JP3205442B2 - Chemical vapor deposition apparatus and chemical vapor deposition method - Google Patents

Chemical vapor deposition apparatus and chemical vapor deposition method

Info

Publication number
JP3205442B2
JP3205442B2 JP22439793A JP22439793A JP3205442B2 JP 3205442 B2 JP3205442 B2 JP 3205442B2 JP 22439793 A JP22439793 A JP 22439793A JP 22439793 A JP22439793 A JP 22439793A JP 3205442 B2 JP3205442 B2 JP 3205442B2
Authority
JP
Japan
Prior art keywords
temperature
infrared
semiconductor wafer
reaction chamber
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22439793A
Other languages
Japanese (ja)
Other versions
JPH0778772A (en
Inventor
裕二 大倉
真司 船場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16813114&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3205442(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22439793A priority Critical patent/JP3205442B2/en
Publication of JPH0778772A publication Critical patent/JPH0778772A/en
Application granted granted Critical
Publication of JP3205442B2 publication Critical patent/JP3205442B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は加熱しながら半導体ウェ
ハ上に成長膜を成長させるための化学気相成長装置およ
び化学気相成長方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chemical vapor deposition apparatus and a method for growing a grown film on a semiconductor wafer while heating.

【0002】[0002]

【従来の技術】<第1の従来例> 図は半導体レーザ素子等の製造に用いられる第1の従
来例の化学気相成長装置(MOCVD装置)を示す概略
構成図である。図において、1は半導体ウェハ、2は
載置台、3はヒータ、4は載置台2を回転するモータ、
4aはモータ4の回転シャフト、5は熱電対、6はリア
クタチャンバー、7は原料となるトリメチルガリウム
(TMG)等の有機金属とアルシン等のハイドライドガ
スの混合ガスを供給する配管である。
2. Description of the Related Art <First Conventional Example> FIG. 4 is a schematic diagram showing a first conventional example of a chemical vapor deposition apparatus (MOCVD apparatus) used for manufacturing a semiconductor laser device or the like. In FIG. 4 , 1 is a semiconductor wafer, 2 is a mounting table, 3 is a heater, 4 is a motor for rotating the mounting table 2,
Reference numeral 4a denotes a rotating shaft of the motor 4, 5 denotes a thermocouple, 6 denotes a reactor chamber, and 7 denotes a pipe for supplying a mixed gas of an organic metal such as trimethylgallium (TMG) as a raw material and a hydride gas such as arsine.

【0003】次に動作について説明する。配管7より供
給された混合ガスは、ヒータ3により載置台2を通して
加熱された半導体ウェハ1上で熱分解し、半導体ウェハ
1上に結晶成長が生じる。例えば半導体ウェハ1として
GaAsを用い、TMGとアルシンからなる混合ガスを
用い、半導体ウェハ温度を約700℃とすることにより
GaAsが結晶成長する。またTMGとジエチルジンク
(DEZ)およびアルシンを用いるとp型の導電型を示
すGaAsが、またTMGとトリメチルインジウム(T
MI)とホスフィンからなる混合ガスを用いるとGaI
nPが、夫々結晶成長する。このとき半導体ウェハ1の
温度が変化すると、p型GaAsのキャリア濃度が変化
し、またGaInPのバンドギャップが変化する。これ
を防止するため、半導体ウェハ1の温度は熱電対5から
出る信号(電圧)をモニターし、ヒータ3の出力にフィ
ードバックすることにより一定に制御される。また回転
シャフト4は成長層の均一性を向上させるために設けら
れたもので、これにより成長中に半導体ウェハ1を回転
させることにより、成長層の均一性を高めることができ
る。
Next, the operation will be described. The mixed gas supplied from the pipe 7 is thermally decomposed on the semiconductor wafer 1 heated by the heater 3 through the mounting table 2, and crystal growth occurs on the semiconductor wafer 1. For example, GaAs is grown as the semiconductor wafer 1 by using a mixed gas of TMG and arsine and setting the temperature of the semiconductor wafer to about 700 ° C. When TMG, diethyl zinc (DEZ) and arsine are used, GaAs exhibiting a p-type conductivity is obtained, and TMG and trimethylindium (T
When a mixed gas comprising MI) and phosphine is used, GaI
nP grows crystal respectively. At this time, when the temperature of the semiconductor wafer 1 changes, the carrier concentration of p-type GaAs changes, and the band gap of GaInP changes. To prevent this, the temperature of the semiconductor wafer 1 is controlled to be constant by monitoring a signal (voltage) output from the thermocouple 5 and feeding it back to the output of the heater 3. The rotating shaft 4 is provided to improve the uniformity of the growth layer. By rotating the semiconductor wafer 1 during growth, the uniformity of the growth layer can be improved.

【0004】<第2の従来例> 図は第2の従来例のMOCVD装置を示す概略構成図
である。図において、半導体ウェハ1、載置台2、ヒ
ータ3、回転シャフト4、リアクタチャンバー6および
配管7は、図と同一のものが用いられる。また9は温
度の測定装置のひとつである赤外線検出器(パイロメー
タ)である。一般に物質から放出される赤外線の強度
は、その物質の温度により異なる。したがって、赤外線
検出器9によって半導体ウェハ1の表面より放出される
赤外線の強度を測定することにより、半導体ウェハ1の
表面温度を測定することができる。図に示す第2従来
例のMOCVD装置は、この赤外線検出器9の測定値を
ヒータ3の出力にフィードバックすることにより、半導
体ウェハ1の温度を制御しp型GaAsのキャリア濃度
やGaInPのバンドギャップの制御性を向上させるこ
とを試みたものである。
<Second Conventional Example> FIG. 5 is a schematic configuration diagram showing a MOCVD apparatus of a second conventional example. In FIG. 5 , the same semiconductor wafer 1, mounting table 2, heater 3, rotary shaft 4, reactor chamber 6, and pipe 7 as those in FIG. 4 are used. Reference numeral 9 denotes an infrared detector (pyrometer) which is one of the temperature measuring devices. In general, the intensity of infrared light emitted from a substance depends on the temperature of the substance. Therefore, the surface temperature of the semiconductor wafer 1 can be measured by measuring the intensity of infrared rays emitted from the surface of the semiconductor wafer 1 by the infrared detector 9. The MOCVD apparatus of the second conventional example shown in FIG. 5 controls the temperature of the semiconductor wafer 1 by feeding back the measured value of the infrared detector 9 to the output of the heater 3 to control the carrier concentration of p-type GaAs and the band of GaInP. An attempt was made to improve the controllability of the gap.

【0005】[0005]

【発明が解決しようとする課題】<第1の従来例におけ
る問題点> 第1の従来例では、結晶成長を重ねるにつれ、図に示
すように半導体ウェハ1周辺の載置台2、ヒータ3の表
面およびリアクタチャンバー6の側壁等に供給ガスの分
解生成物8が付着する。その付着量が多くなると、半導
体ウェハ1の周辺部の熱の放射特性が変化するため、熱
電対5に伝わる温度と半導体ウェハ1の温度との関係が
変化してしまう。そうすると、第1の従来例のように熱
電対5の温度が一定となるようなヒータ出力の制御方法
では、半導体ウェハ1の温度変化を熱電対5で正確に把
握できないおそれがあり、半導体ウェハ1の温度を安定
的に再現性良く制御することはできない。このため、例
えばp型GaAsのキャリア濃度やGaInPのバンド
ギャップ(または屈折率)の設定において、これらの設
定値が成長工程ごとに経時変化を生じるといった欠点が
あった。
[Problems that the Invention is to Solve The <first conventional problem in Example> In the first conventional example, as the overlapping crystal growth, the mounting table 2 around the semiconductor wafer 1 as shown in FIG. 6, the heater 3 Decomposition products 8 of the supply gas adhere to the surface, the side walls of the reactor chamber 6, and the like. When the amount of adhesion increases, the radiation characteristic of heat in the peripheral portion of the semiconductor wafer 1 changes, and thus the relationship between the temperature transmitted to the thermocouple 5 and the temperature of the semiconductor wafer 1 changes. Then, in the heater output control method in which the temperature of the thermocouple 5 is constant as in the first conventional example, there is a possibility that the temperature change of the semiconductor wafer 1 cannot be accurately grasped by the thermocouple 5, and the semiconductor wafer 1 Cannot be stably controlled with good reproducibility. For this reason, for example, when setting the carrier concentration of p-type GaAs or the band gap (or refractive index) of GaInP, there is a disadvantage that these set values change with time for each growth process.

【0006】<第2の従来例における問題点> 第2の従来例では、赤外線検出器9で半導体ウェハ1か
らの赤外線の強度を直接測定することでその表面温度を
測定しているため、周囲への分解生成物8の付着による
影響はなく、第1の従来例で問題となった欠点は解消さ
れる。しかし、物質からの赤外線放出特性は物質の成分
により異なり、特に半導体レーザ素子のようにヘテロ構
造の作製が必要なものに対しては、各成長層ごとに赤外
線放出特性が異なるといった新たな問題が生じる。図
に可視光半導体レーザ素子のダブルヘテロ構造(DH構
造)を示す。図において、10はn型GaAs基板、
11はn型AlGaInP下クラッド層、12はGaI
nP活性層、13はp型AlGaInP上クラッド層、
14はp型GaAsコンタクト層である。このように半
導体レーザ素子の作製には、順次異なった物質を結晶成
長する必要が生じる。しかしながら、上述の如く、赤外
線放出特性は物質により異なるため、異なった材料を成
長した場合、図に示すように半導体ウェハ1の表面が
同一温度であっても、赤外線検出器9は各成長層ごとに
異なった値を出力する。したがって、かかる赤外線検出
器9からの信号に基づいてヒータ3の出力を変化させよ
うとすると、半導体ウェハ1の表面が同一温度であるに
かかわらず、成長材料が異なるたびにヒータ3の出力を
変化させてしまう。半導体ウェハ1の温度は、ヒータ3
の出力の変化によっては瞬時に変化しないため、各成長
層界面に変成層を生じさせることとなり、半導体レーザ
素子の特性を劣化させてしまう。
<Problems in the second conventional example> In the second conventional example, since the surface temperature is measured by directly measuring the intensity of infrared rays from the semiconductor wafer 1 with the infrared detector 9, the ambient There is no influence of the adhesion of the decomposition product 8 to the substrate, and the drawback which has been a problem in the first conventional example is eliminated. However, the infrared emission characteristics of a substance vary depending on the components of the substance. Particularly, for a semiconductor laser element that requires fabrication of a heterostructure, there is a new problem that the infrared emission characteristic differs for each growth layer. Occurs. Figure 7
2 shows a double hetero structure (DH structure) of a visible light semiconductor laser device. 7 , reference numeral 10 denotes an n-type GaAs substrate,
11 is an n-type AlGaInP lower cladding layer, 12 is GaI
nP active layer, 13 is a p-type AlGaInP upper cladding layer,
Reference numeral 14 denotes a p-type GaAs contact layer. As described above, in order to manufacture a semiconductor laser device, it is necessary to sequentially grow crystals of different substances. However, as described above, since the infrared ray emitting characteristics differ by materials different if the material was grown, also the surface of the semiconductor wafer 1 as shown in FIG. 8 have the same temperature, the infrared detector 9 each growth layer Output different values for each. Therefore, if the output of the heater 3 is changed based on the signal from the infrared detector 9, the output of the heater 3 is changed every time the growth material is different, regardless of whether the surface of the semiconductor wafer 1 is at the same temperature. Let me do it. The temperature of the semiconductor wafer 1 is controlled by the heater 3
Does not change instantaneously depending on the change in the output of the semiconductor laser device, a metamorphic layer is formed at the interface between the growth layers, and the characteristics of the semiconductor laser device are degraded.

【0007】また、図のようにn型GaAs基板10
上にn型AlGaInP下クラッド層11のような屈折
率の異なった材料を成長させた場合、半導体ウェハ1か
ら放出された赤外線は、図に示すように例えばn型G
aAs基板10およびn型AlGaInP下クラッド層
11の間の界面F1と、n型AlGaInP下クラッド
層11の上面F2との間で多重反射を生じ、干渉効果が
生じるため、半導体ウェハ1の表面からの赤外線強度
は、図10に示すようにn型AlGaInP下クラッド
層11の成長厚により周期的な変動を起こす。そして、
赤外線強度が強いとき赤外線検出器9は温度が高いと判
断し、ヒータ3をオフする等して温度を下げようとする
ため、適正温度に対して誤制御してしまうおそれがあ
る。
Further, as shown in FIG. 7 , an n-type GaAs substrate 10 is formed.
When growing the refractive index of different materials, such as n-type AlGaInP lower cladding layer 11 above, infrared rays emitted from the semiconductor wafer 1, for example, n-type G as shown in FIG. 9
Since multiple reflection occurs between the interface F1 between the aAs substrate 10 and the n-type AlGaInP lower cladding layer 11 and the upper surface F2 of the n-type AlGaInP lower cladding layer 11, an interference effect occurs. infrared intensity, causes a periodic variation due to the growth thickness of the n-type AlGaInP lower cladding layer 11 as shown in FIG. 10. And
When the infrared intensity is high, the infrared detector 9 judges that the temperature is high, and tries to lower the temperature by turning off the heater 3 or the like.

【0008】さらに、図11に示すように載置台2上に
複数の半導体ウェハ1を配置し、半導体ウェハ1の中央
部からの赤外線を赤外線検出器9で検出するようにした
場合、成長層の均一性を向上させるため回転シャフト4
により載置台2を自転させると、赤外線検出器9の検出
スポットの中心点の軌跡は図11中のLpのようになる
が、半導体ウェハ1同士が離間して配置されると、前記
軌跡Lpは半導体ウェハ1だけでなく載置台2上をも通
過するため、前記赤外線検出器9は半導体ウェハ1から
の赤外線と載置台2からの赤外線とを交互に検出するこ
とになる。このことは、赤外線検出器9の半導体ウェハ
1表面の温度判断の正確さを悪化させる。
Further, when a plurality of semiconductor wafers 1 are arranged on the mounting table 2 as shown in FIG. 11 and infrared rays from the central portion of the semiconductor wafer 1 are detected by the infrared detector 9, the Rotating shaft 4 to improve uniformity
When the mounting table 2 is rotated, the locus of the center point of the detection spot of the infrared detector 9 becomes like Lp in FIG. 11 , but when the semiconductor wafers 1 are arranged apart from each other, the locus Lp becomes Since the infrared light passes through not only the semiconductor wafer 1 but also the mounting table 2, the infrared detector 9 detects the infrared rays from the semiconductor wafer 1 and the infrared rays from the mounting table 2 alternately. This degrades the accuracy of the infrared detector 9 in determining the temperature of the surface of the semiconductor wafer 1.

【0009】これらのことから、半導体レーザ素子の特
性が悪化し、歩留りが劣化するという欠点があった。
For these reasons, there is a disadvantage that the characteristics of the semiconductor laser device are deteriorated and the yield is deteriorated.

【0010】本発明は、上記課題に鑑み、ヘテロ界面に
変成層を生じさせることなく、再現性よく半導体レーザ
素子を製造するための化学気相成長装置および化学気相
成長方法を提供することを目的とする。
The present invention has been made in view of the above problems, and provides a chemical vapor deposition apparatus and a chemical vapor deposition method for manufacturing a semiconductor laser device with good reproducibility without generating a metamorphic layer at a hetero interface. Aim.

【0011】[0011]

【課題を解決するための手段】本発明の請求項1に係る
課題解決手段は、反応室内において、載置台上に載置さ
れた半導体ウェハを加熱しつつ、高温安定状態で前記反
応室内に反応ガスを供給することにより前記半導体ウェ
ハの上面に成長膜を形成する化学気相成長装置であっ
て、前記載置台上の半導体ウェハを加熱する加熱手段
と、前記反応室内の所定位置の温度を前記半導体ウェハ
からの赤外線検出以外の方法によって検出する温度検知
手段と、加熱された前記半導体ウェハから放射される赤
外線の強度を検出する赤外線検出手段と、前記温度検知
手段および前記赤外線検出手段からの検出情報に基づい
て前記加熱手段での加熱温度を制御する制御手段とを備
え、前記制御手段は、前記反応室内の昇温段階で前記赤
外線検出手段からの赤外線検出情報を選択しかつ前記反
応室の高温安定段階で前記温度検知手段からの温度検出
情報を選択する自動選択部と、該自動選択部で選択され
たいずれかの検出情報に基づいて前記加熱手段を駆動制
御する駆動制御部とを備える。
Means for Solving the Problems According to a first aspect of the present invention, a semiconductor wafer mounted on a mounting table in a reaction chamber is heated while the semiconductor wafer is placed in a stable state at a high temperature. a chemical vapor deposition apparatus for forming a growth film on the upper surface of the semiconductor wafer by supplying the gas, heating means for heating the semiconductor wafer on the mounting table, the temperature of the predetermined position of the reaction chamber wherein Semiconductor wafer
Temperature detection means for detecting by a method other than infrared detection from the infrared, infrared detection means for detecting the intensity of infrared radiation emitted from the heated semiconductor wafer, and detection information from the temperature detection means and the infrared detection means Control means for controlling the heating temperature of the heating means based on the temperature of the reaction chamber. An automatic selection unit for selecting temperature detection information from the temperature detection unit in a step, and a drive control unit for driving and controlling the heating unit based on any of the detection information selected by the automatic selection unit.

【0012】[0012]

【0013】[0013]

【0014】[0014]

【0015】[0015]

【0016】本発明の請求項2に係る課題解決手段は、
反応室内で、半導体ウェハから放射される赤外線の強度
を検出し、検出された赤外線の強度に基づいて昇温制御
する昇温工程と、該昇温工程後に、前記反応室内の所定
位置の温度を前記半導体ウェハからの赤外線検出以外の
方法によって検出し、検出された温度に基づいて温度制
御しながら前記半導体ウェハの上面に成長膜を形成する
成長工程とを備える。望ましくは、成長に用いる基板の
表面物質と同一物質を前記昇温工程後に成長する場合
に、前記基板の前記表面物質と同一物質の成長段階まで
前記赤外線の強度の検出による温度制御を継続し、その
後、前記基板と異なる物質の成長の開始以降は前記半導
体ウェハ表面からの前記赤外線検出以外の温度検知方法
によって温度制御をする。
According to a second aspect of the present invention, there is provided:
In the reaction chamber, the intensity of infrared light emitted from the semiconductor wafer is detected, and the temperature is increased based on the detected intensity of the infrared light, and after the temperature increase, the temperature at a predetermined position in the reaction chamber is measured. Other than infrared detection from the semiconductor wafer
Detected by the method, and a growth step of forming a top surface on the growing film of the semiconductor wafer while the temperature control based on the detected temperature. Preferably, the substrate used for growth is
When the same material as the surface material is grown after the temperature raising step
Up to the growth stage of the same material as the surface material of the substrate
Continue the temperature control by detecting the intensity of the infrared light,
Later, after the start of the growth of a substance different from the substrate, the semiconductor
Temperature detection method other than the infrared detection from the body wafer surface
Temperature control.

【0017】[0017]

【0018】[0018]

【0019】[0019]

【0020】[0020]

【作用】本発明の請求項1に係る化学気相成長装置なら
びに請求項2および請求項3に係る化学気相成長方法で
は、反応室内の昇温段階において、制御手段の自動選択
部は赤外線検出手段からの赤外線検出情報を選択し、赤
外線検出情報に基づいて反応室が高温安定状態となった
ことを確認する(昇温工程)。このように、反応室の高
温安定水準を赤外線検出手段からの赤外線検出情報に基
づいて設定するので、温度検知手段(半導体ウェハから
の赤外線検出以外の方法)を用いずに済み、故に第1の
従来例で問題となっていた周辺の付着物の温度制御への
悪影響を防止できる。また、ヘテロ構造の作成時には、
成長基板からの赤外線強度に対して成長膜からの赤外線
強度が急激に変化し、赤外線検出手段での赤外線検出情
報での温度制御が不可能となる。そこで、反応室内が高
温安定段階になると、自動選択部は温度検知手段からの
温度検出情報を選択し、以後、温度検出情報に基づいて
温度制御を行いながら、半導体ウェハの上面に成長膜を
形成する(成長工程)。そうすると、ヘテロ構造作成時
に赤外線検出手段を用いずに済み、故に第2の従来例で
問題となっていた異物質による赤外線放射特性の変化に
よる検出誤差の心配がなくなり、また、赤外線の多重反
射による干渉効果を防止できる。また、成長に用いる基
板の表面物質と同一物質を前記昇温工程後に成長する場
合に、前記基板の前記表面物質と同一物質の成長段階ま
で前記赤外線の強度の検出による温度制御を継続し、そ
の後、前記基板と異なる物質の成長の開始以降は前記半
導体ウェハ表面からの前記赤外線検出以外の温度検知方
法によって温度制御をする場合においても同様である。
したがって、温度制御の安定性を確保でき、長期にわた
り再現性良く所望の成長膜を成長させることができる。
If chemical vapor deposition apparatus according to claim 1 of the effect of the present invention
In the chemical vapor deposition method according to claims 2 and 3 , the automatic selection section of the control means selects the infrared detection information from the infrared detection means in the heating stage in the reaction chamber, and based on the infrared detection information. Confirm that the reaction chamber is in a high-temperature stable state (heating step). As described above, since the high temperature stable level of the reaction chamber is set based on the infrared detection information from the infrared detecting means, the temperature detecting means (from the semiconductor wafer to the
(Other than the method of detecting infrared rays) , it is possible to prevent adverse effects on the temperature control of the attached matter in the vicinity, which is a problem in the first conventional example. Also, when creating the heterostructure,
The intensity of the infrared light from the grown film changes abruptly with respect to the intensity of the infrared light from the growth substrate, making it impossible to control the temperature with the infrared detection information from the infrared detection means. Therefore, when the reaction chamber reaches the high temperature stable stage, the automatic selection unit selects the temperature detection information from the temperature detection means, and thereafter forms a growth film on the upper surface of the semiconductor wafer while controlling the temperature based on the temperature detection information. (Growing process). This eliminates the need for using the infrared detecting means at the time of forming the heterostructure, thereby eliminating the problem of detection error due to the change in the infrared emission characteristic due to the foreign substance, which has been a problem in the second conventional example, and also reduces the multiple reflection of infrared light. The interference effect can be prevented. Also, the base used for growth
When the same material as the surface material of the plate is grown after the heating step,
In this case, the same material as the surface material of the substrate is grown up to the growth stage.
Then, the temperature control by detecting the intensity of the infrared ray is continued.
After the start of growth of a substance different from the substrate,
Temperature detection method other than infrared detection from the conductor wafer surface
The same applies to the case where the temperature is controlled by the method.
Therefore, the stability of temperature control can be ensured, and a desired growth film can be grown with high reproducibility over a long period of time.

【0021】[0021]

【0022】[0022]

【0023】[0023]

【0024】[0024]

【実施例】【Example】

[第1の実施例]本発明の第1の実施例の化学気相成長
装置は、化学気相成長工程の初めの昇温段階において赤
外線検出器を用いた温度制御の下で行い、その後に続く
高温安定段階において熱電対を用いた温度制御を行うも
のである。
[First Embodiment] A chemical vapor deposition apparatus according to a first embodiment of the present invention is performed under a temperature control using an infrared detector in a temperature rising stage at the beginning of a chemical vapor deposition process, and thereafter, In the subsequent high-temperature stabilization stage, temperature control using a thermocouple is performed.

【0025】<構成>図1は本発明の第1の実施例の化
学気相成長装置(MOCVD装置)を示す概略構成図で
ある。図1中、21は反応室を形成するリアクタチャン
バ、22は前記リアクタチャンバ21内で半導体ウェハ
23を載置する載置台(サセプタ)、24は前記載置台
22を縦軸25(回転シャフト)を中心に回転する回転
手段、26は前記載置台22上の半導体ウェハ23を加
熱する加熱手段(ヒータ)、27は前記反応室内の所定
位置の温度を検出する温度検知手段、28は加熱された
前記半導体ウェハ23から放射される赤外線の強度を検
出する赤外線検出手段、29は前記温度検知手段27お
よび前記赤外線検出手段28からの検出情報に基づいて
前記加熱手段26での加熱温度を制御する制御手段であ
る。
<Structure> FIG. 1 is a schematic diagram showing a chemical vapor deposition apparatus (MOCVD apparatus) according to a first embodiment of the present invention. In FIG. 1, reference numeral 21 denotes a reactor chamber forming a reaction chamber; 22, a mounting table (susceptor) on which a semiconductor wafer 23 is mounted in the reactor chamber 21; A rotating unit that rotates about the center, 26 is a heating unit (heater) that heats the semiconductor wafer 23 on the mounting table 22, 27 is a temperature detecting unit that detects the temperature of a predetermined position in the reaction chamber, and 28 is the heated unit. Infrared detecting means 29 for detecting the intensity of infrared light emitted from the semiconductor wafer 23; control means 29 for controlling a heating temperature of the heating means 26 based on detection information from the temperature detecting means 27 and the infrared detecting means 28 It is.

【0026】前記リアクタチャンバ21は、例えば石英
管を使用した自然空冷型ものやステンレス鋼を使用した
ジャケット構造または銅管巻構造のもの等が用いられ、
該リアクタチャンバ21の上部は前記反応ガスを半導体
ウェハ23の上面に均一に供給すべく略円錐(コーン)
状に形成され、その上端中央部には反応ガスを供給する
ための供給孔31が形成されている。該供給孔31はガ
ス供給管32を介してガス供給器33に連通されてい
る。また、前記リアクタチャンバ21の上部の所定位置
には、前記赤外線検出手段28を取り付ける取付孔34
が形成されている。前記載置台22は、例えばカーボン
またはSiCでコートされたカーボン等を用いて円板状
に形成され、前記反応室内の中央部に固定された支持筒
35の上端部に、図示しないベアリング機構等にて水平
に支持され、かつ前記支持筒35内に貫通された前記回
転手段24の縦軸25に連結されて水平方向に回転され
る。前記回転手段24は、半導体ウェハ23の上面に成
長膜(結晶)を形成する際に該成長膜の均一性を高める
ために設けられたもので、回転誤差の少ない直流電動機
等が用いられる。前記加熱手段26は、前記載置台22
と略同形かつ略同面積に形成され、前記支持筒35の上
部外周に固定されることで前記載置台22の裏面側に平
行に配置される。前記温度検知手段27は、例えば白金
−白金ロジウム、アルメル−クロメル、銅−コンスタン
タン、クロメル−コンスタンタン等からなる一般的な熱
電対が使用され、反応ガスの半導体ウェハ23への流れ
を阻害しないよう、前記リアクタチャンバ21の底部に
固定されている。前記赤外線検出手段28は、微少な赤
外輻射線の変化に対して高感度にかつ速い応答で感応す
ることのできる熱型赤外線センサであり、例えばサーモ
パイル赤外線センサ、PbTiO3 薄膜焦電型赤外線セ
ンサ、または高分子焦電型赤外線センサ等が使用され、
前記リアクタチャンバ21の取付孔34の奥部に取り付
けられている。なお、前記赤外線検出手段28の検出ス
ポットの中心点は、前記各半導体ウェハ23の平面視中
心点付近を通過するように設定される。
The reactor chamber 21 is, for example, a natural air-cooled type using a quartz tube, a jacket structure using stainless steel, or a copper tube winding structure.
The upper part of the reactor chamber 21 has a substantially conical shape so as to uniformly supply the reaction gas to the upper surface of the semiconductor wafer 23.
A supply hole 31 for supplying a reaction gas is formed at the center of the upper end. The supply hole 31 communicates with a gas supply device 33 via a gas supply pipe 32. At a predetermined position above the reactor chamber 21, a mounting hole 34 for mounting the infrared detecting means 28 is provided.
Are formed. The mounting table 22 is formed in a disc shape using, for example, carbon or carbon coated with SiC, and is provided at an upper end of a support cylinder 35 fixed to a central portion in the reaction chamber, a bearing mechanism (not shown), and the like. And is connected to the longitudinal axis 25 of the rotating means 24 penetrated into the support cylinder 35 to be rotated horizontally. The rotating means 24 is provided to increase the uniformity of the grown film (crystal) when forming the grown film (crystal) on the upper surface of the semiconductor wafer 23, and a DC motor or the like having a small rotation error is used. The heating means 26 is provided on the mounting table 22.
It is formed in substantially the same shape and substantially the same area as above, and is fixed to the outer periphery of the upper part of the support cylinder 35 to be arranged in parallel with the back surface of the mounting table 22. As the temperature detecting means 27, for example, a general thermocouple made of platinum-platinum rhodium, alumel-chromel, copper-constantan, chromel-constantan, or the like is used, so as not to hinder the flow of the reaction gas to the semiconductor wafer 23. It is fixed to the bottom of the reactor chamber 21. The infrared detecting means 28 is a thermal infrared sensor capable of responding to a minute change in infrared radiation with high sensitivity and quick response, such as a thermopile infrared sensor or a PbTiO 3 thin film pyroelectric infrared sensor. , Or a polymer pyroelectric infrared sensor is used,
It is attached to the inside of the attachment hole 34 of the reactor chamber 21. The center of the detection spot of the infrared detecting means 28 is set so as to pass near the center of each of the semiconductor wafers 23 in plan view.

【0027】前記制御手段29は、CPU、ROMおよ
びRAMを有するマイクロコンピュータチップが用いら
れ、前記赤外線検出手段28からの赤外線検出情報およ
び前記熱電対27からの検出情報のいずれかを選択する
自動選択部41と、前記自動選択部41が前記赤外線検
出情報を選択したときに該赤外線検出情報に基づいて半
導体ウェハ23の表面温度を演算する演算部42と、前
記自動選択部41が赤外線検出情報から温度検出情報に
切り換わったときに前記演算部42で演算した半導体ウ
ェハ23の表面温度と前記熱電対27での検出温度との
差を求めて記憶する温度差記憶部43と、該温度差記憶
部43に記憶した温度差を前記熱電対27での検出温度
から減算することで前記自動選択部41が前記温度検出
情報を選択したときの温度補正を行う温度補正部44
と、前記演算部42または温度補正部44からの温度情
報に基づいて前記加熱手段26を駆動制御する駆動制御
部45とを備える。ここで、前記自動選択部41は、前
記加熱手段26での昇温開始時から、前記半導体ウェハ
23から放射される赤外線の強度が一定値となるまでの
段階、すなわち昇温段階においては前記赤外線検出手段
28からの赤外線検出情報を選択し、前記昇温段階が終
わり成長膜を形成するに適した所定の高温に安定した段
階、すなわち高温安定段階においては前記熱電対27か
らの温度検出情報を選択するよう機能する。また、前記
駆動制御部45は、前記演算部42または温度補正部4
4からの温度情報と、予め設定された温度基準値とを比
較し、その大小関係から前記加熱手段26をON−OF
F切換する。
A microcomputer chip having a CPU, a ROM and a RAM is used as the control means 29, and an automatic selection for selecting any one of the infrared detection information from the infrared detection means 28 and the detection information from the thermocouple 27. A calculation unit 42 that calculates the surface temperature of the semiconductor wafer 23 based on the infrared detection information when the automatic selection unit 41 selects the infrared detection information; A temperature difference storage unit 43 for obtaining and storing a difference between the surface temperature of the semiconductor wafer 23 calculated by the calculation unit 42 and the temperature detected by the thermocouple 27 when the temperature is switched to the temperature detection information; The automatic selection unit 41 selects the temperature detection information by subtracting the temperature difference stored in the unit 43 from the temperature detected by the thermocouple 27. Temperature correction unit 44 that performs the temperature correction
And a drive control unit 45 that drives and controls the heating unit 26 based on temperature information from the calculation unit 42 or the temperature correction unit 44. Here, the automatic selection unit 41 performs the step from the start of heating by the heating means 26 until the intensity of the infrared ray radiated from the semiconductor wafer 23 becomes a constant value, that is, the infrared ray in the heating step. The infrared detection information from the detecting means 28 is selected, and the temperature detection information from the thermocouple 27 is obtained at the stage where the temperature raising stage is completed and the temperature is stabilized at a predetermined high temperature suitable for forming a grown film, that is, at the high temperature stable stage. Works to select. In addition, the drive control unit 45 includes the arithmetic unit 42 or the temperature correction unit 4.
4 is compared with a preset temperature reference value, and based on the magnitude relationship, the heating means 26 is turned ON-OF.
F is switched.

【0028】<動作> 本実施例の化学気相成長方法を、図7に示した半導体レ
ーザ素子の成長を例にとって説明する。図2は上記化学
気相成長装置を用いた化学気相成長方法を示すフローチ
ャートである。まず、反応室内の載置台22上にn型G
aAs基板10となる単一の半導体ウェハ23を載置
し、これを加熱手段26で加熱して反応室内の昇温を開
始する(ステップS01:昇温工程)。これと略同時
に、半導体ウェハ23から放射される赤外線の強度を、
赤外線検出手段28で検出し始める(ステップS0
2)。この際、制御手段29の自動選択部41は赤外線
検出情報および温度検出情報のうち赤外線検出情報を選
し、この赤外線検出情報に基づいて加熱手段26の加
熱制御を行う。すなわち、演算部42にて赤外線検出情
報から半導体ウェハ23の表面温度を演算し、演算した
表面温度が設定した値となったとき(ステップS0
3)、加熱手段26での昇温を停止し(ステップS0
4)、反応室内を高温安定状態とする。なお、昇温停止
から高温安定状態になるまである程度の時間を要するた
め、その後も赤外線検出手段28による検出を続け、赤
外線の強度が昇温停止に伴って安定したとき(高温安定
段階)、制御手段29はそのことを判断し、自動選択部
41での選択を赤外線検出情報から温度検出情報に切り
換える。そうすると、赤外線検出手段28は検出を停止
し、同時に熱電対27は反応室内の所定位置の温度検出
を開始する(ステップS05)。この際、温度差記憶部
43は、演算部42で演算した半導体ウェハ23の表面
温度と、熱電対27での検出温度との間の温度差を求め
て記憶する。そうすると、半導体ウェハ23の周辺に付
着物が付いたために前記熱電対27で得た温度検出情報
に狂いが生じても、前記赤外線検出手段28からの赤外
線検出情報を用いて温度検出情報を正確に補正でき、後
工程の熱電対27での温度制御が正確となる。
<Operation> The chemical vapor deposition method of this embodiment will be described with reference to the growth of the semiconductor laser device shown in FIG. 7 as an example. FIG. 2 is a flowchart showing a chemical vapor deposition method using the above chemical vapor deposition apparatus. First, the n-type G is placed on the mounting table 22 in the reaction chamber.
A single semiconductor wafer 23 serving as the aAs substrate 10 is placed and heated by the heating means 26 to start raising the temperature in the reaction chamber (step S01: temperature raising step). At about the same time, the intensity of infrared radiation radiated from the semiconductor wafer 23 is
Detection is started by the infrared detecting means 28 (step S0
2). At this time, the automatic selection unit 41 of the control means 29 selects the infrared detection information from the infrared detection information and the temperature detection information, and based on the infrared detection information, activates the heating means 26.
Perform thermal control. That is, the arithmetic unit 42 calculates the surface temperature of the semiconductor wafer 23 from the infrared detection information and calculates the surface temperature .
When the surface temperature reaches the set value (step S0
3) Stop the temperature rise in the heating means 26 (step S0)
4) The reaction chamber is brought into a high temperature stable state . Since it takes some time from the stop of the temperature rise to the high temperature stable state, the detection by the infrared detecting means 28 is continued thereafter, and when the intensity of the infrared rays is stabilized with the stop of the temperature rise (high temperature stabilization stage), the control is performed. The means 29 determines this and switches the selection in the automatic selection unit 41 from infrared detection information to temperature detection information. Then, the infrared detector 28 stops the detection, and at the same time, the thermocouple 27 starts the temperature detection at a predetermined position in the reaction chamber (Step S05). At this time, the temperature difference storage unit 43 obtains and stores a temperature difference between the surface temperature of the semiconductor wafer 23 calculated by the calculation unit 42 and the temperature detected by the thermocouple 27. Then, even if the temperature detection information obtained by the thermocouple 27 is misaligned due to the attachments around the semiconductor wafer 23, the temperature detection information can be accurately detected using the infrared detection information from the infrared detection means 28. The temperature can be corrected, and the temperature control by the thermocouple 27 in the subsequent process becomes accurate.

【0029】また、自動選択部41にて赤外線検出情報
から温度検出情報に選択を切り換えるのと略同時に、反
応ガスとして例えばトリメチルガリウム(TMG)等の
有機金属とアルシン等のハイドライドガスの混合ガスを
反応室内へ供給し始め、半導体ウェハ23の上面での前
記半導体ウェハ23と異なる物質、すなわちn型AlG
aInP下クラッド層11の成長を開始する(ステップ
S06:成長工程)。同時に、温度補正部44にて、熱
電対27での温度検出温度から温度差記憶部43に記憶
した温度差を減算することで、温度検出情報の温度補正
する。そして、補正された検出温度を予め設定された基
準温度と比較して、以後の加熱手段26での温度制御を
行う。この温度補正は、以後、最上層のp型GaAsコ
ンタクト層14の形成完了に至るまで続けられる(ステ
ップS07)。
At about the same time that the automatic selection unit 41 switches the selection from infrared detection information to temperature detection information, a mixed gas of an organic metal such as trimethyl gallium (TMG) and a hydride gas such as arsine is used as a reaction gas. Starting to supply into the reaction chamber, a material different from the semiconductor wafer 23 on the upper surface of the semiconductor wafer 23, that is, n-type AlG
The growth of the aInP lower cladding layer 11 is started (step S06: growth step). At the same time, the temperature correction unit 44 corrects the temperature of the temperature detection information by subtracting the temperature difference stored in the temperature difference storage unit 43 from the temperature detected by the thermocouple 27. Then, the corrected detected temperature is compared with a preset reference temperature, and the subsequent temperature control by the heating means 26 is performed. This temperature correction is continued thereafter until the formation of the uppermost p-type GaAs contact layer 14 is completed (step S07).

【0030】ここで、熱電対27による温度制御では半
導体ウェハ23の周辺の付着物(図中の8参照)の影
響を受けてしまい、成長温度を長期にわたって再現する
ことが困難であるが、本実施例では、昇温段階におい
て、周辺の付着物によって影響の受けない赤外線検出手
段28で半導体ウェハ23の表面温度を一旦得た後、そ
の後に熱電対27での温度制御を行うので、まず赤外線
検出情報に基づいて正確な温度水準を検出し、これに基
づいて誤差を含む温度検出情報を補正でき、以後、補正
された温度検出情報で温度制御できるため、第1の従来
例で問題とされていた周辺付着物の温度制御への悪影響
を防止できる。
Here, the temperature control by the thermocouple 27 is affected by the deposits (see 8 in FIG. 6 ) around the semiconductor wafer 23, and it is difficult to reproduce the growth temperature for a long time. In the present embodiment, in the temperature rising stage, after the surface temperature of the semiconductor wafer 23 is once obtained by the infrared detecting means 28 which is not affected by the attached matter on the periphery, and then the temperature control by the thermocouple 27 is performed. An accurate temperature level is detected based on the infrared detection information, the temperature detection information including an error can be corrected based on the detected temperature level, and the temperature can be controlled with the corrected temperature detection information. It is possible to prevent adverse effects on the temperature control of the peripheral deposits that have been performed.

【0031】また、半導体ウェハ1と異なった物質を成
長した場合、赤外線放射特性は変化してしまい、また、
赤外線の多重反射による干渉効果のため、赤外線検出に
誤差が生じるが、本実施例では、成長膜形成工程におい
ては熱電対27で反応室内の所定位置の温度を検出する
ことで温度制御を行うため、成長膜の物質の変化に影響
されずに温度制御できる。したがって、第2の従来例で
問題とされていた材質による赤外線放出特性の変化や、
多重反射による干渉を防止でき、温度制御の安定性を確
保でき、長期にわたり再現性良く所望の成長膜を成長す
ることができる。
When a material different from that of the semiconductor wafer 1 is grown, the infrared radiation characteristics change.
Although an error occurs in the infrared detection due to the interference effect due to the multiple reflection of the infrared light, in this embodiment, the temperature control is performed by detecting the temperature at a predetermined position in the reaction chamber with the thermocouple 27 in the growth film forming step. In addition, the temperature can be controlled without being affected by the change in the material of the grown film. Therefore, the change in the infrared emission characteristic due to the material, which was a problem in the second conventional example,
Interference due to multiple reflection can be prevented, the stability of temperature control can be ensured, and a desired growth film can be grown with good reproducibility over a long period of time.

【0032】なお、半導体ウェハ23の上面に成長膜が
形成されることにより、加熱手段26による加熱環境が
僅かに変化し、そのために赤外線検出手段28での赤外
線検出情報および熱電対27での温度検出情報に僅かな
影響を与えるが、図に示すように、たかだか数μmの
膜厚成長においては、1回の成長中にでの付着物または
成長膜の影響による半導体ウェハ23の温度変化は無視
できるものである。
The formation of the grown film on the upper surface of the semiconductor wafer 23 slightly changes the heating environment of the heating means 26, so that the information detected by the infrared detecting means 28 and the temperature of the thermocouple 27 are changed. Although it has a slight effect on the detection information, as shown in FIG. 5 , in a film thickness growth of only a few μm, the temperature change of the semiconductor wafer 23 due to the attachment or the growth film during one growth is not affected. It can be ignored.

【0033】[第2の実施例]本発明の第2の実施例
は、化学気相成長工程の初めの昇温段階およびその後に
続く半導体ウェハと同一物質の結晶成長段階は、赤外線
検出器を用いた温度制御の下で行い、その後に続く半導
体ウェハと異なった物質の結晶成長以降の段階において
は、熱電対を用いて半導体ウェハの温度制御を行うもの
である。
[Second Embodiment] In a second embodiment of the present invention, a temperature rise step at the beginning of a chemical vapor deposition step and a subsequent crystal growth step of the same material as a semiconductor wafer are performed by using an infrared detector. The temperature control is performed under the used temperature control, and in the subsequent stage after the crystal growth of a substance different from that of the semiconductor wafer, the temperature control of the semiconductor wafer is performed using a thermocouple.

【0034】<構成>本発明の第2の実施例の化学気相
成長装置(MOCVD装置)は、基本的には図1に示し
た第1の実施例と略同様の構成とされるが、制御手段2
9の自動選択部41において赤外線検出手段28からの
赤外線検出情報を熱電対27からの温度検出情報に切り
換えるタイミングを、第1の実施例においては赤外線強
度の安定時に合致させていたのに対し、本実施例では、
半導体ウェハ23と同一物質から半導体ウェハ23と異
なる物質の成長(ヘテロ構造作成)段階に切り換わる時
点に合致させる点で、本実施例は第1の実施例と異な
る。
<Structure> The chemical vapor deposition apparatus (MOCVD apparatus) according to the second embodiment of the present invention has basically the same structure as that of the first embodiment shown in FIG. Control means 2
In the first embodiment, the timing of switching the infrared detection information from the infrared detection means 28 to the temperature detection information from the thermocouple 27 in the automatic selection unit 41 of the ninth embodiment is matched when the infrared intensity is stable. In this embodiment,
The present embodiment is different from the first embodiment in that the time is switched to the time of switching from the same material as the semiconductor wafer 23 to the growth (heterostructure creation) stage of a material different from the semiconductor wafer 23.

【0035】すなわち、前記制御手段29の自動選択部
41は、内蔵された計時手段(タイマー)の計時判断に
基づいて、半導体ウェハ23と同一物質の成長段階が終
了する時点で、赤外線検出情報から温度検出情報に選択
を切り換える機能を有せしめられている。かかる制御手
段29の機能は、マイクロコンピュータチップのROM
またはRAMに記録される。また、各成長膜形成用のガ
ス供給器33による反応ガスの供給タイミングは、内臓
される計時手段によって決定づけられる。これらのタイ
ミングは経験値に基づいて予め設定しておく。その他の
構成は第1の実施例と同様であるため、説明を省略す
る。
That is, the automatic selection unit 41 of the control means 29 determines whether the same substance as that of the semiconductor wafer 23 has been grown at the end of the growth step of the same substance as the semiconductor wafer 23, based on the timing judgment of the built-in clock means (timer). The function of switching the selection based on the temperature detection information is provided. The function of the control means 29 is a ROM of a microcomputer chip.
Or it is recorded on RAM. The supply timing of the reaction gas by the gas supply device 33 for forming each grown film is determined by a built-in clock means. These timings are set in advance based on experience values. The other configuration is the same as that of the first embodiment, and the description is omitted.

【0036】<動作> 図3は本実施例の化学気相成長装置を用いた化学気相成
長方法を示すフローチャートである。本実施例の化学気
相成長方法は、まず、反応室内において載置台22上に
載置された半導体ウェハ23を、加熱手段26で加熱
し、反応室内の昇温を開始する(ステップS11)。こ
れと略同時に、半導体ウェハ23から放射される赤外線
の強度を、赤外線検出手段28で検出し始める(ステッ
プS12)。この際、制御手段29の自動選択部41は
赤外線検出情報および温度検出情報のうち赤外線検出情
報を選択し、この赤外線検出情報に基づいて加熱手段2
6の加熱制御を行う。すなわち、演算部42にて赤外線
検出情報から半導体ウェハ23の表面温度を演算し、演
算した表面温度が設定した値となったとき(ステップS
13)、加熱手段26での昇温を停止し(ステップS1
4)、反応室内を高温安定状態とする。なお、赤外線検
出手段28はあと少しそのまま赤外線の強度を検出し続
ける。赤外線の強度が昇温停止に伴って安定した後、図
示しない計時手段からの信号に基づいて、反応室内への
反応ガスの供給を開始し、半導体ウェハ23の上面に成
長膜を形成する。ここで、半導体ウェハ23の上面にこ
れと同一の物質を形成する際には(ステップS15)、
引続き赤外線検出手段28での赤外線強度検出に基づい
て温度補正を行う(ステップS16:同膜形成工程)。
そして、半導体ウェハ23と異なる物質の成長膜の成長
を開始するとき(ステップS17)、これと略同時に、
自動選択部41は、計時手段からの信号に基づいて、赤
外線検出情報から温度検出情報に選択を切り換える(異
膜形成工程)。そうすると、赤外線検出手段28は検出
を停止し、同時に熱電対27は反応室内の所定位置の温
度検出を開始する(ステップS18〜S19)。この
際、温度差記憶部43は、演算部42で演算した半導体
ウェハ23の表面温度と、熱電対27での検出温度との
間の温度差を求めて記憶する。以後、温度補正部44に
て、熱電対27での温度検出温度から温度差記憶部43
に記憶した温度差を減算することで、温度検出情報の温
度補正しつつ、補正された検出温度を予め設定された基
準温度と比較して、以後の加熱手段26の駆動制御を行
う。このようにすれば、本実施例によっても、第1の実
施例と同様の効果がある。
<Operation> FIG. 3 is a flowchart showing a chemical vapor deposition method using the chemical vapor deposition apparatus of this embodiment. In the chemical vapor deposition method of this embodiment, first, the semiconductor wafer 23 mounted on the mounting table 22 in the reaction chamber is heated by the heating means 26, and the temperature inside the reaction chamber is started (step S11). At substantially the same time, the intensity of infrared rays emitted from the semiconductor wafer 23 starts to be detected by the infrared detecting means 28 (step S12). At this time, the automatic selection unit 41 of the control means 29 selects the infrared detection information from the infrared detection information and the temperature detection information, and based on the infrared detection information, the heating means 2
The heating control of No. 6 is performed. That is, the arithmetic unit 42 calculates the surface temperature of the semiconductor wafer 23 from the infrared detection information, and when the calculated surface temperature reaches a set value (step S
13), the temperature rise in the heating means 26 is stopped (step S1).
4) The reaction chamber is brought into a high temperature stable state. The infrared detecting means 28 continues to detect the intensity of the infrared light as it is. After the intensity of the infrared light stabilizes due to the stoppage of the temperature rise, the supply of the reaction gas into the reaction chamber is started based on a signal from a timing unit (not shown), and a growth film is formed on the upper surface of the semiconductor wafer 23. Here, when the same material is formed on the upper surface of the semiconductor wafer 23 (step S15),
Subsequently, the temperature is corrected based on the infrared intensity detection by the infrared detecting means 28 (step S16: the same film forming step).
When the growth of a growth film made of a material different from that of the semiconductor wafer 23 is started (step S17), almost simultaneously with this,
The automatic selection unit 41 switches the selection from the infrared detection information to the temperature detection information based on a signal from the timing unit (different membrane formation step). Then, the infrared detecting unit 28 stops the detection, and at the same time, the thermocouple 27 starts the temperature detection at a predetermined position in the reaction chamber (Steps S18 to S19). At this time, the temperature difference storage unit 43 obtains and stores a temperature difference between the surface temperature of the semiconductor wafer 23 calculated by the calculation unit 42 and the temperature detected by the thermocouple 27. Thereafter, the temperature correction unit 44 uses the temperature difference storage unit 43 based on the temperature detected by the thermocouple 27.
By subtracting the temperature difference stored in the storage unit, the corrected detection temperature is compared with a preset reference temperature while the temperature of the temperature detection information is corrected, and the subsequent drive control of the heating unit 26 is performed. With this configuration, the present embodiment has the same effect as the first embodiment.

【0037】[0037]

【0038】[0038]

【0039】[0039]

【0040】[0040]

【0041】[0041]

【0042】[0042]

【0043】[0043]

【0044】[0044]

【0045】[0045]

【0046】[0046]

【0047】[0047]

【0048】[0048]

【0049】[0049]

【0050】[0050]

【0051】[0051]

【0052】[変形例] (1)第2の実施例において、新たな成長膜の形成開始
を計時手段の計時情報に基づいて認識していたが、新た
な成長膜が少しでも形成されると、赤外線検出手段28
で検出した赤外線の強度は急激に変化することを利用
し、一定以上の速度で赤外線の強度が急激に変化したと
きに新たな成長膜が形成されたと判断し、この判断結果
に基づいて、自動選択部41のて赤外線検出情報から温
度検出情報への選択切換を行ってもよい。
[Modifications] (1) In the second embodiment, the start of formation of a new growth film is recognized based on the timing information of the timing means, but if a new growth film is formed even a little. , Infrared detecting means 28
Utilizing the fact that the intensity of the infrared light detected in step 1 changes abruptly, it is determined that a new growth film has been formed when the intensity of the infrared light changes abruptly at a certain speed or higher. and of the selection unit 41 but it may also make a selection switching to the temperature detection information from the infrared detection information.

【0053】[0053]

【発明の効果】本発明請求項1、請求項2および請求項
によると、反応室内の昇温段階において、赤外線検出
手段からの赤外線検出情報に基づいて反応室が高温安定
状態となったことを確認する(昇温工程)ので、温度検
知手段(半導体ウェハからの赤外線検出以外の方法)
用いずに済み、故に第1の従来例で問題となっていた周
辺の付着物の温度制御への悪影響を防止できる。また、
反応室内の高温安定段階において、温度検知手段からの
温度検出情報に基づいて温度制御を行いながら半導体ウ
ェハの上面に成長膜を形成する(成長工程)ので、ヘテ
ロ構造作成時に赤外線検出手段を用いずに済み、故に第
2の従来例で問題となっていた異物質による赤外線放射
特性の変化による変成層の発生の心配がなくなり、ま
た、赤外線の多重反射による干渉効果を防止できる。
According to the present invention, claims 1 , 2, and 3 of the present invention are described.
According to 3 , in the temperature rising stage in the reaction chamber, it is confirmed that the reaction chamber is in a high temperature stable state based on the infrared detection information from the infrared detection means ( temperature raising step). (Other than the method of detecting infrared rays) , it is possible to prevent adverse effects on the temperature control of the attached matter in the vicinity, which is a problem in the first conventional example. Also,
In the stable high temperature stage in the reaction chamber, a growth film is formed on the upper surface of the semiconductor wafer while controlling the temperature based on the temperature detection information from the temperature detection means (growth step). Therefore, there is no need to worry about generation of a metamorphic layer due to a change in infrared radiation characteristics due to a foreign substance, which is a problem in the second conventional example, and it is possible to prevent an interference effect due to multiple reflection of infrared rays.

【0054】[0054]

【0055】[0055]

【0056】[0056]

【0057】以上のことから、本発明によると、温度制
御の安定性を確保でき、長期にわたり再現性良く所望の
成長膜を成長することができる。
As described above, according to the present invention, the stability of temperature control can be ensured, and a desired growth film can be grown with good reproducibility over a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の化学気相成長装置を示
す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a chemical vapor deposition apparatus according to a first embodiment of the present invention.

【図2】本発明の第1の実施例の化学気相成長方法を示
すフローチャートである。
FIG. 2 is a flowchart showing a chemical vapor deposition method according to the first embodiment of the present invention.

【図3】本発明の第2の実施例の化学気相成長方法を示
すフローチャートである。
FIG. 3 is a flowchart illustrating a chemical vapor deposition method according to a second embodiment of the present invention.

【図4】第1の従来例の化学気相成長装置を示す概略構
成図である。
FIG. 4 is a schematic diagram showing a first conventional chemical vapor deposition apparatus.
FIG.

【図5】第2の従来例の化学気相成長装置を示す概略構
成図である。
FIG. 5 is a schematic view showing a second conventional chemical vapor deposition apparatus.
FIG.

【図6】第1の従来例の化学気相成長装置内における分
解生成物の付着状態を示す図である。
FIG. 6 is a schematic diagram showing the components in a first conventional chemical vapor deposition apparatus.
It is a figure which shows the adhesion state of a decomposition product.

【図7】可視光半導体レーザ素子のダブルヘテロ構造を
示す図である。
FIG. 7 shows a double hetero structure of a visible light semiconductor laser device.
FIG.

【図8】第2の従来例において成長物質の違いによる赤
外線検出器の検出赤外線強度の違いを示す概念図であ
る。
FIG. 8 shows a red color due to a difference in growth material in the second conventional example.
FIG. 5 is a conceptual diagram showing a difference in detected infrared intensity of an outside line detector.
You.

【図9】第2の従来例における赤外線の多重反射による
干渉を示す概念図である。
FIG. 9 shows the results of multiple reflection of infrared rays in the second conventional example.
It is a conceptual diagram which shows interference.

【図10】第2の従来例において赤外線の干渉の影響に
よる赤外線検出器の検出温度の変動を示す概念図であ
る。
FIG. 10 shows the effect of infrared interference in the second conventional example.
FIG. 5 is a conceptual diagram showing the variation in the temperature detected by the infrared detector due to
You.

【図11】第2の従来例において複数個の半導体ウェハ
を載置台上に並置した状態を示す図である。
FIG. 11 shows a plurality of semiconductor wafers in the second conventional example.
It is a figure which shows the state which juxtaposed on the mounting stand.

【符号の説明】[Explanation of symbols]

22 載置台 23 半導体ウェハ 24 回転手段 25 縦軸 26 加熱手段 27 温度検知手段 28 赤外線検出手段 29 制御手段 41 自動選択部 45 駆動制御 Reference Signs List 22 mounting table 23 semiconductor wafer 24 rotating means 25 vertical axis 26 heating means 27 temperature detecting means 28 infrared detecting means 29 control means 41 automatic selection unit 45 drive control unit

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/205 C30B 25/16 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 21/205 C30B 25/16

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 反応室内において、載置台上に載置され
た半導体ウェハを加熱しつつ、高温安定状態で前記反応
室内に反応ガスを供給することにより前記半導体ウェハ
の上面に成長膜を形成する化学気相成長装置であって、 前記載置台上の半導体ウェハを加熱する加熱手段と、 前記反応室内の所定位置の温度を前記半導体ウェハから
の赤外線検出以外の方法によって検出する温度検知手段
と、 加熱された前記半導体ウェハから放射される赤外線の強
度を検出する赤外線検出手段と、 前記温度検知手段および前記赤外線検出手段からの検出
情報に基づいて前記加熱手段での加熱温度を制御する制
御手段とを備え、 前記制御手段は、 前記反応室内の昇温段階で前記赤外線検出手段からの赤
外線検出情報を選択しかつ前記反応室の高温安定段階で
前記温度検知手段からの温度検出情報を選択する自動選
択部と、 該自動選択部で選択されたいずれかの検出情報に基づい
て前記加熱手段を駆動制御する駆動制御部とを備えた化
学気相成長装置。
1. A growth film is formed on an upper surface of a semiconductor wafer by supplying a reaction gas into the reaction chamber in a high temperature stable state while heating a semiconductor wafer mounted on a mounting table in the reaction chamber. A chemical vapor deposition apparatus, comprising: a heating unit configured to heat a semiconductor wafer on the mounting table; and a temperature of a predetermined position in the reaction chamber from the semiconductor wafer.
Temperature detection means for detecting by a method other than infrared detection, infrared light detection means for detecting the intensity of infrared light emitted from the heated semiconductor wafer, based on detection information from the temperature detection means and the infrared light detection means Control means for controlling a heating temperature in the heating means, wherein the control means selects infrared detection information from the infrared detection means in a temperature rising step in the reaction chamber and stabilizes the reaction chamber at a high temperature. A chemical control unit comprising: an automatic selection unit that selects temperature detection information from the temperature detection unit; and a drive control unit that drives and controls the heating unit based on any of the detection information selected by the automatic selection unit. Phase growth equipment.
【請求項2】 反応室内で、半導体ウェハから放射され
る赤外線の強度を検出し、該赤外線の強度に基づいて昇
温制御する昇温工程と、 該昇温工程後に、前記反応室内の所定位置の温度を前記
半導体ウェハからの赤外線検出以外の方法によって検出
し、検出された温度に基づいて温度制御しながら前記半
導体ウェハの上面に成長膜を形成する成長工程とを備え
た化学気相成長方法。
2. The radiation emitted from a semiconductor wafer in a reaction chamber.
Detecting the intensity of the infrared light, and increasing the intensity based on the intensity of the infrared light.
A temperature raising step of controlling the temperature, and after the temperature raising step, the temperature at a predetermined position in the reaction chamber is set to the
Detected by methods other than infrared detection from semiconductor wafers
While controlling the temperature based on the detected temperature.
Forming a growth film on the upper surface of the conductor wafer.
Chemical vapor deposition method.
【請求項3】 成長に用いる基板の表面物質と同一物質
を前記昇温工程後に成長する場合に、前記基板の前記表
面物質と同一物質の成長段階まで前記赤外線の強度の検
出による温度制御を継続し、その後、前記基板と異なる
物質の成長の開始以降は前記半導体ウェハ表面からの前
記赤外線検出以外の温度検知方法によって温度制御をす
る、請求項2記載の化学気相成長方法。
3. The same material as the surface material of the substrate used for growth.
Is grown after the heating step, the surface of the substrate
Inspection of the infrared intensity until the growth stage of the same material as the surface material
Temperature control by the output and then different from the substrate
After the start of material growth,
The temperature is controlled by a temperature detection method other than infrared detection.
The chemical vapor deposition method according to claim 2, wherein
JP22439793A 1993-09-09 1993-09-09 Chemical vapor deposition apparatus and chemical vapor deposition method Expired - Fee Related JP3205442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22439793A JP3205442B2 (en) 1993-09-09 1993-09-09 Chemical vapor deposition apparatus and chemical vapor deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22439793A JP3205442B2 (en) 1993-09-09 1993-09-09 Chemical vapor deposition apparatus and chemical vapor deposition method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001129255A Division JP3554287B2 (en) 2001-04-26 2001-04-26 Chemical vapor deposition apparatus and chemical vapor deposition method

Publications (2)

Publication Number Publication Date
JPH0778772A JPH0778772A (en) 1995-03-20
JP3205442B2 true JP3205442B2 (en) 2001-09-04

Family

ID=16813114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22439793A Expired - Fee Related JP3205442B2 (en) 1993-09-09 1993-09-09 Chemical vapor deposition apparatus and chemical vapor deposition method

Country Status (1)

Country Link
JP (1) JP3205442B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100418519B1 (en) * 1997-07-03 2004-04-21 삼성전자주식회사 Structure of diffusion equipment and method for controlling gas
US6191399B1 (en) * 2000-02-01 2001-02-20 Asm America, Inc. System of controlling the temperature of a processing chamber
JP2005142200A (en) * 2003-11-04 2005-06-02 Sharp Corp Vapor phase growth device and method
JP4692143B2 (en) * 2005-08-12 2011-06-01 住友電気工業株式会社 Semiconductor device manufacturing method and manufacturing apparatus
JP6279396B2 (en) * 2014-05-12 2018-02-14 株式会社ニューフレアテクノロジー Vapor phase growth method and vapor phase growth apparatus
JP6430337B2 (en) * 2015-07-06 2018-11-28 株式会社ニューフレアテクノロジー Vapor phase growth method and vapor phase growth apparatus

Also Published As

Publication number Publication date
JPH0778772A (en) 1995-03-20

Similar Documents

Publication Publication Date Title
KR100881244B1 (en) Method and device for controlling the surface temperatures of substrates in a chemical vapour deposition reactor
JP5004401B2 (en) Method and apparatus for controlling temperature uniformity of a substrate
US5254207A (en) Method of epitaxially growing semiconductor crystal using light as a detector
US6191399B1 (en) System of controlling the temperature of a processing chamber
US6217212B1 (en) Method and device for detecting an incorrect position of a semiconductor wafer
JP6279396B2 (en) Vapor phase growth method and vapor phase growth apparatus
TW201430955A (en) Multizone control of lamps in a conical lamphead using pyrometers
JP3205442B2 (en) Chemical vapor deposition apparatus and chemical vapor deposition method
CN108258091A (en) A kind of light emitting diode wavelength control method
US20130167769A1 (en) Targeted temperature compensation in chemical vapor deposition systems
JP3554287B2 (en) Chemical vapor deposition apparatus and chemical vapor deposition method
JP3872838B2 (en) Crystal growth method
JP3922018B2 (en) Vapor growth apparatus and temperature detection method for vapor growth apparatus
JPH05259082A (en) Epitaxial growth device and method
JP4978608B2 (en) Epitaxial wafer manufacturing method
JP2001220286A (en) Molecular beam source and molecular beam epitaxial device
US5462012A (en) Substrates and methods for gas phase deposition of semiconductors and other materials
JPH11251249A (en) Method of forming semiconductor film
JP3355475B2 (en) Substrate temperature distribution measurement method
JPH04186823A (en) Vapor growth device
JP2001085339A (en) Temperature control method
JPH1179887A (en) Temperature measurement of substrate
JP3904423B2 (en) Molecular beam epitaxy apparatus and crystal growth method using the same
JPH07201744A (en) Semiconductor thin film vapor depositing device
JPH06216033A (en) Chemical vapor growth device for semiconductor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080629

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080629

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090629

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees