JP2003049049A - Resin composition for fuel battery separator - Google Patents

Resin composition for fuel battery separator

Info

Publication number
JP2003049049A
JP2003049049A JP2001238575A JP2001238575A JP2003049049A JP 2003049049 A JP2003049049 A JP 2003049049A JP 2001238575 A JP2001238575 A JP 2001238575A JP 2001238575 A JP2001238575 A JP 2001238575A JP 2003049049 A JP2003049049 A JP 2003049049A
Authority
JP
Japan
Prior art keywords
resin
resin composition
phenol
mol
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001238575A
Other languages
Japanese (ja)
Other versions
JP3850242B2 (en
Inventor
Shunsuke Fujii
俊介 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001238575A priority Critical patent/JP3850242B2/en
Publication of JP2003049049A publication Critical patent/JP2003049049A/en
Application granted granted Critical
Publication of JP3850242B2 publication Critical patent/JP3850242B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a resin composition for a fuel battery separator having excellent resistance to electrical deterioration, and electroconductivity without damaging the moldability to improve a resin composition for the fuel battery separator in which the coexistence of the moldability and the high electroconductivity has been conventionally difficult. SOLUTION: This resin composition for the fuel battery separator consists essentially of (A) 4-24 pts.wt. resol-type phenol resin and (B) 96-76 pts.wt. carbonaceous base material having electroconductivity based on 100 pts.wt. total of the composition. The resol-type phenol resin has phenol nuclear-bound functional groups consisting of methylene group, methylol group and dimethylene ether group, and the proportions of the constituting functional groups are regulated so as to be 20-50 mol%, 10-20 mol% and 40-60 mol%, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池セパレー
ター用の樹脂組成物に関するものである。
TECHNICAL FIELD The present invention relates to a resin composition for a fuel cell separator.

【0002】[0002]

【従来の技術】従来、燃料電池セパレーターは熱硬化性
樹脂と炭素質粉末の混合物を成形した後、成形体を焼成
し導電性を高める黒鉛化工程や、切削や研磨などにより
必要形状を付与する機械加工工程を含む方法(例えば、
特開2000−169230号公報)、或いは金属板に
溝などの形状加工をした上で樹脂コートを行うなどの金
属樹脂コンポジットを素材とする方法(例えば、特開平
11−345618号公報、新エネルギー産業技術総合
開発機構 平成12年度固体高分子型燃料電池研究開発
成果報告会要旨集P70)などにより、作成が試みられ
て来た。ところが黒鉛化工程や機械加工工程を必要とす
る手法では、大量生産への展開が困難な為にコストが下
げられず、一方、溝加工した金属板樹脂コンポジットを
素材とする手法では、使用される環境において金属と樹
脂との界面層で層剥離及び金属板の腐食問題が解決せ
ず、品質と価格で適切なセパレーターを供給する目処が
立っていない。このため、さらに種々の試みがなされて
おり、黒鉛やカーボンブラック等の炭素基材を、バイン
ダー成分としての一般的なフェノール樹脂やエポキシ樹
脂、ポリエステル樹脂などの熱硬化性樹脂、或いはポリ
プロピレンなどの熱可塑性樹脂等とともに高配合した成
形材料での試みがなされている。
2. Description of the Related Art Conventionally, a fuel cell separator is formed by molding a mixture of a thermosetting resin and carbonaceous powder, and then firing the molded body to give a required shape by a graphitization process for enhancing conductivity, cutting or polishing. A method that includes a machining step (eg,
Japanese Patent Laid-Open No. 2000-169230), or a method of using a metal resin composite as a material such as forming a groove on a metal plate and then performing resin coating (for example, Japanese Patent Laid-Open No. 11-345618, New Energy Industry). It has been attempted to be created by the Japan Society for Technology Development, 2000 summary report of research and development results of polymer electrolyte fuel cells, P70). However, the method that requires the graphitization process and the machining process cannot reduce the cost because it is difficult to develop to mass production, while the method that uses the grooved metal plate resin composite as the material is used. In the environment, the problem of delamination at the interface layer between metal and resin and the corrosion problem of the metal plate cannot be solved, and there is no prospect of supplying an appropriate separator in terms of quality and price. For this reason, various attempts have been made further, and a carbon base material such as graphite or carbon black is used as a binder component with a thermosetting resin such as a general phenol resin, an epoxy resin, or a polyester resin, or a thermosetting resin such as polypropylene. Attempts have been made with molding materials that are highly compounded with plastic resins and the like.

【0003】この手法では、セパレーターとして高導電
性を得る為に、成形材料中の黒鉛配合率を高くする事
と、成形性を向上させる為に樹脂配合率を高くする事が
相反する要因である為、樹脂の選択と設計が重要なポイ
ントである。なかでも、フェノール樹脂やエポキシ樹脂
などの熱硬化性樹脂は耐熱性、機械的強度、電気的安定
性等種々の点において優れているとともに、ベース樹脂
を低分子量から選択することができる為種々の検討がな
されてきた(特開平11−204120号公報)。
In this method, increasing the graphite compounding ratio in the molding material in order to obtain high conductivity as the separator and increasing the resin compounding ratio in order to improve the moldability are contradictory factors. Therefore, resin selection and design are important points. Among them, thermosetting resins such as phenol resin and epoxy resin are excellent in various points such as heat resistance, mechanical strength, and electrical stability, and the base resin can be selected from low molecular weight, so It has been studied (Japanese Patent Laid-Open No. 11-204120).

【0004】フェノール樹脂を用いる場合、ヘキサメチ
レンテトラミン硬化のノボラック型フェノール樹脂で
は、硬化に伴う残留アンモニアが燃料電池の触媒である
白金系プロトン交換触媒の触媒毒となるので使用が困難
であり、自ずからレゾール型フェノール樹脂を使用する
ことになるが、一般にレゾール型のフェノール樹脂で
は、メチロール基を残して低分子量のまま保持すること
から、活性化エネルギーが低く樹脂としての反応性が高
いため成形性の幅が小さい。このため一般的なレゾール
樹脂では、燃料電池セパレータのような複雑な形状を精
密に成形できるような材料の開発、調整が困難である。
又、エポキシ樹脂を用いる場合では、必須成分である硬
化剤の未反応物や硬化促進剤の残留による触媒毒や電気
的劣化の問題がある為に、このような事態を起こさない
ような硬化剤、硬化促進剤系の検討が行われているが、
未だ有効な方法の提案が成されていない。
When a phenol resin is used, it is difficult to use hexamethylenetetramine-cured novolac-type phenol resin because residual ammonia accompanying the curing becomes a catalyst poison of the platinum-based proton exchange catalyst which is the catalyst of the fuel cell. Resole type phenolic resin will be used.However, in general, in resole type phenolic resin, since the methylol group is retained and the low molecular weight is retained, the activation energy is low and the reactivity as a resin is high, so that the moldability of the resin is high. The width is small. For this reason, it is difficult to develop and adjust a material capable of accurately forming a complicated shape such as a fuel cell separator with a general resol resin.
Further, when an epoxy resin is used, there is a problem of catalyst poison or electrical deterioration due to residual unreacted curing agent or curing accelerator which is an essential component. , A curing accelerator system is being studied,
No effective method has been proposed yet.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記のよう
な成形性と高導電性との両立が困難であった燃料電池セ
パレーター用の樹脂組成物に対しなされたものであっ
て、その目的とするところは成形性を損なう事なく、耐
電気的劣化と導電性が優れた燃料電池セパレーター用の
樹脂組成物を提供する事にある。
SUMMARY OF THE INVENTION The present invention has been made for a resin composition for a fuel cell separator in which it is difficult to achieve both the moldability and high conductivity as described above, and its object is The purpose is to provide a resin composition for a fuel cell separator, which is excellent in electrical deterioration resistance and conductivity without impairing moldability.

【0006】[0006]

【課題を解決するための手段】本発明は、(1)組成物
全体100重量部に対して、フェノール核結合官能基が
メチレン基、メチロール基、及びジメチレンエーテル基
より構成され、各官能基の比率がそれぞれ、20〜50
モル%、10〜20モル%、及び40〜60モル%であ
るレゾール型フェノール樹脂(A)4〜24重量部と、
導電性を有する炭素系基材(B)96〜76重量部を必
須成分として含有することを特徴とする燃料電池セパレ
ーター用樹脂組成物、(2)レゾール型フェノール樹脂
(A)が、遊離フェノール量が7重量%以下である第
(1)項記載の燃料電池セパレーター用樹脂組成物、
(3)レゾール型フェノール樹脂(A)が、遊離フェノ
ール除外数平均分子量が800〜1200である第
(1)項または第(2)項に記載の燃料電池セパレータ
ー用樹脂組成物、である。
According to the present invention, (1) a phenol nucleus-bonding functional group is composed of a methylene group, a methylol group, and a dimethylene ether group, based on 100 parts by weight of the whole composition. The ratio of 20 to 50
4 to 24 parts by weight of a resole type phenolic resin (A), which is mol%, 10 to 20 mol%, and 40 to 60 mol%;
A resin composition for a fuel cell separator, which contains 96 to 76 parts by weight of a conductive carbon-based base material (B) as an essential component, and (2) a resole-type phenol resin (A) is a free phenol amount. Is 7% by weight or less, the resin composition for a fuel cell separator according to the item (1),
(3) The resin composition for a fuel cell separator according to item (1) or (2), wherein the resol type phenol resin (A) has a number-average molecular weight excluding free phenol of 800 to 1200.

【0007】[0007]

【発明の実施の形態】本発明に用いられるレゾール型フ
ェノール樹脂(A)(以下、「レゾール型フェノール樹
脂」を「レゾール樹脂」と記載)は、フェノール核結合
官能基がメチレン基、メチロール基、及びジメチレンエ
ーテル基より構成され、各官能基の比率がそれぞれ、2
0〜50モル%、10〜20モル%、及び40〜60モ
ル%であることを特徴とする。更に遊離フェノール量が
7重量%以下である事が好ましく、遊離フェノール除外
数平均分子量(以下、Mnと略す)が800〜1200
である事が好ましい。かかるレゾール樹脂は、常温で固
形であって加熱により縮合で硬化することができる。メ
チロール基が主たる官能基である一般的なレゾール樹脂
による硬化物は架橋密度が高く、一般には脆くなりがち
であるが、本発明に使用するレゾール樹脂による硬化物
は架橋点間にジメチレンエーテル結合が多く存在するこ
とにより、柔軟であり、複雑で狭隘な燃料電池セパレー
ターの流路構造を精度良く成形することができる。な
お、レゾール樹脂におけるフェノール核結合官能基の分
析はNMRやICPMSにより行う事ができる。
BEST MODE FOR CARRYING OUT THE INVENTION The resol type phenol resin (A) used in the present invention (hereinafter, "resol type phenol resin" is referred to as "resole resin") has a phenol nucleus-bonding functional group of methylene group, methylol group, And a dimethylene ether group, and the ratio of each functional group is 2
It is characterized in that it is 0 to 50 mol%, 10 to 20 mol%, and 40 to 60 mol%. Further, the amount of free phenol is preferably 7% by weight or less, and the number average molecular weight excluding free phenol (hereinafter, abbreviated as Mn) is 800 to 1200.
Is preferred. Such a resole resin is solid at room temperature and can be cured by condensation by heating. A cured product of a general resol resin having a methylol group as a main functional group has a high crosslink density and generally tends to be brittle, but a cured product of the resol resin used in the present invention has a dimethylene ether bond between crosslinking points. The presence of a large number of particles makes it possible to accurately form a flexible, complex, and narrow flow channel structure of the fuel cell separator. The phenol nucleus-bonding functional group in the resol resin can be analyzed by NMR or ICPMS.

【0008】レゾール樹脂中に含有される遊離フェノー
ルは、レゾール樹脂が硬化する際に、一旦該フェノール
にメチロール基が付加して縮合化する際の架橋剤として
作用し、成形品の強度を改善する効果があるが、含有量
が7重量%を上回ると硬化時にガス化して揮発経路を構
成するようになり、燃料電池セパレーターのガス透過性
を上昇させる要因となることがある。また、Mnが80
0を下回ると成形時に硬化収縮によりヒケを生じやすく
なることがあり、Mnが1200を超えると流動性が低
下する傾向がみられ、いずれの場合も成形性や溝の加工
精度に影響することがある。
The free phenol contained in the resole resin acts as a cross-linking agent when a methylol group is once added to the phenol to condense when the resole resin cures and improves the strength of the molded product. Although effective, if the content exceeds 7% by weight, it will be gasified during curing to form a volatilization path, which may be a factor to increase the gas permeability of the fuel cell separator. Also, Mn is 80
When it is less than 0, sink marks are likely to be generated due to curing shrinkage at the time of molding, and when Mn exceeds 1200, fluidity tends to decrease, and in any case, it may affect the moldability and groove processing accuracy. is there.

【0009】このようなレゾール樹脂としては、該樹脂
をメチルエチルケトンや酢酸エチル等の有機溶剤に溶解
した所謂液状レジンと呼ばれるワニス状態のものもある
が、本発明において用いる場合は工程で溶剤を除去する
必要がないように、固形の樹脂を用いることが好まし
い。一般的にはこのようなジメチレンエーテル結合を多
く持つレゾール樹脂は、フェノールに対するホルムアル
デヒドの比率(反応モル比)を1以上にし、弱酸触媒に
より付加反応が行われ、脱水工程を低温化することで反
応性官能基であるメチロール基を温存しつつ固形化する
ことにより得られる。
As such a resole resin, there is also a so-called liquid resin in the form of a varnish in which the resin is dissolved in an organic solvent such as methyl ethyl ketone or ethyl acetate. When used in the present invention, the solvent is removed in a step. It is preferable to use a solid resin so that it is not necessary. Generally, such a resole resin having many dimethylene ether bonds has a ratio of formaldehyde to phenol (reaction molar ratio) of 1 or more, an addition reaction is performed by a weak acid catalyst, and the dehydration step is performed at a low temperature. It is obtained by solidifying while protecting the methylol group which is a reactive functional group.

【0010】本発明で用いる導電性を有する炭素系基材
(B)とは、黒鉛、炭素繊維、カーボンブラックなどの
炭素材をいう。炭素材のうち導電性の優れているものは
グラファイト構造が成長したものであり、天然や人造の
黒鉛がこれに該当する。天然に算出する鉱物としての黒
鉛には天然黒鉛と称される鱗片状の黒鉛と土壌黒鉛があ
るが、このうち天然黒鉛が導電性に優れている。人造黒
鉛については、石炭系コークスを熱処理したものと石油
系コークスを熱処理したものがあり、形状的には鱗状、
針状、塊状、球状、凝集体などがあるが、いずれのもの
も、X線解析による格子定数精密法で求めるc軸(00
2)層面間距離(d002)が0.335〜0.460n
mの範囲にあって、真比重が2.04〜2.34の範囲
にあればよい。
The electrically conductive carbon-based substrate (B) used in the present invention means a carbon material such as graphite, carbon fiber or carbon black. Among the carbon materials, those having excellent conductivity have grown graphite structures, and natural or artificial graphite corresponds to this. There are scaly graphite called natural graphite and soil graphite, which are naturally calculated minerals. Among them, natural graphite is excellent in conductivity. Regarding artificial graphite, there are one that heat-treats coal-based coke and one that heat-treats petroleum-based coke, and the shape is scaly,
There are needles, lumps, spheres, aggregates, etc., all of which are c-axis (00
2) Distance between layers (d 002 ) is 0.335 to 0.460n
It is sufficient that the true specific gravity is in the range of 2.04 to 2.34 in the range of m.

【0011】その他の導電性を有する炭素系基材である
炭素繊維やカーボンブラックについては、非晶質カーボ
ンを含んでいてもよい。炭素繊維やカーボンブラック
は、樹脂相内に分散して導電助剤として働くと共に、炭
素繊維の場合はその形状による効果として、曲げや強靭
性などの機械的特性を改善する効果があり、必要に応じ
て配合される。
Amorphous carbon may be contained in the carbon fiber and carbon black which are other carbonaceous base materials having conductivity. Carbon fibers and carbon black disperse in the resin phase and act as a conduction aid, and in the case of carbon fibers, the shape has the effect of improving mechanical properties such as bending and toughness. Blended accordingly.

【0012】次に、レゾール樹脂(A)と炭素系基材
(B)の配合量について説明する。本発明においては、
組成物全体100重量部に対して、レゾール樹脂(A)
を4〜24重量部配合し、導電性を有する炭素系基材
(B)を96〜76重量部配合することを特徴とする。
かかる配合量とすることによって、成形性と成形品の導
電性や機械的強度を確保することができる。レゾール樹
脂(A)の配合量が4重量部を下回るか、炭素系基材
(B)の配合量が96重量部を超えると、成形時に十分
な流動性が確保できず、精密な形状を成形するのが困難
となる。これは樹脂が黒鉛粒子間を十分に充填するのに
必要な体積を持っていないからと考えられ、この結果成
形体の強度の確保も難しくなる。一方、レゾール樹脂
(A)の配合量が24重量部を越えるか、炭素系基材
(B)の配合量が76重量部を下回ると、導電性が低下
し、実用に即したセパレーターを得る事が難しくなる。
これは樹脂体積が増える事で黒鉛粒子同士の凝集が起こ
るようになり、結果として不導体相部分を生じて導電性
を低下させるものと考えられる。このような樹脂相が多
い系においては、前記の炭素繊維やカーボンブラックの
併用もその効果が小さくなる。
Next, the compounding amounts of the resol resin (A) and the carbon-based base material (B) will be described. In the present invention,
Resol resin (A) based on 100 parts by weight of the entire composition
Is added in an amount of 4 to 24 parts by weight, and the carbon-based base material (B) having conductivity is added in an amount of 96 to 76 parts by weight.
With such a blending amount, the moldability and the electrical conductivity and mechanical strength of the molded product can be secured. If the compounding amount of the resole resin (A) is less than 4 parts by weight or the compounding amount of the carbon-based base material (B) exceeds 96 parts by weight, sufficient fluidity cannot be secured at the time of molding and a precise shape is formed. Difficult to do. It is considered that this is because the resin does not have the volume necessary to sufficiently fill the spaces between the graphite particles, and as a result, it becomes difficult to secure the strength of the molded body. On the other hand, when the compounding amount of the resole resin (A) exceeds 24 parts by weight or the compounding amount of the carbon-based base material (B) is less than 76 parts by weight, the conductivity is lowered, and a separator suitable for practical use is obtained. Becomes difficult.
It is considered that this is because the increase in the resin volume causes the graphite particles to agglomerate with each other, resulting in the formation of a non-conductive phase portion and a decrease in conductivity. In such a system containing a large amount of resin phase, the combined use of the above-mentioned carbon fiber and carbon black also has a small effect.

【0013】本発明では、前記のようなレゾール樹脂
(A)と炭素系基材(B)以外に、成形材料として一般
に用いられる可塑剤や離型剤を用いることができる。こ
の場合可塑剤としてはフェノール性水酸基との反応性官
能基を持った分子量500〜2000までの直鎖状化合
物や、揮発性溶剤としてメタノールやアセトンなどの低
沸点の有機溶剤を用いる。又離型剤としては、一般に用
いられる多価の有機酸や金属塩あるいはアマイド系化合
物などが用いられる。
In the present invention, in addition to the resol resin (A) and the carbon-based base material (B) as described above, a plasticizer or a release agent generally used as a molding material can be used. In this case, as the plasticizer, a linear compound having a functional group reactive with a phenolic hydroxyl group and having a molecular weight of 500 to 2000, or a low boiling point organic solvent such as methanol or acetone is used as a volatile solvent. As the release agent, generally used polyvalent organic acids, metal salts or amide compounds are used.

【0014】以上のような原材料の配合物は、混合や混
練の手法で成形材料化し、コンプレッション成形や射出
成形により燃料電池セパレーターに成形される。コンプ
レッションの場合は成形物に合わせた形で予備成形を行
い、成形性を補助する事もできる。
The raw material mixture as described above is formed into a molding material by a method of mixing or kneading, and is molded into a fuel cell separator by compression molding or injection molding. In the case of compression, preforming may be performed in a shape suitable for the molded product to assist the moldability.

【0015】本発明に用いるフェノール樹脂はレゾール
樹脂(A)を必須成分として使用するが、本発明の目的
及び効果を損なわない範囲において、ノボラック型フェ
ノール樹脂やその他のレゾール型フェノール樹脂を併用
してもよく、これらの場合も本発明に含まれる。
The phenol resin used in the present invention uses the resole resin (A) as an essential component. However, as long as the object and effects of the present invention are not impaired, a novolac type phenol resin and other resole type phenol resins are used in combination. However, these cases are also included in the present invention.

【0016】[0016]

【実施例】以下、実施例により本発明を説明する。EXAMPLES The present invention will be described below with reference to examples.

【0017】[フェノール樹脂の合成] 1.フェノール樹脂 2リットルフラスコにホルムアルデヒド(F)とフェノ
ール(P)をF/P=1.7で投入し、ナフテン酸亜鉛
と蓚酸を用いてPHを5.5に調節し、120rpmで
攪拌しながら4時間反応させた。次に常圧のまま120
℃まで脱水昇温したあと、減圧下で脱水しながら160
℃まで昇温した後、フラスコから取り出してフェノール
樹脂を得た。 2.フェノール樹脂 反応時にPHを6.5に調整した。他はフェノール樹脂
と同様にして、フェノール樹脂を得た。 3.フェノール樹脂 反応時にPHを8.5に調整した。他はフェノール樹脂
と同様にして、フェノール樹脂を得た。 4.フェノール樹脂 反応時にPHを7.5に調整し、反応時間を2時間とし
た。他はフェノール樹脂と同様にして、フェノール樹
脂を得た。 5.フェノール樹脂 住友ベークライト株式会社製・PR−51470(ノボ
ラック型フェノール樹脂)を使用した。
[Synthesis of Phenolic Resin] 1. Phenol resin Formaldehyde (F) and phenol (P) were put into a 2 liter flask at F / P = 1.7, and PH was adjusted to 5.5 using zinc naphthenate and oxalic acid, and stirred at 120 rpm to 4 Reacted for hours. Next, at atmospheric pressure 120
After dehydration temperature rise to ℃, 160 while dehydration under reduced pressure
After the temperature was raised to 0 ° C., it was taken out from the flask to obtain a phenol resin. 2. The pH was adjusted to 6.5 during the phenol resin reaction. A phenol resin was obtained in the same manner as the phenol resin except for the above. 3. The pH was adjusted to 8.5 during the phenol resin reaction. A phenol resin was obtained in the same manner as the phenol resin except for the above. 4. The pH was adjusted to 7.5 during the phenol resin reaction, and the reaction time was 2 hours. A phenol resin was obtained in the same manner as the phenol resin except for the above. 5. Phenol resin PR-51470 (Novolak type phenol resin) manufactured by Sumitomo Bakelite Co., Ltd. was used.

【0018】前記合成したフェノール樹脂〜につい
て、NMRによってフェノール核結合官能基の比率を求
め、ガスクロマトグラフィーにより遊離フェノール量,
GPCにより数平均分子量を求めた。得られたフェノー
ル樹脂の特性を表1に示す。なお、フェノール樹脂
は、通常のノボラック型フェノール樹脂である。
With respect to the above-synthesized phenol resins, the ratio of phenol nucleus-bonded functional groups was determined by NMR, and the amount of free phenol was determined by gas chromatography.
The number average molecular weight was determined by GPC. The characteristics of the obtained phenol resin are shown in Table 1. The phenol resin is a normal novolac type phenol resin.

【0019】[0019]

【表1】 [Table 1]

【0020】[成形材料の作成] (1)実施例1〜3 表2に示したように、フェノール樹脂としてフェノール
樹脂、、及びと、離型剤としてカルナバワック
スを用い、これに人造黒鉛及びカーボンブラックを加え
ヘンシェルミキサーで混合して原料混合物を得た。これ
らの原料混合物を80℃の加熱ニーダーで10分間溶融
混練した後取り出し、顆粒状に粉砕して成形材料を得
た。 (2)比較例1〜3 実施例と同様に、フェノール樹脂、、及びと、
離型剤としてカルナバワックスを用い、これに人造黒鉛
及びカーボンブラックを加えヘンシェルミキサーで混合
して原料混合物を得た。これらの原料混合物を80℃の
加熱ニーダーで10分間溶融混練した後取り出し、顆粒
状に粉砕して成形材料を得た。
[Preparation of molding material] (1) Examples 1 to 3 As shown in Table 2, a phenol resin was used as a phenol resin, and carnauba wax was used as a release agent. Black was added and mixed with a Henschel mixer to obtain a raw material mixture. These raw material mixtures were melt-kneaded with a heating kneader at 80 ° C. for 10 minutes and then taken out and pulverized into granules to obtain a molding material. (2) Comparative Examples 1 to 3, phenolic resin, and
Carnauba wax was used as a release agent, and artificial graphite and carbon black were added thereto and mixed with a Henschel mixer to obtain a raw material mixture. These raw material mixtures were melt-kneaded with a heating kneader at 80 ° C. for 10 minutes and then taken out and pulverized into granules to obtain a molding material.

【0021】[導電性の評価]前記成形材料を金型温度
170℃、成形圧力200kg/cm2、成形時間3分
で圧縮成形して80×80×15mmの試料3、及び8
0×80×5mmの試料4を得た。これらの試料を用い
て、図1に示す方法で貫通方向の抵抗を測定し、導電性
の評価を行った。即ち、厚さの異なる2枚の試料3,4
を組み合わせて、カーボンペーパー2を介して電極1に
セットし、成形体の厚みが異なった状態での抵抗値よ
り、貫通方向の固有抵抗を求めた。比較データとしてJ
IS K 7194により体積固有抵抗率も測定した。
[Evaluation of Conductivity] The molding material was compression molded at a mold temperature of 170 ° C., a molding pressure of 200 kg / cm 2 , and a molding time of 3 minutes to obtain 80 × 80 × 15 mm samples 3 and 8.
A sample 4 of 0 × 80 × 5 mm was obtained. Using these samples, the resistance in the penetrating direction was measured by the method shown in FIG. 1 to evaluate the conductivity. That is, two samples 3 and 4 having different thicknesses
The combination was set on the electrode 1 via the carbon paper 2, and the specific resistance in the penetrating direction was determined from the resistance values when the molded bodies had different thicknesses. J as comparison data
Volume resistivity was also measured according to IS K 7194.

【0022】[セパレーター用素材としての諸特性評
価]前記成形材料を金型温度170℃、成形圧力200
kg/cm2、成形時間3分で圧縮成形して300×3
00×2mmの大きさの成形品を得た。これよりテスト
ピースを切り出して作成し評価を行った。 (1)曲げ強さ、曲げ弾性率は、JIS K 7203に
より測定した。 (2)ガス透過性は、窒素ガスを用いてJIS K71
26A法により測定した。
[Evaluation of various characteristics as a material for a separator] The molding material was molded at a mold temperature of 170 ° C. and a molding pressure of 200.
300 × 3 by compression molding at kg / cm 2 and molding time 3 minutes
A molded product having a size of 00 × 2 mm was obtained. From this, a test piece was cut out, created, and evaluated. (1) Flexural strength and flexural modulus were measured according to JIS K7203. (2) Gas permeability is measured according to JIS K71 using nitrogen gas.
It was measured by the 26A method.

【0023】[成形性の評価] (1)モノホール流動性は、JIS K 6911により
測定した。 (2)溝深さ精度の測定 実施例と比較例の成形材料について、燃料電池セパレー
ター相当に幅1.0mm、深さ0.5mm、長さ160
mmの溝を2.0mmピッチで49本流路加工した成形
品を用いた。成形品は、成形機として上滝社製800ト
ンプレスを用い、金型温度175℃、成形圧力800k
gf/cm2、成形時間2分で圧縮成形により成形し
た。成形品の測定対象溝は、4本目〜(この間7本ピッ
チ)〜46本目(計7本)とし、各々について、長さ方
向の中央部と両端部から10mm内側の部分の計3ヶ所
を測定ポイントとして、7×3=21箇所を測定した。
測定方法は、溝の幅方向中央部と隣接する平坦部の同中
央部との差を溝の深さとし、溝深さ精度は下記の式によ
り求めた。測定機器は、OLYMPUS STM6−L
M 測長顕微鏡を用いた。 溝深さ精度=(Σi=1 i=21 (di−dav)2 )0.5 dav:21箇所の溝深さの平均値 di:i番めでの溝深さ
[Evaluation of Formability] (1) The monohole fluidity was measured according to JIS K6911. (2) Measurement of groove depth accuracy With respect to the molding materials of Examples and Comparative Examples, the width was 1.0 mm, the depth was 0.5 mm, and the length was 160, which corresponds to the fuel cell separator.
A molded product obtained by processing 49 channels of 2.0 mm pitch with 2.0 mm pitch was used. The molded product is a 800 ton press manufactured by Uetaki Co., Ltd. as a molding machine, the mold temperature is 175 ° C., the molding pressure is 800 k
It was molded by compression molding at gf / cm 2 and molding time of 2 minutes. The measurement target groove of the molded product is the 4th to 7th pitch (7 pitches in this period) to 46th groove (7 in total). For each groove, measure 3 points in the center in the length direction and 10mm inside from both ends. As points, 7 × 3 = 21 points were measured.
In the measuring method, the difference between the central portion in the width direction of the groove and the central portion of the adjacent flat portion was defined as the groove depth, and the groove depth accuracy was determined by the following formula. The measuring equipment is OLYMPUS STM6-L
M measuring microscope was used. Accuracy of groove depth = (Σ i = 1 i = 21 (di−dav) 2 ) 0.5 dav: average value of groove depth at 21 points di: groove depth at i-th position

【0024】[0024]

【表2】 [表の注] (1)カルナバワックス:東亜化成製 (2)人造黒鉛:日本黒鉛社製、PAG−120 (3)カーボンブラック:三菱化学製、ケッチンブラッ
クEC
[Table 2] [Note of table] (1) Carnauba wax: Toa Kasei (2) Artificial graphite: Nippon Graphite Co., Ltd., PAG-120 (3) Carbon black: Mitsubishi Chemical, Ketchin black EC

【0025】表1,2から、実施例1〜3ではいずれ
も、ジメチレンエーテル結合を多く含むレゾール樹脂と
黒鉛を適当な割合で配合した成形材料を用いているの
で、成形品の電気的特性、機械的特性、ガス透過性、溝
深さ精度などいずれも良好なものとなった。一方、比較
例1ではジメチレンエーテル結合が存在しない樹脂を用
いたところ、溝深さ精度が低下した。また、比較例2で
はジメチレンエーテル結合基の割合が低く、分子量が若
干小さく遊離フェノール量が多いものを使用したため、
溝深さ精度が低下し、ガス透過率もやや増加した。そし
て、比較例3では比較例2で用いた樹脂の一部をノボ
ラック型フェノール樹脂で置き換えたが、比較例2と
同様の傾向となった。なお、比較例1〜3ではいずれ
も、電気的特性や曲げ強さが若干低下した。
From Tables 1 and 2, since all of Examples 1 to 3 use the molding material in which the resole resin containing a large amount of dimethylene ether bond and graphite are blended at an appropriate ratio, the electrical characteristics of the molded product are obtained. The mechanical properties, gas permeability, and groove depth accuracy were all good. On the other hand, in Comparative Example 1, when a resin having no dimethylene ether bond was used, the groove depth accuracy was lowered. Further, in Comparative Example 2, since the proportion of dimethylene ether bond group was low, and the molecular weight was slightly small and the amount of free phenol was large,
The groove depth accuracy decreased and the gas permeability also increased slightly. Then, in Comparative Example 3, a part of the resin used in Comparative Example 2 was replaced with a novolac type phenol resin, but the same tendency as in Comparative Example 2 was obtained. In each of Comparative Examples 1 to 3, the electrical characteristics and bending strength were slightly reduced.

【0026】[0026]

【発明の効果】本発明は、ジメチレンエーテル結合を多
く有するレゾール樹脂4〜24重量部と導電性を有する
炭素系基材96〜76重量部とを必須成分とする事を特
徴とする燃料電池セパレーター用樹脂組成物であり、本
発明の組成物の成形品は、導電性と成形性に優れるの
で、燃料電池セパレーター用として好適に使用できる。
The present invention is characterized in that 4 to 24 parts by weight of a resole resin having many dimethylene ether bonds and 96 to 76 parts by weight of a carbonaceous base material having conductivity are essential components. Since it is a resin composition for a separator, and a molded article of the composition of the present invention has excellent conductivity and moldability, it can be suitably used for a fuel cell separator.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例の貫通方向抵抗率の測定法を
示す概略図
FIG. 1 is a schematic diagram showing a method for measuring a through-direction resistivity in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 電極 2 カーボンペーパー 3 本発明の樹脂組成物の成形物(厚さ15mm) 4 本発明の樹脂組成物の成形物(厚さ5mm) 5 定電流装置 6 電圧計 1 electrode 2 carbon paper 3 Molded product of resin composition of the present invention (thickness: 15 mm) 4 Molded product of resin composition of the present invention (thickness: 5 mm) 5 constant current device 6 Voltmeter

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 組成物全体100重量部に対して、フェ
ノール核結合官能基がメチレン基、メチロール基、及び
ジメチレンエーテル基より構成され、各官能基の比率が
それぞれ、20〜50モル%、10〜20モル%、及び
40〜60モル%であるレゾール型フェノール樹脂
(A)4〜24重量部と、導電性を有する炭素系基材
(B)96〜76重量部を必須成分として含有すること
を特徴とする燃料電池セパレーター用樹脂組成物。
1. A phenol nucleus-bonding functional group is composed of a methylene group, a methylol group, and a dimethylene ether group, and the ratio of each functional group is 20 to 50 mol%, based on 100 parts by weight of the entire composition. 10 to 20 mol% and 40 to 60 mol% of the resole type phenolic resin (A) 4 to 24 parts by weight and a conductive carbon-based base material (B) 96 to 76 parts by weight are contained as essential components. A resin composition for a fuel cell separator, comprising:
【請求項2】 レゾール型フェノール樹脂(A)が、遊
離フェノール量が7重量%以下である請求項1記載の燃
料電池セパレーター用樹脂組成物。
2. The resin composition for a fuel cell separator according to claim 1, wherein the resol type phenol resin (A) has an amount of free phenol of 7% by weight or less.
【請求項3】 レゾール型フェノール樹脂(A)が、遊
離フェノール除外数平均分子量が800〜1200であ
る請求項1または2記載の燃料電池セパレーター用樹脂
組成物。
3. The resin composition for a fuel cell separator according to claim 1, wherein the resol type phenolic resin (A) has a number average molecular weight excluding free phenol of 800 to 1200.
JP2001238575A 2001-08-07 2001-08-07 Resin composition for fuel cell separator Expired - Fee Related JP3850242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001238575A JP3850242B2 (en) 2001-08-07 2001-08-07 Resin composition for fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001238575A JP3850242B2 (en) 2001-08-07 2001-08-07 Resin composition for fuel cell separator

Publications (2)

Publication Number Publication Date
JP2003049049A true JP2003049049A (en) 2003-02-21
JP3850242B2 JP3850242B2 (en) 2006-11-29

Family

ID=19069460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001238575A Expired - Fee Related JP3850242B2 (en) 2001-08-07 2001-08-07 Resin composition for fuel cell separator

Country Status (1)

Country Link
JP (1) JP3850242B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311057A (en) * 2003-04-02 2004-11-04 Dainippon Printing Co Ltd Paste composition for forming catalyst layer, and transfer sheet for manufacturing catalyst layer-electrolyte film laminate
JP2008258175A (en) * 2008-06-18 2008-10-23 Dainippon Printing Co Ltd Paste composition for catalyst layer formation and transfer sheet for manufacturing catalyst layer/electrolyte film laminate
JP2017039813A (en) * 2015-08-18 2017-02-23 Dic株式会社 Resol type phenol resin, resol type phenol resin composition, cured article thereof and manufacturing method of resol type phenol resin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311057A (en) * 2003-04-02 2004-11-04 Dainippon Printing Co Ltd Paste composition for forming catalyst layer, and transfer sheet for manufacturing catalyst layer-electrolyte film laminate
JP2008258175A (en) * 2008-06-18 2008-10-23 Dainippon Printing Co Ltd Paste composition for catalyst layer formation and transfer sheet for manufacturing catalyst layer/electrolyte film laminate
JP2017039813A (en) * 2015-08-18 2017-02-23 Dic株式会社 Resol type phenol resin, resol type phenol resin composition, cured article thereof and manufacturing method of resol type phenol resin

Also Published As

Publication number Publication date
JP3850242B2 (en) 2006-11-29

Similar Documents

Publication Publication Date Title
JP3020974B2 (en) Epoxy resin composition and semiconductor encapsulant using the same
AU757196B2 (en) Conductive thermoset molding composition and method for producing same
JP2013091783A (en) Electroconductive resin composition, and electroconductive coating and electroconductive adhesive using the same
JP4253166B2 (en) Fuel cell separator
US20090186254A1 (en) Conductive polymer
JP2012149161A (en) Electroconductive resin composition, and conductive coating and conductive adhesive using the same
JP3850242B2 (en) Resin composition for fuel cell separator
CA2768958C (en) Fuel cell separator
JP2002083609A (en) Composition for fuel cell separator, and its manufacturing method
EP1298748A2 (en) Bipolar plate for fuel cell, method for manufacturing the bipolar plate, and fuel cell using the bipolar plate
JP2003217605A (en) Molding material for fuel cell separator, and fuel cell separator molded of the same
JP2004075954A (en) Epoxy resin composition for fuel cell separator
JP2001335695A (en) Thermosettable resin molding material and molded article using the same
JP2001216976A (en) Fuel cell separator and its production method
JP2003128872A (en) Electroconductive phenol resin forming material and fuel cell separator obtained by forming the same
JP2003213137A (en) Thermosetting resin molding material and molded article obtained by molding the same
CN111607198A (en) High-voltage insulation epoxy resin composition for conductive column and preparation method thereof
JP2004119346A (en) Molding material for solid polymer type fuel cell separator, its manufacturing method and solid polymer type fuel cell separator
JP2004134159A (en) Molding material for fuel cell separator and fuel cell separator molded from the same
JP2004119345A (en) Manufacturing method of fuel cell separator
JP4473515B2 (en) Carbon / oxazine compound composite molding material and fuel cell separator
JP2001106867A (en) Phenolic resin molding material
JP2003277629A (en) Electroconductive molding material and fuel cell separator obtained by molding the same
JP2003242995A (en) Molding material for fuel cell separator and its manufacturing method, and fuel cell separator
JP2003268196A (en) Phenolic resin molding composition for production of commutator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140908

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees