場合でも、接着性の低下が少ない。さら
に、接着剤がエポキシ樹脂等の未反応成分を多く含んだ
状態でフィルム化できるため、接着フィルムのライフ
(有効使用期間)が長くなるという利点がある。
When the adhesive is dried, the epoxy group and the epoxy resin contained in the epoxy group-containing acrylic copolymer react with each other. However, the epoxy group-containing acrylic copolymer has a large molecular weight and the epoxy resin in one molecular chain is large. Since it contains many groups, it gels even if the reaction proceeds slightly. Generally, the total curing heat value of 10 when measured using DSC
Gelation occurs in the state where heat generation of 40% to 40% is finished, that is, in the first half of the A or B stage. Therefore, gelation occurs in a state where a large amount of unreacted components such as epoxy resin are contained, and the melt viscosity is significantly increased as compared with the case where gelation is not performed, and handleability is not impaired. Further, when pressure is applied, unreacted components exude from the gel, so that even when gelled, the adhesiveness is not significantly reduced. Further, since the adhesive can be formed into a film in a state where it contains a large amount of unreacted components such as epoxy resin, there is an advantage that the life (effective use period) of the adhesive film is extended.

【0108】従来のエポキシ樹脂系接着剤ではBステー
ジの後半から、Cステージ状態で初めてゲル化が起こ
り、ゲル化が起こった段階でのエポキシ樹脂等の未反応
成分が少ないため、流動性が低く、圧力がかかった場合
でも、ゲル中よりしみだす未反応成分が少ないため、接
着性が低下する。
In the conventional epoxy resin-based adhesive, gelation occurs from the latter half of the B stage for the first time in the C stage state, and the unreacted components such as the epoxy resin at the stage where the gelation occurs are low in fluidity. Even when pressure is applied, the amount of unreacted components exuding is lower than that in the gel, and the adhesiveness is reduced.

【0109】なお、アクリル系共重合体に含まれるエポ
キシ基と低分子量のエポキシ樹脂のエポキシ基の反応し
やすさについては明らかではないが、少なくとも同程度
の反応性を有していればよく、アクリル系共重合体に含
まれるエポキシ基のみが選択的に反応するものである必
要はない。
Although it is not clear how easily the epoxy groups contained in the acrylic copolymer react with the epoxy groups of the low molecular weight epoxy resin, it is sufficient that they have at least the same reactivity. It is not necessary that only the epoxy groups contained in the acrylic copolymer react selectively.

【0110】なおこの場合、A、B、Cステージは、接
着剤の硬化の程度を示す。Aステージはほぼ未硬化でゲ
ル化していない状態であり、DSCを用いて測定した場
合の全硬化発熱量の0〜20%の発熱を終えた状態であ
る。Bステージは若干硬化、ゲル化が進んだ状態であり
全硬化発熱量の20〜60%の発熱を終えた状態であ
る。Cステージはかなり硬化が進み、ゲル化した状態で
あり、全硬化発熱量の60〜100%の発熱を終えた状
態である。
In this case, the A, B and C stages show the degree of curing of the adhesive. The A stage is in a substantially uncured state and has not gelled, and is in a state in which heat generation of 0 to 20% of the total heat generation amount of curing when measured using DSC is finished. The B stage is in a state where it is slightly cured and gelled, and the heat generation of 20 to 60% of the total curing heat value is finished. The C stage is in a state in which the curing has progressed considerably and has gelled, and the heat generation of 60 to 100% of the total curing heat value has finished.

【0111】ゲル化の判定については、THF(テトラ
ヒドロフラン)等の浸透性の大きい溶剤中に接着剤を浸
し、25℃で20時間放置した後、接着剤が完全に溶解
しないで膨潤した状態にあるものをゲル化したと判定し
た。なお、実験的には、以下のように判定した。
Regarding the determination of gelation, after immersing the adhesive in a solvent having high permeability such as THF (tetrahydrofuran) and allowing it to stand at 25 ° C. for 20 hours, the adhesive is not completely dissolved and is in a swollen state. It was determined that the product gelled. In addition, it experimentally determined as follows.

【0112】THF中に接着剤(重量W1)を浸し、2
5℃で20時間放置した後、非溶解分を200メッシュ
のナイロン布で濾過し、これを乾燥した後の重量を測定
(重量W2)した。THF抽出率(%)をつぎの数式
(2)のように算出した。THF抽出率が80重量%を
越えるものをゲル化していないとし、80重量%以下の
ものをゲル化していると判定した。
Immerse the adhesive (weight W1) in THF,
After standing at 5 ° C. for 20 hours, the non-dissolved content was filtered through a 200-mesh nylon cloth, and the weight after drying was measured (weight W2). The THF extraction rate (%) was calculated as in the following mathematical expression (2). Those with a THF extraction rate of more than 80% by weight were determined not to be gelled, and those with a THF extraction rate of 80% by weight or less were determined to be gelled.

【0113】本発明では、フィラーを添加することによ
り、溶融粘度が大きくでき、さらにチクソトロピック性
を発現できるために、上記効果をさらに大きくすること
が可能となる。
In the present invention, by adding a filler, the melt viscosity can be increased and the thixotropic property can be exhibited, so that the above effect can be further increased.

【0114】さらに、上記の効果に加えて、接着剤の放
熱性向上、接着剤に難燃性の付与、接着時の温度におい
て適正な粘度をもたせること、表面硬度の向上等の特性
も付与できる。 ( 図面の簡単な説明)図1(a)は本発明による単層
の熱硬化性接着フィルムの断面図、図1(b)は本発明
による3層接着フィルムの断面図である。
Further, in addition to the above effects, properties such as improvement of heat dissipation of the adhesive, imparting of flame retardancy to the adhesive, giving proper viscosity at the temperature at the time of adhesion, and improvement of surface hardness can be imparted. . (Brief Description of Drawings) FIG. 1A is a sectional view of a single-layer thermosetting adhesive film according to the present invention, and FIG. 1B is a sectional view of a three-layer adhesive film according to the present invention.

【0115】図2は、接着部材を有機配線基板に熱圧着
した半導体搭載用基板の断面図である。
FIG. 2 is a sectional view of a semiconductor mounting substrate in which an adhesive member is thermocompression bonded to an organic wiring substrate.

【0116】図3は、接着部材を有機配線基板に熱圧着
した半導体搭載用基板の断面図である。
FIG. 3 is a sectional view of a semiconductor mounting substrate in which an adhesive member is thermocompression bonded to an organic wiring substrate.

【0117】図4は、本発明の半導体装置の断面図であ
る。
FIG. 4 is a sectional view of the semiconductor device of the present invention.

【0118】図5は、本発明の半導体装置の他の例の断
面図である。
FIG. 5 is a sectional view of another example of the semiconductor device of the present invention.

【0119】図6は、半導体搭載用基板および半導体装
置の一実施例の製造工程を示す断面図である。
FIG. 6 is a sectional view showing a manufacturing process of an embodiment of a semiconductor mounting substrate and a semiconductor device.

【0120】図7は、半導体搭載用基板および半導体装
置の他の実施例の製造工程を示す断面図である。
FIG. 7 is a sectional view showing a manufacturing process of another embodiment of the semiconductor mounting substrate and the semiconductor device.

【0121】図8は、本発明の半導体装置の他の例の断
面図である。( 発明を実施するための最良の形態)以
下、図面に基づき本発明の各種実施例について説明す
る。 <実施例1>図1(a)は単層の熱硬化性接着フィルム
の断面図であり、動的粘弾性装置で測定されるその硬化
物の25℃における弾性率が10から2000MPaの
範囲であり、かつ260℃における弾性率が3から50
MPaの範囲で規定され、DSC(示差熱量計)を用い
て測定した場合の全硬化発熱量の10〜40%の発熱を
終えた半硬化状態の熱硬化性接着剤1からなる。熱硬化
性接着フイルム内に残存する溶媒量を2%以下に乾燥さ
れたエポキシ基含有アクリル共重合体フィルムを用い
た。
FIG. 8 is a sectional view of another example of the semiconductor device of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION Various embodiments of the present invention will be described below with reference to the drawings. <Example 1> Fig. 1 (a) is a cross-sectional view of a single-layer thermosetting adhesive film, and the cured product has a modulus of elasticity at 25 ° C of 10 to 2000 MPa as measured by a dynamic viscoelastic device. And an elastic modulus at 260 ° C. of 3 to 50
It is composed of a thermosetting adhesive 1 in a semi-cured state, which is defined in the range of MPa and has finished generating 10 to 40% of the total amount of heat generated by curing when measured using a DSC (differential calorimeter). An epoxy group-containing acrylic copolymer film which was dried so that the amount of solvent remaining in the thermosetting adhesive film was 2% or less was used.

【0122】図1(b)は熱硬化性接着剤1をポリイミ
ドフィルム2の両面に塗工された3層の接着フィルムの
断面図を示す。この例ではポリイミドフィルムとして宇
部興産製の50μm厚のユーピレックス(商品名)を用
いた。
FIG. 1B shows a sectional view of a three-layer adhesive film in which the thermosetting adhesive 1 is applied to both sides of the polyimide film 2. In this example, Upilex (trade name) with a thickness of 50 μm manufactured by Ube Industries, Ltd. was used as the polyimide film.

【0123】図2はワイヤボンディング方式で半導体端
子部と配線基板側端子部とを接続するのに好適な、接着
部材3を有機配線基板4に熱圧着した半導体搭載用基板
の断面図、図3はTABのインナーボンディング方式で
半導体端子部と配線板側端子部と接続するのに好適な、
接着部材3をテープ状配線基板5に熱圧着した半導体搭
載用基板の断面図である。図4は図2の半導体搭載用基
板にチップ6をフェイスアップで接着し、半導体端子部
と配線板側端子部とがワイヤ7によりワイヤボンディン
グされ、封止材で封止されてなる半導体装置の断面図、
図5は図3の半導体搭載用基板にチップ6をフェイスダ
ウンで接着したのちTABのインナーボンディング方式
で半導体端子部と基板側端子部とが接続され、チップ6
端面が液状封止材8で封止されてなる半導体装置の断面
図である。なお、図8に示すように、配線9を基板の半
導体チップ搭載側とは反対側に形成してもよい。この場
合、外部接続端子12は、半導体チップ搭載側とは反対
の側に形成された配線9の表面に形成される。また、配
線9の露出部分は、レジスト11により覆われる。
FIG. 2 is a sectional view of a semiconductor mounting substrate in which an adhesive member 3 is thermocompression bonded to an organic wiring substrate 4, which is suitable for connecting a semiconductor terminal portion and a wiring substrate side terminal portion by a wire bonding method. Is suitable for connecting the semiconductor terminal portion and the wiring board side terminal portion by the TAB inner bonding method.
6 is a cross-sectional view of a semiconductor mounting substrate in which the adhesive member 3 is thermocompression bonded to the tape-shaped wiring substrate 5. FIG. 4 shows a semiconductor device in which a chip 6 is face-up adhered to the semiconductor mounting substrate of FIG. 2 and a semiconductor terminal portion and a wiring board side terminal portion are wire-bonded with a wire 7 and sealed with a sealing material. Cross section,
In FIG. 5, the chip 6 is bonded face down to the semiconductor mounting substrate of FIG. 3 and then the semiconductor terminal portion and the substrate side terminal portion are connected by the TAB inner bonding method.
FIG. 6 is a cross-sectional view of a semiconductor device having an end surface sealed with a liquid sealing material 8. As shown in FIG. 8, the wiring 9 may be formed on the side of the substrate opposite to the side where the semiconductor chips are mounted. In this case, the external connection terminal 12 is formed on the surface of the wiring 9 formed on the side opposite to the semiconductor chip mounting side. The exposed portion of the wiring 9 is covered with the resist 11.

【0124】図6に半導体搭載用基板および半導体装置
の製造工程を示す。
FIG. 6 shows a manufacturing process of a semiconductor mounting substrate and a semiconductor device.

【0125】動的粘弾性装置で測定されるその硬化物の
25℃における弾性率が10から2000MPaの範囲
であり、かつ260℃における弾性率が3から50MP
aの範囲で規定され、DSCを用いて測定した場合の全
硬化発熱量の10〜40%の発熱を終えた半硬化状態の
熱硬化性接着剤1で構成される熱硬化性接着テープ(接
着部材)3を所定の大きさに切断プレスで切断する(図
6(a))。
The cured product has a modulus of elasticity at 25 ° C. in the range of 10 to 2000 MPa and a modulus of elasticity at 260 ° C. of 3 to 50 MPa as measured by a dynamic viscoelasticity apparatus.
The thermosetting adhesive tape (adhesive which is defined in the range of a and is composed of the thermosetting adhesive 1 in a semi-cured state in which the heat generation of 10 to 40% of the total heat value for curing when measured using DSC is finished. The member 3 is cut into a predetermined size by a cutting press (FIG. 6A).

【0126】切断された熱硬化性接着テープ3を、1層
のCu配線が施され、外部はんだ端子用スルーホールが
形成されたポリイミドフィルム基板(有機配線基板)4
上面に精密に位置合わせした後、熱プレスにて熱圧着し
半導体搭載用基板を得る(図6(b))。
The cut thermosetting adhesive tape 3 is provided with a single layer of Cu wiring, and a polyimide film substrate (organic wiring substrate) 4 is formed with through holes for external solder terminals.
After precisely aligning with the upper surface, thermocompression bonding is performed with a hot press to obtain a semiconductor mounting substrate (FIG. 6B).

