JP2003059741A - Manufacturing method of rare earth-based permanent magnet having deposition film on surface - Google Patents

Manufacturing method of rare earth-based permanent magnet having deposition film on surface

Info

Publication number
JP2003059741A
JP2003059741A JP2001244817A JP2001244817A JP2003059741A JP 2003059741 A JP2003059741 A JP 2003059741A JP 2001244817 A JP2001244817 A JP 2001244817A JP 2001244817 A JP2001244817 A JP 2001244817A JP 2003059741 A JP2003059741 A JP 2003059741A
Authority
JP
Japan
Prior art keywords
magnet
rare earth
vapor
permanent magnet
test piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001244817A
Other languages
Japanese (ja)
Other versions
JP4747462B2 (en
Inventor
Takeshi Nishiuchi
武司 西内
Fumiaki Kikui
文秋 菊井
Ken Otagaki
謙 太田垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP2001244817A priority Critical patent/JP4747462B2/en
Publication of JP2003059741A publication Critical patent/JP2003059741A/en
Application granted granted Critical
Publication of JP4747462B2 publication Critical patent/JP4747462B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a rare earth-based permanent magnet for forming a uniform deposition film as a corrosion-resistant film having excellent coherency on the surface stably, without generating cracks and cutout during manufacture and deteriorating magnetic characteristics. SOLUTION: The manufacturing method should include a process for forming a deposition film on the surface of an aging treatment body, by performing deposition treatment to an aging treatment body after a rare earth-based permanent magnet sintering body having a desired composition is subjected to cutting machining and/or grinding machining, and an obtained machining body is washed for carrying out aging treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、製造途中段階で磁
石の割れ欠けの発生や磁気特性の劣化を招くことなく、
均一かつ密着性に優れた耐食性被膜としての蒸着被膜を
その表面に安定して形成することができる希土類系永久
磁石の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention can prevent the occurrence of cracks and cracks in magnets and deterioration of magnetic properties during the manufacturing process.
The present invention relates to a method for producing a rare earth-based permanent magnet capable of stably forming a vapor-deposited coating as a corrosion-resistant coating having excellent uniformity and adhesion on its surface.

【0002】[0002]

【従来の技術】Nd−Fe−B系永久磁石に代表される
R−Fe−B系永久磁石などの希土類系永久磁石は、高
い磁気特性を有しており、今日様々な分野で使用されて
いる。しかしながら、希土類系永久磁石は、大気中で酸
化腐食されやすい金属種(特にR)を含む。それ故、表
面処理を行わずに使用した場合には、わずかな酸やアル
カリや水分などの影響によって表面から腐食が進行して
錆が発生し、それに伴って、磁気特性の劣化やばらつき
を招くことになる。さらに、磁気回路などの装置に組み
込んだ磁石に錆が発生した場合、錆が飛散して周辺部品
を汚染する恐れがある。上記の点に鑑み、希土類系永久
磁石に優れた耐食性を付与することを目的として、その
表面に蒸着被膜、中でもアルミニウムやチタンなどの金
属蒸着被膜を形成することが行われている。特に、アル
ミニウム蒸着被膜は耐食性や量産性に優れていることに
加え、部品組み込み時に必要とされる接着剤との接着信
頼性に優れている(接着剤が本質的に有する破壊強度に
達するまでに被膜と接着剤との間で剥離が生じにくい)
ので、強い接着強度が要求される希土類系永久磁石に対
しても広く適用されている。ここで接着剤としては、エ
ポキシ樹脂系、フェノール樹脂系、反応性アクリル樹脂
系、変性アクリル樹脂系(紫外線硬化型接着剤や嫌気性
接着剤)、シアノアクリレート系、シリコーン樹脂系、
ポリイソシアネート系、酢酸ビニル系、メタクリル樹脂
系、ポリアミド系、ポリエーテル系などの各種樹脂系接
着剤、各種樹脂系接着剤(例えば、酢酸ビニル樹脂系接
着剤やアクリル樹脂系接着剤など)のエマルジョン型接
着剤、各種ゴム系接着剤(例えば、ニトリルゴム系接着
剤やポリウレタンゴム系接着剤など)、セラミックス接
着剤などが耐熱性や耐衝撃性などの目的に応じて適宜選
択されて使用される。
2. Description of the Related Art Rare-earth permanent magnets such as R-Fe-B permanent magnets typified by Nd-Fe-B permanent magnets have high magnetic properties and are used in various fields today. There is. However, the rare earth-based permanent magnet contains a metal species (especially R) that is easily oxidized and corroded in the atmosphere. Therefore, when it is used without surface treatment, corrosion progresses from the surface due to the influence of slight acid, alkali and moisture, and rust occurs, which causes deterioration and dispersion of magnetic properties. It will be. Further, when rust is generated in a magnet incorporated in a device such as a magnetic circuit, the rust may scatter to contaminate peripheral parts. In view of the above points, vapor deposition coatings, particularly metal vapor deposition coatings such as aluminum and titanium are formed on the surface of the rare earth permanent magnet for the purpose of imparting excellent corrosion resistance. In particular, the aluminum vapor-deposited film has excellent corrosion resistance and mass productivity, as well as excellent adhesion reliability with the adhesive required when assembling parts (by the time the adhesive reaches the breaking strength inherently). (Peeling is less likely to occur between the coating and the adhesive)
Therefore, it is widely applied to rare earth-based permanent magnets that require strong adhesive strength. Here, as the adhesive, epoxy resin type, phenol resin type, reactive acrylic resin type, modified acrylic resin type (ultraviolet curable adhesive or anaerobic adhesive), cyanoacrylate type, silicone resin type,
Emulsion of various resin adhesives such as polyisocyanate-based, vinyl acetate-based, methacrylic resin-based, polyamide-based and polyether-based, and various resin-based adhesives (for example, vinyl acetate resin-based adhesives and acrylic resin-based adhesives) Mold adhesives, various rubber-based adhesives (for example, nitrile rubber-based adhesives, polyurethane rubber-based adhesives, etc.), ceramics adhesives, etc. are appropriately selected and used according to purposes such as heat resistance and impact resistance. .

