JP2003056941A - Absorption water cooler/heater and control method therefor - Google Patents

Absorption water cooler/heater and control method therefor

Info

Publication number
JP2003056941A
JP2003056941A JP2001246992A JP2001246992A JP2003056941A JP 2003056941 A JP2003056941 A JP 2003056941A JP 2001246992 A JP2001246992 A JP 2001246992A JP 2001246992 A JP2001246992 A JP 2001246992A JP 2003056941 A JP2003056941 A JP 2003056941A
Authority
JP
Japan
Prior art keywords
temperature
concentrated solution
solution
flow rate
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001246992A
Other languages
Japanese (ja)
Inventor
Hirotsugu Ishino
野 裕 嗣 石
Shigeru Kawasaki
崎 茂 川
Keita Enjoji
慶 太 円城寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2001246992A priority Critical patent/JP2003056941A/en
Publication of JP2003056941A publication Critical patent/JP2003056941A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an absorption water cooler/heater capable of preventing crystallization of an absorbing solution (particularly, strong solution) from occurring without lowering cycle efficiency in partial loading, and to provide a control method. SOLUTION: The water cooler/heater comprises a low temperature solution heat exchanger (Lex) for exchanging heat between a weak solution (K3) delivered from an absorber (Ab) and a strong solution (K2) returned to the absorber (Ab), a flow control means (Vk) for controlling the flow rate of the strong solution flowing in a region toward a regenerator (Lg) side from the heat exchanger (Lex), a first temperature measuring means (AT) for measuring temperature (Tex) of the strong solution passing between the heat exchanger (Lex) and the absorber (Ab), and a control means (5). The control means (5) determines the crystallization temperature (tc) of the strong solution (K2) on the basis of the concentration of the strong solution (K2) in the vicinity of an inlet (Li) of the heat exchanger (Lex), and controls the flow rate of the strong solution by comparing the crystallization temperature (tc) and the temperature (Tex) of the strong solution measured by the means (AT).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、吸収冷温水機に関
する。
TECHNICAL FIELD The present invention relates to an absorption chiller-heater.

【0002】[0002]

【従来の技術】従来の吸収冷温水機は、例えば、吸収溶
液の循環量、溶液と冷却水の伝熱面積等の関係諸元が、
定格運転時に高効率となるように基本設定がなされてい
る。そのため、実使用条件のほとんどを占める部分負荷
運転において、効率改善の余地を残した状態にある。吸
収冷凍サイクルにおいては、濃溶液と稀溶液の濃度差が
大きいほどサイクル効率が向上する。その効率を向上す
るためには、濃度幅をなるべく拡大してやれば良い。そ
して、吸収溶液流量が少ないほど、濃度差は大きくな
り、効率は向上する。図7は、冷房負荷(kW)(横
軸)と濃度幅(wt%)(縦軸)との関係を、溶液流量
をパラメータにして実測したもので、流量50%の線B
5の濃度幅は流量75%の線B7の濃度幅の約2倍あ
り、線B7は流量100%の線B10の120%以上の
濃度幅となっている。
2. Description of the Related Art In a conventional absorption chiller-heater, for example, the relational parameters such as the circulating amount of the absorbing solution, the heat transfer area of the solution and cooling water,
Basic settings have been made to ensure high efficiency during rated operation. Therefore, there is still room for efficiency improvement in partial load operation, which occupies most of the actual usage conditions. In the absorption refrigeration cycle, the cycle efficiency improves as the concentration difference between the concentrated solution and the dilute solution increases. In order to improve the efficiency, the density range should be expanded as much as possible. And, the smaller the flow rate of the absorbing solution, the larger the concentration difference becomes, and the efficiency is improved. FIG. 7 shows the relationship between the cooling load (kW) (horizontal axis) and the concentration width (wt%) (vertical axis) measured using the solution flow rate as a parameter.
The density width of No. 5 is about twice the density width of the line B7 with a flow rate of 75%, and the line B7 has a density width of 120% or more of the line B10 with a flow rate of 100%.

【0003】図8は、負荷率(横軸)と成績係数(CO
P)(縦軸)の関係を、実機と改善シミュレーションで
比較したものである。濃度幅5.4%に固定して、熱交
換器の伝達率は一定、負荷率の減少した分、吸収溶液単
位流量当たりの伝熱面積が増加する、等の条件での改善
シミュレーションを示す線Ciでは、負荷率が20%で
はCOPが約30%の向上となり、実機における濃度幅
の低下による線Cjの10%向上に対して大きな改善が
期待できる。しかし、吸収溶液流量は、定格負荷時に想
定された低温再生器、吸収器の圧力と、低温再生器、吸
収器間に設置したオリフィス等の固定した溶液流動抵抗
手段に依存して、成り行きで決定されるので、従来の吸
収冷温水機では、部分負荷運転時に先述の図8中Ciを
トレースするような理想的な溶液流量よりも多くなるこ
とは避けられない。
FIG. 8 shows a load factor (horizontal axis) and a coefficient of performance (CO
The relationship of P) (vertical axis) is compared between the actual machine and the improvement simulation. A line showing an improvement simulation under the conditions where the concentration width is fixed at 5.4%, the heat transfer coefficient of the heat exchanger is constant, the load ratio is decreased, and the heat transfer area per unit flow rate of the absorbing solution is increased. With respect to Ci, when the load factor is 20%, the COP is improved by about 30%, and a large improvement can be expected with respect to the 10% improvement of the line Cj due to the decrease in the concentration width in the actual machine. However, the absorption solution flow rate is determined by the event, depending on the pressure of the low temperature regenerator and the absorber assumed at the rated load and the fixed solution flow resistance means such as the orifice installed between the low temperature regenerator and the absorber. Therefore, in the conventional absorption chiller-heater, it is unavoidable that the flow rate becomes larger than the ideal solution flow rate that traces Ci in FIG. 8 described above during the partial load operation.

【0004】また、効率向上のために吸収溶液流量を減
少させ過ぎると、溶液中で臭化リチウムの結晶が析出し
て、溶液の流動を妨げるという問題が生じる。とくに、
溶液濃度の最も高い低温再生器と吸収器の間では、低温
溶液熱交換器によって、濃溶液と稀溶液が熱交換し、濃
溶液温度が低下して、結晶が析出し易い条件となる。
Further, if the flow rate of the absorbing solution is excessively reduced to improve the efficiency, lithium bromide crystals are precipitated in the solution, which impedes the flow of the solution. Especially,
Between the low temperature regenerator having the highest solution concentration and the absorber, the low temperature solution heat exchanger exchanges heat between the concentrated solution and the dilute solution, and the temperature of the concentrated solution is lowered, so that crystals are likely to precipitate.

【0005】発明者は、このような、部分負荷運転時に
おける吸収溶液流量の制御と、濃溶液の結晶析出の回
避、を両立させる技術を確立して実機に適用できるよう
にした。
The inventor has established a technique for making the control of the flow rate of the absorbing solution during the partial load operation and avoiding the precipitation of crystals of the concentrated solution compatible with each other and applying the technique to an actual machine.

【0006】[0006]

【発明が解決しようとする課題】本発明は上述した従来
技術の問題点に鑑みて提案されたものであり、部分負荷
時においてもサイクル効率が低下せず、且つ、吸収溶液
(特に濃溶液)の結晶を防止することが出来る吸収冷温
水機及び制御方法の提供を目的としている。
SUMMARY OF THE INVENTION The present invention has been proposed in view of the above-mentioned problems of the prior art. The cycle efficiency does not decrease even under partial load, and the absorbing solution (especially concentrated solution) is used. It is an object of the present invention to provide an absorption chiller-heater and a control method capable of preventing the crystallization of water.