【0127】この例では、熱硬化性接着フィルムの切
断、およびポリイミドフィルム基板への精密位置決め搭
載及び仮固定は個々に行い、その後、搭載した熱硬化性
接着フィルムを一括して熱プレスにて本圧着して7連の
フレーム状半導体搭載用基板を得た。さらにこの例で
は、熱硬化性接着フィルム3を切断する工程の前に、帯
電した空気を吹き付けるエリミノスタット(静電気除
去)工程を実施し、帯電した絶縁性のフィルムが切断工
程時に治具に貼り付くことを防止した。また、さらに仮
接着ならびに一括して本接着をする際の熱硬化性接着フ
ィルム3に接触する熱プレスの上型にはテフロンないし
はシリコンの離型表面処理を施し、熱硬化性フィルムが
上型に粘着することを防止した。こうして得られた多連
半導体搭載用フレーム基板に半導体チップ6をフェイス
アップにて精密位置決め搭載し、熱プレスにて加圧し接
着するチップマウント工程を経る。この例では半導体チ
ップ側の加熱温度を少なくとも半導体搭載用基板側より
高く設定し、両面から加熱・圧着した。
In this example, the cutting of the thermosetting adhesive film, the precise positioning mounting and temporary fixing on the polyimide film substrate are individually performed, and then the mounted thermosetting adhesive films are collectively pressed by a hot press. Seven frames of frame-shaped semiconductor mounting substrates were obtained by pressure bonding. Further, in this example, before the step of cutting the thermosetting adhesive film 3, an eliminostat (static electricity removal) step of blowing charged air is performed, and the charged insulating film is attached to the jig during the cutting step. Prevented from sticking. In addition, the upper mold of the heat press that contacts the thermosetting adhesive film 3 for temporary adhesion and batch main adhesion is subjected to Teflon or silicon release surface treatment, so that the thermosetting film becomes the upper mold. Prevented sticking. A semiconductor chip 6 is precisely positioned and mounted face-up on the thus-obtained multiple semiconductor mounting frame substrate, and a chip mounting process is performed in which the semiconductor chip 6 is pressed and bonded by a hot press. In this example, the heating temperature on the semiconductor chip side was set at least higher than that on the semiconductor mounting substrate side, and heating / press bonding was performed from both sides.

【0128】その後、半導体チップ側の端子部と基板側
端子部とを金線でワイヤボンディングするワイヤボンデ
ィング工程(図6(c))、およびエポキシ系封止材に
てトランスファーモールド成形して封止する封止工程
(図6(d))、そしてはんだボールを搭載しリフロー
工程をへて外部端子9を形成するはんだボール形成工程
をへて、本発明による半導体装置を得た(図6
(e))。封止材8として日立化成製ビフェニル系エポ
キシ封止材CEL−9200(商品名)を用いた。 <比較例1>1層のCu配線が施され、外部はんだ端子
用スルーホールが形成されたポリイミドフィルム配線基
板(実施例11で使用したのと同じ)上面に、エポキシ
樹脂を主成分とし、その硬化物のDMA(動的粘弾性測
定装置)で測定される25℃の弾性率が3000MPa
の絶縁性液状接着剤をダイボンド装置にて滴下・塗布
し、半導体チップを精密に位置決めし搭載した。その
後、クリーンオーブン内で所定の硬化時間を経たのち、
実施例1と同じワイヤボンディング工程、封止工程、及
びはんだボール形成工程をへて半導体装置を得た。 <比較例2>実施例1で使用したのと同じポリイミド配
線基板に、シリコン樹脂を主成分としその硬化物の25
℃の弾性率が10MPaであり、かつ260℃における
弾性率が測定不可能なほど小さい絶縁性液状接着剤、を
ダイボンド装置にて滴下・塗布し、半導体チップを搭載
し、その後、実施例1と同じ工程をへて半導体装置を得
た。 <実施例2>図7に半導体搭載用基板および半導体装置
の製造工程を示す。
After that, a wire bonding step of wire-bonding the semiconductor chip side terminal portion and the substrate side terminal portion with a gold wire (FIG. 6C), and transfer molding using an epoxy type encapsulant and sealing. The semiconductor device according to the present invention is obtained through the encapsulating step (FIG. 6D) and the solder ball forming step of forming the external terminals 9 by mounting the solder balls and performing the reflow step (FIG. 6).
(E)). As the sealing material 8, a biphenyl epoxy sealing material CEL-9200 (trade name) manufactured by Hitachi Chemical was used. <Comparative Example 1> An epoxy resin was used as a main component on the upper surface of a polyimide film wiring substrate (the same as that used in Example 11) on which one layer of Cu wiring was formed and through holes for external solder terminals were formed. The elastic modulus at 25 ° C. of the cured product measured by DMA (Dynamic Viscoelasticity Measuring Device) is 3000 MPa.
The insulative liquid adhesive of was dropped and applied by a die bonder, and the semiconductor chip was precisely positioned and mounted. Then, after a predetermined curing time in a clean oven,
A semiconductor device was obtained through the same wire bonding process, sealing process, and solder ball forming process as in Example 1. Comparative Example 2 The same polyimide wiring board as that used in Example 1 was prepared by using a silicone resin as a main component and a cured product thereof.
An insulating liquid adhesive having a modulus of elasticity at 10 ° C. of 10 MPa and a modulus of elasticity at 260 ° C. that is too small to measure is dropped and applied by a die bonder, a semiconductor chip is mounted, and then, as in Example 1. A semiconductor device was obtained through the same steps. <Embodiment 2> FIG. 7 shows a manufacturing process of a semiconductor mounting substrate and a semiconductor device.

【0129】動的粘弾性装置で測定されるその硬化物の
25℃における弾性率が10から2000MPaの範囲
であり、かつ260℃における弾性率が3から50MP
aの範囲で規定され、DSCを用いて測定した場合の全
硬化発熱量の10〜40%の発熱を終えた半硬化状態の
熱硬化性接着剤1で構成される熱硬化性接着テープ(接
着部材)3を所定の大きさに切断プレスで切断する(図
7(a))。
The elastic modulus of the cured product at 25 ° C. measured by a dynamic viscoelastic device is in the range of 10 to 2000 MPa, and the elastic modulus at 260 ° C. is 3 to 50 MPa.
The thermosetting adhesive tape (adhesive which is defined in the range of a and is composed of the thermosetting adhesive 1 in a semi-cured state in which the heat generation of 10 to 40% of the total heat value for curing when measured using DSC is finished. The member 3 is cut into a predetermined size by a cutting press (FIG. 7A).

【0130】切断された熱硬化性接着テープ3を、1層
のCu配線が施され、TABテープ同様のインナーリー
ド部と外部はんだ端子用のスルーホールが形成されたポ
リイミドフィルム基板5の上面に精密に位置合わせした
後、熱プレスにて熱圧着して半導体搭載用基板を得た
(図7(b))。
The cut thermosetting adhesive tape 3 is precisely formed on the upper surface of the polyimide film substrate 5 on which one layer of Cu wiring is provided and inner lead portions and through holes for external solder terminals similar to those of the TAB tape are formed. Then, the semiconductor mounting substrate was obtained by thermocompression bonding with a hot press (FIG. 7 (b)).

【0131】この例では、実施例1に記載された切断工
程前の静電気除去工程、および熱プレス上型面への離型
表面処理を施した同じ工程にて、多連半導体搭載用フレ
ーム基板を得た。
In this example, the multiple semiconductor mounting frame substrate was subjected to the static electricity removing step before the cutting step described in Example 1 and the same step of releasing surface treatment on the upper surface of the hot press. Obtained.

【0132】その後、半導体搭載用フレーム基板に半導
体チップ6をフェイスダウンで精密位置合わせして順次
搭載し、熱プレスにて熱圧着した(図7(c))。その
後、基板側端子であるCuインナーリード部10を個々
にTABインナーリードボンダー(この例ではシングル
ポイントボンダー)を用いて、チップ側の端子部に接続
するインナーリードボンディングを経て(図7
(d))、チップ端面とポリイミドフィルム基板5の上
面とをエポキシ系液状封止材8をディスペンスにて被覆
し(図7(e))、所定の加熱・硬化時間を経て、半導
体装置を得た(図7(f))。この例では、インナーリ
ード部にはCuの上にSnめっきが施されたものを用
い、半導体端子部にはAuめっきバンプが形成されてい
るものを用いてAu/Sn接合により接続した。 <比較例3>1層のCu配線が施され、TABテープの
インナーリード部と外部はんだ端子用のスルーホールが
形成された実施例2と同じポリイミドフィルム基板の上
面に、エポキシ樹脂を主成分とし、その硬化物のDMA
で測定される25℃の弾性率が3000MPaの絶縁性
液状接着剤をダイボンド装置にて滴下・塗布し、半導体
チップを精密に位置決めし搭載した。しかし、樹脂がイ
ンナーボンディング部にまで流れ、その後のインナーボ
ンディングができなかったが、そのまま実施例2と同様
にチップ端面をエポキシ樹脂を主体とする液状封止材で
封止し、はんだボールを形成した比較品を得た。 <比較例4>1層のCu配線が施され、TABテープの
インナーリード部と外部はんだ端子用のスルーホールが
形成された実施例2と同じポリイミドフィルム基板の上
面に、シリコン樹脂を主成分としその硬化物の25℃の
弾性率が10MPaであり、かつ260℃における弾性
率が測定不可能なほど小さい絶縁性液状接着剤、をダイ
ボンド装置にて滴下・塗布し、実施例2と同様に半導体
チップを搭載した。しかし、樹脂がインナーボンディン
グ部にまで流れ、その後のインナーボンディングができ
なかったが、そのまま実施例2と同様にチップ端面をエ
ポキシ樹脂を主体とする液状封止材で封止し、はんだボ
ールを形成した比較品を得た。 <比較例5>シリコン樹脂を主成分としその硬化物の2
5℃の弾性率が10MPaであり、かつ260℃におけ
る弾性率が測定不可能なほど小さい絶縁性液状接着剤を
テフロン板に注型し、その後、所定の加熱温度・時間に
より硬化させて、低弾性のフィルムを得た。このフィル
ムの両面に比較例3に記載したエポキシ樹脂を主体とす
る熱硬化性接着剤を両面に塗布し、1層のCu配線が施
されTABテープのインナーリード部と外部はんだ端子
用のスルーホールが形成された実施例2と同じポリイミ
ドフィルム基板の上面に、熱プレスで熱圧着し、その
後、半導体チップをフェイスダウンで接着した後、実施
例2に記載したインナーリードボンディング工程、封止
工程をへてはんだボールを形成した比較品を得た。実施
例1、実施例2、比較例1〜5の半導体装置のについ
て、耐吸湿リフロー試験を実施するとともに、FR−4
配線基板にリフロー実装した各半導体装置について耐温
度サイクル試験を実施した結果を表1に示す。吸湿リフ
ロー試験については、吸湿前と85℃85%RHの条件
下で24時間および48時間吸湿させたのち最高温度2
40℃のIRリフローを実施した試験品中の剥離、クラ
ックをSAT(超音波探査探傷装置)で調べた結果を表
示した。また、各サンプルの耐温度サイクル試験は、基
板実装後に−25℃(30分、air)〜150℃(3
0分、air)の温度サイクルを実施したのち、パッケ
ージ外部端子のはんだボールの接続抵抗を4端子法で測
定し、50mΩ以上になったものを不良とした。
After that, the semiconductor chips 6 were precisely mounted face down on the semiconductor mounting frame substrate, sequentially mounted, and thermocompression bonded by a heat press (FIG. 7C). After that, the Cu inner lead portions 10 that are the terminals on the substrate side are individually subjected to inner lead bonding using the TAB inner lead bonder (in this example, a single point bonder) to connect to the terminal portion on the chip side (FIG. 7).
(D)), the chip end surface and the upper surface of the polyimide film substrate 5 are covered with an epoxy liquid encapsulating material 8 by dispensing (FIG. 7E), and a semiconductor device is obtained after a predetermined heating / curing time. (Fig. 7 (f)). In this example, the inner lead portion was made of Cu and Sn-plated, and the semiconductor terminal portion was made of Au-plated bump to be connected by Au / Sn bonding. <Comparative Example 3> An epoxy resin was used as the main component on the upper surface of the same polyimide film substrate as in Example 2 in which one layer of Cu wiring was provided and inner leads of the TAB tape and through holes for external solder terminals were formed. , Its cured product DMA
An insulating liquid adhesive having an elastic modulus of 3000 MPa at 25 ° C. measured in 1. was dropped and applied by a die bonder, and a semiconductor chip was precisely positioned and mounted. However, the resin flowed to the inner bonding portion, and the inner bonding could not be performed thereafter. However, as in Example 2, the end face of the chip was sealed with a liquid sealing material mainly containing epoxy resin to form a solder ball. A comparative product was obtained. <Comparative Example 4> On the upper surface of the same polyimide film substrate as in Example 2 in which a single layer of Cu wiring was provided, and the inner lead portion of the TAB tape and the through hole for the external solder terminal were formed, the main component was silicon resin. An insulating liquid adhesive having an elastic modulus at 25 ° C. of 10 MPa at 25 ° C. and an elastic modulus at 260 ° C. which is too small to be measured was dropped and applied with a die bonder to obtain a semiconductor as in Example 2. Equipped with a chip. However, the resin flowed to the inner bonding portion, and the inner bonding could not be performed thereafter. However, as in Example 2, the end face of the chip was sealed with a liquid sealing material mainly containing epoxy resin to form a solder ball. A comparative product was obtained. <Comparative example 5> Silicone resin as a main component and its cured product 2
An insulating liquid adhesive having a modulus of elasticity at 5 ° C. of 10 MPa and a modulus of elasticity at 260 ° C. that is too small to measure is cast on a Teflon plate, and then cured at a predetermined heating temperature / time to lower the temperature. An elastic film was obtained. A thermosetting adhesive mainly composed of the epoxy resin described in Comparative Example 3 was applied to both surfaces of this film, and one layer of Cu wiring was applied to the inner leads of the TAB tape and through holes for external solder terminals. On the upper surface of the same polyimide film substrate as that of Example 2 in which is formed, thermocompression bonding is performed by hot pressing, and then the semiconductor chip is bonded face down, and then the inner lead bonding step and the sealing step described in Example 2 are performed. A comparative product having solder balls formed thereon was obtained. With respect to the semiconductor devices of Examples 1 and 2 and Comparative Examples 1 to 5, a moisture absorption reflow test was conducted and FR-4 was used.
Table 1 shows the results of the temperature cycle test conducted on each semiconductor device reflow-mounted on the wiring board. Regarding the moisture absorption reflow test, the maximum temperature was 2 after absorbing moisture for 24 hours and 48 hours under the condition of 85 ° C and 85% RH before moisture absorption.
The results of examining peeling and cracks in a test product subjected to IR reflow at 40 ° C. by SAT (ultrasonic probe) are displayed. In addition, the temperature resistance cycle test of each sample is performed at -25 ° C (30 minutes, air) to 150 ° C (3
After performing a temperature cycle of 0 minutes for the air), the connection resistance of the solder balls of the package external terminals was measured by the 4-terminal method, and those having a resistance of 50 mΩ or more were determined to be defective.

