JP2003049221A - Method for producing non-heat treated warm-forged parts - Google Patents

Method for producing non-heat treated warm-forged parts

Info

Publication number
JP2003049221A
JP2003049221A JP2001237844A JP2001237844A JP2003049221A JP 2003049221 A JP2003049221 A JP 2003049221A JP 2001237844 A JP2001237844 A JP 2001237844A JP 2001237844 A JP2001237844 A JP 2001237844A JP 2003049221 A JP2003049221 A JP 2003049221A
Authority
JP
Japan
Prior art keywords
forging
warm
hot
steel
forged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001237844A
Other languages
Japanese (ja)
Inventor
Tadayuki Mino
匡之 三野
Takeshi Sato
武史 佐藤
Takatoshi Arai
貴俊 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metals Kokura Ltd
Original Assignee
Sumitomo Metals Kokura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metals Kokura Ltd filed Critical Sumitomo Metals Kokura Ltd
Priority to JP2001237844A priority Critical patent/JP2003049221A/en
Publication of JP2003049221A publication Critical patent/JP2003049221A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing non-heat treated warm-forged parts which have little variation in strength, and can secure stable mechanical properties. SOLUTION: Steel obtained by subjecting steel having a composition containing 0.30 to 0.55% C, 0.02 to 2.0% Si, 0.1 to 2.0% Mn, 0.1 to 2.0% Cr, <=1.8% Mn(%)+Cr(%), and containing one or more kinds selected from 0.01 to 1.0% Mo, 0.001 to 1.0% V and 0.001 to 0.3% Nb, and the balance Fe with impurities to heating at 900 to 1,250 deg.C, and performing hot working at a finishing temperature of 750 to 1,100 deg.C is used as the stock. This steel is heated at 600 to 1,000 deg.C without applying cold compressive working thereto, and is forged and formed at 600 to 900 deg.C.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、非調質温間鍛造部
品の製造方法に関する。 【0002】 【従来の技術】従来、各種の非調質鍛造部品は、一般に
中炭素鋼や低合金鋼の圧延材を素材として、これを熱間
で鍛造することによって所定の粗形状と強度を初めとす
る特性とを確保し、その後これに機械加工を施して最終
の部品形状に仕上げられていた。 【0003】しかしながら、更なる部品製造コストの低
減のために、上記機械加工を削減したり省略することが
要求され、このため、寸法精度のよい加工が行える冷間
鍛造技術が検討されて、一部小物の部品では非調質冷間
鍛造部品が実用化されている。しかし、熱間で圧延した
ままの鋼材を冷間で鍛造する場合の変形抵抗は一般に大
きく、したがって、冷間鍛造の前に軟化焼鈍を施す必要
が生じることがある。更に、冷間鍛造時に大きな加工度
を加える必要がある形状部分を持つ部品や大型の部品に
対しては、最終部品に極めて近い形状に成形するために
大型の冷間鍛造設備が必要になることもある。 【0004】このため、近年、冷間鍛造ほどには素材鋼
の変形抵抗が大きくならず、しかも、熱間鍛造ほどには
機械加工による仕上げ成形加工を必要としない温間鍛造
で非調質鍛造部品を製造したいとする要望が極めて大き
くなっている。 【0005】一般に、鍛造後の形状精度を高めるため
に、又、鍛造による圧縮加工を受けないで素材寸法のま
まで残る部位があることなどの理由で、非調質部品を温
間鍛造で製造する場合には、温間鍛造の素材として用い
られる鋼材に冷間で引き抜きなどの加工が施されてい
る。しかし、上記の冷間で引き抜きなどの加工を施した
鋼材を温間鍛造して製造した非調質鍛造部品の場合、そ
の部位によって大きな強度ばらつきが生じ、安定した機
械的性質を確保できない。 【0006】 【発明が解決しようとする課題】本発明は、上記の現状
に鑑みなされたもので、その目的は、温間鍛造しても非
調質部品内での強度ばらつきが小さく、したがって、安
定した機械的特性を確保することが可能な非調質温間鍛
造部品の製造方法を提供することにある。 【0007】 【課題を解決するための手段】本発明の要旨は、下記に
示す非調質温間鍛造部品の製造方法にある。 【0008】すなわち、「質量%で、C:0.30〜
0.55%、Si:0.02〜2.0%、Mn:0.1
〜2.0%、Cr:0.1〜2.0%で、Mn(%)+
Cr(%):1.8%以下を含むとともに、Mo:0.
