JP2003053478A - Lost foam pattern casting method - Google Patents

Lost foam pattern casting method

Info

Publication number
JP2003053478A
JP2003053478A JP2001245711A JP2001245711A JP2003053478A JP 2003053478 A JP2003053478 A JP 2003053478A JP 2001245711 A JP2001245711 A JP 2001245711A JP 2001245711 A JP2001245711 A JP 2001245711A JP 2003053478 A JP2003053478 A JP 2003053478A
Authority
JP
Japan
Prior art keywords
model
mold
foamed
casting
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001245711A
Other languages
Japanese (ja)
Inventor
Yoshiaki Hirayama
義明 平山
Toshihiko Yoshida
稔彦 吉田
Koji Osera
光次 大瀬良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001245711A priority Critical patent/JP2003053478A/en
Publication of JP2003053478A publication Critical patent/JP2003053478A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the recarburization by C residues accompanying expending of a foamed pattern material. SOLUTION: This method consists of steps of; forming a pattern by the foamed pattern material copolymerized with an EPMMA(expanded polymethyl methacrylate) and an EPS(expanded polystyrene), forming a mold coat attaining air permeability after drying of >=9.0 on the surface of the pattern, drying the mold coat applied to the surface of the pattern, packing the circumference of the pattern coated with the mold coat with molding sand and pouring molten steel. The gas produced by accompanying the pouring of the molten steel is sucked through the mold coat and the molding sand and is discharged outside the system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は消失模型鋳造法に関
する。
TECHNICAL FIELD The present invention relates to a vanishing model casting method.

【0002】[0002]

【従来の技術】消失模型鋳造法では、先ず、所望の製品
形状に加工成型もしくは発泡ビーズを発泡成形した後、
模型表面に焼着き防止用に塗型を塗布、乾燥して発泡模
型が形成される。この発泡模型の周囲を鋳物砂で充填
し、模型内に溶鋼が注湯される。発泡模型は、溶鋼と接
触するとガス化消失して溶鋼により置換される。模型が
消失する際に発生するガスは、溶鋼中に残存すると所謂
ガス欠陥となるので、これを防止するため吸引ポンプに
より系外に排出される。消失模型鋳造法は、砂型鋳造法
のように木型による模型の作製、上型、下型の型合わせ
後の型ばらし工程がなく、更に、粘結材による砂の混
練、充填、乾燥といった造型に係わる工数が大幅に短縮
できる利点がある。
2. Description of the Related Art In the disappearance model casting method, first, after processing or foaming beads into a desired product shape,
A mold is applied to the surface of the model to prevent seizure and dried to form a foamed model. The periphery of this foamed model is filled with foundry sand, and molten steel is poured into the model. When the foam model comes into contact with the molten steel, it disappears by gasification and is replaced by the molten steel. The gas generated when the model disappears becomes a so-called gas defect when it remains in the molten steel, and is discharged to the outside of the system by a suction pump in order to prevent this. The disappearance model casting method does not have the process of making a model by a wooden mold and removing the mold after matching the upper mold and the lower mold like the sand mold casting method, and further, molding such as kneading, filling and drying sand with a binder. There is an advantage that the number of man-hours related to can be significantly reduced.

【0003】[0003]

【発明が解決しようとする課題】一方、消失模型鋳造法
では、鋳造時に発泡模型から発生するC(炭素)残渣が
溶鋼中に取り込まれることにより加炭が生じ製品中のC
含有量が増加する。そのために、従来の消失模型鋳造法
では、適用可能な対象鋼種が、製品中C含有量が比較的
高く多少の加炭が許容できる鋳鉄部品に限られている。
On the other hand, in the vanishing model casting method, the carbon (C) residue generated from the foamed model during casting is taken into the molten steel to cause carburization, resulting in C in the product.
The content increases. Therefore, in the conventional vanishing model casting method, applicable steel types are limited to cast iron parts that have a relatively high C content in the product and can tolerate some carburization.