【0133】(注) 耐リフロー性 ○:チップ6および有機配線基板4、5と熱硬化性接着
剤3との界面に剥離およびボイドが極めて少なく、SA
T(超音波探査探傷装置)で検知できない。 △:熱硬化性接着剤3の塗布時に有機配線基板の配線間
への埋め込みが充分でなくボイドが観察され、その箇所
から剥離が進展しているものが、サンプル10中2〜
3。 ×:上記した剥離がパッケージ外部にまで至り、リフロ
ー後はパッケージに膨れ、クラックが観察されるもがサ
ンプル10中10。剥離してワイヤーボンディング部や
インナーリード部の断線にまで至るものが観察される。 耐温度サイクル性 ○:はんだボール接続部の接続抵抗が変化しない。 ×:はんだボール接続部の接続抵抗が50mΩを越える
端子が1つでも存在する。 −:インナーボンディングが出来ず、接続抵抗を測定で
きない。評価不可。 <実施例3>エポキシ樹脂としてビスフェノールA型エ
ポキシ樹脂(エポキシ当量200、油化シェルエポキシ
株式会社製のエピコート828を使用)45重量部、ク
レゾールノボラック型エポキシ樹脂(エポキシ当量22
0、住友化学工業株式会社製のESCN001を使用)
15重量部、エポキシ樹脂の硬化剤としてフェノールノ
ボラック樹脂(大日本インキ化学工業株式会社製のプラ
イオーフェンLF2882を使用)40重量部、エポキ
シ樹脂と相溶性がありかつ重量平均分子量が3万以上の
高分子量樹脂としてフェノキシ樹脂(分子量5万、東都
化成株式会社製のフェノトートYP−50を使用)15
重量部、エポキシ基含有アクリルゴムとしてエポキシ基
含有アクリルゴム(分子量100万、帝国化学産業株式
会社製のHTR−860P−3を使用)150重量部、
硬化促進剤として硬化促進剤1−シアノエチル−2−フ
ェニルイミダゾール(キュアゾール2PZ−CN)0.
5重量部、シランカップリング剤としてγ−グリシドキ
シプロピルトリメトキシシラン(日本ユニカー株式会社
製のNUC A−187を使用)0.7重量部からなる
組成物に、メチルエチルケトンを加えて撹拌混合し、真
空脱気した。得られたワニスを、厚さ75μmの離型処
理したポリエチレンテレフタレートフィルム上に塗布
し、140℃で5分間加熱乾燥して、膜厚が80μmの
Bステージ状態の塗膜を形成し接着フィルムを作製し
た。
(Note) Reflow resistance ◯: Peeling and voids are extremely small at the interface between the chip 6 and the organic wiring substrates 4, 5 and the thermosetting adhesive 3, and SA
It cannot be detected by T (ultrasonic probe). Δ: When the thermosetting adhesive 3 was applied, embedding between the wirings of the organic wiring board was not sufficient, and voids were observed, and peeling progressed from that location.
3. Poor: The peeling described above reaches the outside of the package, and after reflow, the package is swollen and cracks are observed. It can be observed that the wire is peeled and the wire bonding portion or the inner lead portion is broken. Resistance to temperature cycle ○: The connection resistance of the solder ball connection does not change. X: There is at least one terminal having a connection resistance of the solder ball connection portion exceeding 50 mΩ. -: Inner bonding cannot be performed and connection resistance cannot be measured. Cannot be evaluated. <Example 3> 45 parts by weight of a bisphenol A type epoxy resin (epoxy equivalent 200, Epicoat 828 manufactured by Yuka Shell Epoxy Co., Ltd.) was used as an epoxy resin, and a cresol novolac type epoxy resin (epoxy equivalent 22).
0, using ESCN001 manufactured by Sumitomo Chemical Co., Ltd.)
15 parts by weight, 40 parts by weight of phenol novolac resin (using Priofen LF2882 manufactured by Dainippon Ink and Chemicals, Inc.) as a curing agent for epoxy resin, compatible with epoxy resin and having a weight average molecular weight of 30,000 or more. Phenoxy resin as a molecular weight resin (molecular weight 50,000, using Phenotote YP-50 manufactured by Tohto Kasei Co., Ltd.) 15
150 parts by weight of epoxy group-containing acrylic rubber (molecular weight 1,000,000, HTR-860P-3 manufactured by Teikoku Chemical Industry Co., Ltd.) as epoxy group-containing acrylic rubber,
As a curing accelerator, a curing accelerator 1-cyanoethyl-2-phenylimidazole (Curazole 2PZ-CN) 0.
Methyl ethyl ketone was added to a composition consisting of 5 parts by weight and 0.7 parts by weight of γ-glycidoxypropyltrimethoxysilane (using NUC A-187 manufactured by Nippon Unicar Co., Ltd.) as a silane coupling agent, and the mixture was stirred and mixed. , Vacuum degassed. The obtained varnish is applied on a release-treated polyethylene terephthalate film having a thickness of 75 μm, and dried by heating at 140 ° C. for 5 minutes to form a coating film in a B stage state having a thickness of 80 μm to prepare an adhesive film. did.

【0134】なおこの状態での接着剤の硬化度は、DS
C(デュポン社製912型DSC)を用いて測定(昇温
速度、10℃/分)した結果、全硬化発熱量の15%の
発熱を終えた状態であった。また、THF中に接着剤
(重量W1)を浸し、25℃で20時間放置した後、非
溶解分を200メッシュのナイロン布で濾過し、これを
乾燥した後の重量を測定(重量W2)し、THF抽出率
(=(W1−W2)×100/W1)を求めたところ、
THF抽出率は35重量%であった。さらに、接着剤硬
化物の貯蔵弾性率を動的粘弾性測定装置(レオロジ製、
DVE−V4)を用いて測定(サンプルサイズ 長さ2
0mm、幅4mm、膜厚80μm、昇温速度5℃/分、
引張りモード 自動静荷重)した結果、25℃で360
MPa、260℃で4MPaであった。 <実施例4>実施例3で用いたフェノキシ樹脂を、カル
ボキシル基含有アクリロニトリルブタジエンゴム(分子
量40万、日本合成ゴム株式会社製のPNR−1を使
用)に変更したほか、実施例1と同様にして接着フィル
ムを作製した。なお、この状態での接着剤の硬化度は、
DSCを用いて測定した結果、全硬化発熱量の20%の
発熱を終えた状態であった。THF抽出率は、35重量
%であった。さらに、接着剤硬化物の貯蔵弾性率を動的
粘弾性測定装置を用いて測定した結果、25℃で300
MPa、260℃で3MPaであった。 <実施例5>実施例3の接着剤ワニスの接着剤固形分1
00体積部に対してシリカを10体積部添加し、ビーズ
ミルで60分間混練したワニスを用いて実施例1と同様
にして接着フィルムを作製した。DSCを用いて測定し
た結果、全硬化発熱量の15%の発熱を終えた状態であ
った。THF抽出率は、30重量%であった。さらに、
接着剤硬化物の貯蔵弾性率を動的粘弾性測定装置を用い
て測定した結果、25℃で1,500MPa、260℃
で10MPaであった。 <実施例6>実施例3で用いたフェノキシ樹脂を用いな
いこと以外実施例1と同様にして接着フィルムを作製し
た。DSCを用いて測定した結果、全硬化発熱量の15
%の発熱を終えた状態であった。THF抽出率は、35
重量%であった。さらに、接着剤硬化物の貯蔵弾性率を
動的粘弾性測定装置を用いて測定した結果、25℃で3
50MPa、260℃で4MPaであった。 <比較例6>実施例3のエポキシ基含有アクリルゴムの
量を150重量部から50重量部にしたこと以外は実施
例1と同様にして接着フィルムを作製した。DSCを用
いて測定した結果、全硬化発熱量の20%の発熱を終え
た状態であった。THF抽出率は、40重量%であっ
た。さらに、接着剤硬化物の貯蔵弾性率を、動的粘弾性
測定装置を用いて測定した結果、25℃で3,000M
Pa、260℃で5MPaであった。 <比較例7>実施例3のエポキシ基含有アクリルゴムの
量を150重量部から400重量部にしたこと以外は実
施例1と同様にして接着フィルムを作製した。DSCを
用いて測定した結果、全硬化発熱量の20%の発熱を終
えた状態であった。THF抽出率は、30重量%であっ
た。さらに、接着剤硬化物の貯蔵弾性率を動的粘弾性測
定装置を用いて測定した結果、25℃で200MPa、
260℃で1MPaであった。 <比較例8>実施例3のエポキシ基含有アクリルゴムの
150重量部をフェノキシ樹脂に変更(フェノキシ樹脂
160重量部)した他、実施例1と同様にして接着フィ
ルムを作製した。この接着フィルムの全硬化発熱量は2
0%であり、THF抽出率は、90重量%であった。ま
た、貯蔵弾性率は、25℃で3,400MPa、260
℃で3MPaであった。 <比較例9>実施例3のエポキシ基含有アクリルゴムを
アクリロニトリルブタジエンゴムに変更した他は、実施
例1と同様にして接着フィルムを作製した。この接着フ
ィルムの全硬化発熱量は、20%、THF抽出率は、9
0重量%であった。また、貯蔵弾性率は、25℃で50
0MPa、260℃で2MPaであった。得られた接着
フィルムを用いて作製した半導体装置について、耐熱
性、耐電食性、耐湿性を調べた。耐熱性の評価方法に
は、半導体チップと厚み25μmのポリイミドフィルム
を基材に用いたフレキシブルプリント配線板を接着フィ
ルムで貼り合せた半導体装置サンプル(片面にはんだボ
ールを形成)の耐リフロークラック性と温度サイクル試
験を適用した。耐リフロークラック性の評価は、サンプ
ル表面の最高温度が240℃でこの温度を20秒間保持
するように温度設定したIR(赤外線)リフロー炉にサ
ンプルを通し、室温で放置することにより冷却する処理
を2回繰り返したサンプル中のクラックの観察で行っ
た。クラックの発生していないものを良好とし、発生し
ていたものを不良とした。温度サイクル試験は、サンプ
ルを−55℃雰囲気に30分間放置し、その後125℃
の雰囲気に30分間放置する工程を1サイクルとして、
破壊が起きるまでのサイクル数を示した。また、耐電食
性の評価は、FR−4基板にライン/スペース=75/
75μmのくし形パターンを形成し、この上に接着フィ
ルムを貼り合せたたサンプルを作製し、85℃/85%
RH/DC6V印加の条件下で1,000時間後の絶縁
抵抗値を測定することにより行った。絶縁抵抗値が10
Ω以上を示したものを良好とし、10Ω未満であったも
のを不良とした。また、耐湿性評価は、半導体装置サン
プルをプレッシャークッカーテスター中で96時間処理
(PCT処理)後接着フィルムの剥離及び変色を観察す
ることにより行った。接着フィルムの剥離及び変色の認
められなかったものを良好とし、剥離のあったもの又は
変色のあったものを不良とした。その結果を表2に示
す。
The degree of curing of the adhesive in this state is DS
As a result of measurement (temperature rising rate, 10 ° C./min) using C (912 type DSC manufactured by DuPont), it was in a state in which heat generation of 15% of the total curing heat value was finished. Further, the adhesive (weight W1) was immersed in THF, allowed to stand at 25 ° C. for 20 hours, then the non-dissolved portion was filtered through a 200-mesh nylon cloth, and the weight after drying was measured (weight W2). , The THF extraction rate (= (W1-W2) × 100 / W1) was calculated,
The THF extraction rate was 35% by weight. In addition, the storage elastic modulus of the cured adhesive is measured by a dynamic viscoelasticity measuring device (Rheology,
DVE-V4) (sample size length 2
0 mm, width 4 mm, film thickness 80 μm, heating rate 5 ° C./min,
As a result of pulling mode automatic static load), 360 at 25 ° C
It was 4 MPa at 260 ° C. <Example 4> The phenoxy resin used in Example 3 was changed to a carboxyl group-containing acrylonitrile butadiene rubber (molecular weight of 400,000, PNR-1 manufactured by Japan Synthetic Rubber Co., Ltd.) was used, and the same as in Example 1. To produce an adhesive film. The degree of cure of the adhesive in this state is
As a result of measurement using DSC, it was in a state where heat generation of 20% of the total heat generation amount for curing was completed. The THF extraction rate was 35% by weight. Furthermore, the storage elastic modulus of the cured product of the adhesive was measured using a dynamic viscoelasticity measuring device, and was found to be 300 at 25 ° C.
It was 3 MPa at 260 ° C. <Example 5> Adhesive solid content 1 of the adhesive varnish of Example 3
10 parts by volume of silica was added to 00 parts by volume, and an adhesive film was produced in the same manner as in Example 1 using a varnish kneaded with a bead mill for 60 minutes. As a result of measurement using DSC, it was in a state where heat generation of 15% of the total heat generation for curing was completed. The THF extraction rate was 30% by weight. further,
As a result of measuring the storage elastic modulus of the cured adhesive with a dynamic viscoelasticity measuring device, it was 1,500 MPa at 25 ° C. and 260 ° C.
Was 10 MPa. <Example 6> An adhesive film was produced in the same manner as in Example 1 except that the phenoxy resin used in Example 3 was not used. As a result of measurement using DSC, the total heating value for curing was 15
It was in the state of having finished the fever of%. The THF extraction rate is 35
% By weight. Furthermore, the storage elastic modulus of the cured product of the adhesive was measured using a dynamic viscoelasticity measuring device, and was found to be 3 at 25 ° C.
It was 4 MPa at 50 MPa and 260 ° C. Comparative Example 6 An adhesive film was produced in the same manner as in Example 1 except that the amount of the epoxy group-containing acrylic rubber of Example 3 was changed from 150 parts by weight to 50 parts by weight. As a result of measurement using DSC, it was in a state where heat generation of 20% of the total heat generation amount for curing was completed. The THF extraction rate was 40% by weight. Furthermore, the storage elastic modulus of the cured adhesive was measured using a dynamic viscoelasticity measuring device, and as a result, it was 3,000 M at 25 ° C.
Pa was 5 MPa at 260 ° C. Comparative Example 7 An adhesive film was produced in the same manner as in Example 1 except that the amount of the epoxy group-containing acrylic rubber of Example 3 was changed from 150 parts by weight to 400 parts by weight. As a result of measurement using DSC, it was in a state where heat generation of 20% of the total heat generation amount for curing was completed. The THF extraction rate was 30% by weight. Furthermore, as a result of measuring the storage elastic modulus of the cured adhesive using a dynamic viscoelasticity measuring device, 200 MPa at 25 ° C.,
It was 1 MPa at 260 ° C. Comparative Example 8 An adhesive film was produced in the same manner as in Example 1 except that 150 parts by weight of the epoxy group-containing acrylic rubber of Example 3 was changed to phenoxy resin (160 parts by weight of phenoxy resin). The total heating value of this adhesive film is 2
It was 0%, and the THF extraction rate was 90% by weight. Further, the storage elastic modulus at 25 ° C. is 3,400 MPa, 260
It was 3 MPa at ° C. Comparative Example 9 An adhesive film was produced in the same manner as in Example 1 except that the epoxy group-containing acrylic rubber of Example 3 was changed to acrylonitrile butadiene rubber. This adhesive film has a total heating value of 20% and a THF extraction rate of 9%.
It was 0% by weight. The storage elastic modulus is 50 at 25 ° C.
It was 0 MPa and 2 MPa at 260 ° C. A semiconductor device manufactured using the obtained adhesive film was examined for heat resistance, electrolytic corrosion resistance, and moisture resistance. The heat resistance was evaluated by the reflow crack resistance of a semiconductor device sample (a solder ball is formed on one surface) in which a semiconductor chip and a flexible printed wiring board using a polyimide film having a thickness of 25 μm as a base material are bonded with an adhesive film. A temperature cycle test was applied. The evaluation of the reflow crack resistance is performed by passing the sample through an IR (infrared) reflow furnace in which the maximum temperature of the sample surface is 240 ° C. and maintaining this temperature for 20 seconds, and cooling the sample by leaving it at room temperature. The crack was observed twice in the sample. Those without cracks were rated as good, and those with cracks were rated as bad. In the temperature cycle test, the sample was left in an atmosphere of -55 ° C for 30 minutes, and then 125 ° C.
The process of leaving it in the atmosphere of 30 minutes as one cycle,
The number of cycles until destruction occurs is shown. In addition, the evaluation of the electrolytic corrosion resistance is as follows: Line / Space = 75 /
A sample in which a comb-shaped pattern of 75 μm is formed and an adhesive film is adhered thereon is prepared, and the temperature is 85 ° C./85%.
The measurement was performed by measuring the insulation resistance value after 1,000 hours under the condition of applying RH / DC6V. Insulation resistance value is 10
Those showing Ω or more were regarded as good, and those less than 10 Ω were regarded as defective. The moisture resistance was evaluated by observing the peeling and discoloration of the adhesive film after the semiconductor device sample was treated for 96 hours (PCT treatment) in a pressure cooker tester. The case where no peeling or discoloration of the adhesive film was observed was regarded as good, and the case where there was peeling or discoloration was regarded as poor. The results are shown in Table 2.

