JP2003051454A - Vapor phase deposition system - Google Patents

Vapor phase deposition system

Info

Publication number
JP2003051454A
JP2003051454A JP2001236690A JP2001236690A JP2003051454A JP 2003051454 A JP2003051454 A JP 2003051454A JP 2001236690 A JP2001236690 A JP 2001236690A JP 2001236690 A JP2001236690 A JP 2001236690A JP 2003051454 A JP2003051454 A JP 2003051454A
Authority
JP
Japan
Prior art keywords
susceptor
vapor phase
reaction vessel
radiation thermometer
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001236690A
Other languages
Japanese (ja)
Inventor
Hiroshi Furuya
弘 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP2001236690A priority Critical patent/JP2003051454A/en
Publication of JP2003051454A publication Critical patent/JP2003051454A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vapor phase deposition system which enables uniformizing of the surface temperature of a substrate to be processed, when forming a film and increasing a temperature by increasing the measurement accuracy of the surface temperature of a susceptor, thereby enabling further uniformizing of film-forming quality, such as film thickness. SOLUTION: The vapor phase deposition system comprises a quartz glass- made reaction vessel (1), the susceptor (7) disposed in the reaction vessel, an infrared lamp (5) which is disposed outside the reaction vessel and irradiates the susceptor and the substrate to be processed which is placed on the susceptor with infrared rays through the reaction container to heat the susceptor and the substrate, and a radiation thermometer (13), having a detection wavelength ranging between 1.8 and 2.1 μm which is disposed on the outside of the infrared lamp and measures a temperature of the susceptor through the reaction vessel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はランプ加熱を行う気
相成長装置に関し、特に処理基板表面温度の計測装置の
改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase growth apparatus for performing lamp heating, and more particularly to improvement of a processing substrate surface temperature measuring apparatus.

【0002】[0002]

【従来の技術】シリコンウエハ上に薄膜を成長させるた
めに用いられる気相成長装置として、高周波加熱を行う
方式のものや、赤外線ランプによるランプ加熱を行う方
式のものが知られている。ランプ加熱方式の気相成長装
置は、例えば実開平2−52432号に開示されてお
り、以下のような構成を有する。この気相成長装置で
は、石英ガラス製の反応容器内に複数の平板状のサセプ
タを裁頭多角錘形状に配置して回転可能に保持し、その
表面にウエハを載置した状態で、反応容器の外側に設け
た赤外線ランプから反応容器を通して赤外線を照射する
ことによりサセプタおよびその上に載置されるウエハを
加熱する。この反応容器内に反応ガスを導入して反応さ
せ、ウエハ上に反応生成物を成長させる。一方、赤外線
ランプの外側に放射温度計を配置し、サセプタの表面か
ら放射される赤外線を、反応容器を通して検出すること
によりサセプタおよびウエハの表面温度を計測する。そ
して、計測された表面温度に基づいて赤外線ランプによ
る加熱を制御するようにしている。放射温度計の較正
は、サセプタに熱電対を取り付けサセプタの回転を止め
た状態で行う。
2. Description of the Related Art As a vapor phase growth apparatus used for growing a thin film on a silicon wafer, a high frequency heating method and a lamp heating method using an infrared lamp are known. A lamp heating type vapor phase growth apparatus is disclosed in, for example, Japanese Utility Model Laid-Open No. 2-52432 and has the following configuration. In this vapor phase growth apparatus, a plurality of flat plate-shaped susceptors are arranged in a truncated polygonal pyramid shape in a quartz glass reaction container, rotatably held, and a wafer is placed on the surface of the reaction container. The susceptor and the wafer mounted thereon are heated by irradiating infrared rays from an infrared lamp provided on the outside of the reactor through the reaction container. A reaction gas is introduced into this reaction container and reacted to grow a reaction product on the wafer. On the other hand, a radiation thermometer is arranged outside the infrared lamp, and infrared rays emitted from the surface of the susceptor are detected through the reaction container to measure the surface temperature of the susceptor and the wafer. Then, the heating by the infrared lamp is controlled based on the measured surface temperature. The radiation thermometer is calibrated with a thermocouple attached to the susceptor and rotation of the susceptor stopped.