【0004】本発明は、こうした従来技術の問題点を解
決することを技術課題としており、発泡模型材消失に伴
うC残渣による加炭を防止または低減した消失模型鋳造
法を提供することを目的とする。
An object of the present invention is to solve the above problems of the prior art, and an object thereof is to provide a disappearance model casting method in which carburization due to C residue due to disappearance of foamed model material is prevented or reduced. To do.

【0005】[0005]

【課題を解決するための手段】請求項1に記載の本発明
は、EPMMA(発泡ポリメチルメタクリレート)と、
EPS(発泡ポリスチレン)とを共重合させた発泡模型
材により模型を作成する工程と、乾燥後の通気度が9.
0以上となる塗型を前記模型表面する工程と、前記模型
表面に塗布した塗型を乾燥する工程と、前記塗型を塗布
した模型の周囲を鋳物砂で充填する工程と、溶鋼を注湯
する工程と、溶鋼の注湯に伴う発生ガスを前記塗型およ
び鋳物砂を介し吸引して系外に排出する工程とを含んで
成る消失模型鋳造法を要旨とする。
The present invention according to claim 1 provides EPMMA (expanded polymethylmethacrylate),
8. The step of creating a model using a foamed model material that is copolymerized with EPS (foamed polystyrene), and the air permeability after drying is 9.
A step of applying a coating mold of 0 or more to the model surface, a step of drying the coating mold applied to the model surface, a step of filling the periphery of the model coated with the coating mold with molding sand, and pouring molten steel The gist of the vanishing model casting method is the step of performing the above-mentioned step and a step of sucking the gas generated by pouring the molten steel through the coating mold and the molding sand and discharging the gas out of the system.

【0006】前記発生ガスを吸引し排出する工程は、減
圧度5.32×10-2MPa(400mmHgをSI単
位に換算した値)にて行うことができる。
The step of sucking and discharging the generated gas can be performed at a reduced pressure of 5.32 × 10 -2 MPa (value obtained by converting 400 mmHg into SI unit).

【0007】[0007]

【発明の実施の形態】先ず、塗型の厚さと鋳造欠陥の関
係を得るために消失模型鋳造試験を行った。ガス化率の
高いEPMMA(発泡ポリメチルメタクリレート)と、
十分な模型強度を与えるEPS(発泡ポリスチレン)と
を共重合させた発泡模型材を予め発泡成形し所定形状に
切断加工、または、金型を使用して前記所定形状に発泡
成形し、その表面に塗型を塗布して試験片を形成した。
なお、試験片は、通気度を1.1×10-3〜9.0×1
-3m2/MPa min(0.11〜0.9ml/cmH2O minをSI
単位に換算した値)まで変化させた塗型を1回塗布した
試験片と2回塗布した試験片を作成した。この試験片の
周囲を鋳物砂で充填したあと試験片内に溶鋼が注湯され
る。発泡模型は、溶鋼と接触するとガス化消失して溶鋼
により置換される。模型が消失する際に発生するガスは
吸引ポンプにより系外に排出した。
BEST MODE FOR CARRYING OUT THE INVENTION First, a vanishing model casting test was conducted in order to obtain the relationship between the thickness of a coating mold and casting defects. EPMMA (expanded polymethylmethacrylate) with high gasification rate,
A foamed model material that is copolymerized with EPS (foamed polystyrene) that gives sufficient model strength is foam-molded in advance and cut into a predetermined shape, or a mold is used to foam-mold into the above-mentioned predetermined shape and the surface thereof is formed. A mold was applied to form a test piece.
The test piece had an air permeability of 1.1 × 10 −3 to 9.0 × 1.
0 -3 m 2 / MPa min (0.11-0.9 ml / cmH 2 O min SI
A test piece to which the coating type was applied once and a test piece to which the coating type was applied twice were prepared. After filling the periphery of this test piece with foundry sand, molten steel is poured into the test piece. When the foam model comes into contact with the molten steel, it disappears by gasification and is replaced by the molten steel. The gas generated when the model disappeared was discharged from the system by a suction pump.

【0008】なお、消失模型鋳造による使用する塗型の
通気度P(m2/MPa min)は、塗型に添加する骨材の粒度
を変化させて調整した。塗型通気度の測定方法はφ55
mmの円系の枠に塗型厚みを2〜3mm程度になるよう
に塗布し、成型乾燥後にJISZ 2601の通気度測定方法に
準拠し0.002m3(2000ml)の空気の通過時
間と圧力差を計測し、下記の式(1)により算出した。
塗布方法は浸漬により実施した。
The air permeability P (m 2 / MPa min) of the mold used by the disappearance model casting was adjusted by changing the particle size of the aggregate added to the mold. The measuring method of air permeability of coating type is φ55
It is applied to a circular frame of mm so that the thickness of the mold is about 2 to 3 mm, and after molding and drying, according to the air permeability measurement method of JIS Z 2601, 0.002 m 3 (2000 ml) of air passage time and pressure difference. Was measured and calculated by the following formula (1).
The coating method was dipping.

【0009】 P=100V×H/(p×A×T)…(1) ここで、 V:塗型膜を通過する空気量(0.002m3) H:試験片の厚さ(m) p:空気圧(MPa) A:試験片の断面積(m2) T:0.002m3の空気(上記V)が通過するのに要
する時間(min)
P = 100 V × H / (p × A × T) (1) Here, V: amount of air passing through the coating film (0.002 m 3 ) H: thickness of test piece (m) p : Air pressure (MPa) A: Cross-sectional area of test piece (m 2 ) T: Time required for 0.002 m 3 of air (V above) to pass (min)

【0010】また、試験に用いた溶鋼は普通鋳鋼(SC
450相当:溶鋼中化学成分C:0.22%、Si:
0.36%、Mn:0.69%、P:0.013%、
S:0.003%)である。乾燥後の塗膜の厚みを計測
し、鋳造試験後の試験片の表面焼着き状況および内部ガ
ス欠陥状況を調査した。試験結果を表1に纏める。
The molten steel used in the test is ordinary cast steel (SC
Equivalent to 450: Chemical composition in molten steel C: 0.22%, Si:
0.36%, Mn: 0.69%, P: 0.013%,
S: 0.003%). The thickness of the coating film after drying was measured, and the surface sticking condition and internal gas defect condition of the test piece after the casting test were investigated. The test results are summarized in Table 1.

【0011】[0011]

【表1】 [Table 1]

【0012】上述のような消失模型鋳造法により鋳造し
た試験片および塗型の厚みとの関係を調査した結果以下
のような効果が確認された。塗型塗布回数が1回の場
合、塗型厚みが0.5mm以下と薄く、その結果塗型強
度が十分でないため鋳物表面に焼着きが生じる。また、
焼着きを生じることにより発生ガスが系外に排出されに
くくなるためにガス欠陥が発生する。これに対して塗型
塗布回数を2回とした場合、塗型厚みが0.9mm以上
となり、十分な塗型強度を有するために焼着きやガス欠
陥を防止することができる。すなわち、消失模型鋳造法
を鋳鋼に適用する場合、EPMMAとEPSを共重合さ
せた発泡模型材を使用し、模型表面には塗型を塗布し鋳
物表面が鋳物砂と反応し焼着くのを防止するとともに、
模型が消失する際に発生するガスを系外に排出する際の
通気抵抗となるためできるだけ通気度が高く、また模型
材の強度を十分に保持する必要があることが分かった。
As a result of investigating the relationship between the thickness of the test piece and the coating mold cast by the above disappearance model casting method, the following effects were confirmed. When the number of times the coating type is applied is one, the thickness of the coating type is as thin as 0.5 mm or less, and as a result, the coating strength is insufficient, so that seizure occurs on the surface of the casting. Also,
The occurrence of seizure makes it difficult for the generated gas to be discharged to the outside of the system, so that a gas defect occurs. On the other hand, when the number of times the coating type is applied is 2, the thickness of the coating type becomes 0.9 mm or more, and since the coating has a sufficient coating strength, seizure and gas defects can be prevented. That is, when applying the disappearance model casting method to cast steel, use a foamed model material in which EPMMA and EPS are copolymerized and apply a coating mold to the model surface to prevent the casting surface from reacting with the casting sand and burning. Along with
It was found that it is necessary to maintain the strength of the model material as high as possible because the gas generated when the model disappears becomes the ventilation resistance when it is discharged to the outside of the system.

【0013】また、消失模型鋳造法を鋳鋼に適用する場
合、既述したように、問題となるのは模型材が燃焼ガス
化する際に発生するC残渣が鋳物内部に溶解する加炭現
象である。このC残渣を低減するためには、ガス化率の
高い模型を使用し、この発生したガスを効率よく系外に
排出する必要がある。ガスを系外に排出するためには、
塗型および砂を介して吸引する必要があるが、このとき
塗型通気抵抗となるため、塗型の通気度を変化させ加炭
量の変化を実験により確認した。
Further, when the disappearance model casting method is applied to cast steel, as described above, the problem is a carburization phenomenon in which the C residue generated during combustion gasification of the model material is dissolved inside the casting. is there. In order to reduce the C residue, it is necessary to use a model having a high gasification rate and efficiently discharge the generated gas out of the system. In order to discharge the gas out of the system,
It is necessary to suck through the mold and sand, but at this time the air resistance of the mold is reached, so the air permeability of the mold was changed and changes in the amount of carburization were confirmed by experiments.

【0014】実験は、上述した普通鋳鋼を用い、塗型に
添加する骨材の粒径を変化させて乾燥後の通気度が1.
1×10-3、3.4×10-3、7.0×10-3、9.0
×10-3および13.0×10-3となるように塗型を調
製し行った。模型材には、EPMMA(発泡ポリメチル
メタクリレート)とEPS(発泡ポリスチレン)を8
5:15の割り合いで共重合させた発泡倍率40倍のも
のを使用し、上述した塗型を浸漬法により2回塗布し乾
燥させた。鋳造時の鋳型内の減圧度を5.32×10-2
MPa(400mmHgをSI単位に換算した値)とし
て鋳込んだ後、鋳物中のC分析を実施した結果を図1に
示す。
In the experiment, the ordinary cast steel described above was used, and the air permeability after drying was changed by changing the particle size of the aggregate added to the coating mold.
1 × 10 −3 , 3.4 × 10 −3 , 7.0 × 10 −3 , 9.0
A coating type was prepared and adjusted so that it would be x10 -3 and 13.0 x 10 -3 . EPMMA (expanded polymethylmethacrylate) and EPS (expanded polystyrene) 8 are used as model materials.
Using a foaming ratio of 40 times that was copolymerized at a ratio of 5:15, the above-mentioned coating mold was applied twice by a dipping method and dried. Decompression degree in the mold during casting is 5.32 × 10 -2
FIG. 1 shows the result of carrying out C analysis in the casting after casting as MPa (value obtained by converting 400 mmHg into SI unit).

【0015】図1を参照すると、加炭を防止するために
模型に9.0以上の通気度を有する塗型を塗布するのを
ことにより、発生ガスを効果的に系外に排出することに
より鋳鋼中の加炭量を低減可能となることが理解され
る。模型表面に塗布した塗型の通気度が9.0以上の場
合、鋳鋼中の加炭量が0.05%以下となり、所望のC
濃度の鋳鋼を製造することができた。また、鋳物中のガ
ス欠陥も認められない。
Referring to FIG. 1, by applying a coating mold having a gas permeability of 9.0 or more to prevent carburization, the generated gas is effectively discharged to the outside of the system. It is understood that the amount of carburization in cast steel can be reduced. When the air permeability of the coating type applied to the model surface is 9.0 or more, the amount of carburization in the cast steel becomes 0.05% or less, and the desired C
It was possible to produce a concentration of cast steel. In addition, no gas defect is found in the casting.

【0016】図2は、鋳造時の鋳型内の減圧度を変化さ
せて鋳造試験後の鋳物中のC量を分析し加炭量を示した
グラフである。図1の実験と同じ発泡模型材から形成し
た模型の表面に塗型を塗布した。既述したように、発生
ガスを系外に排出させるために鋳型内を減圧する必要が
あるが、本試験では減圧度の加炭量への影響を確認し
た。本試験では、通気度9.0×10-3および13.0
×10-3の2種類の塗型を模型表面に浸漬法により2回
塗布し乾燥して試験片を作成した。溶鋼としては既述し
た普通低合金鋳鋼を用い、鋳型内の減圧度は真空ポンプ
および圧力ゲージによりモニタした。試験は、鋳造時の
鋳型内の減圧度を変化させて既述した方法と同様に鋳造
し、試験後の鋳物中のC量を分析し加炭量を調査した。
FIG. 2 is a graph showing the amount of carbonization by analyzing the amount of C in the casting after the casting test by changing the degree of pressure reduction in the mold during casting. The mold was applied to the surface of a model formed from the same foam model material as in the experiment of FIG. As described above, it is necessary to reduce the pressure inside the mold in order to discharge the generated gas to the outside of the system, but in this test, the effect of the degree of pressure reduction on the amount of carburization was confirmed. In this test, the air permeability was 9.0 × 10 -3 and 13.0.
Two kinds of coating molds of × 10 -3 were applied twice on the model surface by the dipping method and dried to prepare test pieces. As the molten steel, the above-mentioned ordinary low alloy cast steel was used, and the degree of pressure reduction in the mold was monitored by a vacuum pump and a pressure gauge. In the test, casting was carried out in the same manner as described above by changing the degree of pressure reduction in the mold during casting, and the amount of carbon in the casting after the test was analyzed to investigate the amount of carburization.

【0017】通気度9.0×10-3および13.0×1
-3の何れの場合にも、鋳型内の減圧度を高くするにし
たがって鋳物中の加炭量は減少し、減圧度を5.32×
10 -2MPa(400mmHgをSI単位に換算した
値)以下とすることで鋳鋼中の加炭量を0.03%以下
に低減することができた。
Air permeability 9.0 × 10-3And 13.0 x 1
0-3In either case, increase the degree of vacuum in the mold.
Therefore, the amount of carburization in the casting decreases, and the degree of pressure reduction is 5.32 ×
10 -2MPa (400 mmHg was converted to SI unit
Value) or less, the amount of carburization in cast steel is 0.03% or less
Could be reduced to

【0018】[0018]

【発明の効果】本発明によれば、従来の消失模型鋳造法
を鋳鋼に適用する際に問題であった、加炭を低減するた
めに鋳造時に発生する残渣を低減させるために、ガス化
率の高いEPMMA(発泡ポリメチルメタクリレート)
と十分な模型強度を与えるEPS(発泡ポリスチレン)
を85:15に共重合させた発泡模型材を使用し、その
通気抵抗となる塗型の通気度を9.0×10-4以上とし
たものを使用することがにより、C残渣およびガス欠陥
の発生を減少させ、加炭量を0.03%以下に低減する
ことができ、加炭量の少ない鋳鋼品を製造することがで
きる。また、好ましくは、吸引ポンプにより鋳型内の減
圧度を5.32×10-2MPa(400mmHgをSI
単位に換算した)とすることにより、更に効果的に発生
ガスを鋳型系外に排出可能となる。
According to the present invention, the gasification rate is reduced in order to reduce the residue generated during casting in order to reduce carburization, which was a problem when applying the conventional disappearance model casting method to cast steel. High EPMMA (expanded polymethylmethacrylate)
And EPS (expanded polystyrene) that gives sufficient model strength
By using a foamed model material in which 85:15 was copolymerized and the air permeability of the coating type, which is the ventilation resistance, was 9.0 × 10 −4 or more, C residue and gas defects could be obtained. The amount of carburization can be reduced to 0.03% or less, and a cast steel product with a small amount of carburization can be manufactured. Also, preferably, the degree of pressure reduction in the mold is 5.32 × 10 -2 MPa (400 mmHg is SI
(Converted into units), the generated gas can be more effectively discharged out of the mold system.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋳鋼製品中の加炭量と塗型通気度の関係を示す
グラフである。
FIG. 1 is a graph showing the relationship between the amount of carburization in a cast steel product and the air permeability of coating type.

【図2】鋳鋼製品中の加炭量と減圧度の関係を示すグラ
フである。
FIG. 2 is a graph showing the relationship between the amount of carburization in a cast steel product and the degree of pressure reduction.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大瀬良 光次 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 Fターム(参考) 4E093 GA08 KB08    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Koji Ose             1-1 Satinoura Town, Nagasaki City, Nagasaki Prefecture Mitsubishi Heavy Industries             Nagasaki Shipyard Co., Ltd. F-term (reference) 4E093 GA08 KB08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 EPMMA(発泡ポリメチルメタクリレ
ート)と、EPS(発泡ポリスチレン)とを共重合させ
た発泡模型材により模型を作成する工程と、 乾燥後の通気度が9.0以上となる塗型を前記模型表面
する工程と、 前記模型表面に塗布した塗型を乾燥する工程と、 前記塗型を塗布した模型の周囲を鋳物砂で充填する工程
と、 溶鋼を注湯する工程と、 溶鋼の注湯に伴う発生ガスを前記塗型および鋳物砂を介
し吸引して系外に排出する工程とを含んで成る消失模型
鋳造法。
1. A step of preparing a model from a foamed model material obtained by copolymerizing EPMMA (foamed polymethylmethacrylate) and EPS (foamed polystyrene), and a coating mold having an air permeability after drying of 9.0 or more. The step of exposing the model surface, the step of drying the coating mold applied to the model surface, the step of filling the periphery of the model coated with the coating mold with molding sand, the step of pouring molten steel, A vanishing model casting method, which comprises a step of sucking the gas generated by pouring through the coating mold and the molding sand and discharging it out of the system.
【請求項2】 前記発生ガスを吸引し排出する工程は、
減圧度5.32×10-2MPaにて行われる請求項1に
記載の消失模型鋳造法。
2. The step of sucking and discharging the generated gas,
The disappearance model casting method according to claim 1, which is performed at a reduced pressure of 5.32 × 10 -2 MPa.
JP2001245711A 2001-08-13 2001-08-13 Lost foam pattern casting method Withdrawn JP2003053478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001245711A JP2003053478A (en) 2001-08-13 2001-08-13 Lost foam pattern casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001245711A JP2003053478A (en) 2001-08-13 2001-08-13 Lost foam pattern casting method

Publications (1)

Publication Number Publication Date
JP2003053478A true JP2003053478A (en) 2003-02-26

Family

ID=19075407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001245711A Withdrawn JP2003053478A (en) 2001-08-13 2001-08-13 Lost foam pattern casting method

Country Status (1)

Country Link
JP (1) JP2003053478A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102328025A (en) * 2011-08-25 2012-01-25 陕西理工学院 Lost foam casting method of balance shaft housing
GB2521740A (en) * 2013-11-15 2015-07-01 Gen Electric System and method for forming a low alloy steel casting
CN105728651A (en) * 2016-02-22 2016-07-06 江苏钜源机械有限公司 Preset inner core integral forming method for evanescent mold for complex workpiece
CN110461499A (en) * 2017-03-29 2019-11-15 尼玛克股份有限公司 Casting core and its manufacturing method
CN113042681A (en) * 2019-12-27 2021-06-29 南通虹冈铸钢有限公司 Mixed foam model manufacturing process for preventing important surface residues of iron castings
CN113865348A (en) * 2021-10-13 2021-12-31 陕西远大新材料技术有限公司 Lost foam shell-shaped furnace liner for electric furnace lining and use method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102328025A (en) * 2011-08-25 2012-01-25 陕西理工学院 Lost foam casting method of balance shaft housing
GB2521740A (en) * 2013-11-15 2015-07-01 Gen Electric System and method for forming a low alloy steel casting
GB2521740B (en) * 2013-11-15 2016-10-19 Gen Electric System and method for forming a low alloy steel casting
US10046382B2 (en) 2013-11-15 2018-08-14 General Electric Company System and method for forming a low alloy steel casting
CN105728651A (en) * 2016-02-22 2016-07-06 江苏钜源机械有限公司 Preset inner core integral forming method for evanescent mold for complex workpiece
CN110461499A (en) * 2017-03-29 2019-11-15 尼玛克股份有限公司 Casting core and its manufacturing method
US10843255B2 (en) 2017-03-29 2020-11-24 Nemak, S.A.B. De C.V. Foundry core
CN113042681A (en) * 2019-12-27 2021-06-29 南通虹冈铸钢有限公司 Mixed foam model manufacturing process for preventing important surface residues of iron castings
CN113042681B (en) * 2019-12-27 2022-07-26 南通虹冈铸钢有限公司 Mixed foam model manufacturing process for preventing important surface residues of iron castings
CN113865348A (en) * 2021-10-13 2021-12-31 陕西远大新材料技术有限公司 Lost foam shell-shaped furnace liner for electric furnace lining and use method thereof
CN113865348B (en) * 2021-10-13 2024-04-26 陕西远大新材料科技有限公司 Vanishing mould shell-shaped furnace liner for electric furnace lining and use method thereof

Similar Documents

Publication Publication Date Title
EP1832359A1 (en) Process for producing cast metal according to evaporative pattern casting
WO2007058254A1 (en) Process for making molds
JP2003053478A (en) Lost foam pattern casting method
CN106424562A (en) Precision investment casting method eliminating shrinkage cavities and porosity defects
US20070272387A1 (en) Method for Manufacturing Castings by Using a Lost-Foam Pattern Casting Method
US5429172A (en) Lost foam process for casting low carbon stainless steel
JPH02501721A (en) Heterogeneous porous mold for manufacturing molds from foundry sand and its manufacturing method
RU2442673C2 (en) Method of mould cores and boxes manufacturing
JP2004174861A (en) Bottomed ceramic tube molding die and its manufacturing method
JP6042594B2 (en) Raw mold making method
NO20002742L (en) Molding of ceramic forms
JP3114026U (en) Porous mold
CN101992286A (en) Vacuum low-pressure casting method for casting copper impeller of water pump
Kroupová et al. Proposal of method of removal of mould material from the fine structure of metallic foams used as filters
JPH07112238A (en) Coating agent for lost foam pattern casting
RU2647074C1 (en) Method of manufacturing shell molds for consumable patterns
WO2015004723A1 (en) Method for manufacturing high-strength cement cured product
JP3325266B2 (en) Vanishing model casting
RU2630399C2 (en) Method for manufacturing cast rods from liquid glass mixtures in heated "thermo-shock-co2-process" equipment
CN115592072A (en) Composite casting method of hinge beam casting
SU780946A1 (en) Method of producing casting moulds
JPS60234736A (en) Vacuum casting method using consumable master pattern
KR100893423B1 (en) Molding process and molds made by the process
JP2000158433A (en) Concrete manufacturing device and method
RU2613244C1 (en) Manufacturing method of casts by gasified models

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081104