【0135】実施例3、4及び5は、いずれも、エポキ
シ樹脂及びその硬化剤、エポキシ樹脂と相溶性の高分子
量樹脂、エポキシ基含有アクリル系共重合体、硬化促進
剤をともに含む接着剤であり、実施例6は、エポキシ樹
脂及びその硬化剤、エポキシ基含有アクリル系共重合
体、硬化促進剤をともに含む接着剤であり、本発明で規
定した25℃及び260℃での貯蔵弾性率を示してい
る。これらは、耐リフロークラック性、温度サイクル試
験、耐電食性、耐PCT性が良好であった。
Examples 3, 4 and 5 are adhesives containing both an epoxy resin and its curing agent, a high molecular weight resin compatible with the epoxy resin, an epoxy group-containing acrylic copolymer and a curing accelerator. Example 6 is an adhesive containing both an epoxy resin and a curing agent thereof, an epoxy group-containing acrylic copolymer, and a curing accelerator, and has storage elastic modulus at 25 ° C. and 260 ° C. defined in the present invention. Shows. These had good reflow crack resistance, temperature cycle test, electrolytic corrosion resistance, and PCT resistance.

【0136】比較例6は、本発明で規定したエポキシ基
含有アクリル系共重合体の量が少ないため貯蔵弾性率が
高く応力を緩和できずに耐リフロークラック性、温度サ
イクルテストでの結果が悪く信頼性に劣る。また、比較
例7は、本発明で規定したエポキシ基含有アクリル系共
重合体の量が多すぎるため貯蔵弾性率が低く良好である
が、接着フィルムの取扱性が悪い。比較例8は、本発明
で規定したエポキシ基含有アクリル系共重合体を含まな
い組成であるため貯蔵弾性率が高く比較例1と同様、応
力を緩和できずに耐リフロークラック性、温度サイクル
テストでの結果が悪い。比較例9は、本発明で規定した
エポキシ基含有アクリル系共重合体を含まず、それ以外
のゴム成分を含み25℃での貯蔵弾性率が低いが耐電食
性に劣る結果を示した。 <実施例7>エポキシ樹脂としてビスフェノールA型エ
ポキシ樹脂(エポキシ当量200、油化シェルエポキシ
株式会社製商品名のエピコート828を使用)45重量
部、クレゾールノボラック型エポキシ樹脂(エポキシ当
量220、住友化学工業株式会社製商品名のESCN0
01を使用)15重量部、エポキシ樹脂の硬化剤として
フェノールノボラック樹脂(大日本インキ化学工業株式
会社製商品名のプライオーフェンLF2882を使用)
40重量部、エポキシ樹脂と相溶性がありかつ重量平均
分子量が3万以上の高分子量樹脂としてフェノキシ樹脂
(分子量5万、東都化成株式会社製商品名のフェノトー
トYP−50を使用)15重量部、エポキシ基含有アク
リル系共重合体としてエポキシ基含有アクリルゴム(分
子量100万、帝国化学産業株式会社製商品名のHTR
−860P−3を使用)150重量部、硬化促進剤とし
て硬化促進剤1−シアノエチル−2−フェニルイミダゾ
ール(キュアゾール2PZ−CN)0.5重量部、シラ
ンカップリング剤としてγ−グリシドキシプロピルトリ
メトキシシラン(日本ユニカー株式会社製商品名のNU
C A−187を使用)0.7重量部からなる組成物
に、メチルエチルケトンを加えて攪拌混合し、真空脱気
した。得られたワニスを、厚さ50μmのプラズマ処理
を施したポリイミドフィルム上に塗布し、130℃で5
分間加熱乾燥して、膜厚が50μmのBステージ状態の
塗膜を形成し片面接着フィルムを作製した。つぎに、こ
の片面接着フィルムのポリイミドフィルムの接着剤を塗
布していない面に同じワニスを塗布し、140℃で5分
間加熱乾燥して、膜厚が50μmのBステージ状態の塗
膜を形成し三層構造の両面接着フィルムを作製した。
In Comparative Example 6, since the amount of the epoxy group-containing acrylic copolymer specified in the present invention is small, the storage elastic modulus is high, the stress cannot be relaxed, and the reflow crack resistance and the result in the temperature cycle test are poor. Unreliable. In Comparative Example 7, the storage elastic modulus is low and good because the amount of the epoxy group-containing acrylic copolymer specified in the present invention is too large, but the handleability of the adhesive film is poor. Comparative Example 8 has a high storage elastic modulus because it does not contain the epoxy group-containing acrylic copolymer specified in the present invention, and like Comparative Example 1, stress cannot be relaxed and reflow crack resistance and temperature cycle test are performed. The result in is bad. Comparative Example 9 did not contain the epoxy group-containing acrylic copolymer specified in the present invention, contained the other rubber components, and had a low storage elastic modulus at 25 ° C., but showed poor electrolytic corrosion resistance. <Example 7> 45 parts by weight of a bisphenol A type epoxy resin (epoxy equivalent 200, Epicoat 828 manufactured by Yuka Shell Epoxy Co., Ltd.) as an epoxy resin, cresol novolac type epoxy resin (epoxy equivalent 220, Sumitomo Chemical Co., Ltd.) Product name ESCN0
15 parts by weight, as a curing agent for epoxy resin, phenol novolac resin (using Priofen LF2882 manufactured by Dainippon Ink and Chemicals, Inc.)
40 parts by weight, 15 parts by weight of a phenoxy resin (a molecular weight of 50,000, Phenototo YP-50 manufactured by Toto Kasei Co., Ltd. is used) as a high molecular weight resin having compatibility with an epoxy resin and a weight average molecular weight of 30,000 or more. , Epoxy group-containing acrylic rubber as epoxy group-containing acrylic copolymer (molecular weight 1 million, HTR manufactured by Teikoku Chemical Industry Co., Ltd.
-860P-3) 150 parts by weight, curing accelerator 1-cyanoethyl-2-phenylimidazole (Curazole 2PZ-CN) 0.5 parts by weight as a curing accelerator, γ-glycidoxypropyl trisilane as a silane coupling agent. Methoxysilane (NU under the trade name of Nippon Unicar Co., Ltd.
Methyl ethyl ketone was added to a composition of 0.7 part by weight (using CA-187), and the mixture was stirred and mixed, and degassed in vacuum. The obtained varnish was applied onto a plasma-treated polyimide film having a thickness of 50 μm, and the coating was performed at 130 ° C. for 5 minutes.
After heat-drying for a minute, a coating film in a B stage state having a film thickness of 50 μm was formed to prepare a single-sided adhesive film. Next, the same varnish was applied to the surface of the polyimide film of this single-sided adhesive film on which the adhesive was not applied, and the film was heated and dried at 140 ° C. for 5 minutes to form a coating film in a B stage state having a thickness of 50 μm. A double-sided adhesive film having a three-layer structure was produced.