【0007】[0007]

【課題を解決するための手段】本発明の吸収冷温水機
は、吸収器(Ab)から送出された稀溶液と吸収器(A
b)に戻る濃溶液とで熱交換を行う低温溶液熱交換器
(Lex)と、該低温溶液熱交換器(Lex)よりも再
生器(Lg)側の領域(L12a)を流れる濃溶液流量
を調節する流量制御手段と、低温溶液熱交換器(Le
x)と吸収器(Ab)の間を流過する濃溶液の温度(T
ex)を計測する第1の温度計測手段と、制御手段とを
設け、該制御手段は、低温溶液熱交換器(Lex)の入
口(Li)近傍の濃溶液濃度から濃溶液の結晶温度を決
定し、該結晶温度と第1の温度計測手段により計測され
た濃溶液温度(Tex)とを比較して、該濃溶液温度が
結晶温度よりも所定値以上高温であれば(結晶温度に対
して余裕があれば)濃溶液流量を減少する制御信号を前
記流量制御手段に出力し、所定値以上高温でない(結晶
温度に対して余裕が無い)場合には濃溶液流量を増加す
る制御信号を前記流量制御手段に出力する様に構成され
ている(請求項1:図1、図2、図3)。
The absorption chiller-heater of the present invention comprises a dilute solution delivered from the absorber (Ab) and the absorber (A).
The flow rate of the concentrated solution flowing through the low temperature solution heat exchanger (Lex) for exchanging heat with the concentrated solution returning to b) and the region (L12a) on the regenerator (Lg) side of the low temperature solution heat exchanger (Lex) is Adjusting flow rate control means and low temperature solution heat exchanger (Le
x) and the temperature of the concentrated solution flowing through the absorber (Ab) (T
ex) is provided with a first temperature measuring means and a control means, and the control means determines the crystal temperature of the concentrated solution from the concentrated solution concentration near the inlet (Li) of the low temperature solution heat exchanger (Lex). Then, the crystal temperature is compared with the concentrated solution temperature (Tex) measured by the first temperature measuring means, and if the concentrated solution temperature is higher than the crystal temperature by a predetermined value or more (with respect to the crystal temperature A control signal for decreasing the flow rate of the concentrated solution is output to the flow rate control means, and when the temperature is not higher than a predetermined value (there is no room for the crystal temperature), a control signal for increasing the flow rate of the concentrated solution is output. It is configured to output to the flow rate control means (claim 1: FIG. 1, FIG. 2, FIG. 3).

【0008】係る構成を具備する本発明の吸収冷温水機
(1)の制御手段は、第1の温度計測手段により低温溶
液熱交換器(Lex)と吸収器(Ab)の間を流過する
濃溶液の温度を計測する工程と、低温溶液熱交換器Le
x)の入口近傍の濃溶液濃度から濃溶液の結晶温度を決
定する工程と、該結晶温度と第1の温度計測手段(A
T)により計測された濃溶液温度とを比較する工程と、
該濃溶液温度が結晶温度よりも所定値以上高温であれば
(結晶温度に対して余裕があれば)濃溶液流量を減少
し、所定値以上高温でない(結晶温度に対して余裕が無
い)場合には濃溶液流量を増加する制御を行う工程、と
を有している(請求項3:図1、図2)。
The control means of the absorption chiller-heater (1) of the present invention having such a configuration causes the first solution temperature measuring means to pass between the low temperature solution heat exchanger (Lex) and the absorber (Ab). The process of measuring the temperature of the concentrated solution and the low temperature solution heat exchanger Le
x) the step of determining the crystal temperature of the concentrated solution from the concentration of the concentrated solution, and the crystal temperature and the first temperature measuring means (A).
T) comparing the concentrated solution temperature measured by
When the concentrated solution temperature is higher than the crystal temperature by a predetermined value or more (if there is a margin to the crystal temperature), the flow rate of the concentrated solution is decreased and it is not higher than the predetermined value (no margin to the crystal temperature) And the step of controlling to increase the flow rate of the concentrated solution (claim 3: FIG. 1, FIG. 2).

【0009】上述した様な構成を有する本発明によれ
ば、結晶を生ずること無く、濃溶液流量を低減して、濃
度幅を広く取れるので、吸収冷温水機の効率を向上させ
ることができる。
According to the present invention having the above-mentioned structure, the concentration solution flow rate can be reduced and a wide concentration range can be obtained without producing crystals, so that the efficiency of the absorption chiller-heater can be improved.

【0010】また本発明の吸収冷温水機(2)は、吸収
器(Ab)から送出された稀溶液と吸収器(Ab)に戻
る濃溶液とで熱交換を行う低温溶液熱交換器(Lex)
と、該低温溶液熱交換器(Lex)よりも再生器(L
g)側の領域を流れる濃溶液流量を抑制する流量抑制手
段(Vk)と、低温溶液熱交換器(Lex)と吸収器
(Ab)の間を流過する濃溶液の温度を計測する第1の
温度計測手段(AT)とを備え、吸収器(Ab)から送
出された稀溶液が流れる稀溶液ライン(L14)は前記
低温溶液熱交換器(Lex)を流れるライン(14s)
とバイパスするバイパスライン(14b)とに分岐して
おり、該バイパスライン(14b)には流量制御手段
(Vb)が設けられ、制御手段(A5)を有しており、
該制御手段(A5)は、低温溶液熱交換器(Lex)の
入口(Li)近傍の濃溶液濃度から濃溶液の結晶温度を
決定し、該結晶温度と第1の温度計測手段(AT)によ
り計測された濃溶液温度とを比較して、該濃溶液温度が
結晶温度よりも所定値以上高温であれば(該濃溶液温度
が結晶温度に対して余裕があれば)前記バイパスライン
(14b)を流れるバイパス流量を減少する制御信号を
前記流量制御手段(Vb)に出力し、所定値以上高温で
ない(濃溶液温度が結晶温度に対して余裕が無い)場合
にはバイパス流量を増加する制御信号を前記流量制御手
段(Vb)に出力する様に構成されている(請求項2:
図4、図5、図6)。
Further, the absorption chiller-heater (2) of the present invention is a low temperature solution heat exchanger (Lex) for exchanging heat between the dilute solution sent from the absorber (Ab) and the concentrated solution returned to the absorber (Ab). )
And a regenerator (L) rather than the low temperature solution heat exchanger (Lex).
Flow rate suppressing means (Vk) for suppressing the flow rate of the concentrated solution flowing in the region g), and the first for measuring the temperature of the concentrated solution flowing between the low temperature solution heat exchanger (Lex) and the absorber (Ab). Temperature measuring means (AT), and the diluted solution line (L14) through which the diluted solution sent from the absorber (Ab) flows is the line (14s) flowing through the low temperature solution heat exchanger (Lex).
To a bypass line (14b) for bypassing, and the bypass line (14b) is provided with a flow rate control means (Vb) and has a control means (A5),
The control means (A5) determines the crystal temperature of the concentrated solution from the concentration of the concentrated solution near the inlet (Li) of the low temperature solution heat exchanger (Lex), and the crystal temperature and the first temperature measuring means (AT) are used. By comparing with the measured concentrated solution temperature, if the concentrated solution temperature is higher than the crystal temperature by a predetermined value or more (if the concentrated solution temperature has a margin with respect to the crystal temperature), the bypass line (14b) A control signal for reducing the bypass flow rate flowing through the flow controller is output to the flow rate control means (Vb), and when the temperature is not higher than a predetermined value (the concentrated solution temperature has no margin with respect to the crystal temperature), the control signal for increasing the bypass flow rate. Is output to the flow rate control means (Vb) (claim 2:
(FIGS. 4, 5, and 6).

【0011】そして、このような構成を具備する本発明
の吸収冷温水機(2)の制御手段は、第1の温度計測手
段(AT)により低温溶液熱交換器(Lex)と吸収器
(Ab)の間を流過する濃溶液の温度を計測する工程
と、低温溶液熱交換器(Lex)の入口近傍の濃溶液濃
度から濃溶液の結晶温度を決定する工程と、該結晶温度
と第1の温度計測手段(AT)により計測された濃溶液
温度とを比較する工程と、該濃溶液温度が結晶温度より
も所定値以上高温であれば(該濃溶液温度が結晶温度に
対して余裕があれば)前記バイパスライン(14s)を
流れるバイパス流量を減少し、所定値以上高温でない
(濃溶液温度が結晶温度に対して余裕が無い)場合には
バイパス流量を増加する制御を行う工程、とを有してい
る(請求項4:図4、図6)。
The control means of the absorption chiller-heater (2) of the present invention having the above-mentioned structure uses the first temperature measuring means (AT) for the low temperature solution heat exchanger (Lex) and the absorber (Ab). ), Measuring the temperature of the concentrated solution flowing between the two), determining the crystallization temperature of the concentrated solution from the concentration of the concentrated solution near the inlet of the low temperature solution heat exchanger (Lex), Of the concentrated solution temperature measured by the temperature measuring means (AT), and if the concentrated solution temperature is higher than the crystal temperature by a predetermined value or more (the concentrated solution temperature has a margin with respect to the crystal temperature). A control step of decreasing the bypass flow rate flowing through the bypass line (14s) and increasing the bypass flow rate when the temperature is not higher than a predetermined value (the concentrated solution temperature has no margin with respect to the crystal temperature); (Claim 4: FIG. 4, 6).