01〜1.0%、V:0.005〜1.0%及びNb:
0.005〜0.3%の1種以上を含有し、残部はFe
及び不純物からなる鋼を、900〜1250℃に加熱し
て仕上げ温度750〜1100℃で熱間加工して得た鋼
材を素材とし、冷間での圧縮加工を加えることなく、6
00〜1000℃に加熱し、600〜900℃で鍛造し
て成形することを特徴とする非調質温間鍛造部品の製造
方法」である。 【0009】なお、「熱間加工」とは、熱間圧延や熱間
鍛造といった熱間での成形加工を指す。「冷間での圧縮
加工」とは、冷間引き抜き加工や冷間鍛造といった冷間
での圧縮が加わる成形加工を指す。 【0010】本発明者らは、温間鍛造しても非調質部品
内での強度ばらつきが小さく、したがって、安定した機
械的特性の確保が行えるように種々検討を重ねた。その
結果、下記の知見を得た。 【0011】(a)熱間加工して得た鋼材に冷間で圧縮
加工を加えてから温間鍛造すれば、温間鍛造後の強度は
熱間加工ままの素材の強度に比べて大きく低下する。 【0012】(b)上記(a)に対して、特定の条件で
熱間加工して得た鋼材に冷間での圧縮加工を加えること
なく特定の温度域で温間鍛造を施せば、温間鍛造によっ
て圧縮加工を加えた部位であってもその強度は熱間加工
ままの素材の強度と同等である。 【0013】(c)熱間加工して得た鋼材に冷間で圧縮
加工を加えてから、前記(a)の温間鍛造を行うための
温度までその鋼材の特定の一部分を加熱すると、その加
熱された部位の近傍にあって直接には加熱されていない
ものの温度上昇をきたした部位(以下、「熱影響を受け
た部位」という)の強度が、熱間加工ままの素材の強度
に比べて上昇する。 【0014】(d)上記(c)に対して、特定の条件で
熱間加工して得た鋼材に冷間での圧縮加工を加えること
なく、その特定の一部分を温間鍛造を行う特定の温度域
に加熱した場合には、熱影響を受けた部位における強度
も熱間加工ままの素材の強度と同等である。 【0015】本発明は、上記の知見に基づいて完成され
たものである。 【0016】 【発明の実施の形態】以下、本発明の各要件について詳
しく説明する。なお、化学成分の含有量の「%」は「質
量%」を意味する。 (A)素材鋼の化学組成 C:0.30〜0.55% Cは、非調質温間鍛造部品の強度を高めるのに有効な元
素である。しかし、その含有量が0.30%未満では添
加効果に乏しく、0.55%を超えると靱性の低下が生
じる。したがって、Cの含有量を0.30〜0.55%
とした。 【0017】Si:0.02〜2.0% Siは、鋼の脱酸及び非調質温間鍛造部品の強度確保に
有効な元素である。しかし、その含有量が0.02%未
満では十分な脱酸作用が得難く、一方、2.0%を超え
るとフェライト地が脆化して靱性が低下する。したがっ
て、Siの含有量を0.02〜2.0%とした。 【0018】Mn:0.1〜2.0% Mnは、非調質温間鍛造部品の強度と靱性を高める作用
を有する。しかし、その含有量が0.1%未満では効果
が得難い。一方、2.0%を超えると却って靱性の低下
をきたす。したがって、Mnの含有量を0.1〜2.0
%とした。 【0019】なお、非調質温間鍛造部品に安定した靱性
を確保させるために、Mnの含有量は、下記Crの含有
量との和で1.8%以下とすることが重要である。 【0020】Cr:0.1〜2.0% Crは、非調質温間鍛造部品の強度と靱性を高める作用
を有する。しかし、その含有量が0.1%未満では効果
が得難い。一方、2.0%を超えると却って靱性の低下
をきたす。したがって、Crの含有量を0.1〜2.0
%とした。 【0021】なお、非調質温間鍛造部品に安定した靱性
を確保させるために、Crの含有量は、上記Mnの含有
量との和で1.8%以下とすることが重要である。 【0022】Mn(%)+Cr(%):1.8%以下 Mn及びCrの含有量の和であるMn(%)+Cr
(%)の値が1.8%を超えると、熱間加工後の冷却速
度を大きくした場合、素材の鋼材にベイナイト相が生じ
て非調質温間鍛造部品の靱性が低下する。したがって、
非調質温間鍛造部品に安定した靱性を確保させるため
に、Mn(%)+Cr(%)の値を1.8%以下とし
た。なお、Mn(%)+Cr(%)の値の下限値は、M
n及びCrの含有量がそれぞれ0.1%の時の0.2%
であってもよい。 【0023】Mo:0.01〜1.0%、V:0.00
5〜1.0%及びNb:0.005〜0.3%の1種以
上 Mo、V及びNbは、いずれも熱間加工後の素材の組織
を微細化し、非調質温間鍛造部品の強度と靱性を高める
作用を有するので、これら元素の1種以上を添加し含有
させる。 【0024】しかし、Mo、V及びNbの含有量がそれ
ぞれ0.01%未満、0.005%未満及び0.005
%未満では効果が得難い。一方、Mo、V及びNbの含
有量がそれぞれ1.0%、1.0%及び0.3%を超え
ると却って靱性の低下をきたす。したがって、Mo、V
及びNbの含有量をそれぞれ0.01〜1.0%、0.
005〜1.0%及び0.005〜0.3%とし、これ
ら元素の1種以上を含有させることとした。 (B)素材鋼の熱間加工 本発明の非調質温間鍛造部品の素材となる上記(A)項
に記載の化学組成を有する鋼は、これを900〜125
0℃に加熱して仕上げ温度750〜1100℃で熱間加
工する必要がある。素材鋼の加熱温度が900℃未満の
場合には圧延時の変形抵抗が増大するので生産性の低下
を招き、一方、1250℃を超える場合には、結晶粒の
粗大化が生ずる。又、熱間加工の仕上げ温度が750℃
未満の場合には圧延時の変形抵抗が増大して生産性の大
きな低下を招くし、1100℃を超える場合にはその後
の冷却過程で結晶粒の粗大化が生じる。したがって、上
記(A)に記載の化学組成を有する鋼を900〜125
0℃に加熱して仕上げ温度750〜1100℃で熱間加
工するように規定した。なお、素材鋼の加熱温度は10
00〜1200℃、熱間加工仕上げ温度は800〜10
00℃とすることが好ましい。 (C)部品の温間鍛造 (A)項に記載の化学組成を有する鋼を(B)項で述べ
た条件で熱間加工した鋼材を、冷間での圧縮加工を加え
ることなく、600〜1000℃に加熱し、600〜9
00℃で鍛造して成形することが極めて重要である。 【0025】すなわち、熱間加工して得た鋼材に冷間で
圧縮加工を加えてから温間鍛造を行うと、温間鍛造後の
強度は熱間加工ままの素材の強度に比べて大きく低下す
るし、熱影響を受けた部位の強度が、熱間加工ままの素
材の強度に比べて上昇する。このため、非調質温間鍛造
部品内での強度ばらつきが大きくなって、安定した機械
的特性を確保することができない。 【0026】温間鍛造のための加熱温度が600℃未満
の場合には、鍛造荷重が大きくなって所望の形状に成形
できない場合があり、又、金型寿命の低下も生じる。一
方、前記の加熱温度が1000℃を超える場合には、鍛
造後に所望の寸法精度を確保できない場合がある。温間
鍛造する温度が600℃未満の場合にも、鍛造荷重が大
きくなって所望の形状に成形できない場合があり、又、
金型寿命の低下が生じる。一方、温間鍛造する温度が9
00℃を超える場合には、鍛造後の寸法精度の低下をき
たす。 【0027】したがって、本発明においては、(A)項
に記載の化学組成を有する鋼を(B)項で述べた条件で
熱間加工した鋼材を、冷間での圧縮加工を加えることな
く、600〜1000℃に加熱し、600〜900℃で
鍛造して成形するように規定した。 【0028】なお、温間鍛造のための加熱温度は800
〜950℃、温間鍛造する温度は650〜850℃とす
ることが好ましい。以下、実施例により本発明を詳しく
説明する。 【0029】 【実施例】表1に示す化学組成を有する鋼1〜13を1
50kg真空溶解炉で溶製した。 【0030】 【表1】 【0031】次に、これらの鋼の鋼塊を1100℃に加
熱し、仕上げ温度850℃で熱間鍛造して直径が35m
mの丸棒に加工した。上記の直径が35mmの各丸棒か
ら長さ40mmの試験片切り出し、その試験片を中心線
を含む長さ方向に切断して、熱間鍛造ままでの中心線部
位の長手方向ブリネル硬さ(HB硬さ)を測定した。次
に、熱間鍛造して得た直径が35mmの棒を通常の方法
でピーリングし、この後鋼1〜3を素材鋼とするものに
ついて、通常の方法によって常温で減面率6.2%の引
き抜き加工を行った。同様に、鋼4を素材鋼とするもの
については、常温で減面率10.0%の引き抜き加工を
行った。 【0032】次いで、鋼1〜4の引き抜き加工した各丸
棒及び、鋼5〜15の熱間鍛造後にピーリングした直径
30mmの各丸棒から、それぞれ長さ200mmの試験
片を切り出し、各試験片について、その片端側100m
mの部位を850℃に加熱し、800℃で減面率が50
%となる温間鍛造を行った。 【0033】上記温間鍛造後の試験片を中心線を含む長
さ方向に切断し、中心線部位の長手方向ブリネル硬さ
(HB硬さ)を測定した。 【0034】表2に、上記の各HB硬さの測定結果を示
す。なお、表2における「素材部」の硬さは熱間鍛造ま
まの部位5点で測定したHB硬さの平均値を、「温間鍛
造部」の硬さは、温間鍛造して圧縮加工した部位5点で
測定したHB硬さの平均値を、又、「熱影響を受けた部
位」の硬さは、圧縮加工を加えていない部位5点で測定
したHB硬さの最大値をそれぞれ示す。又、△HBは
「熱影響を受けた部位」の硬さと「温間鍛造部」の硬さ
の差で、温間鍛造後の試験片におけるHB硬さのばらつ
きを示す。 【0035】 【表2】【0036】表2から、冷間での圧縮加工を加えること
なく、本発明で規定する条件で温間鍛造した場合、温間
鍛造部、熱影響を受けた部位ともに熱間加工ままの素材
と同等のHB硬さで、△HBの値は小さいので、温間鍛
造しても非調質部品内での強度ばらつきが小さく、した
がって、安定した機械的特性を確保することができるこ
とが明らかである。 【0037】これに対して、冷間での圧縮加工を加えて
本発明で規定する条件から外れた場合には、熱間加工ま
まの素材と比べて温間鍛造部では硬さが低下し、一方、
熱影響を受けた部位では硬さが上昇しており、△HBの
値、つまり、硬さばらつきが大きくなっている。 【0038】 【発明の効果】本発明の方法によれば、温間鍛造しても
非調質部品内での強度ばらつきが小さく、したがって、
非調質温間鍛造部品に安定した機械的特性を具備させる
ことができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-refined warm forged part. 2. Description of the Related Art Conventionally, various non-heat treated forged parts are generally made of a rolled material of medium carbon steel or low alloy steel and hot forged to obtain a predetermined rough shape and strength. The original characteristics were secured, and thereafter, these were machined to finish the final part shape. [0003] However, in order to further reduce the cost of manufacturing parts, it is required to reduce or omit the above-mentioned machining. For this reason, a cold forging technique capable of performing machining with high dimensional accuracy has been studied. Non-refined cold-forged parts have been put into practical use for small parts. However, the deformation resistance in the case of cold forging a steel material that has been hot-rolled is generally large, and therefore it may be necessary to perform soft annealing before cold forging. In addition, large-sized components and parts that require a large degree of work during cold forging require large-scale cold forging equipment in order to form them into shapes that are extremely close to the final parts. There is also. [0004] For this reason, in recent years, the deformation resistance of the material steel has not increased as much as in cold forging, and non-finished forging has been carried out by warm forging, which does not require finish forming by machining as in hot forging. The demand for manufacturing parts has become extremely large. [0005] Generally, non-heat treated parts are manufactured by warm forging in order to improve the shape accuracy after forging, and because there is a part that remains in the material size without being subjected to compression processing by forging. In such a case, a steel material used as a material for warm forging is subjected to a process such as cold drawing. However, in the case of a non-heat treated forged part manufactured by warm forging a steel material that has been subjected to a process such as drawing in the cold state, a large variation in strength occurs depending on the portion, and stable mechanical properties cannot be secured. SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to reduce the variation in strength in non-heat-treated parts even during warm forging. An object of the present invention is to provide a method for manufacturing a non-refined warm forged part capable of securing stable mechanical properties. [0007] The gist of the present invention resides in a method for producing a non-refined warm forged part as described below. That is, “in mass%, C: 0.30 to 0.30%
0.55%, Si: 0.02 to 2.0%, Mn: 0.1
To 2.0%, Cr: 0.1 to 2.0%, and Mn (%) +
Cr (%): 1.8% or less, and Mo: 0.1%
01-1.0%, V: 0.005-1.0% and Nb:
One or more of 0.005 to 0.3%, with the balance being Fe
And steel made of impurities, heated to 900 to 1250 ° C. and hot-worked at a finishing temperature of 750 to 1100 ° C. as a raw material, and without a cold compression working,
A method for producing a non-refined warm forged part characterized by heating to 00 to 1000 ° C. and forging and forming at 600 to 900 ° C. ”. [0009] The term "hot working" refers to hot forming such as hot rolling or hot forging. "Cold processing in cold" refers to forming processing to which cold compression is applied, such as cold drawing or cold forging. [0010] The present inventors have conducted various studies so that the strength variation in the non-heat-treated part is small even during warm forging, so that stable mechanical properties can be ensured. As a result, the following findings were obtained. (A) If cold forging is applied to a steel material obtained by hot working and then cold forging is performed, the strength after warm forging is greatly reduced as compared with the strength of the material as it is hot worked. I do. (B) In contrast to the above (a), if a steel material obtained by hot working under specific conditions is subjected to warm forging in a specific temperature range without performing cold compression working, The strength of the part that has been subjected to compression processing by hot forging is the same as the strength of the raw material as hot worked. (C) After cold-working a steel material obtained by hot working and then heating a specific part of the steel material to a temperature for performing the warm forging described in (a) above, The strength of a part near the heated part that is not directly heated but has increased in temperature (hereinafter referred to as the “part affected by heat”) is compared to the strength of the as-hot-processed material. To rise. (D) In response to the above (c), a specific part of the steel material obtained by hot working under specific conditions is subjected to warm forging without applying a cold compression working. When the material is heated to the temperature range, the strength at the portion affected by the heat is equal to the strength of the as-hot-processed material. The present invention has been completed based on the above findings. Hereinafter, each requirement of the present invention will be described in detail. In addition, “%” of the content of the chemical component means “% by mass”. (A) Chemical composition C of the material steel: 0.30 to 0.55% C is an element effective for increasing the strength of the non-heat treated warm forged part. However, if the content is less than 0.30%, the effect of addition is poor, and if it exceeds 0.55%, the toughness is reduced. Therefore, the content of C is set to 0.30 to 0.55%.
And Si: 0.02 to 2.0% Si is an element effective for deoxidizing steel and ensuring the strength of a non-refined warm forged part. However, if the content is less than 0.02%, it is difficult to obtain a sufficient deoxidizing effect, while if it exceeds 2.0%, the ferrite ground becomes brittle and the toughness is reduced. Therefore, the content of Si is set to 0.02 to 2.0%. Mn: 0.1 to 2.0% Mn has the effect of increasing the strength and toughness of a non-refined warm forged part. However, if the content is less than 0.1%, it is difficult to obtain the effect. On the other hand, if it exceeds 2.0%, the toughness is rather lowered. Therefore, the content of Mn is 0.1 to 2.0
%. It is important that the content of Mn be 1.8% or less in total with the content of Cr described below in order to ensure stable toughness of the non-heat treated warm forged part. Cr: 0.1-2.0% Cr has the effect of increasing the strength and toughness of a non-refined warm forged part. However, if the content is less than 0.1%, it is difficult to obtain the effect. On the other hand, if it exceeds 2.0%, the toughness is rather lowered. Therefore, the content of Cr is set to 0.1 to 2.0.
%. In order to ensure stable toughness of the non-refined warm forged part, it is important that the content of Cr be 1.8% or less in total with the content of Mn. Mn (%) + Cr (%): 1.8% or less Mn (%) + Cr which is the sum of the contents of Mn and Cr
When the value of (%) exceeds 1.8%, when the cooling rate after hot working is increased, a bainite phase is formed in the steel material, and the toughness of the non-heat treated warm forged part is reduced. Therefore,
The value of Mn (%) + Cr (%) was set to 1.8% or less in order to ensure stable toughness of the non-heat treated forged part. The lower limit of the value of Mn (%) + Cr (%) is M
0.2% when the contents of n and Cr are each 0.1%
It may be. Mo: 0.01-1.0%, V: 0.00
5 to 1.0% and Nb: at least one of Mo, V and Nb of 0.005 to 0.3%, each of which refines the structure of the raw material after hot working and makes the non-finished warm forged part Since it has the effect of increasing strength and toughness, one or more of these elements are added and contained. However, the contents of Mo, V and Nb are less than 0.01%, less than 0.005% and 0.005%, respectively.
%, The effect is difficult to obtain. On the other hand, when the contents of Mo, V, and Nb exceed 1.0%, 1.0%, and 0.3%, respectively, the toughness is rather lowered. Therefore, Mo, V
And Nb content of 0.01 to 1.0%, respectively.
005 to 1.0% and 0.005 to 0.3%, and one or more of these elements are contained. (B) Hot working of raw steel The steel having the chemical composition according to the above (A), which is a raw material of the non-refined warm forged part of the present invention, is 900 to 125
It is necessary to heat to 0 ° C. and perform hot working at a finishing temperature of 750 to 1100 ° C. If the heating temperature of the base steel is lower than 900 ° C., the deformation resistance during rolling increases, which causes a decrease in productivity. On the other hand, if the heating temperature exceeds 1250 ° C., the crystal grains become coarse. The finishing temperature of hot working is 750 ° C
If the temperature is less than 1, the deformation resistance at the time of rolling increases, causing a great decrease in productivity. If the temperature exceeds 1100 ° C., the crystal grains become coarse in the subsequent cooling process. Therefore, steel having the chemical composition described in (A) above is used in an amount of 900 to 125.
It was specified to heat to 0 ° C. and hot work at a finishing temperature of 750 to 1100 ° C. The heating temperature of the material steel is 10
00 to 1200 ° C, hot working finish temperature is 800 to 10
The temperature is preferably set to 00 ° C. (C) Warm forging of parts A steel having the chemical composition described in (A) is hot-worked under the conditions described in (B). Heat to 1000 ° C, 600-9
It is extremely important to forge and form at 00 ° C. That is, when cold forging is applied to a steel material obtained by hot working and then cold forging is performed, the strength after warm forging is greatly reduced as compared with the strength of the material as it is hot worked. In addition, the strength of the portion affected by the heat is increased as compared with the strength of the raw material that has been hot worked. For this reason, the strength variation within the non-heat-treated warm forged part becomes large, and stable mechanical properties cannot be secured. If the heating temperature for warm forging is lower than 600 ° C., the forging load may be too large to be formed into a desired shape, and the life of the mold may be shortened. On the other hand, if the heating temperature exceeds 1000 ° C., desired dimensional accuracy may not be ensured after forging. Even when the temperature for warm forging is lower than 600 ° C., the forging load may be too large to be formed into a desired shape.
The mold life is shortened. On the other hand, the temperature for warm forging is 9
When the temperature exceeds 00 ° C., the dimensional accuracy after forging is reduced. Therefore, in the present invention, a steel material obtained by hot working a steel having the chemical composition described in the section (A) under the conditions described in the section (B) can be obtained without subjecting the steel to cold compression working. It was stipulated to heat to 600 to 1000 ° C. and forge and form at 600 to 900 ° C. The heating temperature for warm forging is 800
To 950 ° C, and the temperature for warm forging is preferably 650 to 850 ° C. Hereinafter, the present invention will be described in detail with reference to examples. EXAMPLES Steels 1 to 13 having the chemical compositions shown in Table 1 were
It was melted in a 50 kg vacuum melting furnace. [Table 1] Next, these steel ingots were heated to 1100 ° C. and hot forged at a finishing temperature of 850 ° C. to have a diameter of 35 m.
m round bar. A test piece having a length of 40 mm is cut out from each round bar having a diameter of 35 mm, and the test piece is cut in a length direction including a center line, and a longitudinal Brinell hardness of a center line portion as hot forged ( HB hardness) was measured. Next, a bar having a diameter of 35 mm obtained by hot forging is peeled by a normal method, and then, steels 1 to 3 are used as material steels. Was subjected to a drawing process. Similarly, with respect to steel 4 used as a material steel, drawing was performed at room temperature at a surface reduction rate of 10.0%. Next, a 200 mm long test piece was cut out from each of the drawn round bars of steels 1-4 and each of the round bars of 30 mm diameter peeled after hot forging of steels 5-15. About 100m on one side
m is heated to 850 ° C., and the area reduction rate is 50
% Forging was performed. The test piece after the warm forging was cut in the longitudinal direction including the center line, and the longitudinal Brinell hardness (HB hardness) at the center line was measured. Table 2 shows the measurement results of the above HB hardness. In Table 2, the hardness of the “material portion” is the average value of the HB hardness measured at the five hot as-forged portions, and the hardness of the “warm forged portion” is the hot forging and compression processing. The average value of the HB hardness measured at the five points where the compression was performed, and the hardness of the “heat affected part” was the maximum value of the HB hardness measured at the five points where the compression was not applied. Show. ΔHB is the difference between the hardness of the “heat affected part” and the hardness of the “warm forged part”, and indicates the variation in HB hardness of the test piece after the warm forging. [Table 2] From Table 2, it can be seen that when hot forging was performed under the conditions specified in the present invention without applying cold compression working, both the hot forged portion and the heat-affected parts were not hot-worked. Since the value of ΔHB is small at the same HB hardness, it is clear that the strength variation in the non-heat treated part is small even when warm forging is performed, and therefore, stable mechanical properties can be secured. . On the other hand, when the temperature is out of the conditions specified in the present invention by adding cold compression working, the hardness of the warm forged portion is lower than that of the raw material as it is hot worked, on the other hand,
The hardness is increased in the part affected by the heat, and the value of ΔHB, that is, the hardness variation is large. According to the method of the present invention, the strength variation in the non-heat-treated part is small even during warm forging.
The non-refined warm forged part can be provided with stable mechanical properties.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新井 貴俊 福岡県北九州市小倉北区許斐町1番地 株 式会社住友金属小倉内 Fターム(参考) 4E087 AA10 BA02 CB02 4K032 AA05 AA06 AA11 AA12 AA16 AA19 AA22 AA31 AA32 AA36 BA02 CA01 CA02 CA03 CC03 CC04 CF02 CF03    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Takatoshi Arai             1 Konomi-cho, Kokurakita-ku, Kitakyushu-shi, Fukuoka             Sumitomo Metal Kokura F term (reference) 4E087 AA10 BA02 CB02                 4K032 AA05 AA06 AA11 AA12 AA16                       AA19 AA22 AA31 AA32 AA36                       BA02 CA01 CA02 CA03 CC03                       CC04 CF02 CF03

Claims (1)

【特許請求の範囲】 【請求項1】質量%で、C:0.30〜0.55%、S
i:0.02〜2.0%、Mn:0.1〜2.0%、C
r:0.1〜2.0%で、Mn(%)+Cr(%):
1.8%以下を含むとともに、Mo:0.01〜1.0
%、V:0.005〜1.0%及びNb:0.005〜
0.3%の1種以上を含有し、残部はFe及び不純物か
らなる鋼を、900〜1250℃に加熱して仕上げ温度
750〜1100℃で熱間加工して得た鋼材を素材と
し、冷間での圧縮加工を加えることなく、600〜10
00℃に加熱し、600〜900℃で鍛造して成形する
ことを特徴とする非調質温間鍛造部品の製造方法。
Claims: 1. mass%, C: 0.30 to 0.55%, S
i: 0.02 to 2.0%, Mn: 0.1 to 2.0%, C
r: 0.1 to 2.0%, Mn (%) + Cr (%):
1.8% or less, Mo: 0.01 to 1.0
%, V: 0.005 to 1.0% and Nb: 0.005 to
A steel material containing 0.3% or more, and the balance being Fe and impurities, is heated to 900 to 1250 ° C. and hot-worked at a finishing temperature of 750 to 1100 ° C. as a raw material. Between 600 and 10 without compression between
A method for producing a non-refined warm forged part, wherein the part is heated to 00C and forged at 600 to 900C.
JP2001237844A 2001-08-06 2001-08-06 Method for producing non-heat treated warm-forged parts Pending JP2003049221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001237844A JP2003049221A (en) 2001-08-06 2001-08-06 Method for producing non-heat treated warm-forged parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001237844A JP2003049221A (en) 2001-08-06 2001-08-06 Method for producing non-heat treated warm-forged parts

Publications (1)

Publication Number Publication Date
JP2003049221A true JP2003049221A (en) 2003-02-21

Family

ID=19068855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001237844A Pending JP2003049221A (en) 2001-08-06 2001-08-06 Method for producing non-heat treated warm-forged parts

Country Status (1)

Country Link
JP (1) JP2003049221A (en)

Similar Documents

Publication Publication Date Title
JP5976317B2 (en) Thermomechanical processing of iron alloys and related alloys and articles
EP2615186A1 (en) Titanium material
JP2001240940A (en) Bar wire rod for cold forging and its production method
JPH10273756A (en) Cold tool made of casting, and its production
EP2801635B1 (en) High carbon hot-rolled steel sheet with excellent hardenability and minimal in-plane anisotropy, and method for producing same
JP2007291444A (en) Hot work tool steel with high toughness, and its manufacturing method
JP2000256741A (en) Manufacture of hot rolled bar or wire
JP2001192731A (en) Method for producing high strength shaft parts
JP2000119806A (en) Steel wire rod excellent in cold workability, and its manufacture
JPH1017928A (en) Production of gear steel stock for induction hardening, excellent in machinability and fatigue strength
JP6536317B2 (en) α + β-type titanium alloy sheet and method of manufacturing the same
JP3721723B2 (en) Machine structural steel with excellent machinability, cold forgeability and hardenability
JPH09314276A (en) Manufacture of high strength stainless bolt
JP2003049221A (en) Method for producing non-heat treated warm-forged parts
JP4393344B2 (en) Manufacturing method of case hardening steel with excellent cold workability and grain coarsening resistance
JP5703934B2 (en) Cold forging induction hardening steel, cold forging induction hardening steel bar, automobile undercarriage parts and automobile hub
JP2002363645A (en) Method for producing martensitic precipitation hardening stainless steel
JP2002294337A (en) Method for producing b-containing high carbon steel having excellent cold workability as hot-worked
JPH07150244A (en) Production of ferritic stainless steel for cold working
JP2003321711A (en) Method of producing gear obtained by using steel for carburization having excellent grain size property as stock
JP3870631B2 (en) Method for short-time spheroidizing annealing of steel and steel by the same method
JP2003013139A (en) Method for manufacturing high-carbon seamless steel tube superior in secondary workability
JP2002294401A (en) Steel wire or bar superior in cold workability and strength stability after heat treatment, production method therefor and machine paris made of the same
JP2674644B2 (en) Manufacturing method for machine structural parts
JP3760589B2 (en) Steel for cold forging