【0137】なおこの状態での接着フィルムの接着剤成
分の硬化度は、DSC(デュポン社製商品名912型D
SC)を用いて測定(昇温速度、10℃/分)した結
果、全硬化発熱量の15%の発熱を終えた状態であっ
た。また、THF中に接着剤(重量W1)を浸し、25
℃で20時間放置した後、非溶解分を200メッシュの
ナイロン布で濾過し、これを乾燥した後の重量を測定
(重量W2)し、THF抽出率(=(W1−W2)×1
00/W1)を求めたところ、THF抽出率は35重量
%であった。さらに、接着剤硬化物の貯蔵弾性率を動的
粘弾性測定装置を用いて測定した結果、25℃で360
MPa、260℃で4MPaであった。 <実施例8>実施例7で用いたフェノキシ樹脂を、カル
ボキシル基含有アクリロニトリルブタジエンゴム(分子
量40万、日本合成ゴム株式会社製商品名のPNR−1
を使用)に変更したほか、実施例1と同様にして三層構
造の両面接着フィルムを作製した。なお、この状態での
接着フィルムの接着剤成分の硬化度は、DSCを用いて
測定した結果、全硬化発熱量の20%の発熱を終えた状
態であった。THF抽出率は、35重量%であった。さ
らに、接着剤硬化物の貯蔵弾性率を動的粘弾性測定装置
を用いて測定した結果、25℃で300MPa、260
℃で3MPaであった。 <実施例9>実施例7で用いた接着剤ワニスを厚さ50
μmのポリエチレンテレフタレートフィルム上に塗布
し、140℃で5分間加熱乾燥して、膜厚が50μmの
Bステージ状態の塗膜を形成し、コア材となる耐熱性熱
可塑性フィルムに貼り合わせるための接着フィルムを作
製した。この接着フィルムを厚さ50μmのプラズマ処
理を施したポリイミドフィルムの両面に真空ラミネータ
を用いて、ラミネータロール温度80℃、送り速度0.
2m/分、線圧5kgのラミネート条件で貼り合わせる
ことにより三層構造の両面接着フィルムを作製した。な
お、この状態での接着フィルムの接着剤成分の硬化度
は、DSCを用いて測定した結果全硬化発熱量の20%
の発熱を終えた状態であった。THF抽出率は、35重
量%であった。さらに、接着剤硬化物の貯蔵弾性率を動
的粘弾性測定装置を用いて測定した結果、25℃で36
0MPa、260℃で4MPaであった。 <比較例10>実施例7で用いた接着剤ワニスを厚さ5
0μmのポリエチレンテレフタレートフィルム上に塗布
し、140℃で5分間加熱乾燥して、膜厚が75μmの
Bステージ状態の塗膜を形成して接着フィルムを作製し
た。この接着フィルムを2枚用い、実施例3と同様のラ
ミネート条件で貼り合わせて、コア材を用いない接着フ
ィルムを作製した。得られた接着フィルムの接着剤成分
の全硬化発熱量は20%であり、THF抽出率は35重
量%であった。また、貯蔵弾性率は、25℃で360M
Pa、260℃で4MPaであった。 <比較例11>実施例7のコア材となる耐熱性熱可塑性
フィルムとして用いたポリイミドフィルムをポリプロピ
レンフィルムに変更した他は、実施例1と同様にして三
層構造の両面接着フィルムを作製した。この接着フィル
ムの接着剤成分の全硬化発熱量は、20%、THF抽出
率は、35重量%であった。また、貯蔵弾性率は、25
℃で360MPa、260℃で4MPaであった。 <比較例12>実施例7のエポキシ基含有アクリル系共
重合体をフェノキシ樹脂に変更した他(フェノキシ樹脂
165重量部)、実施例1と同様にして三層構造の両面
接着フィルムを作製した。この接着フィルムの接着剤成
分の全硬化発熱量は20%であり、THF抽出率は、9
0重量%であった。また、貯蔵弾性率は、25℃で3,
400MPa、260℃で3MPaであった。 <比較例13>実施例7のエポキシ基含有アクリル系共
重合体をアクリロニトリルブタジエンゴムに変更した他
は、実施例1と同様にして三層構造の両面接着フィルム
を作製した。この接着フィルム接着剤成分の全硬化発熱
量は、20%、THF抽出率は、90重量%であった。
また、貯蔵弾性率は、25℃で500MPa、260℃
で2MPaであった。
The degree of curing of the adhesive component of the adhesive film in this state is DSC (trade name 912 type D manufactured by DuPont).
As a result of measurement using SC) (heating rate, 10 ° C./min), it was in a state where heat generation of 15% of the total heat generation amount for curing was completed. Also, soak the adhesive (weight W1) in THF, and
After left at 20 ° C. for 20 hours, the non-dissolved content was filtered through a 200-mesh nylon cloth, and the weight after drying was measured (weight W2), and the THF extraction rate (= (W1-W2) × 1
00 / W1), the THF extraction rate was 35% by weight. Further, the storage elastic modulus of the cured product of the adhesive was measured using a dynamic viscoelasticity measuring device, and as a result, 360 ° at 25 ° C.
It was 4 MPa at 260 ° C. <Example 8> The phenoxy resin used in Example 7 was replaced by a carboxyl group-containing acrylonitrile butadiene rubber (molecular weight 400,000, PNR-1 manufactured by Nippon Synthetic Rubber Co., Ltd., trade name).
Was used), and a double-sided adhesive film having a three-layer structure was produced in the same manner as in Example 1. The degree of cure of the adhesive component of the adhesive film in this state was measured by DSC, and as a result, it was in a state where heat generation of 20% of the total heat generation for curing was finished. The THF extraction rate was 35% by weight. Further, the storage elastic modulus of the cured adhesive was measured using a dynamic viscoelasticity measuring device.
It was 3 MPa at ° C. <Example 9> The adhesive varnish used in Example 7 was applied to a thickness of 50.
Adhesion for application on a μm polyethylene terephthalate film, heating and drying at 140 ° C. for 5 minutes to form a B-stage coating film with a film thickness of 50 μm, and attaching it to a heat-resistant thermoplastic film as a core material. A film was made. Using a vacuum laminator on both surfaces of a polyimide film having a thickness of 50 μm, which was subjected to plasma treatment, this adhesive film was used, the laminator roll temperature was 80 ° C., and the feed rate was 0.
A double-sided adhesive film having a three-layer structure was produced by laminating them under a laminating condition of 2 m / min and a linear pressure of 5 kg. The degree of cure of the adhesive component of the adhesive film in this state was 20% of the total curing heat value as measured by DSC.
It was in the state of having finished the fever. The THF extraction rate was 35% by weight. Furthermore, the storage elastic modulus of the cured product of the adhesive was measured using a dynamic viscoelasticity measuring device.
It was 4 MPa at 0 MPa and 260 ° C. <Comparative Example 10> The adhesive varnish used in Example 7 has a thickness of 5
It was applied on a polyethylene terephthalate film having a thickness of 0 μm and dried by heating at 140 ° C. for 5 minutes to form a coating film in a B-stage state having a thickness of 75 μm to prepare an adhesive film. Two of these adhesive films were used and laminated under the same laminating conditions as in Example 3 to produce an adhesive film that does not use a core material. The total curing heat value of the adhesive component of the obtained adhesive film was 20%, and the THF extraction rate was 35% by weight. Also, the storage modulus is 360M at 25 ° C.
Pa was 4 MPa at 260 ° C. <Comparative Example 11> A double-sided adhesive film having a three-layer structure was produced in the same manner as in Example 1 except that the polyimide film used as the heat-resistant thermoplastic film serving as the core material of Example 7 was changed to a polypropylene film. The total exothermic heat of curing of the adhesive component of this adhesive film was 20%, and the THF extraction rate was 35% by weight. The storage elastic modulus is 25
It was 360 MPa at 0 ° C and 4 MPa at 260 ° C. Comparative Example 12 A double-sided adhesive film having a three-layer structure was produced in the same manner as in Example 1 except that the epoxy group-containing acrylic copolymer of Example 7 was changed to a phenoxy resin (phenoxy resin 165 parts by weight). The total heat of curing of the adhesive component of this adhesive film was 20%, and the THF extraction rate was 9%.
It was 0% by weight. The storage modulus at 25 ° C is 3,
It was 400 MPa and 3 MPa at 260 ° C. Comparative Example 13 A double-sided adhesive film having a three-layer structure was produced in the same manner as in Example 1 except that the epoxy group-containing acrylic copolymer of Example 7 was changed to acrylonitrile butadiene rubber. The total exothermic heat of curing of this adhesive film adhesive component was 20%, and the THF extraction rate was 90% by weight.
Further, the storage elastic modulus is 500 MPa at 25 ° C., 260 ° C.
Was 2 MPa.

【0138】得られた接着フィルムについて、耐熱性、
耐電食性、耐湿性を調べた。耐熱性の評価方法には、半
導体チップとプリント配線板を三層構造の両面接着フィ
ルムで貼り合せたサンプルの耐リフロークラック性と温
度サイクル試験を適用した。耐リフロークラック性の評
価は、サンプル表面の最高温度が240℃でこの温度を
20秒間保持するように温度設定したIRリフロー炉に
サンプルを通し、室温で放置することにより冷却する処
理を2回繰り返したサンプル中のクラックの観察で行っ
た。クラックの発生していないものを良好とし、発生し
ていたものを不良とした。温度サイクル試験は、サンプ
ルを−55℃雰囲気に30分間放置し、その後125℃
の雰囲気に30分間放置する工程を1サイクルとして、
破壊が起きるまでのサイクル数を示した。また、耐電食
性の評価は、FR−4基板にライン/スペース=75/
75μmのくし形パターンを形成し、この上に接着フィ
ルムを貼り合せたサンプルを作製し、85℃/85%R
H/DC6V印加の条件下で1,000時間後の絶縁抵
抗値を測定することにより行った。絶縁抵抗値が10Ω
以上を示したものを良好とし、10Ω未満であったもの
を不良とした。また、耐湿性評価は、耐熱性評価サンプ
ルをプレッシャークッカーテスター中で96時間処理
(PCT処理)後接着フィルムの剥離及び変色を観察す
ることにより行った。接着フィルムの剥離及び変色の認
められなかったものを良好とし、剥離のあったもの又は
変色のあったものを不良とした。その結果を表3に示
す。
With respect to the obtained adhesive film, heat resistance,
The electrolytic corrosion resistance and moisture resistance were examined. As a heat resistance evaluation method, a reflow crack resistance and a temperature cycle test of a sample in which a semiconductor chip and a printed wiring board were bonded with a double-sided adhesive film having a three-layer structure were applied. To evaluate the resistance to reflow cracking, the sample was passed through an IR reflow furnace where the maximum temperature of the sample surface was 240 ° C and the temperature was set to maintain this temperature for 20 seconds, and the sample was allowed to stand at room temperature and cooled twice. The cracks in the sample were observed. Those without cracks were rated as good, and those with cracks were rated as bad. In the temperature cycle test, the sample was left in an atmosphere of -55 ° C for 30 minutes, and then 125 ° C.
The process of leaving it in the atmosphere of 30 minutes as one cycle,
The number of cycles until destruction occurs is shown. In addition, the evaluation of the electrolytic corrosion resistance is as follows: Line / Space = 75 /
A sample with a comb pattern of 75 μm formed and an adhesive film attached on top of this is prepared, and 85 ° C./85% R
It was performed by measuring the insulation resistance value after 1,000 hours under the condition of H / DC6V application. Insulation resistance value is 10Ω
Those showing the above were regarded as good, and those having less than 10Ω were regarded as bad. The moisture resistance was evaluated by observing the peeling and discoloration of the adhesive film after the heat resistance evaluation sample was treated for 96 hours (PCT treatment) in a pressure cooker tester. The case where no peeling or discoloration of the adhesive film was observed was regarded as good, and the case where there was peeling or discoloration was regarded as poor. The results are shown in Table 3.

【0139】実施例7、8、9は、何れも、コア材に耐
熱性熱可塑性フィルムを用いた三層構造の両面接着フィ
ルムであり、接着剤成分にエポキシ樹脂及びその硬化
剤、エポキシ樹脂と相溶性の高分子量樹脂、エポキシ基
含有アクリル系共重合体をともに含ため、本発明で規定
した25℃及び260℃での貯蔵弾性率を示している。
これらは、取り扱い性に優れ、耐リフロークラック性、
温度サイクル試験、耐電食性、耐PCT性が良好であっ
た。
Each of Examples 7, 8 and 9 is a double-sided adhesive film having a three-layer structure in which a heat resistant thermoplastic film is used as a core material, and an epoxy resin and its curing agent, an epoxy resin are used as an adhesive component. Since both the compatible high molecular weight resin and the epoxy group-containing acrylic copolymer are contained, the storage elastic modulus at 25 ° C. and 260 ° C. specified in the present invention is shown.
These are excellent in handleability, reflow crack resistance,
The temperature cycle test, the electrolytic corrosion resistance and the PCT resistance were good.

【0140】比較例10は、本発明で規定したコア材に
耐熱性熱可塑性フィルムを用いた三層構造の両面接着フ
ィルムではないため、取り扱い性に劣っていた。比較例
11は、コア材に耐熱性に劣るポリプロピレンフィルム
を用いたため、耐リフロー性及び温度サイクル試験結果
に劣っていた。比較例12は、本発明で規定したエポキ
シ基含有アクリル系共重合体を含まない組成であったた
めに、規定した25℃での貯蔵弾性率を超えた高い値を
示しており、耐リフロークラック性及び温度サイクル試
験結果に劣っていた。比較例13は、本発明で規定した
エポキシ基含有アクリルゴムを含まずに規定した25℃
での貯蔵弾性率に合わせていたために、耐電食性や耐P
CT性に劣る結果を示した。 (産業上の利用可能性)本発明により、耐吸湿リフロー
性に優れ、かつマザーボードに実装した状態での耐温度
サイクル性に優れる半導体パッケージを製造することが
できる。
Comparative Example 10 was inferior in handleability since it was not a three-layer double-sided adhesive film using a heat-resistant thermoplastic film as the core material specified in the present invention. In Comparative Example 11, a polypropylene film having poor heat resistance was used as the core material, and therefore the reflow resistance and the temperature cycle test result were poor. Comparative Example 12 was a composition not containing the epoxy group-containing acrylic copolymer specified in the present invention, and therefore exhibited a high value exceeding the specified storage elastic modulus at 25 ° C., and reflow crack resistance. And the results of the temperature cycle test were inferior. Comparative Example 13 is 25 ° C. defined without the epoxy group-containing acrylic rubber specified in the present invention.
Since it was adjusted to the storage elastic modulus at
The result was inferior in CT property. (Industrial Applicability) According to the present invention, it is possible to manufacture a semiconductor package having excellent moisture absorption reflow resistance and temperature cycle resistance when mounted on a mother board.

【0141】本発明の接着剤及び接着フィルムは、室温
付近での弾性率が低いために、ガラスエポキシ基板やポ
リイミド基板に代表されるリジッドプリント配線板及び
フレキシブルプリント配線板に半導体チップを実装した
場合の熱膨張係数の差がもとで起きる加熱冷却時の熱応
力を緩和させることができる。そのため、リフロー時の
クラックの発生が認められず、耐熱性に優れている。ま
た、エポキシ基含有アクリル系共重合体を低弾性率成分
として含んでおり、耐電食性、耐湿性、特にPCT処理
等厳しい条件下で耐湿試験を行なった場合の劣化が少な
く優れた特徴を有する接着材料を提供することができ
る。
Since the adhesive and the adhesive film of the present invention have a low elastic modulus near room temperature, when a semiconductor chip is mounted on a rigid printed wiring board or a flexible printed wiring board typified by a glass epoxy substrate or a polyimide substrate. The thermal stress at the time of heating / cooling caused by the difference in the thermal expansion coefficient of can be relaxed. Therefore, no cracks are observed during reflow and the heat resistance is excellent. Also, it contains an epoxy group-containing acrylic copolymer as a low elastic modulus component, and has excellent characteristics such as electrolytic corrosion resistance, moisture resistance, and little deterioration when a humidity resistance test is performed under severe conditions such as PCT treatment. Material can be provided.

【0142】本発明のコア材に耐熱性熱可塑性フィルム
を用いた三層構造の両面接着フィルムは、接着剤層の室
温付近での弾性率が低いにもかかわらず、取扱性に優
れ、しかも、ガラスエポキシ基板やポリイミド基板に代
表されるリジッドプリント配線板及びフレキシブルプリ
ント配線板に半導体チップを実装した場合の熱膨張係数
の差がもとで起きる加熱冷却時の熱応力を緩和させるこ
とができる。そのため、リフロー時のクラックの発生が
認められず、耐熱性に優れている。また、エポキシ基含
有アクリル系共重合体を低弾性率成分として含んでお
り、耐電食性、耐湿性、特にPCT処理等厳しい条件下
で耐湿試験を行なった場合の劣化が少なく優れた特徴を
有する接着材料を提供することができる。
The three-layer double-sided adhesive film using the heat-resistant thermoplastic film as the core material of the present invention is excellent in handleability even though the elastic modulus of the adhesive layer near room temperature is low, and It is possible to relieve thermal stress during heating and cooling caused by a difference in thermal expansion coefficient when a semiconductor chip is mounted on a rigid printed wiring board or a flexible printed wiring board typified by a glass epoxy substrate or a polyimide substrate. Therefore, no cracks are observed during reflow and the heat resistance is excellent. Also, it contains an epoxy group-containing acrylic copolymer as a low elastic modulus component, and has excellent characteristics such as electrolytic corrosion resistance, moisture resistance, and little deterioration when a humidity resistance test is performed under severe conditions such as PCT treatment. Material can be provided.

【0143】本発明の、外部端子が基板裏面にエリアア
レイ状に配列された半導体パッケージは特に携帯機器や
PDA用途の小型電子機器に搭載されるのに好適であ
る。
The semiconductor package of the present invention in which the external terminals are arranged on the back surface of the substrate in the form of an area array is particularly suitable for being mounted on a portable electronic device or a small electronic device for PDA use.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(a)は本発明による単層の熱硬化性接着
フィルムの断面図、図1(b)は本発明による3層接着
フィルムの断面図である。
FIG. 1 (a) is a sectional view of a single-layer thermosetting adhesive film according to the present invention, and FIG. 1 (b) is a sectional view of a three-layer adhesive film according to the present invention.

【図2】図2は、接着部材を有機配線基板に熱圧着した
半導体搭載用基板の断面図である。
FIG. 2 is a cross-sectional view of a semiconductor mounting substrate in which an adhesive member is thermocompression bonded to an organic wiring substrate.

【図3】図3は、接着部材を有機配線基板に熱圧着した
半導体搭載用基板の断面図である。
FIG. 3 is a cross-sectional view of a semiconductor mounting substrate in which an adhesive member is thermocompression bonded to an organic wiring substrate.

【図4】図4は、本発明の半導体装置の断面図である。FIG. 4 is a sectional view of a semiconductor device of the present invention.

【図5】図5は、本発明の半導体装置の他の例の断面図
である。
FIG. 5 is a cross-sectional view of another example of the semiconductor device of the present invention.

【図6】図6は、半導体搭載用基板および半導体装置の
一実施例の製造工程を示す断面図である。
FIG. 6 is a cross-sectional view showing a manufacturing process of an embodiment of a semiconductor mounting substrate and a semiconductor device.

【図7】図7は、半導体搭載用基板および半導体装置の
他の実施例の製造工程を示す断面図である。
FIG. 7 is a cross-sectional view showing the manufacturing process of another embodiment of the semiconductor mounting substrate and the semiconductor device.

【図8】図8は、本発明の半導体装置の他の例の断面図
である。
FIG. 8 is a cross-sectional view of another example of the semiconductor device of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09J 163/00 C09J 163/00 171/10 171/10 201/00 201/00 H01L 21/52 H01L 21/52 E (72)発明者 稲田 禎一 茨城県下館市女方248 川島ハウス4−103 (72)発明者 栗谷 弘之 茨城県下館市幸町3−28−12 (72)発明者 金田 愛三 神奈川県横浜市戸塚区上矢部町2456−47 (72)発明者 富山 健男 茨城県つくば市松代3−4−1 日立松代 ハウス B408号 (72)発明者 野村 好弘 千葉県市原市桜台1−4−99 (72)発明者 細川 羊一 千葉県市原市桜台1−4−86 (72)発明者 桐原 博 千葉県市原市飯沼173 日立化成飯沼寮122 号 (72)発明者 景山 晃 埼玉県新座市野寺5−5−8−303 Fターム(参考) 4J004 AA10 AA12 AA13 CA03 CA06 CB03 CC02 EA05 FA05 FA08 4J040 DF041 DF051 DF061 EB032 EC001 EE062 EG002 GA11 HA116 HA306 HB22 HB38 HC01 HD05 HD39 JA09 JB02 KA16 KA42 LA02 PA23 5F047 AA17 BA21 BB03 BB16 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C09J 163/00 C09J 163/00 171/10 171/10 201/00 201/00 H01L 21/52 H01L 21 / 52 E (72) Inventor Sadakazu Inada 248 Onnakata, Shimodate, Ibaraki 248 Kawashima House 4-103 (72) Inventor Hiroyuki Kuritani 3-28-12 Sachimachi, Shimodate, Ibaraki Inventor Aizo Kaneda Yokohama, Kanagawa 2456-47, Kamiyabe-cho, Totsuka-ku (72) Inventor Takeo Toyama 3-4-1 Matsushiro Tsukuba, Ibaraki Prefecture Hitachi Matsushiro House B408 (72) Inventor Yoshihiro Nomura 1-4-9, Sakuradai, Ichihara, Chiba (72) Inventor Yoichi Hosokawa 1-4-86 Sakuradai, Ichihara City, Chiba Prefecture (72) Inventor Hiroshi Kirihara 173 Iinuma, Ichihara City, Chiba Hitachi Chemical Iinuma Dormitory No. 122 (72) Akira Kageyama 5-5, Nodera, Niiza City, Saitama Prefecture 8-303 F term (see ) 4J004 AA10 AA12 AA13 CA03 CA06 CB03 CC02 EA05 FA05 FA08 4J040 DF041 DF051 DF061 EB032 EC001 EE062 EG002 GA11 HA116 HA306 HB22 HB38 HC01 HD05 HD39 JA09 JB02 KA16 KA42 LA02 PA23 5F047 AA17 BA21 BB03 BB16

Claims (49)