【0012】このように、流量抑制手段により濃溶液流
量を低減して、濃度幅を広く取ることにより吸収冷温水
機の効率を向上させることができる。濃溶液が結晶析出
温度に対して余裕が無い低温の場合には、バイパス流量
を増加して、低温溶液熱交換器(Lex)における伝熱
量を減少させ濃溶液の液温を低下させるように制御し
て、結晶化を防止する。
Thus, the efficiency of the absorption chiller-heater can be improved by reducing the flow rate of the concentrated solution and widening the concentration range by the flow rate suppressing means. When the concentrated solution has a low temperature that cannot afford the crystal precipitation temperature, control is performed by increasing the bypass flow rate to reduce the heat transfer amount in the low temperature solution heat exchanger (Lex) and lower the liquid temperature of the concentrated solution. To prevent crystallization.

【0013】「低温溶液熱交換器と吸収器の間を流過す
る濃溶液の温度を計測する」に際しては、温度センサ
(CT)により凝縮器(Cd)の冷媒凝縮温度(TC
d)を計測し、これに基づいて冷媒凝縮圧力(PCd)
を決定する。そして、吸収器(Ab)に近い側の再生器
(Lg)の出口温度(Tg)を計測し、当該再生器出口
温度(Tg)及び冷媒凝縮圧力(PCd)から、濃溶液
濃度を演算して求めることが出来る。或いは、凝縮器
(Cd)の冷媒凝縮圧力(PCd)を圧力センサにより
計測し、係る圧力と吸収器(Ab)に近い側の再生器
(Lg)の出口温度(Tg)から、濃溶液濃度を演算し
て求めることも出来る。さらに、低温溶液熱交換器(L
ex)と吸収器(Ab)との間の濃溶液通過ライン(L
12a)に、濃溶液の濃度を計測する濃度センサを設け
ても良い。
In measuring the temperature of the concentrated solution flowing between the low temperature solution heat exchanger and the absorber, a temperature sensor (CT) measures the refrigerant condensation temperature (TC) of the condenser (Cd).
d) is measured, and based on this, the refrigerant condensing pressure (PCd)
To decide. Then, the outlet temperature (Tg) of the regenerator (Lg) near the absorber (Ab) is measured, and the concentrated solution concentration is calculated from the regenerator outlet temperature (Tg) and the refrigerant condensing pressure (PCd). You can ask. Alternatively, the refrigerant condensing pressure (PCd) of the condenser (Cd) is measured by a pressure sensor, and the concentrated solution concentration is calculated from the pressure and the outlet temperature (Tg) of the regenerator (Lg) near the absorber (Ab). It can also be calculated and obtained. Furthermore, a low temperature solution heat exchanger (L
ex) and absorber (Ab) between the concentrated solution passage lines (L
12a) may be provided with a concentration sensor that measures the concentration of the concentrated solution.

【0014】流量制御手段(Vk)は、流量調整弁に限
定するものではなく、流体抵抗を変化出来る「可変抵
抗」手段であれば良く、ポンプ、可変オリフィス、その
他が適用可能である。
The flow rate controlling means (Vk) is not limited to the flow rate adjusting valve, but may be any "variable resistance" means capable of changing the fluid resistance, and a pump, a variable orifice, or the like can be applied.

【0015】流量抑制手段(Vb)も、同様に、弁、ポ
ンプ、オリフィス、絞り等を適用することが可能であ
る。
Similarly, a valve, a pump, an orifice, a throttle, etc. can be applied to the flow rate suppressing means (Vb).

【0016】[0016]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。図1に、第1の実施形態のシリー
ズタイプ吸収冷温水機1の構成を示している。吸収冷温
水機1は、高温再生器Hgと低温再生器Lgと凝縮器C
dと蒸発器Evと吸収器Abとで一般的な主要装置が構
成され、これらの主要装置を機能させる配管ラインと制
御装置等によって全体構成がされている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of a series type absorption chiller-heater 1 of the first embodiment. The absorption chiller / heater 1 includes a high temperature regenerator Hg, a low temperature regenerator Lg, and a condenser C.
A general main device is constituted by d, the evaporator Ev, and the absorber Ab, and the entire structure is constituted by a piping line, a control device, and the like for operating these main devices.

【0017】吸収器Abと高温再生器Hgとは、吸収器
Abにおいて蒸気状の冷媒溶液を吸収した吸収稀溶液K
3を高温再生器Hgに搬送する稀溶液ラインL14によ
って連通されている。稀溶液ラインL14にポンプPa
が介装され、ラインL14の吸収器Ab側に低温溶液熱
交換器Lexが介装され、高温再生器Hg側に高温溶液
熱交換器Hexが介装されている。
The absorber Ab and the high temperature regenerator Hg are composed of a diluted absorption solution K obtained by absorbing the vaporous refrigerant solution in the absorber Ab.
3 are communicated with each other by a dilute solution line L14 that conveys 3 to the high temperature regenerator Hg. Pump Pa to the dilute solution line L14
, A low temperature solution heat exchanger Lex is installed on the absorber Ab side of the line L14, and a high temperature solution heat exchanger Hex is installed on the high temperature regenerator Hg side.

【0018】高温再生器Hgと低温再生器Lgとは、高
温再生器Hgにおいて加熱され冷媒溶液を蒸発分離して
濃縮された吸収濃溶液K1を搬送する濃溶液ラインL5
によって連通されている。また、蒸発分離された冷媒蒸
気を搬送する冷媒蒸気ラインL21によって連通されて
いる。高温再生器Hgに、稀溶液K3を加熱するバーナ
Buに熱量Qを供給する燃料ラインLqが、弁Vqを介
装して装着されている。濃溶液ラインL5に、前記ライ
ンL14と熱的に共有する高温溶液熱交換器Hexが介
装されている。
The high temperature regenerator Hg and the low temperature regenerator Lg are concentrated solution lines L5 for carrying the concentrated absorption solution K1 which is heated in the high temperature regenerator Hg and evaporated and separated from the refrigerant solution.
Is communicated by. Further, they are communicated with each other by a refrigerant vapor line L21 that conveys the evaporated and separated refrigerant vapor. A fuel line Lq for supplying a quantity of heat Q to a burner Bu for heating the dilute solution K3 is attached to the high temperature regenerator Hg via a valve Vq. The concentrated solution line L5 is provided with a high temperature solution heat exchanger Hex which is thermally shared with the line L14.

【0019】低温再生器Lgと凝縮器Cdとは冷媒ライ
ンL7で連通され、凝縮器Cdに冷媒の凝縮温度TCd
を計測する温度センサCTが装着されている。温度セン
サCTは、信号線18で後記で詳述する制御手段の装置
部である制御装置5に連通されている。
The low temperature regenerator Lg and the condenser Cd are connected by a refrigerant line L7, and the condenser Cd has a condensation temperature TCd of the refrigerant.
A temperature sensor CT for measuring is attached. The temperature sensor CT is connected by a signal line 18 to a control device 5 which is a device portion of a control means described in detail later.

【0020】低温再生器Lgと吸収器Abとは、低温再
生器Lgでさらに濃縮された吸収濃溶液K2を搬送する
濃溶液ラインL12によって連通されている。濃溶液ラ
インL12に、前記ラインL14と熱的に共有する低温
溶液熱交換器Lexが介装されている。濃溶液ラインL
12の低温溶液熱交換器Lexと低温再生器Lgとの間
に、濃溶液K2の流量を調節する流量制御手段の調整弁
Vkが介装され、調整弁Vkと低温再生器Lgとの間に
ラインL12を流過する濃溶液K2の温度Tgを計測す
る第2の温度計測手段である温度センサBTが設けられ
ている。制御弁Vkと温度センサBTは、制御装置5に
それぞれが、制御線19と信号線16とで連通されてい
る。
The low temperature regenerator Lg and the absorber Ab are communicated with each other by a concentrated solution line L12 which conveys the concentrated concentrated solution K2 further concentrated in the low temperature regenerator Lg. A low temperature solution heat exchanger Lex that is thermally shared with the line L14 is provided in the concentrated solution line L12. Concentrated solution line L
An adjusting valve Vk of a flow rate control means for adjusting the flow rate of the concentrated solution K2 is interposed between the low temperature solution heat exchanger Lex 12 and the low temperature regenerator Lg, and is provided between the adjusting valve Vk and the low temperature regenerator Lg. A temperature sensor BT, which is a second temperature measuring means for measuring the temperature Tg of the concentrated solution K2 flowing through the line L12, is provided. The control valve Vk and the temperature sensor BT are connected to the control device 5 by a control line 19 and a signal line 16, respectively.

【0021】ラインL12の低温溶液熱交換器Lexと
吸収器Abとの間の領域L12aにラインL12aを流
過する濃溶液K2の温度Texを計測する第1の温度計
測手段である温度センサATが設けられている。温度セ
ンサATは制御装置5に信号線21で連通されている。
The temperature sensor AT which is the first temperature measuring means for measuring the temperature Tex of the concentrated solution K2 flowing through the line L12a in the region L12a between the low temperature solution heat exchanger Lex and the absorber Ab of the line L12 is provided. It is provided. The temperature sensor AT is connected to the control device 5 via a signal line 21.

【0022】制御装置5は、冷媒の凝縮圧力PCdと低
温溶液熱交換器Lexの入り口Liの近傍の濃溶液濃度
DK2とから濃溶液K2が結晶を析出する結晶温度tc
を決定し、その結晶温度tcと温度センサATにより計
測された濃溶液温度Texと比較する機能を有して構成
されている。制御装置5は、また、濃溶液温度Texが
濃溶液K2の結晶温度tcよりも所定値以上で結晶析出
に余裕があれば濃溶液K2の流量vK2を減少させる制
御信号を調整弁Vkに出力し、また、濃溶液温度Tex
が濃溶液K2の結晶温度tcよりも所定値以下で結晶析
出に余裕がなければ、濃溶液K2の流量vK2を増加さ
せる制御信号を調整弁Vkに出力する機能を有して構成
されている。
The control device 5 controls the condensing pressure PCd of the refrigerant and the concentrated solution concentration DK2 near the inlet Li of the low temperature solution heat exchanger Lex from the crystal temperature tc at which the concentrated solution K2 precipitates crystals.
Is determined and the crystal temperature tc is compared with the concentrated solution temperature Tex measured by the temperature sensor AT. The controller 5 also outputs a control signal for decreasing the flow rate vK2 of the concentrated solution K2 to the adjustment valve Vk if the concentrated solution temperature Tex is equal to or higher than a predetermined value of the crystal temperature tc of the concentrated solution K2 and there is a margin for crystal precipitation. , Again, concentrated solution temperature Tex
Has a function of outputting a control signal for increasing the flow rate vK2 of the concentrated solution K2 to the adjusting valve Vk if there is no room for crystal precipitation below a predetermined temperature below the crystal temperature tc of the concentrated solution K2.

【0023】図2は、上記制御装置5の機能をブロック
構成で示している。演算ユニット51は、温度センサC
Tと連通する第1のインタフェースIf1に連通してい
て、温度センサCTからの冷媒凝縮温度TCdから冷媒
凝縮圧力PCdを演算する機能を有して構成されてい
る。なお、冷媒凝縮圧力PCdを直接に計測する手段を
設けていれば、この演算ユニット51は省略できる。
FIG. 2 shows the functions of the control device 5 in a block configuration. The calculation unit 51 includes a temperature sensor C
It is connected to the first interface If1 communicating with T, and is configured to have a function of calculating the refrigerant condensing pressure PCd from the refrigerant condensing temperature TCd from the temperature sensor CT. The arithmetic unit 51 can be omitted if a means for directly measuring the refrigerant condensing pressure PCd is provided.

【0024】演算ユニット52は、温度センサBTと連
通する第2のインタフェースIf2に連通していて、温
度センサBTからの濃溶液温度Tgと冷媒凝縮圧力PC
dとをあわせて濃溶液濃度DK2を演算する機能を有し
て構成されている。演算ユニット53は、濃溶液濃度D
K2から既公知の計算式によって結晶析出温度tcを演
算する機能を有して構成されている。
The arithmetic unit 52 communicates with the second interface If2 communicating with the temperature sensor BT, and the concentrated solution temperature Tg from the temperature sensor BT and the refrigerant condensing pressure PC.
It is configured to have a function of calculating the concentrated solution concentration DK2 together with d. The calculation unit 53 has a concentrated solution concentration D
It has a function of calculating the crystal precipitation temperature tc from K2 according to a known formula.

【0025】比較手段54は、温度センサATと連通す
る第3のインタフェースIf3に連通していて、温度セ
ンサATからの濃溶液温度Texと結晶析出温度tcと
をあわせて、濃溶液温度Texが余裕を有するかを演算
する機能を有して構成されている。
The comparison means 54 communicates with the third interface If3 communicating with the temperature sensor AT, and combines the concentrated solution temperature Tex from the temperature sensor AT and the crystal precipitation temperature tc so that the concentrated solution temperature Tex has a margin. Is configured to have a function of calculating whether or not

【0026】バルブ開度決定ユニット55は、比較手段
54で演算した結果にもとづいて、濃溶液流量vK2の
増、減を行うバルブ開度即ち流量調整弁Vkの開度を決
定する機能を有して構成されている。インタフェース5
6は、バルブ開度決定ユニッド55の出力信号を弁Vk
に送信伝達する機能を有して構成されている。
The valve opening determining unit 55 has a function of determining the valve opening for increasing or decreasing the concentrated solution flow rate vK2, that is, the opening of the flow rate adjusting valve Vk based on the result calculated by the comparing means 54. Is configured. Interface 5
6 outputs the output signal of the valve opening determination unit 55 to the valve Vk.
It has a function of transmitting and transmitting to.

【0027】図1及び図2で構成される吸収冷温水機1
の運転制御手段を、図3に示すフローチャートによって
説明する。ステップS1では、凝縮器Cdにおける冷媒
の凝縮温度TCdを計測する。ステップS2では、凝縮
温度TCdから凝縮圧力PCdを演算して求める。
Absorption chiller / heater 1 constructed as shown in FIGS. 1 and 2.
The operation control means will be described with reference to the flowchart shown in FIG. In step S1, the condensation temperature TCd of the refrigerant in the condenser Cd is measured. In step S2, the condensation pressure PCd is calculated from the condensation temperature TCd.

【0028】ステップS3では、低温再生器Lgから出
る濃溶液K2の温度Tgを計測する。ステップS4で
は、凝縮圧力PCdと低温溶液熱交換器Lexの入り口
Liの近傍濃溶液温度Tgとから濃溶液濃度DK2を演
算して求める。ステップS5では、濃溶液濃度DK2か
ら結晶析出温度tcを演算によって求める。ステップS
4とステップS5が結晶温度を決定する工程である。
In step S3, the temperature Tg of the concentrated solution K2 discharged from the low temperature regenerator Lg is measured. In step S4, the concentrated solution concentration DK2 is calculated from the condensation pressure PCd and the concentrated solution temperature Tg near the inlet Li of the low temperature solution heat exchanger Lex. In step S5, the crystal precipitation temperature tc is calculated from the concentrated solution concentration DK2. Step S
4 and step S5 are steps for determining the crystal temperature.

【0029】ステップS6では、低温溶液熱交換器Le
xの出口における濃溶液K2、即ち低温溶液熱交換器L
exと吸収器Abの間を流通する濃溶液K2、の温度T
exを温度センサATで計測する。ステップS6が濃溶
液K2の温度を計測する工程である。
In step S6, the low temperature solution heat exchanger Le is used.
Concentrated solution K2 at the outlet of x, that is, low temperature solution heat exchanger L
temperature T of the concentrated solution K2 flowing between ex and the absorber Ab
ex is measured by the temperature sensor AT. Step S6 is a step of measuring the temperature of the concentrated solution K2.

【0030】ステップS7では、ステップS5からの結
晶温度tcとステップS6からの濃溶液温度Texとに
よって、濃溶液温度Texが結晶温度tcに対して余裕
があるか?を比較検討する。このステップS7が結晶温
度tcと濃溶液温度Texとを比較する工程である。
In step S7, does the concentrated solution temperature Tex have a margin with respect to the crystal temperature tc due to the crystal temperature tc from step S5 and the concentrated solution temperature Tex from step S6? Weigh and compare. This step S7 is a step of comparing the crystal temperature tc with the concentrated solution temperature Tex.

【0031】ステップS8では、結晶温度tcに対して
濃溶液K2の温度Texが余裕のない懸念状態なので濃
溶液流量vK2を増大させる。そして、ステップS1に
戻る。ステップS9では、結晶温度tcに対して濃溶液
K2の温度Texが余裕があって濃溶液の流量を減少さ
せることができるので濃溶液流量vK2を減少させる。
この際、濃溶液量vK2の減少によって、蒸発器Evに
おける冷媒蒸発温度の上昇が、例えば蒸発器Evを経由
する冷房負荷Refに必要な7℃の冷水が得られる条件
の範囲にとどまるように制御する。ついで、ステップS
1に戻る。
In step S8, since the temperature Tex of the concentrated solution K2 is insufficient with respect to the crystal temperature tc, the concentrated solution flow rate vK2 is increased. Then, the process returns to step S1. In step S9, since the temperature Tex of the concentrated solution K2 has a margin with respect to the crystallization temperature tc and the flow rate of the concentrated solution can be reduced, the concentrated solution flow rate vK2 is reduced.
At this time, the decrease in the concentrated solution amount vK2 is controlled such that the rise in the refrigerant evaporation temperature in the evaporator Ev is kept within a range of conditions in which cold water of 7 ° C. necessary for the cooling load Ref passing through the evaporator Ev is obtained, for example. To do. Then, step S
Return to 1.

【0032】なお、凝縮器Cdの冷媒凝縮温度TCd計
測手段に変えて、冷媒凝縮圧力PCd計測センサを設け
てもよい。その場合は、図2における制御ユニット5内
の、冷媒凝縮温度から冷媒凝縮圧力を求める演算ユニッ
ト51を省略できる。また、図3における冷媒凝縮温度
TCdから冷媒凝縮圧力PCdを演算するステップS2
が省略できる。
A refrigerant condensing pressure PCd measuring sensor may be provided instead of the refrigerant condensing temperature TCd measuring means of the condenser Cd. In that case, the arithmetic unit 51 for obtaining the refrigerant condensing pressure from the refrigerant condensing temperature in the control unit 5 in FIG. 2 can be omitted. Further, step S2 of calculating the refrigerant condensing pressure PCd from the refrigerant condensing temperature TCd in FIG.
Can be omitted.

【0033】また、低温溶液熱交換器Lexと吸収器A
bとの間の濃溶液ラインL12aに濃溶液の濃度を計測
する濃度センサを設けてもよい。その場合は、冷媒凝縮
温度TCdから冷媒凝縮圧力PCdを求める冷媒凝縮圧
力演算ユニット51と濃溶液濃度演算ユニット52を、
図2の制御装置5から省略できる。また、冷媒凝縮温度
TCdから冷媒凝縮圧力PCdを演算するステップS2
と、濃溶液の濃度を演算するステップS4とを、図3の
フローチャートから省略できる。
Further, the low temperature solution heat exchanger Lex and the absorber A are used.
A concentration sensor that measures the concentration of the concentrated solution may be provided on the concentrated solution line L12a between the point b and the point b. In that case, the refrigerant condensing pressure calculation unit 51 and the concentrated solution concentration calculation unit 52 for obtaining the refrigerant condensing pressure PCd from the refrigerant condensing temperature TCd are
It can be omitted from the control device 5 of FIG. Further, step S2 of calculating the refrigerant condensing pressure PCd from the refrigerant condensing temperature TCd.
And step S4 of calculating the concentration of the concentrated solution can be omitted from the flowchart of FIG.

【0034】このようにして、負荷の大小に応じた最適
必要量の濃溶液流量を吸収器Abに流通させることで効
率の向上をはかっている。
In this way, the efficiency is improved by causing the optimum necessary amount of concentrated solution flow according to the magnitude of the load to flow through the absorber Ab.

【0035】図4は、第2の実施形態のシリーズタイプ
吸収冷温水機2の構成を示している。吸収冷温水機2
は、高温再生器Hgと低温再生器Lgと凝縮器Cdと蒸
発器Evと吸収器Abとで一般的な主要装置が構成さ
れ、これらの主要装置を機能させる配管ラインと制御装
置等によって全体構成がされている。
FIG. 4 shows the construction of the series type absorption chiller-heater 2 of the second embodiment. Absorption chiller / heater 2
In general, a high temperature regenerator Hg, a low temperature regenerator Lg, a condenser Cd, an evaporator Ev and an absorber Ab constitute a general main device, and the overall configuration is constituted by a piping line and a control device for operating these main devices. Has been done.

【0036】以下、前記図1及び図2の第1の実施形態
と異なる部分を主体に、同機能の装置は同符号を使用し
て説明する。
The parts different from the first embodiment shown in FIGS. 1 and 2 will be mainly described below, and the devices having the same functions will be described by using the same reference numerals.

【0037】吸収器Abと高温再生器Hgとは、吸収器
Abにおいて蒸気状の冷媒溶液を吸収した吸収稀溶液K
3を高温再生器Hgに搬送する稀溶液ラインL14によ
って連通されている。稀溶液ラインL14にポンプPa
が介装され、ラインL14の吸収器Ab側に低温溶液熱
交換器Lexが介装され、高温再生器側に高温溶液熱交
換器Hexが介装されている。
The absorber Ab and the high temperature regenerator Hg are composed of a diluted absorption solution K obtained by absorbing the vaporous refrigerant solution in the absorber Ab.
3 are communicated with each other by a dilute solution line L14 that conveys 3 to the high temperature regenerator Hg. Pump Pa to the dilute solution line L14
Is installed, the low temperature solution heat exchanger Lex is installed on the absorber Ab side of the line L14, and the high temperature solution heat exchanger Hex is installed on the high temperature regenerator side.

【0038】ラインL14のポンプPaと低温溶液熱交
換器Lexとの間に分岐点B1が設けられ、分岐点B1
に、低温溶液熱交換器Lexをバイパスするバイパスラ
イン14bが分岐されて、分岐点B1から低温溶液熱交
換器Lexを経由するラインL14の領域であるライン
14sと合流点G1で合流している。
A branch point B1 is provided between the pump Pa of the line L14 and the low temperature solution heat exchanger Lex.
A bypass line 14b that bypasses the low temperature solution heat exchanger Lex is branched into a line L14 which is a region of a line L14 that passes through the low temperature solution heat exchanger Lex from the branch point B1 and joins at a confluence point G1.

【0039】バイパスライン14bに、バイパス流量を
調整する調整弁Vbが介装され、調整弁Vbは後述する
制御手段の装置部である制御装置A5に制御線20で連
通されている。図5は、低温溶液熱交換器Lex周辺を
示したもので、図においては前記の合流点G1と調整弁
Vbを合体して3方弁V3Bにした構成にしている。そ
の他の構成と機能は前記図1と同じである。
A regulating valve Vb for regulating the bypass flow rate is interposed in the bypass line 14b, and the regulating valve Vb is connected by a control line 20 to a control device A5 which is a device part of control means described later. FIG. 5 shows the vicinity of the low temperature solution heat exchanger Lex. In the figure, the confluence point G1 and the regulating valve Vb are combined to form a three-way valve V3B. Other configurations and functions are the same as those in FIG.

【0040】高温再生器Hgと低温再生器Lgとは、高
温再生器Hgにおいて加熱され冷媒溶液を蒸発分離して
濃縮された吸収濃溶液K1を搬送する濃溶液ラインL5
によって連通されている。また、蒸発分離された冷媒蒸
気を搬送する冷媒蒸気ラインL21によって連通されて
いる。
The high temperature regenerator Hg and the low temperature regenerator Lg are concentrated solution lines L5 for carrying the concentrated absorption solution K1 which is heated in the high temperature regenerator Hg and evaporated and separated from the refrigerant solution.
Is communicated by. Further, they are communicated with each other by a refrigerant vapor line L21 that conveys the evaporated and separated refrigerant vapor.

【0041】高温再生器Hgに、稀溶液を加熱するバー
ナBuに熱量Qを供給する燃料ラインLqが、弁Vqを
介装して装着されている。濃溶液ラインL5に、前記ラ
インL14と熱的に共有する高温溶液熱交換器Hexが
介装されている。
A fuel line Lq for supplying a heat quantity Q to a burner Bu for heating a dilute solution is attached to the high temperature regenerator Hg via a valve Vq. The concentrated solution line L5 is provided with a high temperature solution heat exchanger Hex which is thermally shared with the line L14.

【0042】低温再生器Lgと凝縮器Cdとは冷媒ライ
ンL7で連通され、凝縮器Cdに冷媒の凝縮温度TCd
を計測する温度センサCTが装着されている。温度セン
サCTは、信号線18で制御装置A5に連通されてい
る。低温再生器Lgと吸収器Abとは、低温再生器Lg
でさらに濃縮された吸収濃溶液K2を搬送する濃溶液ラ
インL12によって連通されている。
The low temperature regenerator Lg and the condenser Cd are communicated with each other through a refrigerant line L7, and the condenser Cd has a condensation temperature TCd of the refrigerant.
A temperature sensor CT for measuring is attached. The temperature sensor CT is communicated with the control device A5 via a signal line 18. The low temperature regenerator Lg and the absorber Ab are the low temperature regenerator Lg.
Is connected by a concentrated solution line L12 that conveys the concentrated concentrated solution K2 that has been further concentrated.

【0043】濃溶液ラインL12に、前記ラインL14
と熱的に共有する低温溶液熱交換器Lexが介装されて
いる。濃溶液ラインL12の低温溶液熱交換器Lexと
低温再生器Lgとの間に、濃溶液K2の流量を調整する
流量制御手段の調整弁Vkが介装され、調整弁Vkと低
温再生器Lgとの間にラインL12を流過する濃溶液K
2の温度Tgを計測する第2の温度計測手段である温度
センサBTが設けられている。温度センサBTは、制御
装置A5に信号線16で連通されている。
In the concentrated solution line L12, the line L14
A low temperature solution heat exchanger Lex that is thermally shared with is interposed. Between the low temperature solution heat exchanger Lex and the low temperature regenerator Lg of the concentrated solution line L12, the adjusting valve Vk of the flow control means for adjusting the flow rate of the concentrated solution K2 is provided, and the adjusting valve Vk and the low temperature regenerator Lg are provided. Solution K flowing through line L12 between
A temperature sensor BT, which is a second temperature measuring unit that measures the temperature Tg of 2, is provided. The temperature sensor BT is connected to the control device A5 via a signal line 16.

【0044】ラインL12の低温溶液熱交換器Lexと
吸収器Abとの間の領域ラインL12aにラインL12
aを流過する濃溶液K2の温度Texを計測する第1の
温度計測手段である温度センサATが設けられている。
温度センサATは制御装置A5に信号線21で連通され
ている。
The line L12 is located in the region line L12a between the low temperature solution heat exchanger Lex and the absorber Ab in the line L12.
A temperature sensor AT, which is a first temperature measuring means for measuring the temperature Tex of the concentrated solution K2 flowing through a, is provided.
The temperature sensor AT is connected to the control device A5 via a signal line 21.

【0045】制御装置A5は、冷媒の凝縮圧力PCdと
低温溶液熱交換器Lexの入り口Liの近傍の濃溶液濃
度DK2とから濃溶液K2が結晶を析出する結晶温度t
cを決定し、その結晶温度tcと温度センサATにより
計測された濃溶液温度Texと比較する機能を有して構
成されている。制御装置A5は、また、濃溶液温度Te
xが濃溶液K2の結晶温度tcよりも所定値以上で結晶
析出に余裕があれば、バイパスライン14bに介装され
た調整弁Vbを閉弁側に調整して低温溶液熱交換器Le
xに流れる稀溶液を増大させてラインL12を流れる濃
溶液K2からの受熱量を増加させるように信号出力して
いる。また、濃溶液温度Texが濃溶液K2の結晶温度
tcよりも所定値以下で結晶析出に余裕がなければ、調
整弁Vbを開弁側に調整して低温溶液熱交換器Lexに
流れる稀溶液を減少させてラインL12を流れる濃溶液
K2からの受熱量を減少させるように信号出力してい
る。
The control device A5 controls the condensing pressure PCd of the refrigerant and the concentrated solution concentration DK2 in the vicinity of the inlet Li of the low temperature solution heat exchanger Lex from the crystal temperature t at which the concentrated solution K2 precipitates crystals.
It has a function of determining c and comparing the crystal temperature tc with the concentrated solution temperature Tex measured by the temperature sensor AT. The controller A5 also controls the concentrated solution temperature Te
If x is a predetermined value or more than the crystal temperature tc of the concentrated solution K2 and there is a margin for crystal precipitation, the regulating valve Vb interposed in the bypass line 14b is adjusted to the valve closing side to control the low temperature solution heat exchanger Le.
A signal is output so as to increase the dilute solution flowing in x to increase the amount of heat received from the concentrated solution K2 flowing in the line L12. Further, if the concentrated solution temperature Tex is less than a predetermined value than the crystal temperature tc of the concentrated solution K2 and there is no margin in crystal precipitation, the adjustment valve Vb is adjusted to the valve opening side to adjust the rare solution flowing to the low temperature solution heat exchanger Lex. A signal is output so as to reduce the amount of heat received from the concentrated solution K2 flowing through the line L12.

【0046】上記制御装置A5の機能構成は、第1の実
施形態における図2のブロック構成と実質的に同じであ
る。本実施形態では、図2におけるバルブ開閉決定ユニ
ット55の制御対象が、第1の実施形態における流量調
整弁Vkに対し本実施形態の流量調整弁Vbに置換した
状態である。
The functional configuration of the control device A5 is substantially the same as the block configuration of FIG. 2 in the first embodiment. In the present embodiment, the control target of the valve opening / closing determining unit 55 in FIG. 2 is a state in which the flow rate adjusting valve Vb of the present embodiment is replaced with the flow rate adjusting valve Vk of the first embodiment.

【0047】図4で構成される吸収冷温水機2の運転制
御手段を、図6に示すフローチャートによって説明す
る。以下のステップは、濃溶液K2の流量が調整弁Vk
によって適正に調整されている状態を前提にして行われ
る。
The operation control means of the absorption chiller-heater 2 constructed as shown in FIG. 4 will be described with reference to the flow chart shown in FIG. In the following steps, the flow rate of the concentrated solution K2 is adjusted by adjusting valve Vk.
It is performed on the assumption that it is properly adjusted by.

【0048】ステップS11では、凝縮器Cdにおける
冷媒の凝縮温度TCdを計測する。ステップS12で
は、凝縮温度TCdから凝縮圧力PCdを演算して求め
る。ステップS13では、低温再生器Lgから出る濃溶
液K2の温度Tgを計測する。
In step S11, the condensation temperature TCd of the refrigerant in the condenser Cd is measured. In step S12, the condensation pressure PCd is calculated from the condensation temperature TCd. In step S13, the temperature Tg of the concentrated solution K2 discharged from the low temperature regenerator Lg is measured.

【0049】ステップS14では、凝縮圧力PCdと低
温溶液熱交換器Lexの入り口Liの近傍濃溶液温度T
gとから濃溶液濃度DK2を演算して求める。ステップ
S15では、濃溶液濃度DK2から結晶析出温度tcを
演算によって求める。ステップS14とステップS15
が結晶温度を決定する工程である。
In step S14, the condensation pressure PCd and the temperature T of the concentrated solution near the inlet Li of the low temperature solution heat exchanger Lex are increased.
The concentration DK2 of the concentrated solution is calculated from g and calculated. In step S15, the crystal precipitation temperature tc is calculated from the concentrated solution concentration DK2. Step S14 and Step S15
Is the step of determining the crystal temperature.

【0050】ステップS16では、低温溶液熱交換器L
exの出口における濃溶液K2、即ち低温溶液熱交換器
Lexと吸収器Abの間を流通する濃溶液K2、の温度
Texを温度センサATで計測する。ステップS16が
濃溶液K2の温度を計測する工程である。
In step S16, the low temperature solution heat exchanger L
A temperature sensor AT measures the temperature Tex of the concentrated solution K2 at the outlet of ex, that is, the concentrated solution K2 flowing between the low temperature solution heat exchanger Lex and the absorber Ab. Step S16 is a step of measuring the temperature of the concentrated solution K2.

【0051】ステップS17では、ステップS15から
の結晶温度tcとステップS16からの濃溶液温度Te
xとによって、濃溶液温度Texが結晶温度tcに対し
て余裕があるか?を比較検討する。このステップS17
が結晶温度tcと濃溶液温度Texとを比較する工程で
ある。
In step S17, the crystallization temperature tc from step S15 and the concentrated solution temperature Te from step S16.
Depending on x, does the concentrated solution temperature Tex have a margin with respect to the crystal temperature tc? Weigh and compare. This step S17
Is a step of comparing the crystallization temperature tc with the concentrated solution temperature Tex.

【0052】ステップS18では、結晶温度tcに対し
て濃溶液K2の温度Texが余裕のない懸念状態なので
流量調整弁Vbを開弁して低温溶液熱交換器Lexを流
れる稀溶液流量を減少させる。これによって、濃溶液K
2の放熱を抑えて結晶析出を防止する。そして、ステッ
プS11に戻る。
In step S18, since the temperature Tex of the concentrated solution K2 is insufficient with respect to the crystal temperature tc, the flow rate adjusting valve Vb is opened to reduce the flow rate of the rare solution flowing through the low temperature solution heat exchanger Lex. This allows the concentrated solution K
2 Heat release is suppressed to prevent crystal precipitation. Then, the process returns to step S11.

【0053】ステップS19では、結晶温度tcに対し
て濃溶液K2の温度Texが余裕があって濃溶液K2の
温度を低下させることができるので、流量調整弁Vbを
閉弁して授熱させる低温溶液熱交換器Lexを流れる稀
溶液流量を増加させる。そして、ステップS11に戻
る。
In step S19, since the temperature Tex of the concentrated solution K2 has a margin with respect to the crystallization temperature tc and the temperature of the concentrated solution K2 can be lowered, the flow rate adjusting valve Vb is closed to heat the low temperature. Increase the dilute solution flow rate through the solution heat exchanger Lex. Then, the process returns to step S11.

【0054】上記のようにして、濃溶液K2から低温溶
液熱交換器Lexへの授熱を制御して、濃溶液K2に結
晶析出が生じない状態を維持して高効率運転を保持す
る。
As described above, heat transfer from the concentrated solution K2 to the low temperature solution heat exchanger Lex is controlled to maintain a state in which crystal precipitation does not occur in the concentrated solution K2 and maintain high efficiency operation.

【0055】凝縮器Cdの冷媒凝縮温度TCd計測手段
に変えて、冷媒凝縮圧力PCd計測センサを設ける例及
び、低温溶液熱交換器Lexと吸収器Abとの間の濃溶
液通過ラインL12aに濃溶液の濃度を計測する濃度セ
ンサを設ける例については、前記第1の実施形態と同様
である。
An example in which a refrigerant condensing pressure PCd measuring sensor is provided instead of the refrigerant condensing temperature TCd measuring means of the condenser Cd, and a concentrated solution passage line L12a between the low temperature solution heat exchanger Lex and the absorber Ab is provided. The example of providing the concentration sensor for measuring the concentration of is similar to that of the first embodiment.

【0056】なお、図示の第1及び第2の実施形態はあ
くまでも例示であり、本発明の技術的範囲を限定する趣
旨の記述ではない。例えば、図示の実施形態では二重効
用吸収冷温水機が示されているが、一重効用、一重二重
効用、三重効用の吸収冷温水機を用いても良い。また、
図示の実施形態ではシリーズフロータイプの吸収冷温水
機が用いられているが、パラレルフロータイプ、リバー
スフロータイプ、シリーズパラレルフロータイプ、リバ
ースパラレルフロータイプ等、種々のタイプに対しても
適用可能である。
It should be noted that the illustrated first and second embodiments are merely examples, and are not intended to limit the technical scope of the present invention. For example, although the double-effect absorption chiller-heater is shown in the illustrated embodiment, a single-effect, single double-effect, triple-effect absorption chiller-heater may be used. Also,
Although the series flow type absorption chiller-heater is used in the illustrated embodiment, it is also applicable to various types such as a parallel flow type, a reverse flow type, a series parallel flow type, and a reverse parallel flow type. .

【0057】[0057]

【発明の効果】本発明の作用効果を、以下に列記する。 (1) 本発明によれば、低温再生器と吸収器の間に流
量調整手段を設けて、濃溶液温度と濃度から演算した流
量減少要因の溶液結晶析出温度を勘案した最適な濃溶液
流量に調整するので、とくに部分負荷における濃溶液と
稀溶液との温度差を大きく保って高効率を保持できる。 (2) 低温溶液熱交換器を経由する稀溶液ラインにバ
イパスラインを設けて、濃溶液から稀溶液に伝達する熱
量を調整するので、濃溶液温度をの結晶析出を生じない
ように維持してとくに部分負荷における濃溶液と稀溶液
との温度差を大きく保って高効率を保持できる。
The effects of the present invention are listed below. (1) According to the present invention, a flow rate adjusting means is provided between the low temperature regenerator and the absorber so that an optimum concentrated solution flow rate is obtained in consideration of the solution crystal precipitation temperature which is a factor of flow rate reduction calculated from the concentrated solution temperature and the concentration. Since the temperature is adjusted, the temperature difference between the concentrated solution and the diluted solution can be kept large especially under partial load, and high efficiency can be maintained. (2) By providing a bypass line on the dilute solution line passing through the low temperature solution heat exchanger to adjust the amount of heat transferred from the dilute solution to the dilute solution, maintain the dilute solution temperature so that crystal precipitation does not occur. In particular, it is possible to maintain high efficiency by keeping a large temperature difference between the concentrated solution and the dilute solution under partial load.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施形態のシリーズフロータイプ
吸収冷温水機を示す構成図。
FIG. 1 is a configuration diagram showing a series flow type absorption chiller / heater according to a first embodiment of the present invention.

【図2】図1中の制御装置の詳細を示すブロック構成
図。
FIG. 2 is a block configuration diagram showing details of a control device in FIG.

【図3】第1実施形態の作用を示すフローチャート。FIG. 3 is a flowchart showing the operation of the first embodiment.

【図4】本発明の第2実施形態のシリーズフロータイプ
吸収冷温水機を示す構成図。
FIG. 4 is a configuration diagram showing a series flow type absorption chiller / heater according to a second embodiment of the present invention.

【図5】図4中の低温溶液熱交換器と配管を示す図。5 is a view showing a low temperature solution heat exchanger and piping in FIG.

【図6】第2実施形態の作用を示すフローチャート。FIG. 6 is a flowchart showing the operation of the second embodiment.

【図7】循環溶液流量をパラメータとして溶液濃度幅と
冷房負荷との関係を示す図。
FIG. 7 is a diagram showing a relationship between a solution concentration width and a cooling load with a circulating solution flow rate as a parameter.

【図8】従来の吸収冷温水機の負荷率と成績係数の関係
特性と、改善による成績係数の向上をシミュレーション
で求めた関係特性を示す図。
FIG. 8 is a diagram showing a relational characteristic between a load factor and a coefficient of performance of a conventional absorption chiller-heater, and a relational characteristic obtained by simulation for improving the coefficient of performance by improvement.

【符号の説明】 Hg・・・高温再生器 Lg・・・低温再生器 Ab・・・吸収器 Cd・・・凝縮器 Ev・・・蒸発器 K1・・・濃溶液 K2・・・濃溶液 K3・・・稀溶液 Hex・・高温溶液熱交換器 Lex・・低温溶液熱交換器 5・・・・制御装置 L5・・・濃溶液ライン L12・・濃溶液ライン L14・・稀溶液ライン AT・・温度センサ(第1の温度計測手段) BT・・温度センサ CT・・温度センサ[Explanation of symbols] Hg: High temperature regenerator Lg: low temperature regenerator Ab ... Absorber Cd: condenser Ev ... Evaporator K1 ... concentrated solution K2 ... concentrated solution K3 ... dilute solution Hex ... High temperature solution heat exchanger Lex ... low temperature solution heat exchanger 5 ... Control device L5: concentrated solution line L12 ... Concentrated solution line L14 ... Dilute solution line AT ・ ・ Temperature sensor (first temperature measuring means) BT ... Temperature sensor CT ・ ・ Temperature sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 円城寺 慶 太 東京都港区海岸一丁目5番20号 東京瓦斯 株式会社内 Fターム(参考) 3L093 AA05 BB11 BB22 BB42 CC01 EE04 GG02 HH02 HH04 JJ02 KK05    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Enjoji Keita             1-5-20 Kaigan, Minato-ku, Tokyo Tokyo Gas             Within the corporation F-term (reference) 3L093 AA05 BB11 BB22 BB42 CC01                       EE04 GG02 HH02 HH04 JJ02                       KK05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 吸収器から送出された稀溶液と吸収器に
戻る濃溶液とで熱交換を行う低温溶液熱交換器と、該低
温溶液熱交換器よりも再生器側の領域を流れる濃溶液流
量を調節する流量制御手段と、低温溶液熱交換器と吸収
器の間を流過する濃溶液の温度を計測する第1の温度計
測手段と、制御手段とを設け、該制御手段は、低温溶液
熱交換器の入口近傍の濃溶液濃度から濃溶液の結晶温度
を決定し、該結晶温度と第1の温度計測手段により計測
された濃溶液温度とを比較して、該濃溶液温度が結晶温
度よりも所定値以上高温であれば濃溶液流量を減少する
制御信号を前記流量制御手段に出力し、所定値以上高温
でない場合には濃溶液流量を増加する制御信号を前記流
量制御手段に出力する様に構成されていることを特徴と
する吸収冷温水機。
1. A low temperature solution heat exchanger for exchanging heat between a dilute solution sent from an absorber and a concentrated solution returning to the absorber, and a concentrated solution flowing in a region closer to a regenerator than the low temperature solution heat exchanger. A flow rate control means for adjusting the flow rate, a first temperature measurement means for measuring the temperature of the concentrated solution flowing between the low temperature solution heat exchanger and the absorber, and a control means are provided, and the control means is for controlling the low temperature. The crystal temperature of the concentrated solution is determined from the concentration of the concentrated solution in the vicinity of the inlet of the solution heat exchanger, the crystal temperature is compared with the concentrated solution temperature measured by the first temperature measuring means, and the concentrated solution temperature is crystallized. When the temperature is higher than a predetermined value by a predetermined value or more, a control signal for decreasing the concentrated solution flow rate is output to the flow rate control means, and when the temperature is not higher than the predetermined value, a control signal for increasing the concentrated solution flow rate is output to the flow rate control means. An absorption chiller-heater characterized by being configured to do.
【請求項2】 吸収器から送出された稀溶液と吸収器に
戻る濃溶液とで熱交換を行う低温溶液熱交換器と、該低
温溶液熱交換器よりも再生器側の領域を流れる濃溶液流
量を抑制する流量抑制手段と、低温溶液熱交換器と吸収
器の間を流過する濃溶液の温度を計測する第1の温度計
測手段とを備え、吸収器から送出された稀溶液が流れる
稀溶液ラインは前記低温溶液熱交換器を流れるラインと
バイパスするバイパスラインとに分岐しており、該バイ
パスラインには流量制御手段が設けられ、制御手段を有
しており、該制御手段は、低温溶液熱交換器の入口近傍
の濃溶液濃度から濃溶液の結晶温度を決定し、該結晶温
度と第1の温度計測手段により計測された濃溶液温度と
を比較して、該濃溶液温度が結晶温度よりも所定値以上
高温であれば前記バイパスラインを流れるバイパス流量
を減少する制御信号を前記流量制御手段に出力し、所定
値以上高温でない場合にはバイパス流量を増加する制御
信号を前記流量制御手段に出力する様に構成されている
ことを特徴とする吸収冷温水機。
2. A low temperature solution heat exchanger for exchanging heat with a dilute solution sent from the absorber and a concentrated solution returning to the absorber, and a concentrated solution flowing in a region closer to the regenerator than the low temperature solution heat exchanger. A dilute solution sent from the absorber flows, comprising a flow rate suppressing means for suppressing the flow rate and a first temperature measuring means for measuring the temperature of the concentrated solution flowing between the low temperature solution heat exchanger and the absorber. The dilute solution line is branched into a line flowing through the low temperature solution heat exchanger and a bypass line bypassing the low temperature solution heat exchanger, the bypass line is provided with a flow rate control means, and has a control means. The crystal temperature of the concentrated solution is determined from the concentration of the concentrated solution in the vicinity of the inlet of the low temperature solution heat exchanger, the crystal temperature is compared with the concentrated solution temperature measured by the first temperature measuring means, and the concentrated solution temperature is If the temperature is higher than the crystallization temperature by a predetermined value or more, A control signal for reducing the bypass flow rate flowing through the bypass line is output to the flow rate control means, and a control signal for increasing the bypass flow rate is output to the flow rate control means when the temperature is not higher than a predetermined value. A characteristic absorption chiller / heater.
【請求項3】 請求項1の吸収冷温水機の制御手段にお
いて、第1の温度計測手段により低温溶液熱交換器と吸
収器の間を流過する濃溶液の温度を計測する工程と、低
温溶液熱交換器の入口近傍の濃溶液濃度から濃溶液の結
晶温度を決定する工程と、該結晶温度と第1の温度計測
手段により計測された濃溶液温度とを比較する工程と、
該濃溶液温度が結晶温度よりも所定値以上高温であれば
濃溶液流量を減少し、所定値以上高温でない場合には濃
溶液流量を増加する制御を行う工程、とを有することを
特徴とする吸収冷温水機の制御方法。
3. The control means of the absorption chiller-heater according to claim 1, wherein the first temperature measuring means measures the temperature of the concentrated solution flowing between the low temperature solution heat exchanger and the absorber, Determining the crystal temperature of the concentrated solution from the concentration of the concentrated solution near the inlet of the solution heat exchanger, and comparing the crystal temperature with the concentrated solution temperature measured by the first temperature measuring means,
Controlling the concentrated solution flow rate to decrease if the concentrated solution temperature is higher than the crystallization temperature by a predetermined value or more and increase the concentrated solution flow rate if not higher than the predetermined value. Control method of absorption chiller-heater.
【請求項4】 請求項2の吸収冷温水機の制御手段にお
いて、第1の温度計測手段により低温溶液熱交換器と吸
収器の間を流過する濃溶液の温度を計測する工程と、低
温溶液熱交換器の入口近傍の濃溶液濃度から濃溶液の結
晶温度を決定する工程と、該結晶温度と第1の温度計測
手段により計測された濃溶液温度とを比較する工程と、
該濃溶液温度が結晶温度よりも所定値以上高温であれば
前記バイパスラインを流れるバイパス流量を減少し、所
定値以上高温でない場合にはバイパス流量を増加する制
御を行う工程、とを有することを特徴とする吸収冷温水
機の制御方法。
4. The control means of the absorption chiller-heater according to claim 2, wherein the temperature of the concentrated solution flowing between the low temperature solution heat exchanger and the absorber is measured by the first temperature measuring means; Determining the crystal temperature of the concentrated solution from the concentration of the concentrated solution near the inlet of the solution heat exchanger, and comparing the crystal temperature with the concentrated solution temperature measured by the first temperature measuring means,
Controlling the bypass flow rate flowing through the bypass line if the concentrated solution temperature is higher than the crystallization temperature by a predetermined value or more, and increasing the bypass flow rate if it is not higher than the predetermined value. A method for controlling an absorption chiller-heater featuring.
JP2001246992A 2001-08-16 2001-08-16 Absorption water cooler/heater and control method therefor Pending JP2003056941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001246992A JP2003056941A (en) 2001-08-16 2001-08-16 Absorption water cooler/heater and control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001246992A JP2003056941A (en) 2001-08-16 2001-08-16 Absorption water cooler/heater and control method therefor

Publications (1)

Publication Number Publication Date
JP2003056941A true JP2003056941A (en) 2003-02-26

Family

ID=19076424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001246992A Pending JP2003056941A (en) 2001-08-16 2001-08-16 Absorption water cooler/heater and control method therefor

Country Status (1)

Country Link
JP (1) JP2003056941A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116172A (en) * 2006-11-07 2008-05-22 Sanyo Electric Co Ltd Absorption type refrigerating machine
JP2011252704A (en) * 2011-09-21 2011-12-15 Sanyo Electric Co Ltd Absorption refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116172A (en) * 2006-11-07 2008-05-22 Sanyo Electric Co Ltd Absorption type refrigerating machine
JP2011252704A (en) * 2011-09-21 2011-12-15 Sanyo Electric Co Ltd Absorption refrigerator

Similar Documents

Publication Publication Date Title
JP2003056941A (en) Absorption water cooler/heater and control method therefor
JP6814071B2 (en) Absorption chiller system and absorption chiller using waste heat
JP2001263857A (en) Cooling/heating water heater and its control method
JPS62186178A (en) Absorption refrigerator
JPH07190537A (en) Absorption type refrigerating machine
JP2894974B2 (en) Absorption chiller / heater
JP2858922B2 (en) Absorption chiller / heater controller
JP2842550B2 (en) Absorption chiller / heater
JP2894601B2 (en) Absorption chiller / heater and operating method thereof
JP2001116392A (en) Air conditioner
JPH0586543B2 (en)
JP2001289530A (en) Absorption chiller-heater
JP3824441B2 (en) Absorption refrigeration equipment
JP2000241039A (en) Controller for absorption refrigerating machine
JP2935643B2 (en) Absorption chiller / heater
JPH0424374Y2 (en)
JP3157668B2 (en) Absorption chiller / heater
JPH08152223A (en) Absorption water cooling-heating machine and controlling method of operation thereof
JPH09166339A (en) Cold water equipment
JP2935653B2 (en) Absorption chiller / heater and operation control method thereof
JPH03137461A (en) Control device for regenerator
JPH10227539A (en) Absorption type refrigerating device
JPH05312429A (en) Absorption water cooling/heating apparatus
JP3412795B2 (en) Double effect absorption chiller / heater
JPH04161766A (en) Control device for absorption type freezer