JP2003049291A - Method for manufacturing metal lithium - Google Patents

Method for manufacturing metal lithium

Info

Publication number
JP2003049291A
JP2003049291A JP2001237841A JP2001237841A JP2003049291A JP 2003049291 A JP2003049291 A JP 2003049291A JP 2001237841 A JP2001237841 A JP 2001237841A JP 2001237841 A JP2001237841 A JP 2001237841A JP 2003049291 A JP2003049291 A JP 2003049291A
Authority
JP
Japan
Prior art keywords
electrolysis
electrolytic
cathode
bath
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001237841A
Other languages
Japanese (ja)
Other versions
JP4763169B2 (en
Inventor
Yoshiharu Takada
佳治 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP2001237841A priority Critical patent/JP4763169B2/en
Publication of JP2003049291A publication Critical patent/JP2003049291A/en
Application granted granted Critical
Publication of JP4763169B2 publication Critical patent/JP4763169B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing metal lithium by which a simple substance of metal lithium as an active metal can easily be manufactured in high purity without generating gaseous chlorine. SOLUTION: In the method for manufacturing metal lithium, an electrolytic apparatus is prepared which has an electrolytic chamber divided by a diaphragm for baths into cathodic and anodic electrolytic chambers and the anode and cathode disposed in the respective electrolytic chambers. At least part of the diaphragm for baths is formed with a porous material capable of conducting electricity and transferring lithium ions. An anodic electrolytic bath consisting of 0.1-30 mass% lithium carbonate and a fluoride and a cathodic electrolytic bath made of only a fluoride are fed into the respective electrolytic chambers of the electrolytic apparatus and electrolytic reduction is carried out under the electrolytic conditions of 2-500 A/cm<2> cathode current density and 600-1,000 deg.C electrolytic temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、塩素ガスの発生の
要因となる塩化リチウムを使用せずに、金属リチウムの
単体を高純度で製造することができる炭酸リチウムを用
いた金属リチウムの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing metallic lithium using lithium carbonate, which is capable of producing a simple substance of metallic lithium with high purity without using lithium chloride which causes chlorine gas. Regarding

【0002】[0002]

【従来の技術】従来から、金属リチウムの製造方法とし
て、溶融塩電解法が知られている。この方法は、リチウ
ム原料に塩化リチウムを用い、更に浴の融点を下げるた
めに塩化カリウムを加えた電解浴を、黒鉛陽極及び鉄陰
極を用いて電解し、鉄陰極上に金属リチウムを析出させ
る方法である。しかし、このような塩化物を用いた電解
法では、いくつかの実用上の問題がある。このような実
用上の問題としては、例えば、電解原料である塩化リチ
ウムが強い潮解性を示すので、その保管、移送、取り扱
いの際に完全に湿分を遮断する必要があり、このような
作業が煩雑であり、加えてコストが非常に高くつくとい
う問題、陽極より有毒な塩素ガスが発生するため、この
塩素を回収し、無害化処理を行う設備の導入が必要であ
り、また塩素ガスは、鉄、ステンレス等の一般に用いる
耐熱鋼に対し、腐食性を有するため、その設備部材とし
て高価な特殊部材が必要であって、塩素ガスの無害化処
理等に多大な費用を要するという問題、更に、溶融塩電
解浴に使用している塩化リチウム及び塩化カリウムの理
論分解電圧の差が0.1V程度しかなく、電圧制御が難
しく、陰極に生成する金属リチウムへのカリウム混入が
生じ易いなど、高純度の金属リチウムの製造が困難であ
るという問題が主に挙げられる。
2. Description of the Related Art Conventionally, a molten salt electrolysis method has been known as a method for producing metallic lithium. This method uses lithium chloride as a lithium raw material, and an electrolytic bath containing potassium chloride to further lower the melting point of the bath is electrolyzed using a graphite anode and an iron cathode to deposit metallic lithium on the iron cathode. Is. However, the electrolytic method using such a chloride has some practical problems. As such a practical problem, for example, since lithium chloride, which is an electrolytic raw material, exhibits a strong deliquescent property, it is necessary to completely shut off moisture during its storage, transfer and handling. Is complicated, and the cost is very high.Toxic chlorine gas is generated from the anode.Therefore, it is necessary to install equipment for recovering this chlorine and detoxifying it. , Iron, generally used heat-resistant steel such as stainless steel, because it has corrosiveness, expensive special members are required as its equipment members, and the problem that a large amount of cost is required for detoxifying chlorine gas, etc. , The difference in theoretical decomposition voltage between lithium chloride and potassium chloride used in the molten salt electrolytic bath is only about 0.1 V, voltage control is difficult, and potassium is mixed into metallic lithium generated in the cathode. Inado, a problem that the production of high-purity metallic lithium is difficult and the like mainly.

【0003】そこで、このような塩化リチウムを用いた
溶融塩電解法の問題点を解決するために、以下の炭酸リ
チウムを用いた溶融塩電解法が提案されている。特開平
5−279886号公報には、電解浴として塩化リチウムを用
い、アノード室に炭酸リチウムを投入し、炭素電極と酸
化反応させて炭酸ガスとリチウムイオンとを生成させ、
そのリチウムイオンをカソード室に移動させ、そのカソ
ード室内で還元、貯留した溶融アルミニウムと合金化し
てリチウムを回収する方法が開示されている。また、特
開平3−140492号公報には、組成が炭酸リチウム59〜
72重量%、フッ化リチウム9〜13重量%、フッ化カ
リウム19〜28重量%、フッ化ナトリウム1〜10重
量%の電解浴を用い、陰極にアルミニウム、陽極に炭素
の消耗電極を用い、Al−Li合金を製造する方法が提案さ
れている。上記特開平5−279886号公報に記載の方法で
は、電解浴として塩化リチウムを用いるが、電解原料と
して炭酸リチウムを用いているので、塩素の発生を極力
抑えることができる。しかし、塩素の発生を完全に無く
すことはできず、上記問題解決が充分であるとは言えな
い。また上記それぞれの方法では、いずれも電解原料と
して炭酸リチウムを用いて、Al−Li合金を製造すること
はできるが、活性な金属である金属リチウム単体を高純
度で製造することが充分であるとは言えない。
In order to solve the problems of the molten salt electrolysis method using lithium chloride, the following molten salt electrolysis method using lithium carbonate has been proposed. Kohei
In JP-A 5-279886, lithium chloride is used as an electrolytic bath, lithium carbonate is charged into the anode chamber, and an oxidation reaction with a carbon electrode is performed to generate carbon dioxide gas and lithium ions,
A method is disclosed in which the lithium ions are moved to the cathode chamber and alloyed with molten aluminum reduced and stored in the cathode chamber to recover lithium. Further, JP-A-3-140492 discloses that the composition is lithium carbonate 59 to
72% by weight, lithium fluoride 9 to 13% by weight, potassium fluoride 19 to 28% by weight, sodium fluoride 1 to 10% by weight, an aluminum electrolytic bath is used as a cathode, and a carbon consumable electrode is used as an anode. -Methods for producing Li alloys have been proposed. In the method described in JP-A-5-279886, lithium chloride is used as the electrolytic bath, but since lithium carbonate is used as the electrolytic raw material, the generation of chlorine can be suppressed as much as possible. However, it is not possible to completely eliminate the generation of chlorine, and it cannot be said that the solution to the above problems is sufficient. Further, in each of the above methods, using lithium carbonate as an electrolysis raw material, it is possible to produce an Al-Li alloy, but it is sufficient to produce a simple metal lithium that is an active metal with high purity. I can't say.

【0004】[0004]

【発明が解決しようとしている課題】従って、本発明の
目的は、塩素ガスの発生を全く伴なわずに、活性な金属
である金属リチウム単体を高純度で容易に製造すること
ができる金属リチウムの製造方法を提供することにあ
る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a lithium metal which can be easily produced with a high purity as a simple substance of an active metal, lithium metal, without any generation of chlorine gas. It is to provide a manufacturing method.

【0005】[0005]

【課題を解決するための手段】すなわち本発明によれ
ば、陰極電解室及び陽極電解室を有する浴用隔壁により
区画された電解室と、各電解室に設けた陽極及び陰極と
を備え、前記浴用隔壁の少なくとも一部が通電及びリチ
ウムイオンの移動を可能にする多孔質材料で形成された
電解装置を用意し、実質的に炭酸リチウム及びフッ化物
からのみなり、該炭酸リチウムの含有割合が0.1〜3
0質量%である陽極電解浴と、実質的にフッ化物からの
みなる陰極電解浴とを前記電解装置のそれぞれの電解室
に入れ、陰極電流密度2〜500A/cm2、電解温度
600〜1000℃の電解条件で電解還元することを特
徴とする金属リチウムの製造方法が提供される。
That is, according to the present invention, an electrolytic chamber defined by a bath partition having a cathode electrolysis chamber and an anode electrolysis chamber, and an anode and a cathode provided in each electrolysis chamber are provided. An electrolytic device is prepared in which at least a part of the partition walls is made of a porous material that allows electricity to pass and lithium ions to move. The electrolytic device consists essentially of lithium carbonate and a fluoride, and the content ratio of the lithium carbonate is 0. 1-3
An anode electrolysis bath of 0 mass% and a cathodic electrolysis bath consisting essentially of fluoride were placed in each electrolysis chamber of the electrolysis apparatus, and the cathode current density was 2 to 500 A / cm 2 , and the electrolysis temperature was 600 to 1000 ° C. There is provided a method for producing metallic lithium, which comprises performing electrolytic reduction under the electrolysis conditions described above.

【0006】[0006]

【発明の実施の形態】以下本発明を更に詳細に説明す
る。本発明の製造方法では、まず、陰極電解室及び陽極
電解室を有する浴用隔壁により区画された電解室と、各
電解室に設けた陽極及び陰極とを備える電解装置を用意
する。この電解装置について図1を参照して以下に詳細
に説明するが、本発明に用いる電解装置はこれに限定さ
れない。
The present invention will be described in more detail below. In the manufacturing method of the present invention, first, an electrolysis apparatus including an electrolysis chamber partitioned by a bath partition having a cathode electrolysis chamber and an anode electrolysis chamber, and an anode and a cathode provided in each electrolysis chamber is prepared. This electrolysis apparatus will be described in detail below with reference to FIG. 1, but the electrolysis apparatus used in the present invention is not limited to this.

【0007】図1は、本発明に用いる電解装置の一実施
態様を示す電解装置10の概略図である。電解装置10
は、浴用隔壁12により区画された陽極電解室11a及
び陰極電解室11bを有する電解室11と、各電解室
(11a、11b)に設けられた陽極13及び陰極14を
備える。なお、図中において、陽極電解室11aは後述
する陽極電解浴を、並びに陰極電解室11bは後述する
陰極電解浴を入れた状態(灰色部分)を表す。また、電解
室11は、電解炉外筒15によって包囲されている。
FIG. 1 is a schematic view of an electrolysis apparatus 10 showing an embodiment of the electrolysis apparatus used in the present invention. Electrolysis device 10
Is an electrolysis chamber 11 having an anode electrolysis chamber 11a and a cathode electrolysis chamber 11b partitioned by a bath partition 12, and each electrolysis chamber
An anode 13 and a cathode 14 provided on (11a, 11b) are provided. In the figure, the anode electrolysis chamber 11a represents the anode electrolysis bath described later, and the cathode electrolysis chamber 11b represents the state in which the cathode electrolysis bath described below is placed (gray part). The electrolysis chamber 11 is surrounded by an electrolysis furnace outer cylinder 15.

【0008】浴用隔壁12は、陽極電解浴と陰極電解浴
とが接触し、電解により陰極に生成する金属リチウムに
炭酸リチウムが接触して酸化するのを防止するため等に
作用する。後述する電解原料としての炭酸リチウムは、
溶融金属に対して強い酸化力を示すため、金属リチウム
が生成する陰極電解浴に存在すると、金属リチウムが陰
極で生成すると同時に酸化され、電解効率を著しく減少
させる。この反応を抑止するためには、炭酸リチウムを
陽極近辺に隔離する必要があるため、陰極電解浴と陽極
電解浴とを浴用隔壁12により区画する必要がある。こ
の浴用隔壁12は、通電及びリチウムイオンの移動を可
能にする多孔質材料で少なくともその一部が構成される
必要があり、上記作用を得るために、当然ながら炭酸リ
チウムの移動を抑制する必要がある。このような多孔質
材料としては、好ましくはZrO2製、Al2O3製の多孔質材
料等が挙げられ、特に、浴用隔壁が全てこのような多孔
質材料で形成されていることが望ましい。前記多孔質材
料の空孔率は、上記作用を示すように1〜50%の範
囲、特に5〜40%が好ましい。前記空孔率が50%を
超えると、陽極電解室11aから陰極電解室11bへ炭
酸リチウムの移動が生じ、電解効率が低下する恐れがあ
るので好ましくない。一方、前記空孔率が1%未満では
直流電流の通電が困難になるので好ましくない。
The partition wall 12 for a bath functions to prevent the anode electrolytic bath and the cathode electrolytic bath from coming into contact with each other and preventing lithium carbonate from contacting and oxidizing metallic lithium produced at the cathode by electrolysis. Lithium carbonate as an electrolytic raw material described later,
Since it exhibits a strong oxidizing power for molten metal, when it is present in the cathode electrolysis bath in which metallic lithium is produced, metallic lithium is produced at the cathode and is oxidized at the same time, which significantly reduces electrolysis efficiency. In order to suppress this reaction, lithium carbonate needs to be isolated in the vicinity of the anode. Therefore, it is necessary to partition the cathode electrolytic bath and the anode electrolytic bath by the bath partition wall 12. At least a part of the partition wall 12 for bath needs to be made of a porous material capable of energizing and moving lithium ions, and of course, it is necessary to suppress the movement of lithium carbonate in order to obtain the above action. is there. Examples of such a porous material include a porous material made of ZrO 2 or Al 2 O 3 , and the like. In particular, it is desirable that all of the bath partition walls be made of such a porous material. The porosity of the porous material is preferably in the range of 1 to 50%, particularly preferably 5 to 40% so as to exhibit the above-mentioned effect. If the porosity exceeds 50%, lithium carbonate may move from the anode electrolysis chamber 11a to the cathode electrolysis chamber 11b, which may reduce the electrolysis efficiency, which is not preferable. On the other hand, if the porosity is less than 1%, it becomes difficult to apply a direct current, which is not preferable.

【0009】前記陽極13は、消耗電極であるので、浴
に溶け出す傾向にあり、溶け出した陽極材料は金属リチ
ウムと合金を生成する恐れが生じる。このため、目的と
する金属リチウムの収率を高くするために陽極13には
炭素を用いることが好ましい。炭素を用いることによ
り、消耗した炭素が二酸化炭素ガスとなり雰囲気中へと
抜け、生成した金属リチウムとの反応を抑制することが
できる。一方、前記陰極14は、金属リチウムを高収率
で得るために、金属リチウムとの反応性がほとんどない
鉄の使用が好ましく、特に、純鉄の使用が望ましい。陰
極14の周りには、生成する金属リチウムを集積させる
ためのマグネシア筒14a等を図示するように設けるこ
とができる。
Since the anode 13 is a consumable electrode, it tends to dissolve in the bath, and the dissolved anode material may form an alloy with metallic lithium. Therefore, it is preferable to use carbon for the anode 13 in order to increase the target yield of metallic lithium. By using carbon, the exhausted carbon becomes carbon dioxide gas and is released into the atmosphere, so that the reaction with the produced metallic lithium can be suppressed. On the other hand, in order to obtain metallic lithium in a high yield, the cathode 14 is preferably made of iron having little reactivity with metallic lithium, and particularly preferably pure iron. A magnesia cylinder 14a or the like for accumulating the produced metallic lithium can be provided around the cathode 14 as shown in the drawing.