【0003】金属蒸着被膜をその表面に形成するための
希土類系永久磁石は、通常、次のようにして製造され
る。即ち、まず、所望する組成の希土類系永久磁石原料
合金粉末を磁界中で加圧成形して成形体とし、これを焼
結して焼結体を得る。一般に、成形体の焼結は、アルゴ
ンガスなどの不活性ガス雰囲気中や水素ガスなどの還元
ガス雰囲気中で、または、真空中で900℃〜1200
℃にて30分〜8時間行われる。次に、このようにして
得られた所望する組成の希土類系永久磁石焼結体に対し
て所望する磁気特性を保有させるための時効処理を行
う。一般に、焼結体の時効処理は、アルゴンガスなどの
不活性ガス雰囲気中や水素ガスなどの還元ガス雰囲気中
で、または、真空中で450℃〜900℃にて5分〜4
0時間行われる。次に、このようにして得られた時効処
理体を切削加工や研削加工し、所定寸法精度を有する所
定形状の加工体とする。この際、例えば、特開2001
−25967号公報に記載されているように、冷却液
(研削液)を用いることで、加工効率、加工精度を向上
させることが可能となる。冷却液は、切削加工や研削加
工の際に、加工部を冷却するために使用されるものであ
り、水を主成分とし、界面活性剤またはシンセティック
タイプ合成潤滑剤、有機防錆剤、非鉄金属防食剤、防腐
剤、消泡剤などが配合されたものが一般に使用される。
切削加工や研削加工を行った後は、加工体表面に残存す
る冷却液を除去するためや、加工体表面に付着した削り
屑を除去するために洗浄液を使用して加工体を洗浄す
る。洗浄液としては、水を主成分とし、エタノールアミ
ンに代表されるアルカノールアミンなどを成分として含
む有機防錆剤などが配合されたものが一般に使用され
る。最後に、以上のようにして得られた加工体に対して
ブラスト処理を行う。通常、金属蒸着被膜を形成する前
工程として、加工体表面に対してスパッタリングなどに
よる表面清浄化処理を行うが、このような処理だけでは
切削加工や研削加工の際に使用した冷却液や洗浄に使用
した洗浄液に由来する成分、例えば、水分や有機防錆剤
成分であるアルカノールアミンなどが加工体表面に残存
して、その後に行う蒸着処理に悪影響を及ぼす恐れがあ
るからである。加工体表面に水分や有機防錆剤成分など
が残存したままの状態で蒸着処理を行った場合、上記の
ような残存成分が気化して金属蒸着被膜の形成に悪影響
を及ぼし、均一かつ密着性に優れた金属蒸着被膜を形成
することができなくなる。
A rare earth-based permanent magnet for forming a metal vapor deposition coating on its surface is usually manufactured as follows. That is, first, a rare earth-based permanent magnet raw material alloy powder having a desired composition is pressure-molded in a magnetic field to form a compact, and this is sintered to obtain a sintered body. Generally, the sintering of the molded body is performed at 900 ° C. to 1200 ° C. in an inert gas atmosphere such as argon gas or a reducing gas atmosphere such as hydrogen gas, or in vacuum.
It is carried out at 30 ° C. for 30 minutes to 8 hours. Next, the rare earth-based permanent magnet sintered body having the desired composition thus obtained is subjected to an aging treatment for retaining desired magnetic properties. Generally, the aging treatment of the sintered body is carried out in an inert gas atmosphere such as argon gas or in a reducing gas atmosphere such as hydrogen gas, or in vacuum at 450 ° C. to 900 ° C. for 5 minutes to 4 minutes.
It will be held for 0 hours. Next, the aging-treated body thus obtained is subjected to cutting processing or grinding processing to obtain a processed body having a predetermined shape having a predetermined dimensional accuracy. At this time, for example, Japanese Patent Laid-Open No. 2001-2001
As described in JP-A-25967, by using a cooling liquid (grinding liquid), it becomes possible to improve processing efficiency and processing accuracy. The cooling liquid is used to cool the processed part during cutting and grinding, and it contains water as the main component and contains a surfactant or synthetic type synthetic lubricant, organic rust preventive agent, non-ferrous metal. Those containing an anticorrosive agent, an antiseptic agent, an antifoaming agent, etc. are generally used.
After performing the cutting process or the grinding process, the workpiece is washed using a cleaning liquid to remove the cooling liquid remaining on the surface of the workpiece and to remove the shavings adhering to the surface of the workpiece. As the cleaning liquid, one containing water as a main component and an organic rust preventive agent containing alkanolamine represented by ethanolamine as a component is generally used. Finally, a blast treatment is performed on the processed body obtained as described above. Normally, as a pre-process of forming a metal vapor deposition film, the surface of the workpiece is subjected to surface cleaning treatment such as sputtering.However, such treatment alone can be used for cooling liquid and cleaning used during cutting and grinding. This is because components derived from the used cleaning liquid, for example, water and alkanolamine, which is an organic rust preventive component, may remain on the surface of the processed body and adversely affect the subsequent vapor deposition process. When vapor deposition is performed with water or organic rust preventive components remaining on the surface of the processed body, the remaining components as described above vaporize and adversely affect the formation of the metal vapor deposition coating, resulting in uniform and adherence. It becomes impossible to form a vapor-deposited metal coating excellent in heat resistance.

【0004】[0004]

【発明が解決しようとする課題】上記のように希土類系
永久磁石を製造するための最終工程として行うブラスト
処理は必要不可欠な工程であるが、一般にこの工程はバ
レル処理室内などで磁石を攪拌しながら行うため、磁石
の割れや欠けを発生させる恐れがある。また、ブラスト
処理に使用したメディアが加工体表面から完全に除去さ
れなかった場合、加工体表面に形成される金属蒸着被膜
の密着性に悪影響を及ぼすことがあることも否定できな
い。ブラスト処理の代わりに高温熱処理を行って加工体
表面の残存成分を揮散除去および/または分解除去する
方法も考えられるが、この方法を採用した場合には工程
が煩雑になる。また、本発明者らのこれまでの検討によ
れば、この方法で残存成分を完全に除去するためには加
工体を500℃以上に高温加熱しなければならず、時効
処理後に加工体に対してこれほどの高温加熱をすると磁
気特性の劣化を招く恐れがあるので、この方法は採用し
難い。そこで、本発明においては、製造途中段階で磁石
の割れ欠けの発生や磁気特性の劣化を招くことなく、均
一かつ密着性に優れた耐食性被膜としての蒸着被膜をそ
の表面に安定して形成することができる希土類系永久磁
石の製造方法を提供することを目的とする。
As described above, the blasting process performed as the final step for producing a rare earth-based permanent magnet is an indispensable step. Generally, this step involves stirring the magnet in a barrel processing chamber or the like. However, there is a risk of cracking or chipping of the magnet. In addition, it cannot be denied that if the medium used for the blast treatment is not completely removed from the surface of the processed body, it may adversely affect the adhesion of the metal vapor deposition coating formed on the surface of the processed body. A method of volatilizing and / or decomposing and removing the residual components on the surface of the processed body by performing high-temperature heat treatment instead of the blast treatment is conceivable, but if this method is adopted, the process becomes complicated. In addition, according to the studies conducted by the present inventors, the processed body must be heated at a high temperature of 500 ° C. or higher in order to completely remove the residual components by this method. It is difficult to adopt this method because heating at such a high temperature may cause deterioration of magnetic properties. Therefore, in the present invention, it is possible to stably form a vapor-deposited coating as a corrosion-resistant coating that is uniform and has excellent adhesiveness on the surface thereof without causing cracking and chipping of the magnet or deterioration of magnetic characteristics during the manufacturing process. It is an object of the present invention to provide a method for manufacturing a rare earth-based permanent magnet that can be manufactured.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記の点
に鑑み、金属蒸着被膜がその表面に形成される希土類系
永久磁石の調製工程を見直した結果、その最終工程とし
てのブラスト処理や高温熱処理を行うことなく、均一か
つ密着性に優れた耐食性被膜としての金属蒸着被膜をそ
の表面に形成することができる方法を見出した。
In view of the above points, the present inventors have reviewed the process for preparing a rare earth-based permanent magnet on which a metal vapor deposition film is formed, and as a result, the blasting process as the final process thereof. The inventors have found a method capable of forming a metal vapor-deposited coating as a corrosion-resistant coating having excellent uniformity and adhesion on the surface thereof without performing high-temperature heat treatment.

【0006】本発明は、上記の知見に基づいてなされた
ものであり、本発明の金属蒸着被膜を表面に有する希土
類系永久磁石の製造方法は、請求項1記載の通り、所望
する組成の希土類系永久磁石焼結体を切削加工および/
または研削加工し、得られる加工体を洗浄してから時効
処理を行った後、得られる時効処理体に対して蒸着処理
を行うことによって、前記時効処理体の表面に蒸着被膜
を形成する工程を含むことを特徴とする。また、請求項
2記載の製造方法は、請求項1記載の製造方法におい
て、前記蒸着被膜がアルミニウム、チタン、アルミニウ
ムおよび/またはチタンを含む合金からなる蒸着被膜で
あることを特徴とする。
The present invention has been made based on the above findings, and a method for producing a rare earth-based permanent magnet having a metal vapor-deposited coating on the surface of the present invention is, as described in claim 1, a rare earth of a desired composition. System permanent magnet sintered body and / or
Alternatively, a step of forming a vapor-deposited coating on the surface of the aging-treated body by performing grinding processing, washing the obtained processed body, and then performing aging treatment, and then performing vapor deposition treatment on the obtained aging-treated body It is characterized by including. The manufacturing method according to claim 2 is characterized in that, in the manufacturing method according to claim 1, the vapor deposition coating is a vapor deposition coating made of aluminum, titanium, or an alloy containing aluminum and / or titanium.

【0007】[0007]

【発明の実施の形態】本発明の蒸着被膜を表面に有する
希土類系永久磁石の製造方法は、所望する組成の希土類
系永久磁石焼結体を切削加工および/または研削加工
し、得られる加工体を洗浄してから時効処理を行った
後、得られる時効処理体に対して蒸着処理を行うことに
よって、前記時効処理体の表面に蒸着被膜を形成する工
程を含むことを特徴とするものである。
BEST MODE FOR CARRYING OUT THE INVENTION A method for producing a rare earth-based permanent magnet having a vapor-deposited coating on the surface of the present invention is a cutting product obtained by cutting and / or grinding a rare earth-based permanent magnet sintered body having a desired composition. And then performing an aging treatment, and then performing a vapor deposition treatment on the obtained aging-treated body to form a vapor-deposited coating film on the surface of the aging-treated body. .

【0008】以下、本発明の蒸着被膜を表面に有する希
土類系永久磁石の製造方法を、金属蒸着被膜を表面に有
する希土類系永久磁石を製造する場合を例にとり、順を
追って説明する。
Hereinafter, the method for producing a rare earth-based permanent magnet having a vapor-deposited coating on the surface of the present invention will be described step by step, taking as an example the case of producing a rare-earth permanent magnet having a metal vapor-deposited coating on the surface.

【0009】まず、所望する組成の希土類系永久磁石原
料合金粉末を磁界中で加圧成形して成形体とし、これを
焼結して焼結体を得る。この工程自体は通常行われる方
法に従って行えばよく、成形体の焼結は、アルゴンガス
などの不活性ガス雰囲気中や水素ガスなどの還元ガス雰
囲気中で、または、真空中で900℃〜1200℃にて
30分〜8時間行えばよいことは前述の通りである。
First, a rare earth-based permanent magnet raw material alloy powder having a desired composition is pressure-molded in a magnetic field to form a compact, and this is sintered to obtain a sintered body. This step itself may be performed according to a method usually performed, and sintering of the molded body is performed in an inert gas atmosphere such as argon gas or in a reducing gas atmosphere such as hydrogen gas, or in vacuum at 900 ° C to 1200 ° C. As described above, it may be performed for 30 minutes to 8 hours.

【0010】次に、得られた所望する組成の希土類系永
久磁石焼結体を切削加工や研削加工し、所定寸法精度を
有する所定形状の加工体とする。ここで、切削加工に
は、ブロック状の焼結体から個片を切り出したり、所望
寸法を得るための外周刃切断機、内周刃切断機、ワイヤ
ーソーなどが使用される。また、研削加工には、所望の
厚み寸法を得るための片面研削盤や両面研削盤、焼結体
の面取りを行うための回転バレルや遠心バレルなどのバ
レル研磨機などが使用される。前述の通り、切削加工や
研削加工は加工部を冷却するために冷却液を使用して行
うことが望ましい。冷却液としては、水を主成分とし、
界面活性剤またはシンセティックタイプ合成潤滑剤、有
機防錆剤、非鉄金属防食剤、防腐剤、消泡剤などが配合
されたものが一般に使用される。
Next, the obtained rare earth-based permanent magnet sintered body having a desired composition is cut or ground to obtain a processed body having a predetermined shape with a predetermined dimensional accuracy. Here, for the cutting process, an outer peripheral blade cutting machine, an inner peripheral blade cutting machine, a wire saw, or the like for cutting out individual pieces from a block-shaped sintered body or obtaining a desired dimension is used. For the grinding process, a single-sided grinder or a double-sided grinder for obtaining a desired thickness dimension, a barrel grinder such as a rotary barrel or a centrifugal barrel for chamfering the sintered body is used. As described above, it is desirable that the cutting process and the grinding process be performed using a cooling liquid to cool the processed part. As the cooling liquid, water is the main component,
A mixture of a surfactant or a synthetic synthetic lubricant, an organic rust preventive, a non-ferrous metal anticorrosive, a preservative, an antifoaming agent and the like is generally used.

【0011】次に、切削加工や研削加工により得られた
所定寸法精度を有する所定形状の加工体を洗浄し、加工
体表面に残存する冷却液や、加工体表面に付着した削り
屑を除去する。加工体の洗浄は常法に従って行えばよい
が、例えば、加工体を回転バレル処理室に収容し、加工
体を収容したバレルを洗浄槽に浸漬して洗浄槽内で回転
させることによって加工体を攪拌しながら洗浄したり、
超音波洗浄を行うことで効率的な洗浄が可能となる。前
述の通り、洗浄液としては、水を主成分とし、エタノー
ルアミンに代表されるアルカノールアミンなどを成分と
して含む有機防錆剤などが配合されたものが一般に使用
される。加工体の洗浄時やその後に、加工体の腐食を極
力防止するためである。加工体を洗浄した後の乾燥方法
に特段の限定はないが、十分な乾燥がなされずに表面に
水分が多く残存してしまうと、その後に行われる時効処
理時に、過剰な酸化物層や水酸化物層が表面に形成され
てしまい、これらが蒸着処理によって形成される金属蒸
着被膜の密着性の阻害に至らしめることがある。従っ
て、このようなことがないように、遠心力や、圧縮空気
などを利用した高圧ガス噴射などにより水分の物理的な
除去を併せて行い、効率的かつ確実に水分を除去するこ
とが望ましい。
Next, the workpiece having a predetermined shape and having a predetermined dimensional accuracy obtained by cutting or grinding is washed to remove the cooling liquid remaining on the surface of the workpiece and the shavings adhering to the surface of the workpiece. . Cleaning of the processed body may be performed according to a conventional method. For example, the processed body is housed in a rotary barrel processing chamber, and the barrel containing the processed body is immersed in a cleaning tank and rotated in the cleaning tank to clean the processed body. Wash with stirring,
By performing ultrasonic cleaning, efficient cleaning becomes possible. As described above, as the cleaning liquid, a liquid containing water as a main component and an organic rust preventive agent containing alkanolamine represented by ethanolamine as a component is generally used. This is to prevent corrosion of the processed body as much as possible during and after cleaning the processed body. There is no particular limitation on the drying method after washing the processed body, but if a large amount of water remains on the surface without being sufficiently dried, an excessive oxide layer or water may be added during the aging treatment performed thereafter. An oxide layer may be formed on the surface, and these may lead to the obstruction of the adhesiveness of the metal vapor deposition film formed by the vapor deposition process. Therefore, in order to prevent such a situation, it is desirable to remove water effectively and reliably by performing physical removal of water at the same time by centrifugal force or high-pressure gas injection using compressed air or the like.

【0012】次に、以上のようにして洗浄された加工体
に対して時効処理を行う。所望する磁気特性を保有させ
るための時効処理は、一般に、アルゴンガスなどの不活
性ガス雰囲気中や水素ガスなどの還元ガス雰囲気中で、
または、真空中で450℃〜900℃にて5分〜40時
間行われるが、この条件は、加工体表面に水分や有機防
錆剤成分であるアルカノールアミンなどが残存していて
も、これらを揮散除去および/または分解除去するに足
る高温加熱条件であるので、時効処理と同時に加工体表
面の清浄化が行われる。なお、時効処理は上記のような
一段時効処理に限らず、二段以上の多段時効処理であっ
てもよい。多段時効処理は、一般に、アルゴンガスなど
の不活性ガス雰囲気中や水素ガスなどの還元ガス雰囲気
中で、または、真空中で初段時効として800℃〜90
0℃にて30分〜6時間行い、二段時効以降は400℃
〜750℃にて2時間〜30時間行われる。
Next, an aging treatment is performed on the processed body washed as described above. Aging treatment for retaining desired magnetic properties is generally performed in an inert gas atmosphere such as argon gas or a reducing gas atmosphere such as hydrogen gas,
Alternatively, it is carried out in vacuum at 450 ° C. to 900 ° C. for 5 minutes to 40 hours. This condition is effective even if water or alkanolamine which is an organic rust inhibitor component remains on the surface of the processed body. Since it is a high-temperature heating condition sufficient for volatilization removal and / or decomposition removal, the surface of the processed body is cleaned at the same time as the aging treatment. The aging treatment is not limited to the one-step aging treatment as described above, and may be a multi-step aging treatment of two or more steps. The multi-step aging treatment is generally performed in an inert gas atmosphere such as argon gas or in a reducing gas atmosphere such as hydrogen gas, or in vacuum at a temperature of 800 ° C. to 90 ° C. as the first step aging treatment.
30 minutes ~ 6 hours at 0 ℃, 400 ℃ after the second stage aging
It is carried out at 750 ° C. for 2 hours to 30 hours.

【0013】最後に、以上のようにして得られた時効処
理体に対して蒸着処理を行う。蒸着処理方法としては、
形成される金属蒸着被膜の緻密性、膜厚の均一性、被膜
形成速度などの観点から、真空蒸着法やイオンプレーテ
ィング法を採用することが望ましい。なお、金属蒸着被
膜を形成する前工程として、時効処理体表面に対してス
パッタリングなどによる自体公知の表面清浄化処理を施
してもよい。蒸着処理条件に特段の制限はないが、被膜
形成時の時効処理体の温度は100℃〜500℃に設定
することが望ましい。100℃未満では時効処理体表面
に対して優れた密着性を有する金属蒸着被膜が形成され
ない恐れがある一方、500℃を超えると被膜形成後の
冷却過程で金属蒸着被膜に亀裂が発生してしまい、被膜
が磁石から剥離する恐れや、磁気特性の劣化を招く恐れ
があるからである。このような方法によって形成される
金属蒸着被膜の膜厚は、0.01μm未満であると被膜
自体が優れた耐食性を発揮できない恐れがある一方、5
0μmを越えると、製造コストの上昇を招く恐れがある
だけでなく、磁石の有効体積が小さくなる恐れがある。
従って、その膜厚は0.01μm〜50μmが望まし
く、0.1μm〜25μmがより望ましく、1μm〜1
5μmがさらに望ましい。このような方法によって形成
される金属蒸着被膜としては、希土類系永久磁石中の希
土類元素と強固な結合層を形成し、優れた密着性を有す
るアルミニウム、チタン、これらの金属成分を含む合金
(例えば、アルミニウム−マグネシウム合金、チタン−
ニッケル合金、チタン−銅合金など)からなる蒸着被膜
が好適である。金属蒸着被膜を形成した後、金属被膜に
対して自体公知のピーニング処理を行ったり、金属被膜
表面に別の被膜を積層形成してもよい。
Finally, a vapor deposition process is performed on the aging treated body obtained as described above. As a vapor deposition processing method,
From the viewpoint of the denseness of the metal vapor-deposited coating to be formed, the uniformity of the film thickness, the rate of film formation, etc., it is desirable to adopt the vacuum vapor deposition method or the ion plating method. As a pre-process for forming the metal vapor deposition coating, a surface cleaning treatment known per se may be performed on the surface of the aged body by sputtering or the like. Although there are no particular restrictions on the vapor deposition treatment conditions, it is desirable to set the temperature of the aging treated body at the time of film formation to 100 ° C to 500 ° C. If the temperature is lower than 100 ° C, a metal vapor deposition film having excellent adhesion to the surface of the aged body may not be formed, whereas if it exceeds 500 ° C, cracks may occur in the metal vapor deposition film during the cooling process after the film formation. This is because the coating may be peeled off from the magnet and the magnetic characteristics may be deteriorated. When the film thickness of the metal vapor deposition film formed by such a method is less than 0.01 μm, the film itself may not exhibit excellent corrosion resistance.
If it exceeds 0 μm, not only the manufacturing cost may increase, but also the effective volume of the magnet may decrease.
Therefore, the film thickness is preferably 0.01 μm to 50 μm, more preferably 0.1 μm to 25 μm, and 1 μm to 1 μm.
5 μm is more desirable. The metal vapor-deposited film formed by such a method forms a strong bonding layer with a rare earth element in a rare earth-based permanent magnet and has excellent adhesion, aluminum, titanium, and an alloy containing these metal components (for example, , Aluminum-magnesium alloy, titanium-
Vapor-deposited coatings composed of nickel alloys, titanium-copper alloys, etc.) are suitable. After forming the metal vapor deposition film, a peening treatment known per se may be performed on the metal film, or another film may be laminated on the surface of the metal film.

【0014】なお、本発明における蒸着被膜は金属蒸着
被膜に限られるものではなく、セラミックス蒸着被膜
(例えば、酸化アルミニウム、窒化アルミニウム、酸化
チタン、窒化チタン、炭化チタンなどからなる蒸着被
膜)であっても同様の効果が期待できる。
The vapor-deposited coating in the present invention is not limited to a metal vapor-deposited coating, but may be a ceramic vapor-deposited coating (for example, a vapor-deposited coating made of aluminum oxide, aluminum nitride, titanium oxide, titanium nitride, titanium carbide, etc.). The same effect can be expected.

【0015】本発明の蒸着被膜を表面に有する希土類系
永久磁石の製造方法によれば、従来、蒸着被膜をその表
面に形成するための希土類系永久磁石調製の最終工程と
して行っていた加工体表面の清浄化のためのブラスト処
理が不要となる。従って、製造途中段階における磁石の
割れ欠けの発生を防止することができ、しかも時効処理
後に高温加熱することもないので磁気特性の劣化を招く
ことなく、均一かつ密着性に優れた耐食性被膜としての
蒸着被膜をその表面に安定して形成することができる。
また、希土類系永久磁石の表面は、平均結晶粒径が1μ
m〜80μmの範囲にある正方晶系の結晶構造を有する
化合物からなる主相と希土類元素リッチ相から形成され
ているが、切削加工や研削加工がされた加工体の表面は
軟質の希土類元素リッチ相が展延され、加工体表面に占
める希土類元素リッチ相の割合が多くなっていると考え
られる。従来であれば、表面に展延された希土類元素リ
ッチ相を有する加工体に対してブラスト処理が行われる
ので、展延された希土類元素リッチ相はその表面から剥
離されたりする。一方、本発明の蒸着被膜を表面に有す
る希土類系永久磁石の製造方法によれば、表面に展延さ
れた希土類元素リッチ相を有する加工体に対して蒸着処
理が行われる。アルミニウムなどは磁石表面の希土類元
素と強固な結合層を持って磁石表面に密着性に優れた蒸
着被膜を形成する性質を本来的に有しているが、本発明
において、表面に展延された希土類元素リッチ相を有す
る加工体に対して蒸着処理が行われることは、磁石表面
とアルミニウム蒸着被膜などとの密着性をより一層高め
ることに寄与すると考えられる。
According to the method for producing a rare earth-based permanent magnet having a vapor-deposited coating on the surface of the present invention, the surface of the processed body which has been conventionally used as the final step of preparing a rare-earth-based permanent magnet for forming the vapor-deposited coating on the surface thereof. No blasting is required for cleaning the. Therefore, it is possible to prevent the occurrence of cracking and chipping of the magnet in the middle of manufacturing, and since it does not heat at a high temperature after the aging treatment, it does not lead to deterioration of magnetic properties, and as a corrosion-resistant coating excellent in uniformity and adhesion. The vapor-deposited coating can be stably formed on the surface.
The surface of the rare earth permanent magnet has an average crystal grain size of 1 μm.
It is formed of a main phase composed of a compound having a tetragonal crystal structure in the range of m to 80 μm and a rare earth element rich phase, but the surface of the processed body that has been cut or ground is soft and rare earth element rich. It is considered that the phase is spread and the ratio of the rare earth element-rich phase on the surface of the processed body is increased. Conventionally, since the blast treatment is performed on the processed body having the rare earth element-rich phase spread on the surface, the spread rare earth element-rich phase may be separated from the surface. On the other hand, according to the method for producing a rare earth-based permanent magnet having the vapor deposition coating on the surface of the present invention, the vapor deposition treatment is performed on the processed body having the rare earth element-rich phase spread on the surface. Aluminum or the like originally has the property of forming a vapor-deposited coating having excellent adhesion on the magnet surface with a rare earth element on the magnet surface and a strong bonding layer, but in the present invention, it was spread on the surface. It is considered that performing the vapor deposition treatment on the processed body having the rare earth element-rich phase contributes to further improving the adhesion between the magnet surface and the aluminum vapor deposition coating.

【0016】[0016]

【実施例】本発明を以下の実施例によってさらに詳細に
説明するが、本発明は以下の記載に何ら限定されるもの
ではない。
The present invention will be described in more detail by the following examples, but the present invention is not limited to the following description.

【0017】実施例1: (希土類系永久磁石の製造) 工程1:14Nd−79Fe−6B−1Co組成(at
%)の鋳造インゴットを粉砕した後、さらに微粉砕して
得られる合金粉末を磁界中で加圧成形して成形体とし、
これをアルゴンガス雰囲気中、1100℃×2時間の条
件下で焼結して55mm×45mm×8mmの焼結体を
得た。 工程2:得られた焼結体を外周刃切断機によって切削し
た。この際、冷却液として有機酸塩、アルカノールアミ
ンなどを成分として含むJP−04/97N(カストロ
ール社製)の2重量%水溶液を使用した。続いて得られ
た切削体を、JIS粒度♯150相当の研削剤と研削用
メディアとして10φアルミナ製ボールを使用して回転
バレル処理室内で研削した。この際、防錆剤として有機
酸塩、アルカノールアミンなどを成分として含むTKX
コンパウンド♯807B(共栄社化学社製)の10重量
%水溶液を使用した。 工程3:得られた加工体を回転バレル研磨機から取り出
した後、バレルめっきなどで使用される回転バレル処理
室に収容してバレルを洗浄液に浸漬し、バレルを回転さ
せることによって加工体を攪拌しながら洗浄した。この
際、洗浄液としてエタノールアミンなどを成分として含
むPC−120(扶桑化学工業社製)の2容量%水溶液
を使用した。その後、乾燥温度100℃、最大回転数5
00rpmの遠心乾燥条件下で加工体を乾燥させた。 工程4:洗浄して乾燥された加工体をアルゴンガス雰囲
気中、550℃×1時間の条件下で時効処理し、14N
d−79Fe−6B−1Co組成(at%)で6mm×
4.8mm×8mm:表面積2.304cmの希土類
系永久磁石の試験片(以下、磁石体試験片と略称する)
を得た。
Example 1 (Production of Rare Earth Permanent Magnet) Step 1: 14 Nd-79Fe-6B-1Co Composition (at
%) After crushing the cast ingot and then finely crushing the resulting alloy powder into a molded body by pressure molding in a magnetic field,
This was sintered in an argon gas atmosphere at 1100 ° C. for 2 hours to obtain a sintered body of 55 mm × 45 mm × 8 mm. Step 2: The obtained sintered body was cut with a peripheral cutting machine. At this time, a 2 wt% aqueous solution of JP-04 / 97N (manufactured by Castrol Co.) containing organic acid salts, alkanolamines and the like as components was used as the cooling liquid. Subsequently, the obtained cut body was ground in a rotary barrel processing chamber using an abrasive having a JIS grain size of # 150 and 10φ alumina balls as a grinding medium. At this time, TKX containing organic acid salt, alkanolamine, etc. as a rust preventive agent
A 10 wt% aqueous solution of compound # 807B (manufactured by Kyoeisha Chemical Co., Ltd.) was used. Step 3: After removing the obtained processed body from the rotary barrel polishing machine, it is housed in a rotary barrel processing chamber used for barrel plating and the like, the barrel is immersed in a cleaning liquid, and the processed body is stirred by rotating the barrel. Washed while. At this time, a 2% by volume aqueous solution of PC-120 (manufactured by Fuso Chemical Industry Co., Ltd.) containing ethanolamine as a component was used as a cleaning liquid. After that, the drying temperature is 100 ° C and the maximum rotation speed is 5
The processed body was dried under a centrifugal drying condition of 00 rpm. Step 4: The washed and dried processed body is subjected to an aging treatment in an argon gas atmosphere at 550 ° C. for 1 hour to obtain 14N.
6 mm x with d-79Fe-6B-1Co composition (at%)
4.8 mm × 8 mm: test piece of rare earth permanent magnet having a surface area of 2.304 cm 2 (hereinafter, abbreviated as magnet body test piece)
Got

【0018】(磁石体試験片から放出されるガス量の測
定)高精度昇温脱離ガス分析装置(電子科学社製EMD
−WA1000S)を使用し、次のようにして行った。
1個の磁石体試験片を装置内に収容し、装置内を3×1
−7Pa未満になるまで減圧した後、室温から600
℃まで0.5℃/秒で昇温し、放出されるガス量を測定
した。結果を表1に示す。なお、表中、「放出ガス量
(total)」とは全種類の放出ガスの量を意味す
る。「放出ガス量(M/z=28)」とは検出されたフ
ラグメントイオンの質量/イオン価数が28の放出ガス
の量を意味し、これは冷却液や防錆剤や洗浄液に含まれ
るアルカノールアミンに由来するC イオンに起
因するものであることが解析結果から判明しているもの
である。
(Measurement of amount of gas released from magnet test piece) High-accuracy thermal desorption gas analyzer (EMD manufactured by Electronic Science Co., Ltd.)
-WA1000S) was used as follows.
One magnet body test piece is housed in the device and the inside of the device is 3 × 1
After reducing the pressure to 0-7 Pa or less, room temperature to 600
The temperature was raised to 0.5 ° C./second at 0.5 ° C./second, and the amount of released gas was measured. The results are shown in Table 1. In addition, in the table, "amount of released gas (total)" means the amount of all kinds of released gas. The "amount of released gas (M / z = 28)" means the amount of the released gas having a detected fragment ion mass / ion valence of 28, which is an alkanol contained in a cooling liquid, a rust preventive, or a cleaning liquid. It has been found from the analysis results that it is caused by C 2 H 4 + ions derived from amine.

【0019】(磁石体試験片表面へのアルミニウム蒸着
被膜の形成)蒸着装置(真空槽内容積が2.2mで、
内部に直径355mm×長さ1200mmのステンレス
製メッシュ金網で作製された円筒形バレルを真空槽内に
左右平行に2個有し、円筒形バレルを回転させるととも
に、ワイヤー状金属蒸着材料を溶融蒸発部に連続供給し
ながら蒸着処理が行えるもの:特開2001−3206
2号公報の図1と同様の構成)の各円筒形バレルに磁石
体試験片を9000個ずつ、2個の円筒形バレルで磁石
体試験片を合計18000個収容し、真空槽内を全圧が
1.0×10−3Pa以下になるまで真空排気した後、
アルゴンガスを真空槽内の全圧が1Paになるように導
入した。その後、バレルの回転軸を1.5rpmで回転
させながら、バイアス電圧−500Vの条件下、15分
間グロー放電によるスパッタリングを行って磁石体試験
片の表面を清浄化した。続いて、バレルの回転軸を1.
5rpmで回転させながら、アルゴンガス圧1Pa、バ
イアス電圧−100Vの条件下、蒸着材料としてアルミ
ニウムワイヤーを用い、これを加熱してイオン化し、1
5分間イオンプレーティング法にて磁石体試験片表面に
アルミニウム蒸着被膜を形成した。磁石体試験片表面に
形成されたアルミニウム蒸着被膜について、目視による
外観観察(n=10)と、外観観察を合格したものにつ
いて蛍光X線膜厚計(セイコー電子社製:SFT−70
00)を使用した膜厚測定(n=10)を行った。結果
を表1に示す。
(Formation of aluminum vapor-deposited coating on the surface of a magnet test piece) Vapor deposition apparatus (with a vacuum chamber having a volume of 2.2 m 3
Inside the vacuum chamber, there are two cylindrical barrels made of stainless steel mesh wire with a diameter of 355 mm and a length of 1200 mm, which are parallel to each other. The cylindrical barrel is rotated and the wire-shaped metal vapor deposition material is melted and evaporated. Which can be vapor-deposited while being continuously supplied to the apparatus: JP 2001-3206A
(The same configuration as in FIG. 1 of Japanese Patent Publication No. 2), 9000 magnet test pieces are accommodated in each cylindrical barrel, and 18000 magnet test pieces in total are accommodated in two cylindrical barrels. Was evacuated to 1.0 × 10 −3 Pa or less,
Argon gas was introduced so that the total pressure in the vacuum chamber was 1 Pa. Thereafter, while rotating the rotation axis of the barrel at 1.5 rpm, sputtering by glow discharge was performed for 15 minutes under a bias voltage of -500 V to clean the surface of the magnet test piece. Next, set the barrel rotation axis to 1.
While rotating at 5 rpm, an aluminum wire was used as a vapor deposition material under the conditions of an argon gas pressure of 1 Pa and a bias voltage of -100 V, which was heated to be ionized.
An aluminum vapor deposition film was formed on the surface of the magnet body test piece by the ion plating method for 5 minutes. Regarding the aluminum vapor-deposited film formed on the surface of the magnet body test piece, visual appearance observation (n = 10), and those that passed the appearance observation were measured by a fluorescent X-ray film thickness meter (SFT-70 manufactured by Seiko Instruments Inc.).
00) was used to measure the film thickness (n = 10). The results are shown in Table 1.

【0020】(アルミニウム蒸着被膜のピーニング処
理)以上のようにして得られたアルミニウム蒸着被膜を
表面に有する磁石体試験片をブラスト加工装置に投入
し、Nガスからなる加圧気体とともに、投射材として
のガラスビーズ(新東ブレーター社製:GB−AG)
を、投射圧0.2MPaにて15分間噴射して、ショッ
トピーニングを行った。ショットピーニングを行ったア
ルミニウム蒸着被膜について、目視による外観観察(n
=10)と、外観観察を合格したものについて温度80
℃×相対湿度90%の高温高湿度条件下に500時間放
置して発錆の有無を観察するという耐食性加速試験(n
=10)を行った。結果を表1に示す。
(Peening treatment of vapor-deposited aluminum film) A magnet test piece having the vapor-deposited aluminum film obtained on the surface as described above was put into a blasting machine, and a blasting material was added together with a pressurized gas consisting of N 2 gas. Glass beads (manufactured by Shinto Blator Co., Ltd .: GB-AG)
Was sprayed for 15 minutes at a projection pressure of 0.2 MPa to perform shot peening. Visual observation of the appearance of the vapor-deposited aluminum film subjected to shot peening (n
= 10), and the temperature of 80 for those that have passed the appearance observation.
Accelerated corrosion resistance test (n: left for 500 hours under high temperature and high humidity conditions of 90 ° C x 90% relative humidity) to observe the presence or absence of rust
= 10). The results are shown in Table 1.

【0021】比較例1: (希土類系永久磁石の製造)実施例1における工程1と
同様にして焼結体を得、同工程4と同様にして時効処理
を行い、同工程2と同様にして時効処理された加工体を
得、同工程3と同様にしてこれを洗浄してから乾燥し、
実施例1で得られた磁石体試験片と同じ組成と寸法を有
する磁石体試験片を得た。
Comparative Example 1 (Manufacture of Rare Earth Permanent Magnet) A sintered body was obtained in the same manner as in Step 1 of Example 1, and an aging treatment was performed in the same manner as in Step 4, and the same as in Step 2. After obtaining the processed body which has been subjected to the aging treatment, washing it in the same manner as in the step 3 and then drying it,
A magnet body test piece having the same composition and dimensions as the magnet body test piece obtained in Example 1 was obtained.

【0022】(磁石体試験片から放出されるガス量の測
定)実施例1と同様にして磁石体試験片から放出される
ガス量を測定した。結果を表1に示す。
(Measurement of the amount of gas released from the magnet test piece) The amount of gas released from the magnet test piece was measured in the same manner as in Example 1. The results are shown in Table 1.

【0023】(磁石体試験片表面へのアルミニウム蒸着
被膜の形成)実施例1と同様にして磁石体試験片表面に
アルミニウム蒸着被膜を形成した。磁石体試験片表面に
形成されたアルミニウム蒸着被膜について、実施例1と
同様にして目視による外観観察(n=10)と膜厚測定
(n=10)を行った。結果を表1に示す。
(Formation of Aluminum Vapor Deposition Coating on Magnet Body Specimen Surface) An aluminum vapor deposition coating was formed on the surface of the magnet body specimen as in Example 1. With respect to the aluminum vapor-deposited coating film formed on the surface of the magnet test piece, visual observation (n = 10) and film thickness measurement (n = 10) were performed in the same manner as in Example 1. The results are shown in Table 1.

【0024】(アルミニウム蒸着被膜のピーニング処
理)実施例1と同様にして磁石体試験片表面に形成され
たアルミニウム蒸着被膜に対してショットピーニングを
行った。ショットピーニングを行ったアルミニウム蒸着
被膜について、実施例1と同様にして目視による外観観
察(n=10)と膜厚測定(n=10)を行った。結果
を表1に示す。
(Peening treatment of vapor deposited aluminum film) Shot peening was performed on the vapor deposited aluminum film formed on the surface of the magnet test piece in the same manner as in Example 1. The aluminum vapor-deposited film subjected to shot peening was subjected to visual observation (n = 10) and film thickness measurement (n = 10) in the same manner as in Example 1. The results are shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】表1から明らかなように、実施例1の磁石
体試験片から放出されるガス量よりも比較例1の磁石体
試験片から放出されるガス量の方が多かった。これは、
比較例1においては、使用した冷却液や防錆剤や洗浄液
に由来する水分や各成分を磁石体試験片表面から十分に
除去しきれずに残存してしまい、これらが気化したこと
による結果であると推測された。また、比較例1におい
ては、上記のような磁石体試験片表面に残存した成分の
影響により、磁石体試験片表面へのアルミニウム蒸着被
膜の形成に際しての真空排気に長時間を要した。さら
に、比較例1においては、均一かつ密着性に優れた耐食
性被膜としてのアルミニウム蒸着被膜を磁石体試験片表
面に安定して形成することができなかった。一方、実施
例1においては、磁石体試験片から放出されるガス量は
少なかった。これは、工程4での時効処理時に、使用し
た冷却液や防錆剤や洗浄液に由来する水分や各成分を磁
石体試験片表面から十分に除去することができたことに
よる結果であると推測された。また、実施例1において
は、均一かつ密着性に優れた耐食性被膜としてのアルミ
ニウム蒸着被膜を磁石体試験片表面に安定して形成する
ことができた。なお、データは示さないが、実施例1に
おけるショットピーニングを行ったアルミニウム蒸着被
膜を表面に有する磁石体試験片には磁気特性の劣化は認
められなかった。
As is clear from Table 1, the amount of gas released from the magnet test piece of Comparative Example 1 was larger than the amount of gas released from the magnet test piece of Example 1. this is,
In Comparative Example 1, the water content and components derived from the used cooling liquid, rust preventive agent, and cleaning liquid could not be sufficiently removed from the surface of the magnet body test piece and remained, which is the result of vaporization. Was inferred. Further, in Comparative Example 1, it took a long time to evacuate when forming the aluminum vapor deposition coating on the surface of the magnet body test piece due to the influence of the components remaining on the surface of the magnet body test piece as described above. Further, in Comparative Example 1, it was not possible to stably form an aluminum vapor-deposited coating as a corrosion-resistant coating having excellent uniformity and adhesion on the surface of the magnet body test piece. On the other hand, in Example 1, the amount of gas released from the magnet test piece was small. It is presumed that this was due to the fact that the water and each component derived from the used cooling liquid, rust preventive agent, and cleaning liquid could be sufficiently removed from the surface of the magnet body test piece during the aging treatment in step 4. Was done. Further, in Example 1, it was possible to stably form an aluminum vapor-deposited coating as a corrosion-resistant coating having excellent uniformity and adhesion on the surface of the magnet body test piece. Although data are not shown, deterioration of magnetic properties was not observed in the magnet body test piece having the aluminum vapor-deposited film subjected to shot peening on the surface thereof in Example 1.

【0027】実施例2: (希土類系永久磁石の製造)実施例1と同様にして14
Nd−79Fe−6B−1Co組成(at%)で6mm
×15mm×30mm:表面積14.4cmの磁石体
試験片を得た。
Example 2 (Manufacture of Rare Earth Permanent Magnet) In the same manner as in Example 1, 14
Nd-79Fe-6B-1Co composition (at%) 6 mm
× 15 mm × 30 mm: A magnet test piece having a surface area of 14.4 cm 2 was obtained.

【0028】(磁石体試験片表面へのアルミニウム蒸着
被膜の形成)実施例1と同様にして磁石体試験片表面に
アルミニウム蒸着被膜を形成した。なお、実施例2にお
いては、蒸着装置の各円筒形バレルに磁石体試験片を8
28個ずつ、2個の円筒形バレルで磁石体試験片を合計
1656個収容して蒸着処理を行った。磁石体試験片表
面に形成されたアルミニウム蒸着被膜について、実施例
1と同様にして目視による外観観察(n=10)と膜厚
測定(n=10)を行った。結果を表2に示す。
(Formation of evaporated aluminum film on the surface of magnet test piece) An aluminum evaporated film was formed on the surface of the magnet test piece in the same manner as in Example 1. In addition, in Example 2, each magnet barrel test piece was attached to each cylindrical barrel of the vapor deposition apparatus.
A total of 1656 magnet test pieces were housed in two cylindrical barrels each having 28 pieces, and vapor deposition processing was performed. With respect to the aluminum vapor-deposited coating film formed on the surface of the magnet test piece, visual observation (n = 10) and film thickness measurement (n = 10) were performed in the same manner as in Example 1. The results are shown in Table 2.

【0029】(アルミニウム蒸着被膜のピーニング処
理)実施例1と同様にして磁石体試験片表面に形成され
たアルミニウム蒸着被膜に対してショットピーニングを
行った。ショットピーニングを行ったアルミニウム蒸着
被膜について、実施例1と同様にして目視による外観観
察(n=10)と膜厚測定(n=10)を行った。結果
を表2に示す。
(Peening treatment of vapor-deposited aluminum film) In the same manner as in Example 1, shot peening was performed on the vapor-deposited aluminum film formed on the surface of the magnet test piece. The aluminum vapor-deposited film subjected to shot peening was subjected to visual observation (n = 10) and film thickness measurement (n = 10) in the same manner as in Example 1. The results are shown in Table 2.

【0030】比較例2: (希土類系永久磁石の製造)実施例1における工程1と
同様にして焼結体を得、同工程4と同様にして時効処理
を行い、同工程2と同様にして時効処理された加工体を
得、同工程3と同様にしてこれを洗浄してから乾燥し、
実施例2で得られた磁石体試験片と同じ組成と寸法を有
する磁石体試験片を得た。
Comparative Example 2 (Manufacture of Rare Earth Permanent Magnet) A sintered body was obtained in the same manner as in Step 1 in Example 1, and an aging treatment was carried out in the same manner as in Step 4 above. After obtaining the processed body which has been subjected to the aging treatment, washing it in the same manner as in the step 3 and then drying it,
A magnet body test piece having the same composition and dimensions as the magnet body test piece obtained in Example 2 was obtained.

【0031】(磁石体試験片表面へのアルミニウム蒸着
被膜の形成)実施例2と同様にして磁石体試験片表面に
アルミニウム蒸着被膜を形成した。磁石体試験片表面に
形成されたアルミニウム蒸着被膜について、実施例2と
同様にして目視による外観観察(n=10)と膜厚測定
(n=10)を行った。結果を表2に示す。
(Formation of evaporated aluminum film on the surface of magnet test piece) An aluminum evaporated film was formed on the surface of the magnet test piece in the same manner as in Example 2. The aluminum vapor-deposited coating formed on the surface of the magnet test piece was subjected to visual observation (n = 10) and film thickness measurement (n = 10) in the same manner as in Example 2. The results are shown in Table 2.

【0032】(アルミニウム蒸着被膜のピーニング処
理)実施例2と同様にして磁石体試験片表面に形成され
たアルミニウム蒸着被膜に対してショットピーニングを
行った。ショットピーニングを行ったアルミニウム蒸着
被膜について、実施例2と同様にして目視による外観観
察(n=10)と膜厚測定(n=10)を行った。結果
を表2に示す。
(Peening treatment of vapor deposited aluminum film) Shot peening was performed on the vapor deposited aluminum film formed on the surface of the magnet test piece in the same manner as in Example 2. The aluminum vapor-deposited film subjected to shot peening was subjected to visual observation (n = 10) and film thickness measurement (n = 10) in the same manner as in Example 2. The results are shown in Table 2.

【0033】比較例3: (希土類系永久磁石の製造)実施例1における工程1と
同様にして焼結体を得、同工程4と同様にして時効処理
を行い、同工程2と同様にして時効処理された加工体を
得、同工程3と同様にしてこれを洗浄してから乾燥し
た。続いて、洗浄して乾燥された加工体をタンブラー型
ブラスト加工装置の開口部を有するドラム内に投入し、
投射材としてアランダムA♯180(商品名:新東ブレ
ーター社製でJIS粒度♯180相当)を使用し、ドラ
ムを回転させながら20分間ブラスト処理を行い、実施
例2で得られた磁石体試験片と同じ組成と寸法を有する
磁石体試験片を得た。得られた磁石体試験片の割れ欠け
を調べたところほぼ10個に1個の割合で割れ欠けが存
在した。
Comparative Example 3 (Manufacture of Rare Earth Permanent Magnet) A sintered body was obtained in the same manner as in Step 1 of Example 1, and was subjected to an aging treatment in the same manner as in Step 4 and in the same manner as in Step 2. An aged processed product was obtained, washed in the same manner as in the same step 3, and then dried. Subsequently, the washed and dried processed body is put into a drum having an opening of a tumbler type blast processing apparatus,
The magnet body test obtained in Example 2 was performed by using Alundum A # 180 (trade name: manufactured by Shinto Blator Co., Ltd., JIS grain size # 180 equivalent) as a shot material, and performing a blasting treatment for 20 minutes while rotating the drum. A magnet test piece having the same composition and dimensions as the piece was obtained. When the cracks of the obtained magnet test pieces were examined, cracks were present at a rate of about 1 in 10.

【0034】(磁石体試験片表面へのアルミニウム蒸着
被膜の形成)実施例2と同様にして割れ欠けのない磁石
体試験片表面にアルミニウム蒸着被膜を形成した。磁石
体試験片表面に形成されたアルミニウム蒸着被膜につい
て、実施例2と同様にして目視による外観観察(n=1
0)と膜厚測定(n=10)を行った。結果を表2に示
す。
(Formation of Aluminum Vapor Deposition Coating on Magnet Body Specimen Surface) An aluminum vapor deposition coating was formed on the surface of the magnet body specimen without cracking in the same manner as in Example 2. The aluminum vapor-deposited coating formed on the surface of the magnet test piece was visually observed in the same manner as in Example 2 (n = 1.
0) and film thickness measurement (n = 10). The results are shown in Table 2.

【0035】(アルミニウム蒸着被膜のピーニング処
理)実施例2と同様にして割れ欠けのない磁石体試験片
表面に形成されたアルミニウム蒸着被膜に対してショッ
トピーニングを行った。ショットピーニングを行ったア
ルミニウム蒸着被膜について、実施例2と同様にして目
視による外観観察(n=10)と膜厚測定(n=10)
を行った。結果を表2に示す。
(Peening treatment of vapor-deposited aluminum film) Shot peening was performed on the vapor-deposited aluminum film formed on the surface of the magnet test piece without cracks in the same manner as in Example 2. For the shot-peened aluminum vapor-deposited film, the external appearance was visually observed (n = 10) and the film thickness was measured (n = 10) in the same manner as in Example 2.
I went. The results are shown in Table 2.

【0036】[0036]

【表2】 [Table 2]

【0037】表2から明らかなように、実施例2におい
ては、均一かつ密着性に優れた耐食性被膜としてのアル
ミニウム蒸着被膜を磁石体試験片表面に安定して形成す
ることができた。なお、データは示さないが、実施例2
におけるショットピーニングを行ったアルミニウム蒸着
被膜を表面に有する磁石体試験片には磁気特性の劣化は
認められなかった。比較例2においては、磁石体試験片
表面に残存した成分の影響により、磁石体試験片表面へ
のアルミニウム蒸着被膜の形成に際しての真空排気に長
時間を要した。また、比較例2においては、均一かつ密
着性に優れた耐食性被膜としてのアルミニウム蒸着被膜
を磁石体試験片表面に安定して形成することができなか
った。比較例3においては、均一かつ密着性に優れた耐
食性被膜としてのアルミニウム蒸着被膜を磁石体試験片
表面に安定して形成することができたが、ブラスト処理
により磁石体試験片の割れ欠けを生じさせてしまった。
As is clear from Table 2, in Example 2, it was possible to stably form an aluminum vapor-deposited coating as a corrosion-resistant coating having excellent uniformity and adhesion on the surface of the magnet body test piece. Although data is not shown, Example 2
No deterioration of the magnetic properties was observed in the magnet body test piece having the aluminum vapor-deposited coating on its surface subjected to the shot peening in the above. In Comparative Example 2, it took a long time to evacuate when forming the aluminum vapor-deposited film on the surface of the magnet body test piece due to the influence of the components remaining on the surface of the magnet body test piece. Further, in Comparative Example 2, it was not possible to stably form an aluminum vapor-deposited coating as a corrosion-resistant coating having excellent uniformity and adhesion on the surface of the magnet test piece. In Comparative Example 3, it was possible to stably form an aluminum vapor-deposited coating as a corrosion-resistant coating having excellent uniformity and adhesion on the surface of the magnet body test piece, but cracking of the magnet body test piece was caused by the blast treatment. I made it.

【0038】[0038]

【発明の効果】本発明によれば、時効処理のための高温
加熱時を利用して加工体表面の残存成分を揮散除去およ
び/または分解除去するので、従来、蒸着被膜をその表
面に形成するための希土類系永久磁石調製の最終工程と
して行っていた加工体表面の清浄化のためのブラスト処
理が不要となる。従って、製造途中段階における磁石の
割れ欠けの発生を防止することができるとともに蒸着被
膜の形成に悪影響を及ぼすこともない。しかも時効処理
後に高温加熱することもないので磁気特性の劣化を招く
ことがない。従って、製造途中段階で磁石の割れ欠けの
発生や磁気特性の劣化を招くことなく、均一かつ密着性
に優れた耐食性被膜としての蒸着被膜をその表面に安定
して形成することができる。
EFFECTS OF THE INVENTION According to the present invention, the residual components on the surface of the processed body are volatilized and / or decomposed and removed by utilizing the high temperature heating for the aging treatment, so that the vapor deposition coating is conventionally formed on the surface. Therefore, the blast treatment for cleaning the surface of the processed body, which was performed as the final step of preparing the rare earth-based permanent magnet, becomes unnecessary. Therefore, it is possible to prevent the occurrence of cracking and chipping of the magnet in the middle of the manufacturing process, and there is no adverse effect on the formation of the vapor deposition coating. Moreover, since high temperature heating is not performed after the aging treatment, deterioration of magnetic characteristics is not caused. Therefore, a vapor-deposited coating as a corrosion-resistant coating having excellent uniformity and adhesion can be stably formed on the surface of the magnet without causing cracking of the magnet or deterioration of the magnetic characteristics during the manufacturing process.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田垣 謙 岡山県倉敷市水島西通1丁目1053−45 住 友特殊金属株式会社水島事業所内 Fターム(参考) 4K018 AA27 CA04 CA11 DA11 DA21 DA31 FA06 FA08 FA22 FA23 KA45 4K029 AA02 BA03 BA17 BA21 BA23 BC01 BD00 CA01 CA17 DB03 DB04 DB15 FA04 FA06 JA02 5E062 CD04 CG05 CG07    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Ken Otagaki             1053-45, Mizushima Nishidori, Kurashiki City, Okayama Prefecture             Mizushima Office of Tomo Special Metal Co., Ltd. F-term (reference) 4K018 AA27 CA04 CA11 DA11 DA21                       DA31 FA06 FA08 FA22 FA23                       KA45                 4K029 AA02 BA03 BA17 BA21 BA23                       BC01 BD00 CA01 CA17 DB03                       DB04 DB15 FA04 FA06 JA02                 5E062 CD04 CG05 CG07

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 所望する組成の希土類系永久磁石焼結体
を切削加工および/または研削加工し、得られる加工体
を洗浄してから時効処理を行った後、得られる時効処理
体に対して蒸着処理を行うことによって、前記時効処理
体の表面に蒸着被膜を形成する工程を含むことを特徴と
する蒸着被膜を表面に有する希土類系永久磁石の製造方
法。
1. A rare earth-based permanent magnet sintered body having a desired composition is subjected to cutting and / or grinding, the obtained processed body is washed and then subjected to an aging treatment, and then to the obtained aging treated body. A method for producing a rare earth-based permanent magnet having a vapor-deposited coating on the surface, which comprises the step of forming a vapor-deposited coating on the surface of the aged body by performing a vapor deposition treatment.
【請求項2】 前記蒸着被膜がアルミニウム、チタン、
アルミニウムおよび/またはチタンを含む合金からなる
蒸着被膜であることを特徴とする請求項1記載の製造方
法。
2. The vapor-deposited coating is aluminum, titanium,
The manufacturing method according to claim 1, which is a vapor deposition coating made of an alloy containing aluminum and / or titanium.
JP2001244817A 2001-08-10 2001-08-10 Method for producing rare earth-based permanent magnet having deposited film on surface Expired - Lifetime JP4747462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001244817A JP4747462B2 (en) 2001-08-10 2001-08-10 Method for producing rare earth-based permanent magnet having deposited film on surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001244817A JP4747462B2 (en) 2001-08-10 2001-08-10 Method for producing rare earth-based permanent magnet having deposited film on surface

Publications (2)

Publication Number Publication Date
JP2003059741A true JP2003059741A (en) 2003-02-28
JP4747462B2 JP4747462B2 (en) 2011-08-17

Family

ID=19074686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001244817A Expired - Lifetime JP4747462B2 (en) 2001-08-10 2001-08-10 Method for producing rare earth-based permanent magnet having deposited film on surface

Country Status (1)

Country Link
JP (1) JP4747462B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114336A1 (en) * 2006-03-31 2007-10-11 Hitachi Metals, Ltd. Method for manufacturing rare earth permanent magnet
JP2013026499A (en) * 2011-07-22 2013-02-04 Sumitomo Electric Ind Ltd Dust core, its manufacturing method, and coil component
WO2016175063A1 (en) * 2015-04-28 2016-11-03 信越化学工業株式会社 Method for producing rare-earth magnets, and rare-earth-compound application device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287003A (en) * 1986-06-06 1987-12-12 Seiko Instr & Electronics Ltd Production of sintered type magnet
JPH04254313A (en) * 1991-02-06 1992-09-09 Seiko Electronic Components Ltd Manufacture of rare earth magnet
JPH04328804A (en) * 1991-04-26 1992-11-17 Sumitomo Special Metals Co Ltd Corrosion-proof permanent magnet and manufacture thereof
JPH0774043A (en) * 1994-04-21 1995-03-17 Sumitomo Special Metals Co Ltd Manufacture of permanent magnet of excellent corrosion resistance
JPH08283951A (en) * 1995-04-12 1996-10-29 Matsushita Electric Works Ltd Pretreating method of electroless plating
JPH0964258A (en) * 1995-08-25 1997-03-07 Hitachi Ltd Large power semiconductor device
JPH1154353A (en) * 1997-07-30 1999-02-26 Sumitomo Metal Ind Ltd Method for sintering r-t-b group permanent magnet
JP2001167917A (en) * 1999-09-27 2001-06-22 Sumitomo Special Metals Co Ltd R-Fe-B PERMANENT MAGNET AND MANUFACTURING METHOD OF THE SAME

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287003A (en) * 1986-06-06 1987-12-12 Seiko Instr & Electronics Ltd Production of sintered type magnet
JPH04254313A (en) * 1991-02-06 1992-09-09 Seiko Electronic Components Ltd Manufacture of rare earth magnet
JPH04328804A (en) * 1991-04-26 1992-11-17 Sumitomo Special Metals Co Ltd Corrosion-proof permanent magnet and manufacture thereof
JPH0774043A (en) * 1994-04-21 1995-03-17 Sumitomo Special Metals Co Ltd Manufacture of permanent magnet of excellent corrosion resistance
JPH08283951A (en) * 1995-04-12 1996-10-29 Matsushita Electric Works Ltd Pretreating method of electroless plating
JPH0964258A (en) * 1995-08-25 1997-03-07 Hitachi Ltd Large power semiconductor device
JPH1154353A (en) * 1997-07-30 1999-02-26 Sumitomo Metal Ind Ltd Method for sintering r-t-b group permanent magnet
JP2001167917A (en) * 1999-09-27 2001-06-22 Sumitomo Special Metals Co Ltd R-Fe-B PERMANENT MAGNET AND MANUFACTURING METHOD OF THE SAME

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114336A1 (en) * 2006-03-31 2007-10-11 Hitachi Metals, Ltd. Method for manufacturing rare earth permanent magnet
US8641832B2 (en) 2006-03-31 2014-02-04 Hitachi Metals, Ltd. Method for producing rare earth metal-based permanent magnet
JP2013026499A (en) * 2011-07-22 2013-02-04 Sumitomo Electric Ind Ltd Dust core, its manufacturing method, and coil component
WO2016175063A1 (en) * 2015-04-28 2016-11-03 信越化学工業株式会社 Method for producing rare-earth magnets, and rare-earth-compound application device
JP2016207980A (en) * 2015-04-28 2016-12-08 信越化学工業株式会社 Manufacturing method of rare earth magnet and application device for rare earth compound
US10790076B2 (en) 2015-04-28 2020-09-29 Shin-Etsu Chemical Co., Ltd. Method for producing rare-earth magnets, and rare-earth-compound application device

Also Published As

Publication number Publication date
JP4747462B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
TWI457454B (en) Method for manufacturing sputtering target, cleaning method for sputtering target, sputtering target, and sputtering device
JP4897113B2 (en) Sputtering target with less generation of particles and method of manufacturing the target
EP1115584B1 (en) Method of manufacturing enhanced finish sputtering targets
JP5263153B2 (en) R-Fe-B based sintered magnet having a deposited film of aluminum or its alloy on the surface and method for producing the same
EP1580292A1 (en) Method of producing a substrate
EP1739196B1 (en) Rare earth metal member of high surface purity and making method
JP2003059741A (en) Manufacturing method of rare earth-based permanent magnet having deposition film on surface
EP1299570B1 (en) Method of inhibiting production of projections in metal deposited film
JPH03257158A (en) Sputtering target
JP4691833B2 (en) Method for producing rare earth-based permanent magnet having metal-deposited coating on its surface
JP2003100537A (en) Method for manufacturing rare-earth permanent magnet
JP5540948B2 (en) Sputtering target
JP5727740B2 (en) Manufacturing method of backing plate
JPH09270310A (en) Rare earth permanent magnet
JP2002275571A (en) cBN-BASE SINTERED COMPACT, AND COATED TOOL CONSISTING THEREOF
CN113698234B (en) Method for processing ceramic piece
JP2002186395A (en) HORSESHOE MADE OF Al ALLOY EXCELLENT IN DURABILITY AND METHOD OF PRODUCING THE SAME
CN112752866B (en) Coating stripping of aluminum-containing coatings
JP2013199694A (en) Sputtering target or backing plate and method for cleaning the same
JP2882484B2 (en) High corrosion resistance rare earth iron-based magnet and method of manufacturing the same
JP3143154B2 (en) Plasma vapor deposition
JP2003027217A (en) Method for supplying gaseous hydrogen into process chamber of vapor deposition system
JP2005186227A (en) Hard film coated tool
JP2002038259A (en) Sputtering target material
JP2023010291A (en) Recycling method of rare earth sintered magnet

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110317

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4747462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

EXPY Cancellation because of completion of term