【特許請求の範囲】[Claims] 【請求項1】有機系支持基板に接着部材を介して半導体
チップが搭載された半導体装置であって、 前記有機系支持基板の、半導体チップが搭載される側、
および、半導体チップが搭載される側の反対側の少なく
ともいずれかの側には、所定の配線が形成されており、 前記有機系支持基板の半導体チップが搭載される側の反
対側には外部接続用端子がエリアアレイ状に形成されて
おり、 前記所定の配線は半導体チップ端子および前記外部接続
用端子と接続されており、 少なくとも前記半導体チップ端子と所定の配線との接続
部が樹脂封止されており、 前記接着部材は接着剤層を備えるもので、 前記接着剤の動的粘弾性測定装置で測定される25℃の
貯蔵弾性率が10〜2000MPaかつ260℃での貯
蔵弾性率が3〜50MPaであることを特徴とする半導
体装置。
1. A semiconductor device in which a semiconductor chip is mounted on an organic supporting substrate via an adhesive member, wherein the side of the organic supporting substrate on which the semiconductor chip is mounted,
A predetermined wiring is formed on at least one side of the side opposite to the side on which the semiconductor chip is mounted, and an external connection is formed on the side opposite to the side on which the semiconductor chip of the organic support substrate is mounted. Terminals are formed in an area array shape, the predetermined wiring is connected to the semiconductor chip terminal and the external connection terminal, and at least a connecting portion between the semiconductor chip terminal and the predetermined wiring is resin-sealed. The adhesive member includes an adhesive layer, and the storage elastic modulus at 25 ° C. measured by a dynamic viscoelasticity measuring device of the adhesive is 10 to 2000 MPa and the storage elastic modulus at 260 ° C. is 3 to. A semiconductor device having a pressure of 50 MPa.
【請求項2】所定の配線と半導体チップ端子とは、ワイ
ヤボンドまたは直接に接続される請求項1記載の半導体
装置。
2. The semiconductor device according to claim 1, wherein the predetermined wiring and the semiconductor chip terminal are connected by wire bonding or directly.
【請求項3】接着部材がフィルム状である請求項1また
は2記載の半導体装置。
3. The semiconductor device according to claim 1, wherein the adhesive member is in the form of a film.
【請求項4】接着剤の樹脂成分が、エポキシ樹脂、エポ
キシ基含有アクリル共重合体、エポキシ樹脂硬化剤およ
びエポキシ樹脂硬化促進剤を含む請求項1〜3のいずれ
かに記載の半導体装置。
4. The semiconductor device according to claim 1, wherein the resin component of the adhesive contains an epoxy resin, an epoxy group-containing acrylic copolymer, an epoxy resin curing agent, and an epoxy resin curing accelerator.
【請求項5】接着部材は、コア材の両面に接着剤層が形
成された構造である請求項1〜4のいずれかに記載の半
導体装置。
5. The semiconductor device according to claim 1, wherein the adhesive member has a structure in which adhesive layers are formed on both surfaces of a core material.
【請求項6】コア材が耐熱性熱可塑性フィルムである請
求項5記載の半導体装置。
6. The semiconductor device according to claim 5, wherein the core material is a heat resistant thermoplastic film.
【請求項7】耐熱性熱可塑性フィルムのガラス転移温度
が200℃以上である請求項6記載の半導体装置。
7. The semiconductor device according to claim 6, wherein the heat-resistant thermoplastic film has a glass transition temperature of 200 ° C. or higher.
【請求項8】ガラス転移温度200℃以上の耐熱性熱可
塑性フィルムがポリイミド、ポリエーテルスルホン、ポ
リアミドイミドまたはポリエーテルイミドである請求項
7記載の半導体装置。
8. The semiconductor device according to claim 7, wherein the heat-resistant thermoplastic film having a glass transition temperature of 200 ° C. or higher is polyimide, polyether sulfone, polyamide imide or polyether imide.
【請求項9】耐熱性熱可塑性フィルムが液晶ポリマであ
る請求項7記載の半導体装置。
9. The semiconductor device according to claim 7, wherein the heat-resistant thermoplastic film is a liquid crystal polymer.
【請求項10】接着剤層の中の残存溶媒量が5重量%以
下である請求項1〜9のいずれかに記載の半導体装置。
10. The semiconductor device according to claim 1, wherein the residual solvent amount in the adhesive layer is 5% by weight or less.
【請求項11】接着部材を介して半導体チップが搭載さ
れる有機系基板の半導体チップ搭載用基板であって、 前記有機系基板の半導体チップが搭載される側および半
導体チップが搭載される側の反対側の少なくともいずれ
かの側には所定の配線が形成されており、 前記有機系基板の半導体チップが搭載される側の反対側
には外部接続用端子がエリアアレイ状に形成されてお
り、 前記接着部材は接着剤層を備えるもので、 前記接着剤硬化物の動的粘弾性測定装置で測定される2
5℃の貯蔵弾性率が10〜2000MPaかつ260℃
での貯蔵弾性率が3〜50MPaであり、 前記接着部材は所定の大きさで前記有機系基板上の所定
の箇所に形成されていることを特徴とする半導体チップ
搭載用基板。
11. A semiconductor chip mounting substrate of an organic substrate on which a semiconductor chip is mounted via an adhesive member, the semiconductor substrate mounting side of the organic substrate and the semiconductor chip mounting side of the organic substrate. A predetermined wiring is formed on at least one side of the opposite side, and an external connection terminal is formed in an area array shape on the opposite side of the side where the semiconductor chip of the organic substrate is mounted, The adhesive member includes an adhesive layer, and is measured by a dynamic viscoelasticity measuring device of the cured adhesive product.
Storage elastic modulus at 5 ° C is 10 to 2000 MPa and 260 ° C
The storage elastic modulus is 3 to 50 MPa, and the adhesive member has a predetermined size and is formed at a predetermined location on the organic substrate.
【請求項12】接着部材がフィルム状である請求項11
記載の半導体チップ搭載用基板。
12. The adhesive member is in the form of a film.
The semiconductor chip mounting substrate as described above.
【請求項13】接着剤の樹脂成分が、エポキシ樹脂、エ
ポキシ基含有アクリル共重合体、エポキシ樹脂硬化剤お
よびエポキシ樹脂硬化促進剤を含む請求項11または1
2記載の半導体チップ搭載用基板。
13. The resin component of the adhesive contains an epoxy resin, an epoxy group-containing acrylic copolymer, an epoxy resin curing agent and an epoxy resin curing accelerator.
2. The semiconductor chip mounting substrate according to 2.
【請求項14】接着部材は、コア材の両面に接着剤層が
形成された構造である請求項11〜13のいずれかに記
載の半導体チップ搭載用基板。
14. The substrate for mounting a semiconductor chip according to claim 11, wherein the adhesive member has a structure in which an adhesive layer is formed on both surfaces of a core material.
【請求項15】コア材が耐熱性熱可塑性フィルムである
請求項14記載の半導体チップ搭載用基板。
15. The semiconductor chip mounting substrate according to claim 14, wherein the core material is a heat resistant thermoplastic film.
【請求項16】耐熱性熱可塑性フィルムのガラス転移温
度が200℃以上である、請求項15記載の半導体チッ
プ搭載用基板。
16. The substrate for mounting a semiconductor chip according to claim 15, wherein the glass transition temperature of the heat resistant thermoplastic film is 200 ° C. or higher.
【請求項17】ガラス転移温度が200℃以上の耐熱性
熱可塑性フィルムがポリイミド、ポリエーテルスルホ
ン、ポリアミドイミドまたはポリエーテルイミドである
請求項16記載の半導体チップ搭載用基板。
17. The semiconductor chip mounting substrate according to claim 16, wherein the heat resistant thermoplastic film having a glass transition temperature of 200 ° C. or higher is polyimide, polyether sulfone, polyamide imide or polyether imide.
【請求項18】耐熱性熱可塑性フィルムが液晶ポリマで
ある請求項15記載の半導体チップ搭載用基板。
18. The semiconductor chip mounting substrate according to claim 15, wherein the heat resistant thermoplastic film is a liquid crystal polymer.
【請求項19】接着剤層の中の残存溶媒量が5重量%以
下である請求項11〜18のいずれかに記載の半導体チ
ップ搭載用基板。
19. The semiconductor chip mounting substrate according to claim 11, wherein the residual solvent amount in the adhesive layer is 5% by weight or less.
【請求項20】有機系基板上の所定の箇所に形成された
接着部材は所定の大きさに打ち抜き用金型で打ち抜かれ
たフィルムである請求項11〜19のいずれかに記載の
半導体チップ搭載用基板。
20. The semiconductor chip mounting according to claim 11, wherein the adhesive member formed at a predetermined location on the organic substrate is a film punched to a predetermined size by a punching die. Substrate.
【請求項21】有機系基板上の所定の箇所に形成された
接着部材は、その接着部材の接着剤が示差熱量計を用い
て測定した場合の全硬化発熱量の10〜40%の発熱を
終えた半硬化状態のものであり、所定の大きさに切断さ
れた後前記有機系基板上に熱圧着されたフィルムである
請求項11〜20のいずれかに記載の半導体チップ搭載
用基板。
21. An adhesive member formed at a predetermined position on an organic substrate generates 10 to 40% of the total curing heat value when the adhesive of the adhesive member is measured using a differential calorimeter. The semiconductor chip mounting substrate according to any one of claims 11 to 20, which is a film in a semi-cured state that has been finished, and is a film that is thermocompression-bonded to the organic substrate after being cut into a predetermined size.
【請求項22】半導体チップが搭載される側には所定の
配線が形成され半導体チップが搭載される側の反対側に
は外部接続用端子がエリアアレイ状に形成された有機系
基板に、動的粘弾性測定装置で測定される硬化物の25
℃の貯蔵弾性率が10〜2000MPaかつ260℃で
の貯蔵弾性率が3〜50MPaである接着剤層を備える
接着部材であり前記接着剤が示差熱量計を用いて測定し
た場合の全硬化発熱量の10〜40%の発熱を終えた半
硬化状態のものである接着部材フィルムを、所定の大き
さに切断し前記有機系基板上に熱圧着することを含むこ
とを特徴とする半導体チップ搭載用基板の製造法。
22. A predetermined wiring is formed on the side on which the semiconductor chip is mounted, and an external connection terminal is formed on the organic substrate on the side opposite to the side on which the semiconductor chip is mounted in an area array form. Of cured products measured by dynamic viscoelasticity measuring device
An adhesive member comprising an adhesive layer having a storage elastic modulus at 10 ° C to 2000 MPa and a storage elastic modulus at 260 ° C of 3 to 50 MPa, wherein the adhesive has a total curing calorific value when measured using a differential calorimeter. For mounting a semiconductor chip, which comprises cutting an adhesive member film in a semi-cured state in which 10 to 40% of heat generation has been cut into a predetermined size and thermocompression-bonded onto the organic substrate. Substrate manufacturing method.
【請求項23】切断した請求項22に記載の接着部材フ
ィルムを個々に精密位置決め後、熱プレスで仮接着し、
複数の接着部材フィルムを多連の請求項22に記載の有
機系基板に載置した後、加熱した離型表面処理金型で押
圧し一括して接着する請求項22に記載の半導体チップ
搭載用基板の製造法。
23. The adhesive member films according to claim 22, which have been cut, are individually precisely positioned, and then temporarily bonded by a hot press,
The semiconductor chip mounting device according to claim 22, wherein a plurality of adhesive member films are placed on a plurality of organic substrate according to claim 22 and then adhered together by pressing with a heated release surface treatment die. Substrate manufacturing method.
【請求項24】離型表面処理金型の表面離型材がテフロ
ン(登録商標)およびシリコーンの少なくとも一種であ
る請求項23記載の半導体チップ搭載用基板の製造法。
24. The method for producing a substrate for mounting a semiconductor chip according to claim 23, wherein the surface release material of the mold for surface treatment for release is at least one of Teflon (registered trademark) and silicone.
【請求項25】接着部材フィルムの搬送時に発生する静
電気を除くエリミノスタット工程を接着部材フィルム切
断工程前に少なくとも1工程加えた請求項22〜24の
いずれかに記載の半導体搭載用基板の製造法。
25. The manufacturing of a semiconductor mounting substrate according to claim 22, wherein at least one step of removing the static electricity generated during transport of the adhesive member film is added before the adhesive member film cutting step. Law.
【請求項26】半導体チップが搭載される側および半導
体チップが搭載される側の反対側の少なくともいずれか
の側には所定の配線が形成され、半導体チップが搭載さ
れる側の反対側には外部接続用端子がエリアアレイ状に
形成された有機系基板の半導体チップ搭載用基板に、動
的粘弾性測定装置で測定される硬化物の25℃の貯蔵弾
性率が10〜2000MPaかつ260℃での貯蔵弾性
率が3〜50MPaである接着剤層を備える接着部材を
接着する工程、 接着部材を介して半導体チップを搭載する工程、 前記所定の配線を半導体チップ端子および前記外部接続
用端子と接続する工程、 少なくとも前記半導体チップ端子と所定の配線との接続
部を樹脂封止する工程を備えることを特徴とする半導体
装置の製造法。
26. A predetermined wiring is formed on at least one of the side on which the semiconductor chip is mounted and the side opposite to the side on which the semiconductor chip is mounted, and the side opposite to the side on which the semiconductor chip is mounted. When the storage elastic modulus at 25 ° C. of a cured product measured by a dynamic viscoelasticity measuring device is 10 to 2000 MPa and 260 ° C. on a semiconductor chip mounting substrate of an organic substrate on which external connection terminals are formed in an area array shape. A step of adhering an adhesive member including an adhesive layer having a storage elastic modulus of 3 to 50 MPa, a step of mounting a semiconductor chip via the adhesive member, and connecting the predetermined wiring to the semiconductor chip terminal and the external connection terminal And a step of sealing at least a connecting portion between the semiconductor chip terminal and a predetermined wiring with a resin.
【請求項27】半導体チップ搭載用基板の下面側と半導
体チップ側の両面から加熱し、少なくともチップ側の温
度を高くする工程を含む請求項26記載の半導体装置の
製造法。
27. The method of manufacturing a semiconductor device according to claim 26, comprising the step of heating both the lower surface side and the semiconductor chip side of the semiconductor chip mounting substrate to raise the temperature of at least the chip side.
【請求項28】(1)エポキシ樹脂およびその硬化剤1
00重量部と、 (2)グリシジル(メタ)アクリレート2〜6重量%を
含むTg(ガラス転移温度)が−10℃以上でかつ重量
平均分子量が80万以上であるエポキシ基含有アクリル
系共重合体100〜300重量部ならびに(3)硬化促
進剤0.1〜5重量部とを含む接着剤。
28. (1) Epoxy resin and its curing agent 1
And an epoxy group-containing acrylic copolymer having a Tg (glass transition temperature) of −10 ° C. or higher and a weight average molecular weight of 800,000 or higher, containing 2 parts by weight of (2) glycidyl (meth) acrylate and 2 parts by weight. An adhesive containing 100 to 300 parts by weight and (3) 0.1 to 5 parts by weight of a curing accelerator.
【請求項29】(1)エポキシ樹脂およびその硬化剤1
00重量部と、 (2)エポキシ樹脂と相溶性がありかつ重量平均分子量
が3万以上の高分子量樹脂10〜40重量部、(3)グ
リシジル(メタ)アクリレート2〜6重量%を含むTg
(ガラス転移温度)が−10℃以上でかつ重量平均分子
量が80万以上であるエポキシ基含有アクリル系共重合
体100〜300重量部ならびに(4)硬化促進剤0.
1〜5重量部とを含む接着剤。
29. (1) Epoxy resin and its curing agent 1
Tg containing 00 parts by weight, (2) 10 to 40 parts by weight of a high molecular weight resin compatible with an epoxy resin and having a weight average molecular weight of 30,000 or more, and (3) 2 to 6% by weight of glycidyl (meth) acrylate.
100 to 300 parts by weight of an epoxy group-containing acrylic copolymer having a (glass transition temperature) of -10 ° C or more and a weight average molecular weight of 800,000 or more, and (4) curing accelerator 0.
An adhesive containing 1 to 5 parts by weight.
【請求項30】(1)エポキシ樹脂およびフェノール樹
脂100重量部と、 (2)グリシジル(メタ)アクリレート2〜6重量%を
含むTgが−10℃以上でかつ重量平均分子量が80万
以上であるエポキシ基含有アクリル系共重合体100〜
300重量部ならびに(3)硬化促進剤0.1〜5重量
部とを含む接着剤。
30. (1) Tg containing 100 parts by weight of an epoxy resin and a phenol resin, and (2) 2 to 6% by weight of glycidyl (meth) acrylate is -10 ° C. or higher and the weight average molecular weight is 800,000 or higher. Epoxy group-containing acrylic copolymer 100-
An adhesive containing 300 parts by weight and 0.1 to 5 parts by weight of (3) a curing accelerator.
【請求項31】(1)エポキシ樹脂およびそのフェノー
ル樹脂100重量部と、 (2)フェノキシ樹脂10〜40重量部、(3)グリシ
ジル(メタ)アクリレート2〜6重量%を含むTgが−
10℃以上でかつ重量平均分子量が80万以上であるエ
ポキシ基含有アクリル系共重合体100〜300重量部
ならびに(4)硬化促進剤0.1〜5重量部とを含む接
着剤。
31. A Tg containing (1) 100 parts by weight of an epoxy resin and its phenolic resin, (2) 10 to 40 parts by weight of a phenoxy resin, and (3) 2 to 6% by weight of glycidyl (meth) acrylate.
An adhesive containing 100 to 300 parts by weight of an epoxy group-containing acrylic copolymer having a weight average molecular weight of 800,000 or more and 10 ° C. or more, and (4) a curing accelerator of 0.1 to 5 parts by weight.
【請求項32】接着剤を、示差熱量計を用いて測定した
場合の全硬化発熱量の10〜40%の発熱を終えた状態
にした請求項27〜31のいずれかに記載の接着剤。
32. The adhesive according to any one of claims 27 to 31, wherein the adhesive is in a state in which the heat generation of 10 to 40% of the total curing heat value when measured using a differential calorimeter is finished.
【請求項33】動的粘弾性測定装置を用いて測定した場
合の接着剤硬化物の貯蔵弾性率が25℃で10〜200
0MPaであり、260℃で3〜50MPaである請求
項27〜32のいずれかに記載の接着剤。
33. The storage elastic modulus of the cured product of the adhesive is 10 to 200 at 25 ° C. when measured using a dynamic viscoelasticity measuring device.
The adhesive according to any one of claims 27 to 32, which has a pressure of 0 MPa and a pressure of 3 to 50 MPa at 260 ° C.
【請求項34】無機フィラーを、接着剤樹脂成分100
体積部に対して2〜20体積部含む請求項27〜32の
いずれかに記載の接着剤。
34. An inorganic resin is used as an adhesive resin component 100.
The adhesive according to any one of claims 27 to 32, which contains 2 to 20 parts by volume with respect to the parts by volume.
【請求項35】無機フィラーがアルミナである請求項3
4記載の接着剤。
35. The inorganic filler is alumina.
4. The adhesive according to 4.
【請求項36】無機フィラーがシリカである請求項34
記載の接着剤。
36. The inorganic filler is silica.
Adhesive described.
【請求項37】請求項27〜36のいずれかに記載の接
着剤をベースフィルム上に形成して得られる接着フィル
ム。
37. An adhesive film obtained by forming the adhesive according to any one of claims 27 to 36 on a base film.
【請求項38】請求項37に記載の接着フィルムを用い
て半導体チップと配線板を接着させた半導体装置。
38. A semiconductor device in which a semiconductor chip and a wiring board are bonded together by using the adhesive film according to claim 37.
【請求項39】耐熱性熱可塑性フィルムをコア材に用
い、コア材の両面に、 (1)エポキシ樹脂およびその硬化剤100重量部と、 (2)グリシジル(メタ)アクリレート2〜6重量%を
含むTg(ガラス転移温度)が−10℃以上でかつ重量
平均分子量が80万以上であるエポキシ基含有アクリル
系共重合体100〜300重量部ならびに(3)硬化促
進剤0.1〜5重量部とを含む接着剤を有する三層構造
の両面接着フィルム。
39. A heat-resistant thermoplastic film is used as a core material, and (1) 100 parts by weight of an epoxy resin and a curing agent therefor, and (2) 2 to 6% by weight of glycidyl (meth) acrylate are used on both surfaces of the core material. 100 to 300 parts by weight of an epoxy group-containing acrylic copolymer having a Tg (glass transition temperature) of -10 ° C or more and a weight average molecular weight of 800,000 or more, and (3) a curing accelerator of 0.1 to 5 parts by weight. A double-sided adhesive film having a three-layer structure having an adhesive including and.
【請求項40】耐熱性熱可塑性フィルムをコア材に用
い、コア材の両面に、 (1)エポキシ樹脂およびその硬化剤100重量部と、 (2)エポキシ樹脂と相溶性がありかつ重量平均分子量
が3万以上の高分子量樹脂10〜40重量部、(3)グ
リシジル(メタ)アクリレート2〜6重量%を含むTg
(ガラス転移温度)が−10℃以上でかつ重量平均分子
量が80万以上であるエポキシ基含有アクリル系共重合
体100〜300重量部ならびに(4)硬化促進剤0.
1〜5重量部とを含む接着剤を有する三層構造の両面接
着フィルム。
40. A heat-resistant thermoplastic film is used as a core material, and (1) 100 parts by weight of an epoxy resin and a curing agent therefor, and (2) a weight average molecular weight compatible with the epoxy resin on both sides of the core material. Containing 10 to 40 parts by weight of a high molecular weight resin of 30,000 or more and 2 to 6% by weight of (3) glycidyl (meth) acrylate.
100 to 300 parts by weight of an epoxy group-containing acrylic copolymer having a (glass transition temperature) of -10 ° C or more and a weight average molecular weight of 800,000 or more, and (4) curing accelerator 0.
A three-layer double-sided adhesive film having an adhesive containing 1 to 5 parts by weight.
【請求項41】耐熱性熱可塑性フィルムをコア材に用
い、コア材の両面に、 (1)エポキシ樹脂およびフェノール樹脂100重量部
と、 (2)グリシジル(メタ)アクリレート2〜6重量%を
含むTgが−10℃以上でかつ重量平均分子量が80万
以上であるエポキシ基含有アクリル系共重合体100〜
300重量部ならびに(3)硬化促進剤0.1〜5重量
部とを含む接着剤を有する三層構造の両面接着フィル
ム。
41. A heat-resistant thermoplastic film is used as a core material, and (1) 100 parts by weight of an epoxy resin and a phenol resin and (2) 2 to 6% by weight of glycidyl (meth) acrylate are used on both sides of the core material. Epoxy group-containing acrylic copolymer 100 having Tg of −10 ° C. or more and a weight average molecular weight of 800,000 or more
A three-sided double-sided adhesive film having an adhesive containing 300 parts by weight and (3) 0.1 to 5 parts by weight of a curing accelerator.
【請求項42】耐熱性熱可塑性フィルムをコア材に用
い、コア材の両面に、 (1)エポキシ樹脂およびフェノール樹脂100重量部
と、 (2)フェノキシ樹脂10〜40重量部、(3)グリシ
ジル(メタ)アクリレート2〜6重量%を含むTgが−
10℃以上でかつ重量平均分子量が80万以上であるエ
ポキシ基含有アクリル系共重合体100〜300重量部
ならびに(4)硬化促進剤0.1〜5重量部とを含む接
着剤を有する三層構造の両面接着フィルム。
42. A heat-resistant thermoplastic film is used as a core material, and (1) 100 parts by weight of an epoxy resin and a phenol resin, (2) 10 to 40 parts by weight of a phenoxy resin, and (3) glycidyl on both sides of the core material. Tg containing 2 to 6% by weight of (meth) acrylate is-
Three layers having an adhesive containing 100 to 300 parts by weight of an epoxy group-containing acrylic copolymer having a weight average molecular weight of 800,000 or more at 10 ° C. or more and (4) 0.1 to 5 parts by weight of a curing accelerator. Double-sided adhesive film with a structure.
【請求項43】接着剤を、示差熱量計を用いて測定した
場合の全硬化発熱量の10〜40%の発熱を終えた状態
にした請求項39〜42のいずれかに記載の接着剤を有
する三層構造の両面接着フィルム。
43. The adhesive according to any one of claims 39 to 42, wherein the adhesive is in a state in which the heat generation of 10 to 40% of the total curing heat value when measured using a differential calorimeter is finished. A double-sided adhesive film having a three-layer structure.
【請求項44】動的粘弾性測定装置を用いて測定した場
合の接着剤硬化物の貯蔵弾性率が25℃で10〜200
0MPaであり、260℃で3〜50MPaである請求
項39〜43のいずれかに記載の接着剤を有する三層構
造の両面接着フィルム。
44. The storage elastic modulus of the cured product of the adhesive is 10 to 200 at 25 ° C. when measured using a dynamic viscoelasticity measuring device.
The double-sided adhesive film having a three-layer structure having the adhesive according to any one of claims 39 to 43, which has a pressure of 0 MPa and a pressure of 3 to 50 MPa at 260 ° C.
【請求項45】無機フィラーを、接着剤樹脂成分100
体積部に対して2〜20体積部含むことを特徴とする請
求項39〜44のいずれかに記載の接着剤を有する三層
構造の両面接着フィルム。
45. An inorganic filler is used as an adhesive resin component 100.
The double-sided adhesive film having a three-layer structure having the adhesive according to any one of claims 39 to 44, wherein the double-sided adhesive film contains 2 to 20 parts by volume with respect to the parts by volume.
【請求項46】無機フィラーがアルミナまたはシリカで
ある請求項45記載の接着剤を有する三層構造の両面接
着フィルム。
46. A double-sided adhesive film having a three-layer structure having an adhesive according to claim 45, wherein the inorganic filler is alumina or silica.
【請求項47】コア材に用いる耐熱性熱可塑性フィルム
がガラス転移温度200℃以上である請求項39〜42
のいずれかに記載の三層構造の両面接着フィルム。
47. The heat-resistant thermoplastic film used as the core material has a glass transition temperature of 200 ° C. or higher.
A double-sided adhesive film having a three-layer structure according to any one of 1.
【請求項48】コア材に用いるガラス転移温度200℃
以上の耐熱性熱可塑性フィルムがポリイミド、ポリエー
テルスルホン、ポリアミドイミドまたはポリエーテルイ
ミドである請求項39〜42のいずれかに記載の三層構
造の両面接着00ルム。
48. The glass transition temperature used for the core material is 200 ° C.
43. The double-sided adhesive 00 lum with a three-layer structure according to any one of claims 39 to 42, wherein the heat resistant thermoplastic film is polyimide, polyether sulfone, polyamide imide or polyether imide.
【請求項49】コア材に用いる耐熱性熱可塑性フィルム
が液晶ポリマである請求項39〜42のいずれかに記載
の三層構造の両面接着フィルム。
49. The double-sided adhesive film having a three-layer structure according to claim 39, wherein the heat-resistant thermoplastic film used as the core material is a liquid crystal polymer.
JP2002131897A 1996-10-08 2002-05-07 Adhesive film for mounting semiconductor elements Expired - Lifetime JP3617504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002131897A JP3617504B2 (en) 1996-10-08 2002-05-07 Adhesive film for mounting semiconductor elements

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP26646096 1996-10-08
JP8-266460 1996-10-08
JP8-317709 1996-11-28
JP31770996 1996-11-28
JP9-111430 1997-04-28
JP11143097 1997-04-28
JP2002131897A JP3617504B2 (en) 1996-10-08 2002-05-07 Adhesive film for mounting semiconductor elements

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP51739298A Division JP3453390B2 (en) 1996-10-08 1997-10-08 Semiconductor device, substrate for mounting semiconductor chip, and method of manufacturing the same

Publications (3)

Publication Number Publication Date
JP2003060127A true JP2003060127A (en) 2003-02-28
JP3617504B2 JP3617504B2 (en) 2005-02-09
JP2003060127A5 JP2003060127A5 (en) 2005-06-09

Family

ID=27469907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002131897A Expired - Lifetime JP3617504B2 (en) 1996-10-08 2002-05-07 Adhesive film for mounting semiconductor elements

Country Status (1)

Country Link
JP (1) JP3617504B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109307A (en) * 2003-10-01 2005-04-21 Matsushita Electric Ind Co Ltd Board with built-in circuit part, and manufacturing method of the same
WO2006101199A1 (en) * 2005-03-24 2006-09-28 Sumitomo Bakelite Company, Ltd. Area mounting semiconductor device, and die bonding resin composition and sealing resin composition for use therein
JP2008205195A (en) * 2007-02-20 2008-09-04 Nitto Denko Corp Method for manufacturing semiconductor device
JP2008263234A (en) * 2008-07-17 2008-10-30 Hitachi Chem Co Ltd Semiconductor chip mounting substrate, semiconductor package, and their manufacturing method
WO2009001492A1 (en) 2007-06-22 2008-12-31 Sumitomo Bakelite Co., Ltd. Adhesive film and semiconductor device obtained with the same
JP2009147289A (en) * 2007-11-19 2009-07-02 Hitachi Chem Co Ltd Sealing film
JP2009167385A (en) * 2007-12-18 2009-07-30 Hitachi Chem Co Ltd Resin composition for seal-filling, semiconductor device and method for manufacturing the same
JP2014168094A (en) * 2004-06-25 2014-09-11 Tessera Inc Micro electronic component package and method therefor
KR20200044975A (en) * 2017-12-27 2020-04-29 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, prepreg, laminate, metal foil-clad laminate, printed wiring board and multilayer printed wiring board
CN113423753A (en) * 2019-02-21 2021-09-21 松下知识产权经营株式会社 Semiconductor packaging material and semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101866901B1 (en) * 2016-10-12 2018-06-14 한국기계연구원 Multi-layered carrier film and the transfer method using the device and electronics manufacturing method using the same method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109307A (en) * 2003-10-01 2005-04-21 Matsushita Electric Ind Co Ltd Board with built-in circuit part, and manufacturing method of the same
JP2014168094A (en) * 2004-06-25 2014-09-11 Tessera Inc Micro electronic component package and method therefor
KR101348330B1 (en) * 2005-03-24 2014-01-06 스미토모 베이클라이트 가부시키가이샤 Method of manufacturing area mounting semiconductor device
WO2006101199A1 (en) * 2005-03-24 2006-09-28 Sumitomo Bakelite Company, Ltd. Area mounting semiconductor device, and die bonding resin composition and sealing resin composition for use therein
JP5315690B2 (en) * 2005-03-24 2013-10-16 住友ベークライト株式会社 Area mounting type semiconductor device and manufacturing method thereof
JP2008205195A (en) * 2007-02-20 2008-09-04 Nitto Denko Corp Method for manufacturing semiconductor device
JP4523611B2 (en) * 2007-02-20 2010-08-11 日東電工株式会社 Manufacturing method of semiconductor device
WO2009001492A1 (en) 2007-06-22 2008-12-31 Sumitomo Bakelite Co., Ltd. Adhesive film and semiconductor device obtained with the same
JP2009147289A (en) * 2007-11-19 2009-07-02 Hitachi Chem Co Ltd Sealing film
JP2009167385A (en) * 2007-12-18 2009-07-30 Hitachi Chem Co Ltd Resin composition for seal-filling, semiconductor device and method for manufacturing the same
JP2008263234A (en) * 2008-07-17 2008-10-30 Hitachi Chem Co Ltd Semiconductor chip mounting substrate, semiconductor package, and their manufacturing method
KR20200044975A (en) * 2017-12-27 2020-04-29 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, prepreg, laminate, metal foil-clad laminate, printed wiring board and multilayer printed wiring board
KR102199879B1 (en) 2017-12-27 2021-01-07 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, prepreg, laminate, metal foil clad laminate, printed wiring board and multilayer printed wiring board
CN113423753A (en) * 2019-02-21 2021-09-21 松下知识产权经营株式会社 Semiconductor packaging material and semiconductor device
CN113423753B (en) * 2019-02-21 2024-06-11 松下知识产权经营株式会社 Semiconductor packaging material and semiconductor device

Also Published As

Publication number Publication date
JP3617504B2 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
JP3453390B2 (en) Semiconductor device, substrate for mounting semiconductor chip, and method of manufacturing the same
US6673441B1 (en) Adhesive, adhesive member, interconnecting substrate for semiconductor mounting having adhesive member, and semiconductor device containing the same
JPH11265960A (en) Semiconductor device with metal reinforcing material
JP2002265888A (en) Adhesive film and its use and method for producing semiconductor device
JP4161544B2 (en) Adhesive film for mounting semiconductor elements
JP3528639B2 (en) Adhesive, adhesive member, wiring board for mounting semiconductor provided with adhesive member, and semiconductor device using the same
JP3539242B2 (en) Adhesive member, wiring board for mounting semiconductor provided with adhesive member, and semiconductor device using the same
JP2002060716A (en) Low-elastic adhesive, low-elastic adhesive member, substrate for loading semiconductor having low-elastic adhesive member and semiconductor device using the same
JP3617504B2 (en) Adhesive film for mounting semiconductor elements
JPH11260838A (en) Semiconductor device manufactured with double-sided adhesive film
JPH11209724A (en) Flame retarded adhesive, flame retarded bonding member, wiring board for loading semiconductor having flame retarded bonding member and semiconductor device using the same
KR100483102B1 (en) Semiconductor device, semiconductor chip mounting substrate, methods of manufacturing the device and substrate, adhesive, and adhesive double coated film
JP2001279197A (en) Adhesive film, wiring substrate for mounting semiconductor and semiconductor device provided with adhesive film and method for fabricating them
JP4534100B2 (en) Double-sided adhesive film for electronic parts, organic substrate for semiconductor mounting, and semiconductor device
JP2000144077A (en) Double-sided adhesive film and semiconductor device using the same
JP2000154360A (en) Adhesive, adhesive member, wiring board equipped with the adhesive member for semiconductor, and semiconductor equipment
JP2004238634A (en) Adhesive, adhesive member, wiring board having adhesive member and used for packaging semiconductor, and semiconductor device using the board
JP2003045902A (en) Semiconductor device, substrate for mounting semiconductor chip, method for manufacturing them, adhesive, and double-sided adhesive film
JP2001131501A (en) Three-layer adhesive film, semiconductor chip-carrying substrate and semiconductor device
JPH11209723A (en) Flame retarded adhesive, flame retarded bonding member, wiring board for loading semiconductor having flame retarded bonding member and semiconductor device using the same
JP2002256227A (en) Photosensitive adhesive film, its use and method for producing semiconductor device
JP2001279217A (en) Adhesive composition, flame retardant adhesive composition, adhesive film, printed circuit board for mounting semiconductor, semiconductor device and method for producing the same
JP3675072B2 (en) Semiconductor device
JP2005184022A (en) Heat for connection/electrical conductive film, and application thereof
JP2003045902A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040902

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040902

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041101

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term