JP2003056332A - Exhaust fine particle measuring instrument and exhaust fine particle measuring method with usage of it - Google Patents

Exhaust fine particle measuring instrument and exhaust fine particle measuring method with usage of it

Info

Publication number
JP2003056332A
JP2003056332A JP2001249718A JP2001249718A JP2003056332A JP 2003056332 A JP2003056332 A JP 2003056332A JP 2001249718 A JP2001249718 A JP 2001249718A JP 2001249718 A JP2001249718 A JP 2001249718A JP 2003056332 A JP2003056332 A JP 2003056332A
Authority
JP
Japan
Prior art keywords
exhaust
filter element
resistance heating
heating type
type filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001249718A
Other languages
Japanese (ja)
Inventor
Shinsuke Obara
伸介 小原
Hajime Fujimoto
元 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OPAATSU KK
Original Assignee
OPAATSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OPAATSU KK filed Critical OPAATSU KK
Priority to JP2001249718A priority Critical patent/JP2003056332A/en
Publication of JP2003056332A publication Critical patent/JP2003056332A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust fine particle measuring instrument and an exhaust fine particle measuring method with the usage of it capable of continuously measuring an amount of exhaust fine particles contained in an exhaust gas and capable of accurately measuring the amount of the exhaust fine particles in the exhaust gas by burning and removing the exhaust fine particles accumulated on a part of the measuring device brought into contact with the exhaust gas. SOLUTION: This exhaust fine particle measuring instrument is constituted by a heat resistant metallic case body 1, a treatment chamber 5 provided in the case body 1 and having an inlet port 6 and an exhaust port 7 communicating to an outside, a heat resistant metallic resistance heating type filter element 9 attached on an inside surface through a heat resistant insulating layer 8 at a position between the inlet port 6 and the exhaust port 7 inside the treatment chamber 5, a current supply control means 11 for supplying current to the resistance heating type filter element 9 so that resistance heating may be performed, and a resistance measuring means 13 for measuring electric resistance or electric conductivity between the case body 1 and the resistance heating type filter element 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ディーゼルエンジンそ
の他から排出される排気ガスに含まれる排気微粒子を捕
捉し、燃焼除去させるための排気微粒子除去装置の稼動
時等に、排気微粒子除去装置の通過前後における排気ガ
ス流路に設置して、各排気ガス中における排気微粒子の
含有量を測定し、或は排気微粒子除去装置の通過前の排
気ガス中における排気微粒子の含有量の経時的測定値か
ら排気微粒子除去装置のフィルタ素子に捕捉された排気
微粒子の量を間接的に検出して、燃焼除去のタイミング
設定に利用すること等を可能にする排気微粒子測定装置
及びそれを用いた排気微粒子測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust fine particle removing device for capturing exhaust fine particles contained in exhaust gas emitted from a diesel engine or the like, and operating the exhaust fine particle removing device for combustion removal. Installed in the exhaust gas flow path before and after, measure the content of exhaust particulates in each exhaust gas, or from the measured value of the content of exhaust particulates in the exhaust gas before passing through the exhaust particulate removal device Exhaust particulate measuring apparatus and exhaust particulate measuring method using the same, which indirectly detect the amount of exhaust particulate captured by the filter element of the exhaust particulate removing apparatus and can be used for timing setting of combustion removal Regarding

【0002】[0002]

【従来の技術】排気ガス中における排気微粒子の含有量
の測定方法として、例えば、排気ガス流路から分取され
た一部の排気ガスを検出フィルタに通すと共に該フィル
タに捕集された排気微粒子の重量を秤量するもの、排気
ガス流路から分取された一部の排気ガスを検出フィルタ
に通すと共に該フィルタの上流側及び下流側の差圧を測
定するもの、排気ガス流路に排気微粒子除去フィルタを
設けると共に該フィルタの上流側及び下流側の差圧を測
定するもの、或は排気ガス流路を横切るように投光素子
及び受光素子を対向配置すると共に該投光素子から受光
素子への光の透過度を測定するもの等が既に知られてい
る。
2. Description of the Related Art As a method for measuring the content of exhaust particulates in exhaust gas, for example, a portion of the exhaust gas collected from an exhaust gas passage is passed through a detection filter and the exhaust particulates collected by the filter are collected. That weighs the weight of the exhaust gas, a part of the exhaust gas separated from the exhaust gas passage through a detection filter and a pressure difference between the upstream side and the downstream side of the filter, and exhaust particulates in the exhaust gas passage. A device for measuring the differential pressure between the upstream side and the downstream side of the filter provided with a removal filter, or a light projecting element and a light receiving element are arranged to face each other across the exhaust gas flow path, and the light projecting element to the light receiving element There are already known devices for measuring the light transmittance of the above.

【0003】しかしながら、前記の従来技術において、
フィルタに捕集された排気微粒子の重量を秤量する測定
方法は、日本工業規格にも採用されるように確実な測定
方法ではあるが、バッチ処理であるために測定結果の時
間遅れが避けられず、従って排気微粒子除去装置におけ
るフィルタ素子の燃焼除去のタイミング設定にこの測定
方法を利用することは困難である。また、前記以外の従
来技術に係る排気微粒子の含有量の測定方法では、連続
測定が可能であるが、排気ガスと接する測定装置の一部
に排気微粒子が経時的に堆積、固着し、それによって正
確な測定が阻害される問題があった。
However, in the above-mentioned prior art,
The measurement method that weighs the weight of the exhaust particulates collected by the filter is a reliable measurement method that is also adopted in the Japanese Industrial Standards, but since it is a batch process, the time delay of the measurement results cannot be avoided. Therefore, it is difficult to use this measuring method for the timing setting of the combustion removal of the filter element in the exhaust particulate removal device. In addition, in the method for measuring the content of exhaust particulates according to the related art other than the above, continuous measurement is possible, but the exhaust particulates are deposited and adhered with time to a part of the measuring device in contact with the exhaust gas. There was a problem that accurate measurement was hindered.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、排気
ガス中における排気微粒子の含有量の連続測定を可能に
し、しかも排気ガスと接する測定装置の一部に堆積した
排気微粒子を燃焼除去して正確な測定に供することを可
能にする排気微粒子測定装置及びそれを用いた排気微粒
子測定方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to enable continuous measurement of the content of exhaust particulates in exhaust gas, and to burn and remove exhaust particulates deposited on a part of the measuring device in contact with exhaust gas. An object is to provide an exhaust particulate measuring apparatus and an exhaust particulate measuring method using the same, which enables accurate and accurate measurement.

【0005】[0005]

【課題を解決するための手段】本発明に係る排気微粒子
測定装置は、耐熱金属製のケース体と、ケース体内部に
穿設されると共に外部に連通する吸気口及び排気口を有
する処理室と、処理室内部に、その吸気口と排気口の間
の位置において、その内側面との間に耐熱性の電気絶縁
層を介して装填された耐熱金属製の抵抗加熱型フィルタ
素子と、抵抗加熱型フィルタ素子に抵抗加熱可能に通電
するための通電制御手段と、ケース体と抵抗加熱型フィ
ルタ素子との間の電気抵抗又は電気伝導度を測定するた
めの抵抗等測定手段とからなるものである。
An exhaust particle measuring apparatus according to the present invention comprises a case body made of a heat-resistant metal, and a processing chamber having an intake port and an exhaust port which are provided inside the case body and communicate with the outside. A resistance heating type filter element made of a heat-resistant metal, which is loaded in the processing chamber at a position between the intake port and the exhaust port via a heat-resistant electric insulating layer between the inner surface and the inside, and a resistance heating type. And a resistance measuring means for measuring electric resistance or electric conductivity between the case body and the resistance heating type filter element. .

【0006】また、本発明に係る排気微粒子測定方法
は、前記の排気微粒子測定装置を使用する測定方法であ
り、ケース体を、その処理室の排気口が吸気口よりも排
気ガス流路のより高流速側に連通するように排気ガス流
路に配置して排気口側を吸気口側よりも減圧状態にし、
それによって排気ガスの一部を処理室の吸気口から内部
に採り入れると共に抵抗加熱型フィルタ素子を介して排
気口から排出させるようにすること、抵抗等測定手段に
より、ケース体と抵抗加熱型フィルタ素子との間の電気
抵抗又は電気伝導度を経時的に測定し、それによって処
理室内面と抵抗加熱型フィルタ素子との間に電気絶縁層
を架橋するように堆積した排気微粒子の量を間接的に検
出すること、及び抵抗加熱型フィルタ素子に排気ガスの
一部を通過させた状態で、通電制御手段により抵抗加熱
型フィルタ素子に通電してそれを抵抗加熱し、抵抗加熱
型フィルタ素子に捕捉された排気微粒子を燃焼させると
共にそれによってさらに処理室内側面と抵抗加熱型フィ
ルタ素子との間及び処理室内部のその他の個所に堆積し
た排気微粒子をも燃焼させて抵抗加熱型フィルタ素子を
再生させることからなるものである。
Further, an exhaust particulate measuring method according to the present invention is a measuring method using the above exhaust particulate measuring apparatus, in which the case body has an exhaust port of the exhaust gas flow passage which is closer to the exhaust gas passage than the intake port. Arranged in the exhaust gas flow path so as to communicate with the high flow rate side, the exhaust port side is decompressed from the intake port side,
As a result, part of the exhaust gas is taken in from the intake port of the processing chamber and discharged from the exhaust port through the resistance heating type filter element, and the case body and the resistance heating type filter element are measured by the resistance measuring means. The electrical resistance or electrical conductivity between and is measured over time, thereby indirectly measuring the amount of exhaust particulates deposited so as to bridge the electrical insulating layer between the inner surface of the processing chamber and the resistance heating filter element. In the state of detecting and passing a part of the exhaust gas through the resistance heating type filter element, the energization control means energizes the resistance heating type filter element to resistance heat it and capture it in the resistance heating type filter element. The exhaust particulates are burned, and the exhaust particulates accumulated between the side surface of the processing chamber and the resistance heating type filter element and other parts inside the processing chamber are also burned. It is made of regenerating a resistive heating type filter element by burnt.

【0007】前記構成において、排気ガス流路のより高
流速側、通常は排気ガス流路のより中央側に連通する処
理室の排気口は、より低流速側、通常は排気ガス流路の
より端側に連通する処理室の吸気口よりも減圧された状
態にあり、従って排気ガス流路中の排気ガスの一部は前
記吸気口から排気口に向かって流動することになる。
In the above structure, the exhaust port of the processing chamber communicating with the higher flow velocity side of the exhaust gas flow passage, usually with respect to the central side of the exhaust gas flow passage, has a lower flow velocity side, usually with respect to the exhaust gas flow passage. The pressure is lower than that of the intake port of the processing chamber communicating with the end side, so that part of the exhaust gas in the exhaust gas flow path flows from the intake port toward the exhaust port.

【0008】前記のように処理室の吸気口から内部に採
り入れられた排気ガスは、抵抗加熱型フィルタ素子を通
って排気口から排出されるが、その間に、排気ガス中の
排気微粒子が抵抗加熱型フィルタ素子に捕捉されると共
に処理室内側面と抵抗加熱型フィルタ素子との間及び処
理室内部のその他の個所にも捕捉され、逐次堆積する。
As described above, the exhaust gas taken in from the intake port of the processing chamber is exhausted from the exhaust port through the resistance heating type filter element, while exhaust particulates in the exhaust gas are resistively heated. Type filter element and also trapped between the side surface of the processing chamber and the resistance heating type filter element and at other places inside the processing chamber, and are sequentially deposited.

【0009】処理室内側面と抵抗加熱型フィルタ素子と
の間には電気絶縁層が介在するので、本排気微粒子測定
装置の稼動前は、抵抗等測定手段により測定しても、ケ
ース体と抵抗加熱型フィルタ素子との間に導電性は検出
されない。前記電気絶縁層には、例えば通気性の多孔性
無機繊維やセラミック粒層等の耐熱フィルタの他、例え
ば通気性又は非通気性のセラミックリングやセラミック
チューブ等が使用されてもよい。
Since the electric insulating layer is interposed between the side surface of the processing chamber and the resistance heating type filter element, before the operation of the exhaust particulate measuring apparatus, the case body and the resistance heating can be measured even if the measurement is made by the resistance measuring means. No conductivity is detected with the mold filter element. For the electrically insulating layer, for example, a breathable porous inorganic fiber or a heat resistant filter such as a ceramic particle layer, as well as a breathable or non-breathable ceramic ring or ceramic tube may be used.

【0010】排気微粒子には炭素粒からなる導電性物質
が多く含まれているので、排気微粒子が処理室内側面と
抵抗加熱型フィルタ素子との間に捕捉され、堆積するに
従ってケース体と抵抗加熱型フィルタ素子との間の電気
抵抗が減少すると同時に電気伝導度が増大し、それは抵
抗等測定手段により検出される。即ち、本発明に係る排
気微粒子測定装置及び方法では、排気微粒子が炭素粒等
の導電性物質を多量に含むことから、ケース体と抵抗加
熱型フィルタ素子との間に捕捉された排気微粒子の堆積
量の増加に伴ってその間の電気抵抗が減少することを利
用したものである。前記のように、ケース体と抵抗加熱
型フィルタ素子との間の電気抵抗を減少させる排気微粒
子は、抵抗加熱型フィルタ素子の入口側、並びにそれに
隣接する電気絶縁層表面及び処理室内側面付近に比較的
多く堆積するが、電気絶縁層が例えば通気性の耐熱フィ
ルタからなる場合は、該耐熱フィルタ内部にも堆積す
る。
Since the exhaust fine particles contain a large amount of conductive material composed of carbon particles, the exhaust fine particles are trapped between the inside surface of the processing chamber and the resistance heating type filter element, and as they are deposited, the case body and the resistance heating type At the same time as the electrical resistance with the filter element decreases, the electrical conductivity also increases, which is detected by a measuring means such as resistance. That is, in the exhaust particulate matter measuring apparatus and method according to the present invention, since the exhaust particulates contain a large amount of conductive material such as carbon particles, the exhaust particulates trapped between the case body and the resistance heating type filter element are accumulated. It utilizes the fact that the electrical resistance between them decreases as the amount increases. As described above, the exhaust particulates that reduce the electric resistance between the case body and the resistance heating type filter element are compared to the entrance side of the resistance heating type filter element, and the surface of the electric insulating layer adjacent to the entrance side and the side surface inside the processing chamber. When the electrically insulating layer is made of, for example, a breathable heat resistant filter, it is also deposited inside the heat resistant filter.

【0011】そこで、例えば、排気ガスの排出条件、即
ち機関等の運転条件ごとに前記抵抗等測定手段による電
気抵抗又は電気伝導度の測定値の経時的パターンとその
時の排気ガス中における排気微粒子の実際の含有量のデ
ータを予め多数記録しておくことにより、同じ運転条件
で測定された電気抵抗又は電気伝導度の測定値の経時的
パターンから、その時の排気ガス中における排気微粒子
の含有量を知ることが可能になる。
Therefore, for example, the time-dependent pattern of the measured value of the electric resistance or the electric conductivity measured by the resistance measuring means for each exhaust gas discharge condition, that is, the operating condition of the engine and the exhaust particulate matter in the exhaust gas at that time. By recording a large number of actual content data in advance, the content of exhaust particulates in the exhaust gas at that time can be determined from the temporal pattern of measured values of electrical resistance or electrical conductivity measured under the same operating conditions. It becomes possible to know.

【0012】前記のように抵抗等測定手段による電気抵
抗又は電気伝導度の測定値の経時的パターンが測定され
た後、抵抗加熱型フィルタ素子に一定量以上の排気微粒
子が捕捉された状態で通電制御手段により抵抗加熱型フ
ィルタ素子に通電されると、抵抗加熱型フィルタ素子が
抵抗加熱されると共にそれに捕捉されていた、主として
炭素粒と高分子炭化水素物質からなる排気微粒子が排気
ガス中の酸素により燃焼除去され、その燃焼熱により、
さらに処理室内側面と抵抗加熱型フィルタ素子との間及
び処理室内部のその他の個所に堆積した排気微粒子もま
た連鎖的に燃焼除去され、それによって抵抗加熱型フィ
ルタ素子は再使用可能に完全に再生されることになる。
前記の場合、排気微粒子の燃焼に要する酸素は、抵抗加
熱型フィルタ素子を通過する排気ガス自体から供給され
るので、酸素供給用の配管やバルブは特に必要とされな
い。抵抗加熱型フィルタ素子の前記再生作業が正常に完
了したか否かは、抵抗等測定手段による電気抵抗又は電
気伝導度の測定値から容易に知ることができる。
After the time-dependent pattern of the measured value of the electric resistance or the electric conductivity by the measuring means such as the resistance is measured as described above, the resistance heating type filter element is energized in a state in which a certain amount or more of exhaust particulates are trapped. When the resistance heating type filter element is energized by the control means, the resistance heating type filter element is resistance heated and at the same time, the exhaust particulates mainly composed of carbon particles and high molecular hydrocarbon substances are oxygen in the exhaust gas. Burned away by the heat of combustion,
Furthermore, exhaust particulate matter accumulated between the side surface of the processing chamber and the resistance heating type filter element and other portions inside the processing chamber are also burned and removed in a chained manner, whereby the resistance heating type filter element is completely reusable and regenerated. Will be done.
In the above case, the oxygen required for combustion of the exhaust particulates is supplied from the exhaust gas itself passing through the resistance heating type filter element, so that a pipe or valve for supplying oxygen is not particularly required. Whether or not the regeneration operation of the resistance heating type filter element is normally completed can be easily known from the measured value of the electric resistance or the electric conductivity by the measuring means such as the resistance.

【0013】抵抗加熱型フィルタ素子の前記再生に際し
て、抵抗加熱型フィルタ素子が抵抗加熱されると、それ
を通過する排気ガスの体積膨張及び粘度上昇が生じ、排
気微粒子の堆積と相俟って抵抗加熱型フィルタ素子の通
気抵抗が増大すると共に排気ガスの通気量が自動的に減
少し、それによって、排気微粒子の燃焼に要する排気ガ
スからの酸素の供給可能性を留保にした状態下に抵抗加
熱型フィルタ素子による排気微粒子の加熱、着火が促進
される。通電制御手段による前記通電には、小容量の電
池で足りる。
When the resistance heating type filter element is resistance-heated during the regeneration of the resistance heating type filter element, the volume expansion and the viscosity increase of the exhaust gas passing through the resistance heating type filter element occur, and the resistance increases in combination with the accumulation of exhaust particulates. As the ventilation resistance of the heating type filter element increases, the ventilation volume of the exhaust gas automatically decreases, thereby resistance heating under the condition that oxygen supply from exhaust gas required for combustion of exhaust particulate is reserved. The heating and ignition of exhaust particulates by the mold filter element are promoted. A small capacity battery is sufficient for the energization by the energization control means.

【0014】前記排気微粒子測定装置を被測定個所に取
り付けるために、被測定個所の壁体に螺合可能にケース
体の外側面にねじが切られていてもよい。前記抵抗加熱
型フィルタ素子には、例えば、特開平9−245938
号公報及び特開平11−257048号公報に開示され
るように、多孔性金属シートを多重に積層すると共に積
層された多孔性金属シートの対向面間に多孔性電気絶縁
膜を介在させてなり、且つ前記多孔性金属シートが、金
属シート材料に波形状又は凹凸形状のプレス成形を施す
と同時に周縁に破断状突起を有する多数の貫通孔を前記
波形状又は凹凸形状の山部及び/又は谷部に穿設させて
なるものを好適に採用することができる。
In order to attach the exhaust particulate matter measuring device to the measurement site, the outer surface of the case body may be threaded so as to be screwed into the wall body of the measurement site. Examples of the resistance heating type filter element include, for example, Japanese Patent Laid-Open No. 9-245938.
As disclosed in Japanese Patent Application Laid-Open No. 11-257048 and Japanese Patent Application Laid-Open No. 11-257048, porous metal sheets are laminated in multiple layers, and a porous electrical insulating film is interposed between opposed surfaces of the laminated porous metal sheets, In addition, the porous metal sheet is formed by corrugating or corrugating the metal sheet material at the same time, and at the same time, forming a large number of through-holes having break-like protrusions on the periphery of the corrugated or corrugated peaks and / or valleys. It is possible to preferably employ the one formed by drilling in.

【0015】前記抵抗加熱型フィルタ素子の構成によれ
ば、積層された多孔性金属シートの対向面間に、波形状
又は凹凸形状の山部及び谷部、並びにそれらに穿設され
た、周縁に破断状突起を有する貫通孔による複雑に屈曲
した流路空間が形成されているので、このような対向面
間に流入した排気ガスは前記流路空間内部で複雑に拡
散、衝突し、その間に排気ガス中の排気微粒子が多孔性
金属シート上に効果的に捕捉される。積層された前記多
孔性金属シートの対向面間に介在する多孔性電気絶縁膜
にフィルタ機能を持たせたものでは、該多孔性電気絶縁
膜においても排気微粒子の捕捉が行われることになる。
According to the constitution of the resistance heating type filter element, the corrugated or concavo-convex peaks and troughs are formed between the facing surfaces of the laminated porous metal sheets, and the peripheral edges of the corrugated perforations are formed. Since a complicatedly bent flow path space is formed by a through hole having a fracture-like projection, the exhaust gas flowing between the facing surfaces is complicatedly diffused and collided inside the flow path space, and exhaust gas is exhausted in the meantime. Exhaust particulates in the gas are effectively trapped on the porous metal sheet. In the case where the porous electric insulating film interposed between the facing surfaces of the laminated porous metal sheets has a filter function, exhaust particulates are also captured in the porous electric insulating film.

【0016】前記抵抗加熱型フィルタ素子は、それを構
成する多孔性金属シートの積層態様や破断状突起を有す
る貫通孔の大きさ、形成密度等の選択により、通気抵抗
や排気微粒子の捕捉能を個々に変化させることもでき、
例えば排気ガス排出側近辺の抵抗加熱型フィルタ素子の
捕捉能を排気ガス導入側近辺の抵抗加熱型フィルタ素子
のそれより強化してもよい。
In the resistance heating type filter element, the ventilation resistance and the trapping ability of exhaust particulates are selected by selecting the laminating mode of the porous metal sheets constituting the filter element, the size of the through holes having the broken projections, the formation density and the like. It can be changed individually,
For example, the trapping ability of the resistance heating type filter element near the exhaust gas discharge side may be strengthened than that of the resistance heating type filter element near the exhaust gas introduction side.

【0017】前記抵抗加熱型フィルタ素子は、例えば、
円柱状の処理室内部に装填し易いように、多孔性金属シ
ートを渦巻き状に多孔性電気絶縁膜を介して積層してな
るものでもよく、また四角柱状の処理室内部に装填し易
いように、多孔性金属シートをジグザグ状に多孔性電気
絶縁膜を介して積層してなるものでもよい。前記多孔性
金属シートには、耐熱性のステンレス鋼が好適に使用可
能である。また、前記多孔性電気絶縁膜は、積層された
多孔性金属シートの対向面間が通電加熱時に電気接触し
ないようにするものであり、多孔性金属シート表面に形
成された絶縁皮膜であってもよいが、好ましくは例えば
耐熱性の無機繊維のように、排気微粒子のフィルタ機能
を有するものが好適に介設される。また、前記の各抵抗
加熱型フィルタ素子における多孔性金属シート及び/又
は多孔性電気絶縁膜に、酸化触媒を、必要に応じて所要
の坦持層を介して坦持させてもよく、それによって、各
抵抗加熱型フィルタ素子に捕捉された排気微粒子をより
効果的に且つ比較的低温で燃焼させることができる。
The resistance heating type filter element is, for example,
A porous metal sheet may be laminated in a spiral shape with a porous electric insulating film interposed therebetween so that it can be easily loaded into the columnar processing chamber. Also, it can be easily loaded into the rectangular column processing chamber. Alternatively, it may be formed by stacking porous metal sheets in a zigzag shape with a porous electric insulating film interposed therebetween. Heat resistant stainless steel can be preferably used for the porous metal sheet. Further, the porous electrical insulating film is for preventing electrical contact between the facing surfaces of the laminated porous metal sheets during electric heating, and even an insulating coating formed on the surface of the porous metal sheet. It is good, but it is preferable to use a material having a function of filtering exhaust particulates, such as heat-resistant inorganic fiber. Further, the porous metal sheet and / or the porous electric insulating film in each of the resistance heating type filter elements may be caused to carry an oxidation catalyst through a necessary carrying layer, if necessary. The exhaust particulates captured by each resistance heating type filter element can be burned more effectively and at a relatively low temperature.

【0018】[0018]

【発明の実施の形態】図1は本発明の実施例に係る排気
微粒子測定装置の要部断面図、図2は図1に示す排気微
粒子測定装置に使用されている抵抗加熱型フィルタ素子
の斜視図である。図3は本発明の実施例に係る排気微粒
子測定装置の回路構成を例示するブロック図である。
1 is a sectional view of an essential part of an exhaust particle measuring apparatus according to an embodiment of the present invention, and FIG. 2 is a perspective view of a resistance heating type filter element used in the exhaust particle measuring apparatus shown in FIG. It is a figure. FIG. 3 is a block diagram illustrating a circuit configuration of an exhaust particulate matter measuring apparatus according to an embodiment of the present invention.

【0019】図1において、ボルト形態の耐熱金属製の
ケース体1が、そのねじ部2により、排ガス管3の管壁
外側面から内部の排ガス流路4に突出するように密封下
に螺合されている。ケース体1内部には円柱状の処理室
5がケース体1端部から軸線方向に穿設され、処理室5
には、排ガス流路4の比較的端側に放射方向に連通する
複数の吸気口6と、排ガス流路4の比較的中央側に軸線
方向に連通する排気口7が設けられている。
In FIG. 1, a case body 1 made of a heat-resistant metal in the form of a bolt is screwed in a hermetically sealed manner by its screw portion 2 so as to project from an outer surface of a wall of an exhaust gas pipe 3 into an internal exhaust gas passage 4. Has been done. A cylindrical processing chamber 5 is formed inside the case body 1 in the axial direction from the end of the case body 1.
The exhaust gas passage 4 is provided with a plurality of intake ports 6 that communicate with each other in the radial direction, and an exhaust port 7 that communicates with the center of the exhaust gas passage 4 in the axial direction.

【0020】処理室5内部には、その吸気口6及び排気
口7の間の位置において、その内側面との間に電気絶縁
層8を介して耐熱金属製の抵抗加熱型フィルタ素子9が
装填されている。
A resistance heating type filter element 9 made of a heat-resistant metal is loaded inside the processing chamber 5 at a position between the intake port 6 and the exhaust port 7 via an electric insulating layer 8 between the inner surface and the inside. Has been done.

【0021】抵抗加熱型フィルタ素子9には、排ガス管
3の外部に設置された通電制御手段11からケース体1
を電気絶縁下に通って電気配線12が施され、抵抗加熱
型フィルタ素子9は通電制御手段11からの通電により
抵抗加熱可能とされている。また、ケース体1と前記電
気配線12の一方には、排ガス管3の外部に設置された
抵抗等測定手段13から別の電気配線14が施され、ケ
ース体1と抵抗加熱型フィルタ素子9との間の電気抵抗
又は電気伝導度が抵抗等測定手段13の作動により測定
可能とされている。前記電気絶縁層8には、一例とし
て、セラミック粒を充填してなる、排気微粒子の捕捉可
能な通気性耐熱フィルタが使用されている。
In the resistance heating type filter element 9, from the energization control means 11 installed outside the exhaust gas pipe 3 to the case body 1.
Is electrically insulated and an electric wiring 12 is provided so that the resistance heating type filter element 9 can be resistance heated by the energization from the energization control means 11. Further, one of the case body 1 and the electric wiring 12 is provided with another electric wiring 14 from a resistance measuring means 13 installed outside the exhaust gas pipe 3, and the case body 1 and the resistance heating type filter element 9 are provided. The electrical resistance or the electrical conductivity between the two can be measured by the operation of the resistance measuring means 13. As the electric insulating layer 8, for example, a breathable heat-resistant filter which is filled with ceramic particles and capable of capturing exhaust particulates is used.

【0022】また、前記抵抗加熱型フィルタ素子9は、
図2に示すように、多孔性金属シート21を渦巻き状に
多重に積層すると共に積層された多孔性金属シート21
の対向面間に多孔性電気絶縁膜22を介在させてなり、
且つ前記多孔性金属シート21は、金属シート材料に波
形状又は凹凸形状のプレス成形を施すと同時に周縁に破
断状突起23を有する多数の貫通孔24を前記波形状又
は凹凸形状の山部及び/又は谷部に穿設させると共に、
多孔性金属シート21に通電による抵抗加熱可能に電気
配線12が施されている。前記抵抗加熱型フィルタ素子
9は、ケース体1内部において、積層された多孔性金属
シート21の対向面間にその一端側から他端側へと渦巻
き軸線方向に排気ガスが通過するように配向させられて
いる。
Further, the resistance heating type filter element 9 is
As shown in FIG. 2, the porous metal sheets 21 are spirally stacked in multiple layers and the porous metal sheets 21 are stacked.
A porous electric insulating film 22 is interposed between the opposing surfaces of
In addition, the porous metal sheet 21 is formed by corrugating or corrugating the metal sheet material at the same time as forming a large number of through holes 24 each having a broken protrusion 23 on the periphery thereof and / or the corrugated or corrugated peaks and / or Or while drilling in the valley,
The electric wiring 12 is provided on the porous metal sheet 21 so as to be capable of resistance heating by energization. The resistance heating type filter element 9 is oriented so that the exhaust gas passes in the spiral axis direction from one end side to the other end side between the facing surfaces of the laminated porous metal sheets 21 inside the case body 1. Has been.

【0023】前記構成において、処理室5の吸気口6と
排気口7の間の差圧により、吸気口6から処理室5内に
採り入れられた排気ガスは、抵抗加熱型フィルタ素子9
を通って排気口7から排出され、その間に、排気ガス中
の排気微粒子が抵抗加熱型フィルタ素子9に捕捉される
と共に処理室5内側面と抵抗加熱型フィルタ素子9との
間の電気絶縁層8表面及び内部や処理室5内部のその他
の個所にも捕捉され、逐次堆積する。排気微粒子が処理
室5内側面と抵抗加熱型フィルタ素子9との間にそれを
架橋するように堆積するに連れて、ケース体1と抵抗加
熱型フィルタ素子9との間の電気抵抗が減少すると同時
に電気伝導度が増大する。
In the above structure, the exhaust gas taken into the processing chamber 5 through the intake port 6 due to the pressure difference between the intake port 6 and the exhaust port 7 of the processing chamber 5 is the resistance heating type filter element 9
And is discharged from the exhaust port 7 through the exhaust gas, and during that time, exhaust particulates in the exhaust gas are captured by the resistance heating type filter element 9 and an electrical insulating layer between the inner surface of the processing chamber 5 and the resistance heating type filter element 9. 8 is also captured on the surface and inside and other places inside the processing chamber 5, and is sequentially deposited. As the exhaust particulates are deposited between the inner surface of the processing chamber 5 and the resistance heating filter element 9 so as to bridge them, the electrical resistance between the case body 1 and the resistance heating filter element 9 decreases. At the same time, the electrical conductivity increases.

【0024】抵抗等測定手段13で測定された電気抵抗
の経時的測定値は、図3に示すように、一例として差分
回路31に入力される。該差分回路31では、サンプル
クロック発生器32からのクロック信号に従って、サン
プルホールドアンプS/H133により時間T1における
抵抗測定値R1が採取される一方、サンプルホールドア
ンプS/H234により前記時間T1から一定時間ΔT、
例えば1秒間だけ経過後の時間T2における抵抗測定値
R2が採取され、両測定値の差分ΔRが演算増幅器35
で演算されると共に出力される。なお、前記差分回路3
1の代わりに、微分回路を用いることも可能である。
The time-dependent measured value of the electric resistance measured by the resistance measuring means 13 is input to the difference circuit 31 as an example, as shown in FIG. In the difference circuit 31, according to the clock signal from the sample clock generator 32, the resistance measurement value R1 at the time T1 is sampled by the sample hold amplifier S / H 1 33, while the sample hold amplifier S / H 2 34 collects the resistance measurement value R1. A certain time ΔT from T1,
For example, the resistance measurement value R2 at the time T2 after only one second has elapsed is collected, and the difference ΔR between the two measurement values is calculated by the operational amplifier 35.
Is calculated and output. The difference circuit 3
It is also possible to use a differentiating circuit instead of 1.

【0025】前記演算増幅器35から出力された電気抵
抗の減少量ΔR/ΔTは、時間T1から時間T2に至る間
に処理室5内側面と抵抗加熱型フィルタ素子9との間に
堆積した排気微粒子の増加量ΔW/ΔTと相関関係にあ
り、延いては前記時間内に抵抗加熱型フィルタ素子9に
捕捉された排気微粒子の増加量及び前記時間内に排ガス
流路4を通過した排気微粒子の通過量とも相関関係にあ
る。前記の各場合における相関係数は、前記電気抵抗の
減少量ΔR/ΔTとその時間内における前記排気微粒子
の増加量や排気微粒子の通過量の実測値との比から予め
求めておくことが可能である。前記排気微粒子の増加量
や排気微粒子の通過量を所定時間にわたって積分したも
のは、その時間内における増加量や通過量の総和を表す
ことになる。
The decrease amount ΔR / ΔT of the electric resistance output from the operational amplifier 35 is the exhaust particulate matter accumulated between the inner surface of the processing chamber 5 and the resistance heating type filter element 9 from the time T1 to the time T2. Of the exhaust gas particulate matter captured by the resistance heating type filter element 9 within the time period and the passage of the exhaust gas particulate matter passing through the exhaust gas passage 4 within the time period. It also correlates with quantity. The correlation coefficient in each of the above cases can be obtained in advance from the ratio of the reduction amount ΔR / ΔT of the electric resistance to the actual measurement value of the increase amount of the exhaust particulates and the passage amount of the exhaust particulates within that time. Is. The integral of the increase amount of the exhaust particulates and the passage amount of the exhaust particulates over a predetermined time represents the sum of the increase amount and the passing amount within the time.

【0026】抵抗加熱型フィルタ素子9に設定量以上の
排気微粒子が捕捉された状態を示す抵抗測定値が抵抗等
測定手段13により検出されたとき、通電制御手段11
により抵抗加熱型フィルタ素子9に通電されると、抵抗
加熱型フィルタ素子9が抵抗加熱されると共にそれに捕
捉されていた排気微粒子が排気ガス中の酸素により燃焼
除去され、その燃焼熱により、さらに処理室5内側面と
抵抗加熱型フィルタ素子9との間及び処理室5内部のそ
の他の個所に堆積した排気微粒子もまた連鎖的に燃焼除
去され、それによって抵抗加熱型フィルタ素子9は再使
用可能に完全に再生されることになる。
When the resistance measurement value 13 indicating the state in which the set amount of exhaust particulate matter is trapped in the resistance heating type filter element 9 is detected by the resistance measuring means 13, the energization control means 11
When the resistance heating type filter element 9 is energized by, the resistance heating type filter element 9 is resistance-heated and the exhaust particulates trapped therein are burned and removed by the oxygen in the exhaust gas, and further processed by the combustion heat. Exhaust particulates accumulated between the inner surface of the chamber 5 and the resistance heating filter element 9 and at other locations inside the processing chamber 5 are also burned off in a chain manner, thereby making the resistance heating filter element 9 reusable. It will be completely reproduced.

【0027】[0027]

【発明の効果】本発明に係る排気微粒子測定装置及びそ
れを用いた排気微粒子測定方法は以上のように構成され
るので、排気ガス中における排気微粒子の含有量の連続
測定が可能であり、しかも排気ガスと接する測定装置の
一部に堆積した排気微粒子を燃焼除去して正確な測定に
供することが可能になる。
The exhaust particulate matter measuring apparatus and the exhaust particulate matter measuring method using the same according to the present invention are configured as described above, so that the content of exhaust particulate matter in exhaust gas can be continuously measured. Exhaust particulates deposited on a part of the measuring device in contact with the exhaust gas can be burned and removed for accurate measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る排気微粒子測定装置の要
部断面図である。
FIG. 1 is a cross-sectional view of essential parts of an exhaust particulate matter measurement device according to an embodiment of the present invention.

【図2】図1に示す排気微粒子測定装置に使用されてい
る抵抗加熱型フィルタ素子の斜視図である。
FIG. 2 is a perspective view of a resistance heating type filter element used in the exhaust particulate matter measurement device shown in FIG.

【図3】本発明の実施例に係る排気微粒子測定装置の回
路構成を例示するブロック図である。
FIG. 3 is a block diagram illustrating a circuit configuration of an exhaust particulate matter measurement device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ケース体 5 処理室 6 吸気口 7 排気口 8 電気絶縁層 9 抵抗加熱型フィルタ素子 11 通電制御手段 13 抵抗等測定手段 1 case body 5 processing room 6 intake 7 exhaust port 8 Electrical insulation layer 9 Resistance heating type filter element 11 energization control means 13 Resistance measuring means

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G090 AA01 AA02 BA04 CA01 CB11 DA07 3G091 AA18 AB13 BA31 CA03 EA29 4D019 AA01 BA02 BB09 BD03 CA03 CB04 CB09    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 3G090 AA01 AA02 BA04 CA01 CB11                       DA07                 3G091 AA18 AB13 BA31 CA03 EA29                 4D019 AA01 BA02 BB09 BD03 CA03                       CB04 CB09

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 耐熱金属製のケース体と、ケース体内部
に穿設されると共に外部に連通する吸気口及び排気口を
有する処理室と、処理室内部に、その吸気口と排気口の
間の位置において、その内側面との間に耐熱性の電気絶
縁層を介して装填された耐熱金属製の抵抗加熱型フィル
タ素子と、抵抗加熱型フィルタ素子に抵抗加熱可能に通
電するための通電制御手段と、ケース体と抵抗加熱型フ
ィルタ素子との間の電気抵抗又は電気伝導度を測定する
ための抵抗等測定手段とからなる排気微粒子測定装置。
1. A case body made of heat-resistant metal, a processing chamber having an intake port and an exhaust port which are provided inside the case body and communicate with the outside, and inside the processing chamber, between the intake port and the exhaust port. At the position of, the resistance heating type filter element made of a heat resistant metal is inserted between the inner side surface of the resistance heating type filter element and the inner side surface of the resistance heating type filter, and energization control for energizing the resistance heating type filter element to enable resistance heating. An exhaust particulate matter measuring device comprising: means and a resistance measuring means for measuring electric resistance or electric conductivity between the case body and the resistance heating type filter element.
【請求項2】 抵抗加熱型フィルタ素子が、多孔性金属
シートを多重に積層すると共に積層された多孔性金属シ
ートの対向面間に多孔性電気絶縁膜を介在させてなり、
且つ前記多孔性金属シートが、金属シート材料に波形状
又は凹凸形状のプレス成形を施すと同時に周縁に破断状
突起を有する多数の貫通孔を前記波形状又は凹凸形状の
山部及び/又は谷部に穿設させてなる請求項1に記載の
排気微粒子測定装置。
2. A resistance heating type filter element is obtained by stacking porous metal sheets in multiple layers and interposing a porous electrical insulating film between the facing surfaces of the stacked porous metal sheets.
In addition, the porous metal sheet is formed by corrugating or corrugating the metal sheet material at the same time, and at the same time, forming a large number of through-holes having break-like protrusions on the periphery of the corrugated or corrugated peaks and / or valleys. The exhaust particulate matter measurement device according to claim 1, wherein the exhaust particulate matter measurement device is formed by drilling.
【請求項3】 請求項1又は2に記載の排気微粒子測定
装置を使用する測定方法であり、 ケース体を、その処理室の排気口が吸気口よりも排気ガ
ス流路のより高流速側に連通するように排気ガス流路に
配置して排気口側を吸気口側よりも減圧状態にし、それ
によって排気ガスの一部を処理室の吸気口から内部に採
り入れると共に抵抗加熱型フィルタ素子を介して排気口
から排出させるようにすること、 抵抗等測定手段により、ケース体と抵抗加熱型フィルタ
素子との間の電気抵抗又は電気伝導度を経時的に測定
し、それによって処理室内側面と抵抗加熱型フィルタ素
子との間に電気絶縁層を架橋するように堆積した排気微
粒子の量を間接的に検出すること、及び抵抗加熱型フィ
ルタ素子に排気ガスの一部を通過させた状態で、通電制
御手段により抵抗加熱型フィルタ素子に通電してそれを
抵抗加熱し、抵抗加熱型フィルタ素子に捕捉された排気
微粒子を燃焼させると共にそれによってさらに処理室内
側面と抵抗加熱型フィルタ素子との間及び処理室内部の
その他の個所に堆積した排気微粒子をも燃焼させて抵抗
加熱型フィルタ素子を再生させることからなる排気微粒
子測定方法。
3. A measurement method using the exhaust particle measuring apparatus according to claim 1, wherein the exhaust gas of the processing chamber of the case body is located at a higher flow velocity side of the exhaust gas passage than the intake port. It is placed in the exhaust gas flow path so as to communicate with each other, and the exhaust port side is depressurized more than the intake port side, so that a part of the exhaust gas is taken in from the intake port of the processing chamber to the inside and through the resistance heating type filter element. The resistance of the case body and the resistance heating filter element with a resistance measuring means over time to measure the electric resistance or electric conductivity between the case body and the resistance heating type filter element. Control of energization while indirectly detecting the amount of exhaust particulates deposited so as to bridge the electric insulating layer between the filter element and the resistance heating type filter element To the means The resistance heating type filter element is energized to resistance-heat the resistance heating type filter element to burn the exhaust particulates trapped in the resistance heating type filter element, and thereby the space between the side surface of the processing chamber and the resistance heating type filter element and the inside of the processing chamber. A method for measuring exhaust particulate matter, which comprises regenerating the resistance heating type filter element by burning the exhaust particulate matter that has accumulated in other places as well.
JP2001249718A 2001-08-21 2001-08-21 Exhaust fine particle measuring instrument and exhaust fine particle measuring method with usage of it Pending JP2003056332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001249718A JP2003056332A (en) 2001-08-21 2001-08-21 Exhaust fine particle measuring instrument and exhaust fine particle measuring method with usage of it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001249718A JP2003056332A (en) 2001-08-21 2001-08-21 Exhaust fine particle measuring instrument and exhaust fine particle measuring method with usage of it

Publications (1)

Publication Number Publication Date
JP2003056332A true JP2003056332A (en) 2003-02-26

Family

ID=19078679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001249718A Pending JP2003056332A (en) 2001-08-21 2001-08-21 Exhaust fine particle measuring instrument and exhaust fine particle measuring method with usage of it

Country Status (1)

Country Link
JP (1) JP2003056332A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096852A1 (en) * 2007-02-09 2008-08-14 Ngk Insulators, Ltd. Honeycomb structure for fine particle sensor
EP3048278A1 (en) * 2015-01-26 2016-07-27 Bosal Emission Control Systems NV Device for the diagnosis of the operability of a particle filter for an exhaust gas stream of an internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096852A1 (en) * 2007-02-09 2008-08-14 Ngk Insulators, Ltd. Honeycomb structure for fine particle sensor
EP3048278A1 (en) * 2015-01-26 2016-07-27 Bosal Emission Control Systems NV Device for the diagnosis of the operability of a particle filter for an exhaust gas stream of an internal combustion engine
CN105822398A (en) * 2015-01-26 2016-08-03 博萨尔排放控制系统公司 Diagnosis device for internal combustion engine and vehicle-mounted diagnosis system
CN105822398B (en) * 2015-01-26 2019-12-06 博萨尔排放控制系统公司 Diagnostic device for internal combustion engine and on-board diagnostic system

Similar Documents

Publication Publication Date Title
US4897096A (en) System for the regeneration of a particulate filter trap
KR100920150B1 (en) Exhaust gas purifying apparatus, exhaust gas purifying method, and particulate matter measuring method
US7963106B2 (en) Method and apparatus for the defined regeneration of sooty surfaces
JP6409452B2 (en) Diagnostic equipment
JP4855811B2 (en) Fine particle amount detection system
CN107076692B (en) Sensor with a sensor element
JP4186425B2 (en) Soot particle detection sensor, diesel particulate filter device using the same, and control method therefor
US6107603A (en) Device intended to detect fouling and to locally heat an electrical insulating medium
WO2016024591A1 (en) Sensor
JP4226007B2 (en) Exhaust gas purification device used for internal combustion engine and method for operating the exhaust gas purification device
JP2003056332A (en) Exhaust fine particle measuring instrument and exhaust fine particle measuring method with usage of it
JP2016136145A (en) Sensor
JP6379837B2 (en) Sensor
JP6361314B2 (en) Sensor
JP6784050B2 (en) Sensor
JP6409436B2 (en) Diagnostic equipment
JP3073375B2 (en) Exhaust gas purification device
JP6805531B2 (en) Sensor
WO2016047530A1 (en) Diagnostic device
JP3412362B2 (en) Exhaust particulate processing equipment for internal combustion engines
JP6417780B2 (en) Sensor
JP6451179B2 (en) Diagnostic equipment
JP6717021B2 (en) PM sensor
JP6409437B2 (en) Sensor
JPH0424092Y2 (en)