【0003】こうした気相成長装置では、ウエハ上に成
長する薄膜の成膜品質(特に膜厚)をより均一にするた
めに、成膜時および昇温時におけるウエハの表面温度が
均一であることが望まれる。
In such a vapor phase growth apparatus, in order to make the film formation quality (especially the film thickness) of the thin film grown on the wafer more uniform, the surface temperature of the wafer during film formation and during temperature rise is uniform. Is desired.

【0004】従来、ランプ加熱方式の気相成長装置にお
いては、高周波加熱方式の気相成長装置で用いられてい
たものと同様に、検出素子材料としてSiを含み波長約
0.9μmの赤外線を検出する放射温度計が用いられて
いた。
Conventionally, in a lamp heating type vapor phase growth apparatus, similar to the one used in a high frequency heating type vapor phase growth apparatus, infrared rays having a wavelength of about 0.9 μm are detected, containing Si as a detection element material. A radiation thermometer was used.

【0005】しかし、ランプ加熱方式の気相成長装置に
検出素子材料がSiである放射温度計を用いると、赤外
線ランプから発せられる赤外線および石英ガラス製の反
応容器を通過する赤外線の透過率の影響を受け、放射温
度計による表面温度の計測精度が低下し、ウエハの表面
温度の制御に影響を及ぼすことがわかってきた。このた
め、従来はウエハ上に成長する薄膜の成膜品質の均一性
をそれほど向上させることができなかった。
However, when a radiation thermometer in which the detecting element material is Si is used in a lamp heating type vapor phase growth apparatus, the influence of the infrared rays emitted from the infrared lamp and the transmittance of the infrared rays passing through the reaction vessel made of quartz glass. Therefore, it has been found that the accuracy of measurement of the surface temperature by the radiation thermometer is lowered, which affects the control of the surface temperature of the wafer. Therefore, conventionally, it was not possible to improve the uniformity of the film-forming quality of the thin film grown on the wafer so much.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、表面
温度の計測精度を高めることにより成膜時および昇温時
における処理基板の表面温度を均一化でき、成膜品質を
より均一化できる気相成長装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the accuracy of surface temperature measurement, so that the surface temperature of a processed substrate can be made uniform during film formation and during temperature rise, and film formation quality can be made more uniform. It is to provide a vapor phase growth apparatus.

【0007】[0007]

【課題を解決するための手段】本発明に係る気相成長装
置は、石英ガラス製の反応容器と、前記反応容器内に配
置されたサセプタと、前記反応容器の外側に設けられ前
記反応容器を通して赤外線を照射することにより前記サ
セプタおよびその上に載置される処理基板を加熱する赤
外線ランプと、前記赤外線ランプの外側に設けられ前記
反応容器を通して前記サセプタの温度を計測する、検出
波長が1.8〜2.1μmである放射温度計とを具備し
たことを特徴とする。
A vapor phase growth apparatus according to the present invention comprises a reaction vessel made of quartz glass, a susceptor arranged in the reaction vessel, and a reaction vessel provided outside the reaction vessel. An infrared lamp that heats the susceptor and a processing substrate placed on the susceptor by irradiating infrared rays, and a detection wavelength that measures the temperature of the susceptor through the reaction container provided outside the infrared lamp and has a detection wavelength of 1. And a radiation thermometer having a diameter of 8 to 2.1 μm.

【0008】本発明において用いられる放射温度計は、
例えば検出素子材料がPbSe系の半導体であるものが
好ましい。
The radiation thermometer used in the present invention is
For example, the detection element material is preferably a PbSe-based semiconductor.

【0009】本発明の気相成長装置において用いられる
放射温度計は、赤外線ランプから発せられる波長の赤外
線の影響を受けにくく、かつ石英ガラス製の反応容器を
通過する透過率が高い赤外線を検出するので、計測精度
を高めることができる。このため、成膜時および昇温時
における処理基板の表面温度を均一化でき、膜厚に代表
される成膜品質をより均一化できる。
The radiation thermometer used in the vapor phase growth apparatus of the present invention detects infrared rays which are hardly affected by infrared rays having a wavelength emitted from an infrared lamp and which have a high transmittance through a reaction vessel made of quartz glass. Therefore, the measurement accuracy can be improved. Therefore, the surface temperature of the processed substrate during film formation and temperature rise can be made uniform, and the film formation quality represented by the film thickness can be made more uniform.

【0010】[0010]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態を説明する。図1は本発明の実施形態に係る気相
成長装置の縦断面図、図2は図1のII−II線で切断した
断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. 1 is a vertical cross-sectional view of a vapor phase growth apparatus according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line II-II of FIG.

【0011】反応容器1は円筒状の石英ガラス(SiO
2)から形成されており、その底部には排気口2が設け
られ、その上端にはトッププレート3が開閉可能に取り
付けられている。この反応容器1の内部が反応室4とし
て用いられる。
The reaction vessel 1 is a cylindrical quartz glass (SiO 2
2 ), the exhaust port 2 is provided at the bottom portion thereof, and the top plate 3 is attached to the upper end of the exhaust port 2 so as to be openable and closable. The inside of the reaction container 1 is used as the reaction chamber 4.

【0012】トッププレート3には回転軸6が設けら
れ、その下端に複数のサセプタ7が裁頭多角錐形状をな
すように配置され回転可能に支持されている。サセプタ
7の表面には処理基板としてのウエハ8が載置される。
また、トッププレート3には、反応ガスやパージガスを
供給するノズル9が設けられている。
A rotating shaft 6 is provided on the top plate 3, and a plurality of susceptors 7 are arranged at the lower end of the rotating shaft 6 so as to form a truncated polygonal pyramid shape and are rotatably supported. A wafer 8 as a processing substrate is placed on the surface of the susceptor 7.
Further, the top plate 3 is provided with a nozzle 9 for supplying a reaction gas and a purge gas.

【0013】図1および図2に示すように、反応容器1
の外側には、水平に伸びる棒状の複数の赤外線ランプ5
が反応容器1の周囲を囲むように環状に配置され、かつ
環状をなす赤外線ランプ5がサセプタ7の長手方向に沿
って複数列にわたって配列されている。図2に示すよう
に、反応容器1の周囲を環状に囲む赤外線ランプ5の背
後および赤外線ランプ5同士の間には反射板11が設け
られている。サセプタ7の長手方向に沿って同程度の高
さに配置されている赤外線ランプ5は、図1に5a〜5
eで示すように複数の群に区分され、加熱制御部12に
よって互いに独立に出力が制御されるようになってい
る。
As shown in FIGS. 1 and 2, the reaction container 1
A plurality of horizontally extending rod-shaped infrared lamps 5
Are arranged in an annular shape so as to surround the periphery of the reaction container 1, and the infrared lamps 5 having an annular shape are arranged in a plurality of rows along the longitudinal direction of the susceptor 7. As shown in FIG. 2, a reflection plate 11 is provided behind the infrared lamp 5 surrounding the reaction vessel 1 in an annular shape and between the infrared lamps 5. The infrared lamps 5 arranged at the same height along the longitudinal direction of the susceptor 7 are shown in FIG.
As shown by e, it is divided into a plurality of groups, and the output is controlled by the heating controller 12 independently of each other.

【0014】赤外線ランプ5の外側の1個所には、サセ
プタ7の表面とほぼ平行になるように鉛直方向にネジ軸
14が配置され、このネジ軸14に放射温度計13が係
合されている。ネジ軸14はモータ16によって正逆転
を与えられ、放射温度計13はネジ軸14の回転により
サセプタ7の長手方向の全長にわたる範囲を移動可能に
なっている。モータ16には位置検出部17が連結され
ており、位置検出部17は放射温度計13のサセプタ長
手方向位置を検出し、位置検出部17の出力は加熱制御
部12へ与えられる。図2に示すように、放射温度計1
3の先端は2列の赤外線ランプ5の中間に位置し、放射
温度計13が対向する部分の反射板11には窓15が設
けられている。放射温度計13はこの窓15および石英
ガラス製の反応容器1を通してサセプタ7から発せられ
る赤外線を検出してサセプタ7の表面温度を計測するよ
うになっている。放射温度計13の出力は加熱制御部1
2へ与えられる。
A screw shaft 14 is arranged vertically at a position outside the infrared lamp 5 so as to be substantially parallel to the surface of the susceptor 7, and a radiation thermometer 13 is engaged with the screw shaft 14. . The screw shaft 14 is rotated in the forward and reverse directions by the motor 16, and the radiation thermometer 13 is movable by the rotation of the screw shaft 14 over the entire length of the susceptor 7 in the longitudinal direction. A position detector 17 is connected to the motor 16. The position detector 17 detects the position of the radiation thermometer 13 in the susceptor longitudinal direction, and the output of the position detector 17 is given to the heating controller 12. As shown in FIG. 2, the radiation thermometer 1
The tip of 3 is located in the middle of the two rows of infrared lamps 5, and a window 15 is provided in the reflection plate 11 in the portion facing the radiation thermometer 13. The radiation thermometer 13 detects infrared rays emitted from the susceptor 7 through the window 15 and the reaction vessel 1 made of quartz glass to measure the surface temperature of the susceptor 7. The output of the radiation thermometer 13 is the heating controller 1
Given to 2.

【0015】本発明においては、放射温度計として検出
波長が1.8〜2.1μm近傍であるもの、例えば検出
素子材料にPbSeを含むものが用いられる。このよう
な放射温度計を用いる理由について説明する。ここで、
赤外線の波長(λ)と、石英ガラスを透過する赤外線の
透過率および赤外線ランプの光量との関係を図3に示
す。図3から以下のことがわかる。
In the present invention, a radiation thermometer having a detection wavelength of about 1.8 to 2.1 μm, for example, a detection element material containing PbSe is used. The reason for using such a radiation thermometer will be described. here,
FIG. 3 shows the relationship between the wavelength (λ) of infrared rays, the transmittance of infrared rays that pass through quartz glass, and the light amount of the infrared lamp. The following can be seen from FIG.

【0016】(1)石英ガラス(SiO2)を透過する
赤外線の透過率Aは波長2.7μmで極小値をとり、波
長2.1μm以下または3.4μm近傍で高い値を示
す。このため、高い透過率を示す波長の赤外線を検出で
きる放射温度計を選定することが好ましい。
(1) The transmittance A of infrared rays transmitted through quartz glass (SiO 2 ) has a minimum value at a wavelength of 2.7 μm, and shows a high value at a wavelength of 2.1 μm or less or in the vicinity of 3.4 μm. Therefore, it is preferable to select a radiation thermometer capable of detecting infrared rays having a wavelength showing a high transmittance.

【0017】(2)赤外線ランプの光量Bは、波長0.
95μmで最大であり、その前後の波長では減少してい
る。このため、赤外線ランプの光量Bが少ない領域の波
長の赤外線を検出する放射温度計を選定して、赤外線ラ
ンプの影響を小さくすることが好ましい。検出素子材料
としてSiを含み、波長約0.9μmの赤外線を検出す
る従来の放射温度計を用いた場合には、赤外線ランプか
ら発せられる赤外線の影響が大きく、計測精度が低下し
ていた。
(2) The light quantity B of the infrared lamp has a wavelength of 0.
It is maximum at 95 μm, and decreases at wavelengths around it. Therefore, it is preferable to reduce the influence of the infrared lamp by selecting a radiation thermometer that detects infrared rays having a wavelength in a region where the light amount B of the infrared lamp is small. When a conventional radiation thermometer that contains Si as a detection element material and detects infrared rays having a wavelength of about 0.9 μm was used, the influence of infrared rays emitted from an infrared lamp was large and the measurement accuracy was lowered.

【0018】(3)赤外線の石英ガラス透過量は波長と
厚さによって異なる。石英部品は作製誤差が大きく、装
置のメンテナンス等で洗浄する際、石英部品は薬液に侵
食され、寸法が変化することも考えなければならない。
2.1μm以下の波長では石英ガラスによる光の吸収は
なく、石英ガラスに無関係となるが、それ以上の波長に
なると吸収されるため、石英ガラスの厚さに大きく影響
を受け、3.4μmでは1mmの厚さで赤外線を2%吸
収する。そのため、測定波長は2.1μm以下の波長で
あることが好ましい。
(3) The amount of infrared light transmitted through quartz glass differs depending on the wavelength and thickness. It is also necessary to consider that the quartz parts have a large manufacturing error, and that the quartz parts are eroded by the chemical solution and are changed in size when they are washed for maintenance of the apparatus.
At a wavelength of 2.1 μm or less, there is no absorption of light by the quartz glass, which is irrelevant to the quartz glass, but since it is absorbed at wavelengths longer than that, it is greatly affected by the thickness of the quartz glass and at 3.4 μm. It absorbs 2% of infrared radiation with a thickness of 1 mm. Therefore, the measurement wavelength is preferably 2.1 μm or less.

【0019】上記の(1)〜(3)から判断して、検出
波長が1.8〜2.1μm近傍である放射温度計、例え
ば検出素子材料がPbSeであるものを用いることが好
ましい。また、検出素子材料がPbSeである放射温度
計は、波長1.8〜2.1μm近傍の赤外線に対して比
較的大きなゲインが得られる。
Judging from the above (1) to (3), it is preferable to use a radiation thermometer having a detection wavelength in the vicinity of 1.8 to 2.1 μm, for example, one whose detection element material is PbSe. Further, the radiation thermometer in which the detection element material is PbSe can obtain a relatively large gain for infrared rays having a wavelength in the vicinity of 1.8 to 2.1 μm.

【0020】この気相成長装置は以下のようにして操作
される。サセプタ7およびウエハ8を赤外線ランプ5に
よって表面から輻射加熱しながら、ノズル9から反応室
4内へ反応ガスを供給して反応させ、ウエハ8上に反応
生成物を成長させる。このとき、適宜な時間間隔でモー
タ16を作動させ、放射温度計13をサセプタ7の上下
方向に沿って移動させる。放射温度計13は検出素子材
料としてPbSeを含み検出波長が1.8〜2.1μm
近傍であるため、石英ガラス(SiO2)を高い透過率
で透過する赤外線を検出でき、しかも赤外線ランプから
発せられる赤外線の影響は小さい。したがって、サセプ
タ7の表面温度を高い検出精度で計測できる。
This vapor phase growth apparatus is operated as follows. While the susceptor 7 and the wafer 8 are radiantly heated from the surface by the infrared lamp 5, a reaction gas is supplied from the nozzle 9 into the reaction chamber 4 to cause reaction, and a reaction product is grown on the wafer 8. At this time, the motor 16 is operated at appropriate time intervals to move the radiation thermometer 13 along the vertical direction of the susceptor 7. The radiation thermometer 13 contains PbSe as a detection element material and has a detection wavelength of 1.8 to 2.1 μm.
Since it is in the vicinity, infrared rays transmitted through the quartz glass (SiO 2 ) with high transmittance can be detected, and the influence of infrared rays emitted from the infrared lamp is small. Therefore, the surface temperature of the susceptor 7 can be measured with high detection accuracy.

【0021】また、放射温度計13の出力および位置検
出部17の出力を加熱制御部12へ与えることにより、
赤外線ランプ5の制御区分5a〜5e毎に平均温度が求
められる。この温度検出は、1つの放射温度計13によ
ってサセプタ7の上端から下端まで連続して行なわれる
ため、サセプタ7の長手方向の温度分布を的確かつ正確
に把握できる。これらの平均温度の値に基づいて各赤外
線ランプ5の出力をフィードバック制御し、サセプタ7
の長手方向の温度分布を均一化する。制御区分5a〜5
eは、サセプタ7の長手方向に沿う温度分布特性に従っ
て決定されており、より少ない区分で温度分布をより的
確に均一化することができるようになっている。なお、
サセプタ7の周方向の温度分布はサセプタ7の回転によ
って均一化される。
Further, by giving the output of the radiation thermometer 13 and the output of the position detector 17 to the heating controller 12,
The average temperature is obtained for each of the control sections 5a to 5e of the infrared lamp 5. This temperature detection is continuously performed from the upper end to the lower end of the susceptor 7 by one radiation thermometer 13, so that the temperature distribution in the longitudinal direction of the susceptor 7 can be grasped accurately and accurately. The output of each infrared lamp 5 is feedback-controlled based on the value of these average temperatures, and the susceptor 7
To make the temperature distribution in the longitudinal direction uniform. Control division 5a-5
The value e is determined according to the temperature distribution characteristic along the longitudinal direction of the susceptor 7, and the temperature distribution can be made uniform more accurately in a smaller number of sections. In addition,
The temperature distribution in the circumferential direction of the susceptor 7 is made uniform by the rotation of the susceptor 7.

【0022】このような気相成長装置では適切な放射温
度計を用いているので、赤外線ランプから発せられる赤
外線の影響が小さく、サセプタ表面から放射される赤外
線を高い精度で計測できる。このため、フィードバック
制御によって成膜時および昇温時においてウエハの表面
温度を均一化でき、ウエハ上に成長する薄膜の成膜品質
を均一化できる。
Since an appropriate radiation thermometer is used in such a vapor phase growth apparatus, the influence of the infrared rays emitted from the infrared lamp is small, and the infrared rays emitted from the susceptor surface can be measured with high accuracy. Therefore, the surface temperature of the wafer can be made uniform during the film formation and the temperature rise by the feedback control, and the film formation quality of the thin film grown on the wafer can be made uniform.

【0023】前述した実施形態では、裁頭多角錐をなす
複数の平板状のサセプタ7を用いた気相成長装置の例を
示したが、ほぼ水平に配置されて回転する円板状のサセ
プタや非回転型の角板状サセプタ等を用いた種々の形式
の気相成長装置に適用することができる。
In the above-described embodiment, an example of a vapor phase growth apparatus using a plurality of flat plate-shaped susceptors 7 each having a truncated polygonal pyramid is shown. However, a disk-shaped susceptor which is arranged substantially horizontally and rotates, The present invention can be applied to various types of vapor phase growth apparatus using a non-rotating type square plate susceptor and the like.

【0024】[0024]

【発明の効果】以上詳述したように本発明の気相成長装
置によれば、サセプタ表面温度の計測精度を高め、ひい
ては成膜時および昇温時における処理基板の表面温度を
均一化でき、処理基板上での成膜品質(特に膜厚)を均
一化できる。
As described in detail above, according to the vapor phase growth apparatus of the present invention, the measurement accuracy of the surface temperature of the susceptor can be improved, and the surface temperature of the processed substrate can be made uniform during film formation and temperature rise. The film formation quality (especially the film thickness) on the processed substrate can be made uniform.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態に係る気相成長装置の縦断
面図。
FIG. 1 is a vertical sectional view of a vapor phase growth apparatus according to an embodiment of the present invention.

【図2】図1のII−II線に沿って切断した断面図。FIG. 2 is a sectional view taken along line II-II in FIG.

【図3】赤外線の波長(λ)と、石英ガラスを通しての
透過率Aおよび赤外線ランプの光量Bとの関係を示す
図。
FIG. 3 is a diagram showing a relationship between an infrared wavelength (λ), a transmittance A through quartz glass, and a light amount B of an infrared lamp.

【符号の説明】[Explanation of symbols]

1…反応容器 2…排気口 3…トッププレート 4…反応室 5…赤外線ランプ 6…回転軸 7…サセプタ 8…ウエハ 9…ノズル 11…反射板 12…加熱制御部 13…放射温度計 14…ネジ軸 15…窓 16…モータ 17…位置検出部 1 ... Reaction vessel 2 ... Exhaust port 3 ... Top plate 4 ... Reaction chamber 5 ... Infrared lamp 6 ... Rotary axis 7 ... Susceptor 8 ... Wafer 9 ... Nozzle 11 ... Reflector 12 ... Heating control unit 13 ... Radiation thermometer 14 ... screw shaft 15 ... window 16 ... Motor 17 ... Position detection unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 石英ガラス製の反応容器と、前記反応容
器内に配置されたサセプタと、前記反応容器の外側に設
けられ前記反応容器を通して赤外線を照射することによ
り前記サセプタおよびその上に載置される処理基板を加
熱する赤外線ランプと、前記赤外線ランプの外側に設け
られ前記反応容器を通して前記サセプタの温度を計測す
る、検出波長が1.8〜2.1μmである放射温度計と
を具備したことを特徴とする気相成長装置。
1. A reaction vessel made of quartz glass, a susceptor arranged in the reaction vessel, and an infrared ray radiated through the reaction vessel provided outside the reaction vessel to mount the susceptor and the susceptor thereon. And an infrared thermometer having a detection wavelength of 1.8 to 2.1 μm, which is provided outside the infrared lamp and measures the temperature of the susceptor through the reaction container. A vapor phase growth apparatus characterized by the above.
【請求項2】 前記放射温度計の検出素子材料がPbS
eであることを特徴とする請求項1記載の気相成長装
置。
2. The detection element material of the radiation thermometer is PbS
The vapor phase growth apparatus according to claim 1, wherein the vapor phase growth apparatus is e.
JP2001236690A 2001-08-03 2001-08-03 Vapor phase deposition system Pending JP2003051454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001236690A JP2003051454A (en) 2001-08-03 2001-08-03 Vapor phase deposition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001236690A JP2003051454A (en) 2001-08-03 2001-08-03 Vapor phase deposition system

Publications (1)

Publication Number Publication Date
JP2003051454A true JP2003051454A (en) 2003-02-21

Family

ID=19067912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001236690A Pending JP2003051454A (en) 2001-08-03 2001-08-03 Vapor phase deposition system

Country Status (1)

Country Link
JP (1) JP2003051454A (en)

Similar Documents

Publication Publication Date Title
US6191399B1 (en) System of controlling the temperature of a processing chamber
US5861609A (en) Method and apparatus for rapid thermal processing
US6160242A (en) Apparatus and process for measuring the temperature of semiconductor wafers in the presence of radiation absorbing gases
TWI613730B (en) Multizone control of lamps in a conical lamphead using pyrometers
US9617636B2 (en) System and method for controlling wafer and thin film surface temperature
US7833348B2 (en) Temperature control method of epitaxial growth apparatus
KR20140006858A (en) Methods and systems for in-situ pyrometer calibration
TW201501180A (en) A coated liner assembly for a semiconductor processing chamber
JP2015516685A5 (en)
JP6464765B2 (en) Heat treatment apparatus, heat treatment method and storage medium
TW202230491A (en) Systems and methods for a preheat ring in a semiconductor wafer reactor
JPH0590165A (en) Vapor growth apparatus
JP2003051454A (en) Vapor phase deposition system
JP6272743B2 (en) Substrate processing equipment
JP4978608B2 (en) Epitaxial wafer manufacturing method
JP3631921B2 (en) Calibration method for non-contact thermometer
TW202317809A (en) Temperature calibration and control method for chemical vapor deposition device wherein the device comprises a wafer carrier, a first temperature sensor for measuring the temperature of the wafer carrier, and a heater for heating the device
KR20220130610A (en) Wafer Temperature Gradient Control to Suppress Slip Formation in High-Temperature Epitaxial Film Growth
JP3205442B2 (en) Chemical vapor deposition apparatus and chemical vapor deposition method
JPH05259082A (en) Epitaxial growth device and method
JP7271403B2 (en) Deposition apparatus and method of using the deposition apparatus
JPH05217930A (en) Wafer heating apparatus
JP2001289714A (en) Temperature measurement method and measurement device of substrate and treating device of the substrate
JPH1025577A (en) Formed film treating device
JPH07211663A (en) Production of semiconductor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051114