【0010】本発明の製造方法では、上記電解室11の
陽極電解室11aに陽極電解浴を、陰極電解室11bに
陰極電解浴をそれぞれ入れる。前記陽極電解浴は、実質
的に炭酸リチウム及びフッ化物からのみなり、前記陰極
電解浴は、実質的にフッ化物からのみなる。ここで、実
質的にとは、不純物や本願発明の作用に影響を及ぼさな
い微量の他の成分を含んでいてもよい意であり、影響を
及ぼす塩化リチウム等を全く含まない意である。
In the manufacturing method of the present invention, an anode electrolysis bath is placed in the anode electrolysis chamber 11a of the electrolysis chamber 11 and a cathode electrolysis bath is placed in the cathode electrolysis chamber 11b. The anodic electrolytic bath consists essentially of lithium carbonate and fluoride, and the cathodic electrolytic bath consists essentially of fluoride. Here, “substantially” means that impurities and trace amounts of other components that do not affect the action of the present invention may be included, and lithium chloride and the like that do not affect at all are not included at all.

【0011】陽極電解浴に用いる炭酸リチウムは、電解
原料として作用し、その含有割合は、陽極電解浴全量に
対して0.1〜30質量%、好ましくは0.5〜25質
量%、さらに好ましくは1〜10質量%の範囲である。
炭酸リチウムの含有割合が30質量%を超えると、陽極
電解浴から陰極電解浴への炭酸リチウムの移動が発生す
る恐れがあり、0.1質量%未満では、陽極効果が発生
し易くなる。該炭酸リチウムは、電解の進行に合わせ
て、陽極電解浴に補給することができ、この補給により
電解を連続的に行うことができる。
The lithium carbonate used in the anode electrolysis bath acts as a raw material for electrolysis, and the content ratio thereof is 0.1 to 30% by mass, preferably 0.5 to 25% by mass, more preferably the total amount of the anode electrolysis bath. Is in the range of 1 to 10% by mass.
If the content of lithium carbonate exceeds 30% by mass, the migration of lithium carbonate from the anode electrolytic bath to the cathode electrolytic bath may occur, and if it is less than 0.1% by mass, the anode effect is likely to occur. The lithium carbonate can be replenished to the anode electrolysis bath in accordance with the progress of electrolysis, and this replenishment enables continuous electrolysis.

【0012】陽極電解浴及び陰極電解浴に用いるフッ化
物としては、アルカリ金属元素、アルカリ土類金属元素
等のフッ化物又はこれらの混合物等が挙げられる。これ
らフッ化物の大部分の理論分解電圧は、後述する電解温
度において、炭酸リチウムの理論分解電圧約2V以下と
大きく異なる5V以上であるので、後述する電解により
炭酸リチウムのみを容易に電解することができる。仮
に、陰極電解浴や陽極電解浴に塩化リチウムが含有され
る場合、塩化リチウムの理論分解電圧は約3.5V以下
であるので、炭酸リチウムだけでなく、一部塩化リチウ
ムの電解も生じる可能性が高く、有毒ガスの塩素が発生
する恐れがある。このようなフッ化物としては、上記理
論分解電圧を示すフッ化物であることが好ましく、特
に、フッ化リチウム、フッ化カリウム及びフッ化ナトリ
ウムからなる群より選択される1種又は2種以上を含む
ことが望ましい。
Examples of the fluoride used in the anode electrolysis bath and the cathode electrolysis bath include fluorides such as alkali metal elements and alkaline earth metal elements, and mixtures thereof. The theoretical decomposition voltage of most of these fluorides is 5 V or more, which is significantly different from the theoretical decomposition voltage of lithium carbonate of about 2 V or less at the electrolysis temperature described below, and therefore only lithium carbonate can be easily electrolyzed by the electrolysis described below. it can. If lithium chloride is contained in the cathode electrolysis bath or the anode electrolysis bath, the theoretical decomposition voltage of lithium chloride is about 3.5 V or less, so that not only lithium carbonate but also partial electrolysis of lithium chloride may occur. Is high and may generate chlorine, a toxic gas. Such a fluoride is preferably a fluoride having the above theoretical decomposition voltage, and particularly contains one or more selected from the group consisting of lithium fluoride, potassium fluoride and sodium fluoride. Is desirable.

【0013】前記フッ化物として、電解浴の融点降下、
電解効率の向上を得るために、フッ化バリウムを含有さ
せることもできる。該フッ化物バリウムの含有割合は、
各電解浴それぞれの全量に対して、通常0.1〜40質
量%、特に5〜35質量%、更には5〜15質量%が好
ましい。
As the fluoride, the melting point of the electrolytic bath is lowered,
Barium fluoride may also be included to obtain improved electrolysis efficiency. The content ratio of the barium fluoride is
It is usually 0.1 to 40% by mass, particularly 5 to 35% by mass, and further preferably 5 to 15% by mass with respect to the total amount of each electrolytic bath.

【0014】本発明の製造方法では、次いで、電解還元
を行ない、所望の金属リチウムを製造する。電解条件と
しては、陰極電流密度2〜500A/cm2、好ましくは
2〜20A/cm2の範囲、電解温度600〜1000
℃、好ましくは800〜1000℃、特に好ましくは8
00〜950℃の範囲が挙げられる。陰極電流密度が2
A/cm2未満では、金属リチウムの析出が生じない。ま
た、500A/cm2を超えると陰極部での発熱量が多
く、電解浴の温度管理が困難となる。一方、電解温度が
1000℃を超える場合には、溶融塩電解浴の温度維持
に多大なコストを要し、経済的でなく、600℃未満で
は、電解浴が凝固し、直流電流の通電ができない。
In the production method of the present invention, electrolytic reduction is then carried out to produce the desired metallic lithium. As electrolysis conditions, the cathode current density is 2 to 500 A / cm 2 , preferably 2 to 20 A / cm 2 , and the electrolysis temperature is 600 to 1000.
° C, preferably 800 to 1000 ° C, particularly preferably 8
The range of 00-950 degreeC is mentioned. Cathode current density is 2
If it is less than A / cm 2 , metallic lithium does not precipitate. On the other hand, if it exceeds 500 A / cm 2 , the amount of heat generated at the cathode portion is large, and it becomes difficult to control the temperature of the electrolytic bath. On the other hand, if the electrolysis temperature exceeds 1000 ° C., it will be costly and costly to maintain the temperature of the molten salt electrolysis bath, and if the electrolysis temperature is below 600 ° C., the electrolysis bath will solidify and direct current cannot be applied. .

【0015】本発明の製造方法においては、図1に示す
電解室11と、各電解浴の液上面とにより区切られた電
解室11内の上方部分の雰囲気を、乾燥アルゴン雰囲気
等の乾燥不活性ガス雰囲気とすることが好ましい。この
ように雰囲気を制御することにより、電解時に陰極に生
成した金属リチウムが、前記電解室11内の上方部分の
大気に含有される水分、窒素ガス、二酸化炭素ガス等、
並びに電解時に陽極で発生した二酸化炭素ガス又は一酸
化炭素ガスと接触し反応することを抑制することがで
き、電解効率を下げる要因を排除することができる。こ
のような雰囲気の制御は、上述の大気及び陽極で発生す
る二酸化炭素ガス、一酸化炭素ガスを置換するに十分な
流量の乾燥不活性ガスを電解室11内に流すことにより
行なうことができる。
In the manufacturing method of the present invention, the atmosphere in the upper part in the electrolytic chamber 11 which is partitioned by the electrolytic chamber 11 shown in FIG. 1 and the liquid upper surface of each electrolytic bath is dried and inert such as a dry argon atmosphere. A gas atmosphere is preferable. By controlling the atmosphere in this manner, the metallic lithium generated in the cathode during electrolysis contains water, nitrogen gas, carbon dioxide gas, etc. contained in the atmosphere in the upper part of the electrolysis chamber 11,
In addition, it is possible to suppress contact and reaction with carbon dioxide gas or carbon monoxide gas generated at the anode during electrolysis, and it is possible to eliminate a factor that reduces electrolysis efficiency. Such an atmosphere can be controlled by flowing a dry inert gas into the electrolytic chamber 11 at a flow rate sufficient to replace the carbon dioxide gas and the carbon monoxide gas generated in the atmosphere and the anode.

【0016】また、本発明の製造方法においては、図1
に示す電解室11と、各電解浴の液上面とにより区切ら
れた電解室11内の上方部分の雰囲気を、陽極室雰囲気
及び陰極室雰囲気に区画する雰囲気区画用隔壁16を図
示するように電解室11内に設けることができる。前記
雰囲気区画用隔壁16を設けることにより、電解開始前
に陰極室雰囲気及び陽極室雰囲気を上述の雰囲気制御の
ために乾燥不活性ガス雰囲気とすれば、電解中は、陰極
室雰囲気のみを乾燥不活性ガス雰囲気に制御すれば上述
のような効果を得ることができる。陽極では、二酸化炭
素ガスや一酸化炭素ガスが発生し、陽極室雰囲気は二酸
化炭素ガス、一酸化炭素ガス雰囲気となるが、これを乾
燥不活性ガス雰囲気とするような制御は必要なく、単に
大気が流入しないようにすればよい。一方、陰極室雰囲
気の制御は、陰極からのガスの発生がほとんどないの
で、制御が容易であり経済的に行うことができる。前記
雰囲気区画用隔壁16の材質は、電解浴との反応性がな
く、二酸化炭素ガス及び一酸化炭素ガスを透過しないも
のが好ましい。例えば、鉄、ステンレス、緻密に焼結さ
せたZrO2、Al2O3等が挙げられる。
Further, in the manufacturing method of the present invention, FIG.
The electrolytic chamber 11 shown in FIG. 2 and the upper part of the electrolytic chamber 11 separated by the liquid upper surface of each electrolytic bath into an anode chamber atmosphere and a cathode chamber atmosphere. It can be provided in the chamber 11. If the cathode compartment atmosphere and the anode compartment atmosphere are made into a dry inert gas atmosphere for the above atmosphere control before the electrolysis is started by providing the partition wall 16 for the atmosphere compartment, only the cathode compartment atmosphere is not dried during the electrolysis. The above effects can be obtained by controlling to an active gas atmosphere. At the anode, carbon dioxide gas or carbon monoxide gas is generated, and the atmosphere of the anode chamber becomes carbon dioxide gas or carbon monoxide gas atmosphere, but it is not necessary to control it as a dry inert gas atmosphere. Should be prevented from flowing in. On the other hand, the atmosphere in the cathode chamber can be controlled economically because the gas is hardly generated from the cathode. It is preferable that the material of the partition wall 16 for the atmosphere compartment is one that does not react with the electrolytic bath and does not permeate carbon dioxide gas and carbon monoxide gas. Examples thereof include iron, stainless steel, densely sintered ZrO 2 , Al 2 O 3 and the like.

【0017】[0017]

【実施例】以下、実施例及び比較例により本発明を更に
詳細に説明するが本発明はこれらに限定されるものでは
ない。実施例1 図1に示す電解装置を用意した。なお、電解室11とし
て鉄製の電解室を、陽極13にカーボンを、陰極14に
鉄を用いた。また、浴用隔壁12として空孔率40%の
ZrO2製のるつぼを、雰囲気区画用隔壁16としては鉄製
の隔壁を用いた。陽極電解浴として、炭酸リチウム3質
量%、フッ化リチウム89質量%及びフッ化バリウム8
質量%からなる電解浴を用い、陰極電解浴として、フッ
化リチウム92質量%及びフッ化バリウム8質量%から
なる電解浴を用いた。電解開始前に、隔壁16により区
画された陽極室雰囲気及び陰極室雰囲気の双方を乾燥ア
ルゴン雰囲気とし、電解中は陰極室雰囲気のみを乾燥ア
ルゴン雰囲気とし、電解温度900℃、陰極電流密度3
A/cm2の電解条件で溶融塩電解を行った。その結
果、有毒な塩素ガスの発生は無く、純度99質量%の金
属リチウムが収率95%で得られた。電解浴の組成、電
解条件、結果等を表1に示す。
The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Example 1 The electrolytic apparatus shown in FIG. 1 was prepared. An electrolytic chamber made of iron was used as the electrolytic chamber 11, carbon was used for the anode 13, and iron was used for the cathode 14. In addition, the partition wall 12 for the bath has a porosity of 40%.
A crucible made of ZrO 2 and a partition made of iron were used as the partition 16 for atmosphere partition. As an anode electrolytic bath, 3 mass% lithium carbonate, 89 mass% lithium fluoride and 8 barium fluoride
An electrolytic bath containing 92% by mass of lithium fluoride and 8% by mass of barium fluoride was used as a cathode electrolytic bath. Before the electrolysis, both the anode chamber atmosphere and the cathode chamber atmosphere partitioned by the partition wall 16 are made into a dry argon atmosphere, only the cathode chamber atmosphere is made into a dry argon atmosphere during electrolysis, the electrolysis temperature is 900 ° C., and the cathode current density is 3
Molten salt electrolysis was performed under the electrolysis conditions of A / cm 2 . As a result, no toxic chlorine gas was generated, and metallic lithium having a purity of 99 mass% was obtained at a yield of 95%. Table 1 shows the composition of the electrolytic bath, electrolysis conditions, results and the like.

【0018】実施例2〜5、比較例1〜8 表1に示す電解浴の組成及び電解条件とし、浴用隔壁1
2の空孔率を表1に示すものに代えた以外は、実施例1
と同様に電解を行ない、塩素ガスの発生、並びに純度9
9質量%の金属リチウムの収率を測定した。結果を表1
に示す。
Examples 2 to 5 and Comparative Examples 1 to 8 The composition and electrolysis conditions of the electrolytic bath shown in Table 1 were used, and the partition wall 1 for the bath was used.
Example 1 except that the porosity of No. 2 was changed to that shown in Table 1.
Electrolyze in the same manner as above, generate chlorine gas, and purify 9
The yield of metallic lithium of 9 mass% was measured. The results are shown in Table 1.
Shown in.

【0019】実施例6 隔壁16を用いなかった以外は、実施例1と同様に電解
を行ない、塩素ガスの発生、並びに純度99質量%の金
属リチウムの収率を測定した。結果を表1に示す。
Example 6 Electrolysis was carried out in the same manner as in Example 1 except that the partition wall 16 was not used, and chlorine gas was generated and the yield of 99% by mass metallic lithium was measured. The results are shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】本発明の製造方法では、陰極電解室及び
陽極電解室を有する浴用隔壁により区画された電解室等
を有する特定の電解装置を用意し、特定の陽極電解浴及
び特定の陰極電解浴を電解室に入れ、特定電解条件で電
解を行なうので、有毒な塩素ガスを発生させることな
く、高純度の金属リチウムを得ることができる。
In the manufacturing method of the present invention, a specific electrolysis apparatus having an electrolysis chamber and the like partitioned by a bath partition having a cathode electrolysis chamber and an anode electrolysis chamber is prepared, and a specific anode electrolysis bath and a specific cathodic electrolysis are prepared. Since the bath is placed in the electrolysis chamber and electrolysis is performed under specific electrolysis conditions, highly pure metallic lithium can be obtained without generating toxic chlorine gas.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いる電解装置の一実施態様を示す概
略図である。
FIG. 1 is a schematic view showing an embodiment of an electrolysis apparatus used in the present invention.

【符号の説明】 10:電解装置 11:電解室 11a:陽極電解室 11b:陰極電解室 12:浴用隔壁 13:陽極 14:陰極 14a:マグネシア筒 15:電解炉外筒 16:雰囲気区画用隔壁[Explanation of symbols] 10: Electrolysis device 11: Electrolysis room 11a: Anode electrolysis chamber 11b: cathode electrolysis chamber 12: Bath partition 13: Anode 14: cathode 14a: Magnesia tube 15: Electrolytic furnace outer cylinder 16: Partition wall for atmosphere compartment

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 陰極電解室及び陽極電解室を有する浴用
隔壁により区画された電解室と、各電解室に設けた陽極
及び陰極とを備え、前記浴用隔壁の少なくとも一部が通
電及びリチウムイオンの移動を可能にする多孔質材料で
形成された電解装置を用意し、 実質的に炭酸リチウム及びフッ化物からのみなり、該炭
酸リチウムの含有割合が0.1〜30質量%である陽極
電解浴と、実質的にフッ化物からのみなる陰極電解浴と
を前記電解装置のそれぞれの電解室に入れ、 陰極電流密度2〜500A/cm2、電解温度600〜
1000℃の電解条件で電解還元することを特徴とする
金属リチウムの製造方法。
1. An electrolytic chamber partitioned by a bath partition having a cathode electrolysis chamber and an anode electrolysis chamber, and an anode and a cathode provided in each electrolysis chamber, wherein at least a part of the bath partition is energized and charged with lithium ions. An electrolysis device formed of a porous material that enables movement is prepared, and an anode electrolysis bath that substantially consists of lithium carbonate and a fluoride, and the content ratio of the lithium carbonate is 0.1 to 30% by mass. , A cathode electrolysis bath consisting essentially of a fluoride is placed in each electrolysis chamber of the electrolysis apparatus, and a cathode current density of 2 to 500 A / cm 2 and an electrolysis temperature of 600 to
A method for producing metallic lithium, which comprises electrolytically reducing under an electrolysis condition of 1000 ° C.
【請求項2】 陽極電解浴及び陰極電解浴のフッ化物
が、フッ化リチウム、フッ化カリウム及びフッ化ナトリ
ウムからなる群より選択される少なくとも1種を含む請
求項1記載の製造方法。
2. The production method according to claim 1, wherein the fluoride of the anode electrolytic bath and the cathode electrolytic bath contains at least one selected from the group consisting of lithium fluoride, potassium fluoride and sodium fluoride.
【請求項3】 陽極電解浴及び陰極電解浴のフッ化物
が、フッ化バリウムを含む請求項1又は2記載の製造方
法。
3. The method according to claim 1, wherein the fluorides in the anode electrolytic bath and the cathode electrolytic bath contain barium fluoride.
【請求項4】 浴用隔壁を形成する前記多孔質材料の空
孔率が1〜50%である請求項1〜3のいずれか1項記
載の製造方法。
4. The method according to claim 1, wherein the porous material forming the bath partition wall has a porosity of 1 to 50%.
【請求項5】 陽極が炭素であり、且つ陰極が鉄である
請求項1〜4のいずれか1項記載の製造方法。
5. The production method according to claim 1, wherein the anode is carbon and the cathode is iron.
【請求項6】 電解装置が、電解室と各電解浴の液上面
とにより区切られた空間の雰囲気を、陽極室雰囲気及び
陰極室雰囲気に区画する雰囲気区画用隔壁を備える請求
項1〜5のいずれか1項記載の製造方法。
6. The electrolytic apparatus comprises an atmosphere partitioning partition for partitioning an atmosphere of a space partitioned by the electrolytic chamber and the liquid upper surface of each electrolytic bath into an anode chamber atmosphere and a cathode chamber atmosphere. The manufacturing method according to claim 1.
【請求項7】 電解還元中に、前記陰極室雰囲気を乾燥
不活性ガス雰囲気に制御することを特徴とする請求項6
記載の製造方法。
7. The cathode chamber atmosphere is controlled to a dry inert gas atmosphere during electrolytic reduction.
The manufacturing method described.
JP2001237841A 2001-08-06 2001-08-06 Method for producing metallic lithium Expired - Fee Related JP4763169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001237841A JP4763169B2 (en) 2001-08-06 2001-08-06 Method for producing metallic lithium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001237841A JP4763169B2 (en) 2001-08-06 2001-08-06 Method for producing metallic lithium

Publications (2)

Publication Number Publication Date
JP2003049291A true JP2003049291A (en) 2003-02-21
JP4763169B2 JP4763169B2 (en) 2011-08-31

Family

ID=19068852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001237841A Expired - Fee Related JP4763169B2 (en) 2001-08-06 2001-08-06 Method for producing metallic lithium

Country Status (1)

Country Link
JP (1) JP4763169B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105374A (en) * 2003-09-30 2005-04-21 Nippon Light Metal Co Ltd Reduction method for metal oxide and reduction device for metal oxide
JP2005105373A (en) * 2003-09-30 2005-04-21 Nippon Light Metal Co Ltd Reduction method for metal oxide and reduction device for metal oxide
WO2012017448A3 (en) * 2010-08-03 2012-05-24 Hetero Research Foundation Salts of lapatinib
WO2012021033A3 (en) * 2010-08-12 2012-05-24 Research Institute Of Industrial Science & Technology Method of extracting lithium with high purity from lithium bearing solution by electrolysis
KR101185836B1 (en) 2011-04-15 2012-10-02 한국수력원자력 주식회사 Electrolytic reduction process for production of metal from metal oxide
KR101193142B1 (en) 2010-08-12 2012-10-22 재단법인 포항산업과학연구원 Manufacturing method of lithium by electrolysis of lithium phosphate aqueous solution
JP5336193B2 (en) * 2006-11-02 2013-11-06 株式会社三徳 Method for producing metallic lithium
KR101374754B1 (en) 2012-11-23 2014-03-19 금오공과대학교 산학협력단 Method for preparing metal lithium using electrolysis in non-aqueous electrolyte
WO2014127977A1 (en) 2013-02-22 2014-08-28 Siemens Aktiengesellschaft Low-temperature method for producing lithium from poorly soluble lithium salts
RU2616749C1 (en) * 2015-12-02 2017-04-18 Акционерное общество "Российская электроника" Method of metal lithium obtainment using natural brine processing products
JP2018525533A (en) * 2015-05-30 2018-09-06 クリーン リチウム コーポレーション High purity lithium, related products and methods
KR101952218B1 (en) 2017-06-22 2019-03-13 백창근 Ceramic separator for producing lithium metal and lithium metal manufacturing system containing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443811A (en) * 1977-09-16 1979-04-06 Asahi Glass Co Ltd Production of metallic lithium
JPH0379784A (en) * 1989-08-23 1991-04-04 Osaka Titanium Co Ltd Method for purifying salt of electrolytic bath
JPH03140492A (en) * 1989-10-27 1991-06-14 Nippon Light Metal Co Ltd Production of al-li alloy
JPH05279886A (en) * 1992-04-03 1993-10-26 Asahi Tec Corp Formation of lithium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443811A (en) * 1977-09-16 1979-04-06 Asahi Glass Co Ltd Production of metallic lithium
JPH0379784A (en) * 1989-08-23 1991-04-04 Osaka Titanium Co Ltd Method for purifying salt of electrolytic bath
JPH03140492A (en) * 1989-10-27 1991-06-14 Nippon Light Metal Co Ltd Production of al-li alloy
JPH05279886A (en) * 1992-04-03 1993-10-26 Asahi Tec Corp Formation of lithium

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105374A (en) * 2003-09-30 2005-04-21 Nippon Light Metal Co Ltd Reduction method for metal oxide and reduction device for metal oxide
JP2005105373A (en) * 2003-09-30 2005-04-21 Nippon Light Metal Co Ltd Reduction method for metal oxide and reduction device for metal oxide
JP4502617B2 (en) * 2003-09-30 2010-07-14 日本軽金属株式会社 Metal oxide reduction method and metal oxide reduction apparatus
JP4513297B2 (en) * 2003-09-30 2010-07-28 日本軽金属株式会社 Metal oxide reduction method and metal oxide reduction apparatus
JP5336193B2 (en) * 2006-11-02 2013-11-06 株式会社三徳 Method for producing metallic lithium
WO2012017448A3 (en) * 2010-08-03 2012-05-24 Hetero Research Foundation Salts of lapatinib
CN103097586A (en) * 2010-08-12 2013-05-08 浦项产业科学研究院 Method of extracting lithium with high purity from lithium bearing solution by electrolysis
KR101193142B1 (en) 2010-08-12 2012-10-22 재단법인 포항산업과학연구원 Manufacturing method of lithium by electrolysis of lithium phosphate aqueous solution
WO2012021033A3 (en) * 2010-08-12 2012-05-24 Research Institute Of Industrial Science & Technology Method of extracting lithium with high purity from lithium bearing solution by electrolysis
US8936711B2 (en) 2010-08-12 2015-01-20 Research Institute Of Industrial Science & Technology Method of extracting lithium with high purity from lithium bearing solution by electrolysis
CN103097586B (en) * 2010-08-12 2015-09-02 浦项产业科学研究院 From lithium-containing solution, the method for high purity lithium is extracted by electrolysis
KR101185836B1 (en) 2011-04-15 2012-10-02 한국수력원자력 주식회사 Electrolytic reduction process for production of metal from metal oxide
KR101374754B1 (en) 2012-11-23 2014-03-19 금오공과대학교 산학협력단 Method for preparing metal lithium using electrolysis in non-aqueous electrolyte
WO2014127977A1 (en) 2013-02-22 2014-08-28 Siemens Aktiengesellschaft Low-temperature method for producing lithium from poorly soluble lithium salts
DE102013202976A1 (en) 2013-02-22 2014-08-28 Siemens Aktiengesellschaft Low-temperature process for the production of lithium from poorly soluble lithium salts
JP2018525533A (en) * 2015-05-30 2018-09-06 クリーン リチウム コーポレーション High purity lithium, related products and methods
RU2616749C1 (en) * 2015-12-02 2017-04-18 Акционерное общество "Российская электроника" Method of metal lithium obtainment using natural brine processing products
KR101952218B1 (en) 2017-06-22 2019-03-13 백창근 Ceramic separator for producing lithium metal and lithium metal manufacturing system containing the same

Also Published As

Publication number Publication date
JP4763169B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
CN1650051B (en) Reduction of metal oxides in an electrolytic cell
CZ297064B6 (en) Process of producing metals by electrolysis
JP4763169B2 (en) Method for producing metallic lithium
JP3718691B2 (en) Titanium production method, pure metal production method, and pure metal production apparatus
US20080110764A1 (en) Electrolytic Reduction of Metal Oxides
RU2004102504A (en) REDUCTION OF METAL OXIDES IN THE ELECTROLYZER
US7628904B2 (en) Minimising carbon transfer in an electrolytic cell
JP2012136766A (en) Method for producing metal by electrolysis
US7504010B2 (en) Anode for electrolysis of aluminum
US4521284A (en) Electrolytic method of producing a high purity aluminum-lithium mother alloy
US5000829A (en) Process for preparing praseodymium metal or praseodymium-containing alloy
US5810993A (en) Electrolytic production of neodymium without perfluorinated carbon compounds on the offgases
GB1199335A (en) Improvements in Aluminiding
JP4975431B2 (en) Electrolysis method of aluminum sulfide
JP2596976B2 (en) Method for producing neodymium or neodymium alloy
US4595466A (en) Metal electrolysis using a low temperature bath
US6428675B1 (en) Low temperature aluminum production
JP3093421B2 (en) How to generate lithium
EP1483431A1 (en) Minimising carbon transfer in an electrolytic cell
JPS6286188A (en) Electrolyrtic production of metal
US5346608A (en) Method for obtaining neodymium or neodymium-iron alloy by electrolysis of melts containing neodymium compounds
JP2022082229A (en) Production method of titanium
GB1199024A (en) Improvements in process for Vanadiding Metals
JPH03140492A (en) Production of al-li alloy
CN114016083A (en) Method for regenerating alkali metal reducing agent in process of preparing metal by thermally reducing metal oxide with alkali metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4763169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees