JP2003048800A - METHOD OF PRODUCING GaN-BASED COMPOUND SEMICONDUCTOR CRYSTAL - Google Patents

METHOD OF PRODUCING GaN-BASED COMPOUND SEMICONDUCTOR CRYSTAL

Info

Publication number
JP2003048800A
JP2003048800A JP2001237976A JP2001237976A JP2003048800A JP 2003048800 A JP2003048800 A JP 2003048800A JP 2001237976 A JP2001237976 A JP 2001237976A JP 2001237976 A JP2001237976 A JP 2001237976A JP 2003048800 A JP2003048800 A JP 2003048800A
Authority
JP
Japan
Prior art keywords
gan
substrate
crystal
compound semiconductor
based compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001237976A
Other languages
Japanese (ja)
Other versions
JP4673514B2 (en
Inventor
Takashi Kainosho
敬司 甲斐荘
Shinichi Sasaki
伸一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Priority to JP2001237976A priority Critical patent/JP4673514B2/en
Publication of JP2003048800A publication Critical patent/JP2003048800A/en
Application granted granted Critical
Publication of JP4673514B2 publication Critical patent/JP4673514B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technology for a method of producing a GaN-based compound semiconductor crystal using a rare earth group 13 (3B) perovskite as a substrate, which comprises improving the quality of a GaN thin film formed between the substrate and the GaN-based compound semiconductor crystal and by which the crystal quality of the GaN-based compound semiconductor crystal can be improved. SOLUTION: In a method for growing the GaN-based compound semiconductor crystal on the surface (1 main surface) of the substrate of the rare earth group 13 (3B) perovskite crystal containing one or more rare earth elements, a high quality GaN single crystal thin film having a uniform thickness is formed on the substrate of the rare earth group 13 (3B) perovskite crystal mentioned above by allowing Ga atom to adsorb on the substrate of the rare earth group 13 (3B) perovskite crystal so as to form several atomic layers and nitriding the adsorbed Ga atom, and then, the GaN-based compound semiconductor crystal is grown on the high quality GaN single crystal thin film mentioned above.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、発光デバイス、電
子デバイスなどの半導体デバイスの製造に用いられるG
aN系化合物半導体結晶の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for manufacturing semiconductor devices such as light emitting devices and electronic devices.
The present invention relates to a method for manufacturing an aN-based compound semiconductor crystal.

【0002】[0002]

【従来の技術】GaN、InGaN、AlGaN、In
GaAlN等のGaN系化合物半導体(InGa
1−x−yN 但し0≦x,y;x+y≦1)は、発
光デバイスやパワーデバイスなどの半導体電子デバイス
の材料として期待され、またその他種々の分野で応用可
能な材料として注目されている。
2. Description of the Related Art GaN, InGaN, AlGaN, In
GaN-based compound such as GaAlN semiconductor (In x Ga y A
l 1−x−y N, where 0 ≦ x, y; x + y ≦ 1) is expected as a material for a semiconductor electronic device such as a light emitting device and a power device, and is noted as a material applicable in various other fields. There is.

【0003】従来、GaN系化合物半導体のバルク結晶
を成長させるのは困難であったため、上記電子デバイス
には、例えばサファイア等の異種結晶上へのヘテロエピ
タキシーによってGaN等の薄膜単結晶を形成した基板
が用いられていた。
Conventionally, it has been difficult to grow a bulk crystal of a GaN-based compound semiconductor. Therefore, in the above electronic device, a substrate on which a thin film single crystal such as GaN is formed by heteroepitaxy on a heterogeneous crystal such as sapphire. Was used.

【0004】ところが、サファイア結晶とGaN系化合
物半導体結晶とは格子不整合性が大きいので、サファイ
ア結晶上に成長させたGaN系化合物半導体結晶の転位
密度が大きくなり結晶欠陥が発生してしまうという問題
があった。さらに、サファイアは熱伝導率が小さく放熱
しにくいので、サファイア結晶上にGaN系化合物半導
体結晶を成長させた基板を消費電力の大きい電子デバイ
ス等に用いると高温になりやすいという問題があった。
However, since the lattice mismatch between the sapphire crystal and the GaN-based compound semiconductor crystal is large, the dislocation density of the GaN-based compound semiconductor crystal grown on the sapphire crystal becomes large and a crystal defect occurs. was there. Further, since sapphire has a small thermal conductivity and is difficult to radiate heat, there is a problem that a substrate on which a GaN-based compound semiconductor crystal is grown on a sapphire crystal is likely to reach a high temperature when used in an electronic device or the like with high power consumption.

【0005】また、ハイドライド気相成長法(以下、H
VPEと略する)を利用したELO(Epitaxial latera
l overgrowth)法等によるGaN系化合物半導体結晶の
成長が試みられてきた。ここでELO法とは、例えばサ
ファイア基板上にマスクとなる絶縁膜を形成し、該絶縁
膜の一部に開口部を設けて絶縁膜をマスクとし、露出し
ているサファイア基板面をエピタキシャル成長の種とし
て結晶性の高いGaN系化合物半導体結晶を成長させる
方法である。
Further, the hydride vapor phase epitaxy method (hereinafter, referred to as H
ELO (Epitaxial latera) using VPE
Growth of GaN-based compound semiconductor crystals has been attempted by a method such as an overgrowth method. Here, the ELO method means that, for example, an insulating film serving as a mask is formed on a sapphire substrate, an opening is provided in a part of the insulating film and the insulating film is used as a mask, and the exposed surface of the sapphire substrate is used as a seed for epitaxial growth. Is a method of growing a GaN-based compound semiconductor crystal having high crystallinity.

【0006】この方法によれば、マスクに設けられた開
口部内側のサファイア基板表面からGaN系化合物半導
体結晶の成長が始まりマスク上に成長層が広がっていく
ので、結晶中の転位密度を小さく抑えることができ、結
晶欠陥の少ないGaN系化合物半導体結晶を得ることが
できる。
According to this method, the growth of the GaN-based compound semiconductor crystal starts from the surface of the sapphire substrate inside the opening provided in the mask and the growth layer spreads over the mask, so that the dislocation density in the crystal is suppressed to a small value. Therefore, a GaN-based compound semiconductor crystal with few crystal defects can be obtained.

【0007】しかし、ELO法により得られたGaN系
化合物半導体結晶は熱歪みが大きいため、ELO法によ
るGaN結晶の成長後にポリッシングを行ってサファイ
ア基板を離間させてGaN系化合物半導体結晶ウェハを
単体で得ようとすると残留歪みでウェハがたわんでしま
うという問題があった。
However, since the GaN-based compound semiconductor crystal obtained by the ELO method has a large thermal strain, polishing is performed after the growth of the GaN crystal by the ELO method to separate the sapphire substrates and separate the GaN-based compound semiconductor crystal wafer. There was a problem that the wafer would bend due to residual strain when trying to obtain it.

【0008】そこで本発明者等は、異種結晶基板の材料
の一つとして希土類13(3B)族ペロブスカイト結晶
を用い、且つその{011}面または{101}面を成
長面としてGaN系化合物半導体をヘテロエピタキシー
によって成長させる方法を提案した(WO95/278
15号)。なお、ここでいう{011}面または{10
1}面とは、それぞれ(011)面、(101)面と等
価な面の組を表す。
Therefore, the present inventors have used a rare earth 13 (3B) group perovskite crystal as one of the materials for the heterogeneous crystal substrate, and have a GaN compound semiconductor with its {011} plane or {101} plane as a growth plane. A method of growing by heteroepitaxy has been proposed (WO95 / 278).
No. 15). The {011} plane or the {10}
The 1} plane represents a set of planes equivalent to the (011) plane and the (101) plane, respectively.

【0009】前記先願の成長技術によれば、例えば希土
類13(3B)族ペロブスカイトの一つであるNdGa
を基板として、その{011}面または{101}
面にGaNを成長させる場合、格子不整合は1.2%程
度であり格子不整合性をサファイアやその代替品として
用いられるSiCを基板とした場合よりも極めて小さく
なる。よって、結晶中の転位密度が低くなるので結晶欠
陥の少ないGaN系化合物半導体結晶を成長させること
ができた。
According to the growth technique of the prior application, for example, NdGa, which is one of the rare earth 13 (3B) group perovskites, is used.
Using O 3 as a substrate, its {011} plane or {101}
When GaN is grown on the surface, the lattice mismatch is about 1.2%, which is extremely smaller than that when sapphire or SiC used as a substitute thereof is used as the substrate. Therefore, since the dislocation density in the crystal is low, it is possible to grow a GaN-based compound semiconductor crystal with few crystal defects.

【0010】また、前記先願技術をさらに改良して、N
dGaO基板上に低温(400〜750℃)で第1の
GaN層を形成し、その後不活性ガス(Nガス)雰囲
気中で所定の温度まで昇温させて熱処理を施し、前記第
1のGaN層上に高温(800〜1200℃)で第2の
GaN層を成長させるようにした発明が提案されている
(特開2000−4045号公報)。この技術により、
NdGaO基板がGaN系化合物半導体の成長温度
(800〜1200℃)でNH等と反応して還元する
のを防止できるので、NdGaO基板が還元すること
に起因して成長したGaN結晶が劣化するのを回避でき
る。
Further, by further improving the above-mentioned prior art, N
A first GaN layer is formed on a dGaO 3 substrate at a low temperature (400 to 750 ° C.), and then heated to a predetermined temperature in an inert gas (N 2 gas) atmosphere to perform a heat treatment, and the first GaN layer is formed. An invention has been proposed in which the second GaN layer is grown on the GaN layer at a high temperature (800 to 1200 ° C.) (Japanese Patent Laid-Open No. 2000-4045). With this technology,
Since NdGaO 3 substrate can be prevented from being reduced by reaction with NH 3 or the like in GaN-based compound semiconductor growth temperature (800 to 1200 ° C.), GaN crystal degradation NdGaO 3 substrate grew due to reduced You can avoid doing it.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、前記先
願技術(特開2000−4045号公報)では、GaN
薄膜を比較的成長速度が速いハイドライドVPE法によ
り形成しているので、GaN薄膜の厚さを制御するのは
困難であり、膜厚のばらつきが大きくなる。また、Ga
N薄膜は、NdGaO基板が還元しないようにGaN
系化合物半導体結晶の成長温度(800〜1200℃)
よりもかなり低温(400〜750℃)で形成されるた
め結晶品質が悪い。
However, in the above prior art (Japanese Patent Laid-Open No. 2000-4045), GaN is used.
Since the thin film is formed by the hydride VPE method, which has a relatively high growth rate, it is difficult to control the thickness of the GaN thin film and the variation in film thickness becomes large. Also, Ga
The N thin film is made of GaN so that the NdGaO 3 substrate is not reduced.
Temperature of system compound semiconductor crystal (800-1200 ℃)
The crystal quality is poor because it is formed at a much lower temperature (400 to 750 ° C.).

【0012】このため、前述した方法によりNdGaO
基板がGaN結晶の成長温度で還元してしまうのを防
止することはできるが、GaN薄膜がその上に成長させ
たGaN系化合物半導体結晶に悪影響を与え、その結晶
品質を低下させている可能性がある。
Therefore, NdGaO is produced by the method described above.
3 It is possible to prevent the substrate from being reduced at the growth temperature of the GaN crystal, but the GaN thin film adversely affects the GaN-based compound semiconductor crystal grown on the GaN thin film and may deteriorate the crystal quality. There is a nature.

【0013】本発明は、希土類13(3B)族ペロブス
カイトを基板として用いたGaN系化合物半導体結晶の
製造方法において、基板とGaN系化合物半導体結晶と
の間に形成するGaN薄膜の質を改良することによりG
aN系化合物半導体結晶の結晶品質を向上させる技術を
提供することを目的とする。
The present invention is to improve the quality of a GaN thin film formed between a substrate and a GaN-based compound semiconductor crystal in a method for producing a GaN-based compound semiconductor crystal using a rare earth 13 (3B) group perovskite as a substrate. By G
An object is to provide a technique for improving the crystal quality of an aN-based compound semiconductor crystal.

【0014】[0014]

【課題を解決するための手段】本発明は、上記目的を達
成するために、1または2種類以上の希土類元素を含む
希土類13(3B)族ペロブスカイト結晶を基板として
その表面(一主面)にGaN系化合物半導体結晶を成長
させる方法において、前記希土類13(3B)族ペロブ
スカイト結晶基板上にGa原子を吸着させる工程と、吸
着させたGa原子を窒化してGaN薄膜を形成する工程
と、前記GaN薄膜上にGaN系化合物半導体結晶を成
長させる工程と、を少なくとも有するようにしたもので
ある。
In order to achieve the above object, the present invention uses a rare earth 13 (3B) group perovskite crystal containing one or more kinds of rare earth elements as a substrate on its surface (one main surface). In the method of growing a GaN-based compound semiconductor crystal, a step of adsorbing Ga atoms on the rare earth 13 (3B) group perovskite crystal substrate; a step of nitriding the adsorbed Ga atoms to form a GaN thin film; And a step of growing a GaN-based compound semiconductor crystal on the thin film.

【0015】これにより、均一な厚さでGaN薄膜を形
成することができるので、GaN薄膜がその上に成長さ
れるGaN系化合物半導体結晶の品質に悪影響を与える
ことはなくなり結晶品質が向上する。また、GaN薄膜
の形成により、GaN系化合物半導体結晶の成長温度で
基板が還元してしまうのを防止できる。
As a result, the GaN thin film can be formed with a uniform thickness, so that the GaN thin film does not adversely affect the quality of the GaN-based compound semiconductor crystal grown thereon, and the crystal quality is improved. Further, the formation of the GaN thin film can prevent the substrate from being reduced at the growth temperature of the GaN-based compound semiconductor crystal.

【0016】望ましくは、前記希土類13(3B)族ペ
ロブスカイト結晶基板上にGa原子を吸着させる工程に
おいて、前記Ga原子の温度を前記基板の温度より0.
5℃から5℃の範囲で低くするのがよい。これにより、
効率よく前記基板上にGa原子を吸着できるとともに、
GaN原子の吸着層の厚さを比較的簡単に制御すること
ができる。
Preferably, in the step of adsorbing Ga atoms on the rare earth 13 (3B) group perovskite crystal substrate, the temperature of the Ga atoms is set to 0.
It is better to lower the temperature in the range of 5 ° C to 5 ° C. This allows
Ga atoms can be efficiently adsorbed on the substrate, and
The thickness of the adsorption layer of GaN atoms can be controlled relatively easily.

【0017】また、前記Ga原子を1分子層から数分子
層の厚さで基板に吸着することにより、吸着したGa原
子をすべて窒化することが可能となり、基板上には1分
子層から数分子層の厚さでGaN薄膜が形成される。し
たがって、前記GaN薄膜は結晶成長温度よりも低い温
度で形成されるが、GaN薄膜の結晶品質が著しく低下
することはない。このように、GaN薄膜の結晶品質を
良くすることにより、その上に成長されるGaN系化合
物半導体結晶の結晶品質を向上させることができる。
Further, by adsorbing the Ga atoms to the substrate in a thickness of one to several molecular layers, it becomes possible to nitride all the adsorbed Ga atoms, and one to several molecules of the Ga atoms are formed on the substrate. The layer thickness forms a GaN thin film. Therefore, although the GaN thin film is formed at a temperature lower than the crystal growth temperature, the crystal quality of the GaN thin film is not significantly deteriorated. By thus improving the crystal quality of the GaN thin film, the crystal quality of the GaN-based compound semiconductor crystal grown thereon can be improved.

【0018】また、前記13(3B)族元素としてA
l,Ga,Inの少なくとも1種類を含んでいる希土類
13(3B)族ペロブスカイト結晶、例えばNdGaO
結晶を基板として用いる場合に適用できる。
As the 13 (3B) group element, A
A rare earth 13 (3B) group perovskite crystal containing at least one of l, Ga and In, for example NdGaO
It can be applied when 3 crystals are used as a substrate.

【0019】以下に、本発明を完成するに至った過程に
ついて説明する。当初、本発明者等は前記先願(特開2
000−4045号公報)で提案したGaN系化合物半
導体結晶の成長方法に従ってGaN系化合物半導体結晶
を成長させていたが、その中には結晶品質が悪くなって
いるものがあることに気付いた。そこで、結晶品質が低
下する原因を解明するために先願の結晶成長方法につい
て検討を重ねた。
The process leading to the completion of the present invention will be described below. Initially, the inventors of the present invention described the prior application
No. 000-4045), a GaN-based compound semiconductor crystal was grown according to the method for growing a GaN-based compound semiconductor crystal, but it was found that some of them had poor crystal quality. Therefore, in order to elucidate the cause of the deterioration of crystal quality, the crystal growth method of the previous application was repeatedly studied.

【0020】上記先願の結晶成長方法においては、基板
に鏡面研磨および洗浄処理を施した後に、基板をハイド
ライドVPE装置内の所定の部位に配置し、Nガスを
導入しながら基板温度を600℃まで昇温し、Gaメタ
ルとHClガスから生成されたGaClと、NHガス
とをNキャリアガスを用いてNdGaO基板上に供
給することにより約100nmのGaN薄膜を形成す
る。続いて、不活性ガスとしてNガスの雰囲気中で基
板温度を1000℃まで昇温したあと、前記GaN薄膜
の上にGaN系化合物半導体結晶を成長させるようにし
ていた。
In the crystal growth method of the above-mentioned prior application, after the substrate is mirror-polished and washed, the substrate is placed at a predetermined site in the hydride VPE apparatus and the substrate temperature is set to 600 while introducing N 2 gas. The temperature is raised to 0 ° C., and GaCl generated from Ga metal and HCl gas and NH 3 gas are supplied onto the NdGaO 3 substrate using the N 2 carrier gas to form a GaN thin film of about 100 nm. Then, after raising the substrate temperature to 1000 ° C. in an atmosphere of N 2 gas as an inert gas, a GaN-based compound semiconductor crystal was grown on the GaN thin film.

【0021】しかし、上記先願の方法を適用した場合、
ハイドライドVPE法は比較的成長速度が速いのでGa
N薄膜の厚さを均一に制御することは困難であり、形成
したGaN薄膜の膜厚にはばらつきが生じることが分か
った。また、GaN薄膜はNdGaO基板が還元しな
いようにGaN系化合物半導体結晶の成長温度(100
0℃)よりもかなり低温(620℃)で形成されるため
に、結晶品質が悪くなっていることが予想できた。
However, when the method of the above-mentioned prior application is applied,
Since the hydride VPE method has a relatively high growth rate,
It has been found that it is difficult to uniformly control the thickness of the N thin film, and the thickness of the formed GaN thin film varies. Also, the growth temperature (100 GaN films NdGaO 3 substrate reduced so as not to GaN-based compound semiconductor crystal
Since it was formed at a temperature (620 ° C.) much lower than 0 ° C., it could be expected that the crystal quality was poor.

【0022】このことから、本発明者等は、上記先願の
方法に従って形成されたGaN薄膜は、NdGaO
板が結晶成長温度で還元してしまうのを防止することは
できる反面、その上に成長させたGaN系化合物半導体
結晶の結晶品質を低下させている可能性があると考え
た。
From the above, the inventors of the present invention can prevent the NdGaO 3 substrate from being reduced at the crystal growth temperature in the GaN thin film formed according to the method of the prior application, but on the other hand, It is considered that the crystal quality of the grown GaN-based compound semiconductor crystal may be deteriorated.

【0023】そして、より厚くGaN薄膜を成長させた
ときに、GaN系化合物半導体結晶の品質が低下したこ
とから、結晶品質が悪く不均一なGaN薄膜はその上に
成長されるGaN系化合物半導体結晶の結晶品質に影響
を与えることが判明した。これより、基板上に形成する
GaN薄膜の膜厚を均一にすることにより、その上に成
長されるGaN系化合物半導体結晶の結晶品質をさらに
向上させることができると確信した。
When the GaN thin film is grown thicker, the quality of the GaN-based compound semiconductor crystal deteriorates. Therefore, the GaN thin film having poor crystal quality and unevenness is grown on the GaN-based compound semiconductor crystal. It was found to affect the crystal quality of. From this, it was convinced that the crystal quality of the GaN-based compound semiconductor crystal grown thereon could be further improved by making the GaN thin film formed on the substrate uniform in thickness.

【0024】上記知見に基づいて、本発明者等は希土類
13(3B)族ペロブスカイト結晶基板上にGaN薄膜
を均一に形成する方法について鋭意研究した結果、本発
明を完成させるに至った。
Based on the above findings, the inventors of the present invention have earnestly studied a method of uniformly forming a GaN thin film on a rare earth 13 (3B) group perovskite crystal substrate, and as a result, completed the present invention.

【0025】具体的には、希土類13(3B)族ペロブ
スカイト結晶基板上にGa原子を吸着させる工程と、吸
着させたGa原子をNH等で窒化する工程を行うこと
により、GaN薄膜を均一な厚さで形成することができ
た。なお、前記2つの工程を行った後の試料についてオ
ージェ分析した結果、Gaのピークの他にNのピークが
観察されたことからGaNが基板上に形成されているこ
とを確認している。
Specifically, a step of adsorbing Ga atoms on the rare earth 13 (3B) group perovskite crystal substrate and a step of nitriding the adsorbed Ga atoms with NH 3 or the like are performed to make the GaN thin film uniform. It could be formed with a thickness. As a result of Auger analysis of the sample after performing the above-mentioned two steps, N peak was observed in addition to Ga peak, which confirmed that GaN was formed on the substrate.

【0026】上述したように、本発明は、NdGaO
基板にGaN化合物半導体結晶を成長させる実験により
見出されたものであるが、GaN化合物半導体結晶以外
にも、InGaN、AlGaN等のGaN系化合物半導
体結晶を成長させた場合も同様の効果が得られると考え
られる。また、希土類13(3B)族ペロブスカイト結
晶基板としては、NdGaO以外にNdAlO,N
dInO等を用いることができる。
As mentioned above, the present invention provides NdGaO 3
It has been discovered by an experiment of growing a GaN compound semiconductor crystal on a substrate, but similar effects can be obtained when a GaN compound semiconductor crystal such as InGaN or AlGaN is grown in addition to the GaN compound semiconductor crystal. it is conceivable that. Further, as the rare earth 13 (3B) group perovskite crystal substrate, in addition to NdGaO 3 , NdAlO 3 , N
dInO 3 or the like can be used.

【0027】[0027]

【発明の実施の形態】以下、本発明の好適な実施の形態
を、NdGaO結晶を基板としてGaN化合物半導体
結晶を成長させる場合について説明する。本実施形態で
は、NdGaOのインゴットをスライスして結晶成長
用の基板とした。このとき、NdGaO基板の大きさ
は50mm径で、厚さは0.5mmとした。
BEST MODE FOR CARRYING OUT THE INVENTION A preferred embodiment of the present invention will be described below for the case of growing a GaN compound semiconductor crystal using an NdGaO 3 crystal as a substrate. In this embodiment, an NdGaO 3 ingot is sliced to form a substrate for crystal growth. At this time, the size of the NdGaO 3 substrate was 50 mm in diameter and the thickness was 0.5 mm.

【0028】(実施例)本発明を適用してNdGaO
基板上にGaN薄膜を形成して、その上にGaN化合物
半導体結晶を成長させる方法について説明する。まず、
鏡面研磨したNdGaO基板をアセトン中で5分間超
音波洗浄を行い、続けてメタノールで5分間超音波洗浄
を行った。その後、Nガスでブローして液滴を吹き飛
ばしてから自然乾燥させた。次に、洗浄したNdGaO
基板を硫酸系エッチャント(燐酸:硫酸=1:3、8
0℃)で5分間エッチングした。
(Example) Applying the present invention, NdGaO 3
A method of forming a GaN thin film on a substrate and growing a GaN compound semiconductor crystal on it will be described. First,
The mirror-polished NdGaO 3 substrate was subjected to ultrasonic cleaning for 5 minutes in acetone, and then ultrasonic cleaning for 5 minutes with methanol. Then, it was blown with N 2 gas to blow off the droplets and then naturally dried. Next, washed NdGaO
3 substrate a sulfuric acid-based etchant (phosphoric acid: sulfuric acid = 1: 3, 8
Etching was performed at 0 ° C. for 5 minutes.

【0029】次に、NdGaO基板をハイドライドV
PE装置内の所定の部位に配置した後、Nガスを導入
しながら基板温度を724℃まで昇温した。その後、基
板から1.2m離れた位置でGa原料を722℃まで加
熱して、Nガスを2000sccmで導入しながら蒸
発したGa原子を基板上に供給し、基板表面にGa原子
を吸着させた。
Next, the NdGaO 3 substrate was hydride V
After arranging at a predetermined site in the PE device, the substrate temperature was raised to 724 ° C. while introducing N 2 gas. Then, the Ga raw material was heated to 722 ° C. at a position 1.2 m away from the substrate, and the evaporated Ga atoms were supplied onto the substrate while introducing N 2 gas at 2000 sccm to adsorb the Ga atoms on the substrate surface. .

【0030】本実施例では、この状態で15分間保持し
て基板上にGa原子を供給した。ここで、Gaの722
℃における蒸発速度をもとに1原子層分のGa原子が供
給される時間を算出すると150秒となるので、本実施
形態では6原子層分のGa原子を供給したことになる。
これより、基板に吸着したGa原子の膜厚は数原子層に
相当する厚さになると考えられる。
In this example, this state was maintained for 15 minutes to supply Ga atoms onto the substrate. Where 722 of Ga
The time required to supply Ga atoms for one atomic layer is calculated to be 150 seconds based on the evaporation rate at ° C. Therefore, in this embodiment, Ga atoms for six atomic layers are supplied.
From this, it is considered that the film thickness of Ga atoms adsorbed on the substrate is equivalent to several atomic layers.

【0031】次に、NHガスを1000sccmで3
0分間基板上に供給して、基板に吸着したGa原子を窒
化してGaN薄膜を形成した。本実施例では、基板に吸
着させるGa原子の厚さを数原子層と非常に薄くしてい
るので、吸着したGa原子をすべて窒化することが可能
で、高品質のGaN薄膜を均一な膜厚で形成することが
できる。
Next, NH 3 gas was added at 1000 sccm for 3 times.
After being supplied onto the substrate for 0 minutes, Ga atoms adsorbed on the substrate were nitrided to form a GaN thin film. In this embodiment, since the thickness of Ga atoms to be adsorbed on the substrate is very thin, that is, several atomic layers, all the adsorbed Ga atoms can be nitrided, and a high-quality GaN thin film with a uniform film thickness can be obtained. Can be formed with.

【0032】次に、基板温度を1000℃に昇温し、G
aメタルとHClガスから生成されたGaClと、NH
ガスとをNキャリアガスを用いてNdGaO基板
上に供給した。このとき、GaCl分圧が5.0×10
−3atm、NH分圧が3.0×10−1atmとな
るようにそれぞれのガス導入量を制御しながら約40μ
m/hの成長速度で300分間GaN化合物半導体結晶
を成長させた。
Next, the substrate temperature is raised to 1000.degree.
GaCl generated from a metal and HCl gas, and NH
3 gas was supplied onto the NdGaO 3 substrate using N 2 carrier gas. At this time, the GaCl partial pressure is 5.0 × 10
-3 atm, NH 3 partial pressure is controlled to about 3.0 × 10 -1 atm while controlling each gas introduction amount to about 40 μm.
A GaN compound semiconductor crystal was grown at a growth rate of m / h for 300 minutes.

【0033】その後、冷却速度5.3℃/minで90
分間冷却して膜厚が約200μmのGaN化合物半導体
結晶を得た。得られたGaN化合物半導体結晶は、X線
ロッキングカーブの半値幅(FWHM)が100秒であ
り優れた結晶品質を有していることが確認された。
Then, at a cooling rate of 5.3 ° C./min, 90
After cooling for a minute, a GaN compound semiconductor crystal having a film thickness of about 200 μm was obtained. It was confirmed that the obtained GaN compound semiconductor crystal had an X-ray rocking curve full width at half maximum (FWHM) of 100 seconds and had excellent crystal quality.

【0034】(比較例)次に、比較例として、NdGa
基板上に従来の方法でGaN薄膜を形成して、その
上にGaN化合物半導体結晶を成長させる方法について
説明する。比較例は、上記実施例とGaN薄膜の形成方
法が異なるだけで、NdGaO基板の前処理およびG
aN化合物半導体結晶の成長条件等は実施例と同様に行
った。
(Comparative Example) Next, as a comparative example, NdGa
A method of forming a GaN thin film on the O 3 substrate by a conventional method and growing a GaN compound semiconductor crystal thereon will be described. Comparative examples are only the embodiments and the method of forming the thin film of GaN is different, the previous NdGaO 3 substrate processing and G
The growth conditions and the like of the aN compound semiconductor crystal were the same as in the example.

【0035】まず、鏡面研磨したNdGaO基板をア
セトン中で5分間超音波洗浄を行い、続けてメタノール
で5分間超音波洗浄を行った。その後、Nガスでブロ
ーして液滴を吹き飛ばしてから自然乾燥させた。次に、
洗浄したNdGaO基板を硫酸系エッチャント(燐
酸:硫酸=1:3、80℃)で5分間エッチングした。
First, the mirror-polished NdGaO 3 substrate was ultrasonically cleaned in acetone for 5 minutes, and subsequently, ultrasonically cleaned in methanol for 5 minutes. Then, it was blown with N 2 gas to blow off the droplets and then naturally dried. next,
The washed NdGaO 3 substrate was etched with a sulfuric acid-based etchant (phosphoric acid: sulfuric acid = 1: 3, 80 ° C.) for 5 minutes.

【0036】次に、このNdGaO基板をハイドライ
ドVPE装置内の所定の部位に配置した後、Nガスを
導入しながら基板温度を620℃まで昇温し、Gaメタ
ルとHClガスから生成されたGaClと、NHガス
とをNキャリアガスを用いてNdGaO基板上に供
給し、約100nmのGaN薄膜を形成した。
Next, after placing this NdGaO 3 substrate at a predetermined site in the hydride VPE apparatus, the substrate temperature was raised to 620 ° C. while introducing N 2 gas, and the NdGaO 3 substrate was produced from Ga metal and HCl gas. GaCl and NH 3 gas were supplied onto the NdGaO 3 substrate using an N 2 carrier gas to form a GaN thin film of about 100 nm.

【0037】次に、基板温度を1000℃に昇温し、G
aメタルとHClガスから生成されたGaClと、NH
ガスとをNキャリアガスを用いてNdGaO基板
上に供給した。このとき、GaCl分圧が5.0×10
−3atm、NH分圧が3.0×10−1atmとな
るようにそれぞれのガス導入量を制御しながら約40μ
m/hの成長速度で300分間GaN化合物半導体結晶
を成長させた。
Next, the substrate temperature is raised to 1000.degree.
GaCl generated from a metal and HCl gas, and NH
3 gas was supplied onto the NdGaO 3 substrate using N 2 carrier gas. At this time, the GaCl partial pressure is 5.0 × 10
-3 atm, NH 3 partial pressure is controlled to about 3.0 × 10 -1 atm while controlling each gas introduction amount to about 40 μm.
A GaN compound semiconductor crystal was grown at a growth rate of m / h for 300 minutes.

【0038】その後、冷却速度5.3℃/minで90
分間冷却して膜厚が約200μmのGaN化合物半導体
結晶を得た。
Then, at a cooling rate of 5.3 ° C./min, 90
After cooling for a minute, a GaN compound semiconductor crystal having a film thickness of about 200 μm was obtained.

【0039】この基板を用いてGaN化合物半導体結晶
を成長させたところ、得られたGaN化合物半導体結晶
は、X線ロッキングカーブの半値幅(FWHM)が30
0秒であり、上記実施例のGaN化合物半導体結晶に比
較すると結晶品質が劣っていた。
When a GaN compound semiconductor crystal was grown using this substrate, the obtained GaN compound semiconductor crystal had an X-ray rocking curve full width at half maximum (FWHM) of 30.
It was 0 second, and the crystal quality was inferior as compared with the GaN compound semiconductor crystal of the above example.

【0040】以上、本発明者によってなされた発明を実
施形態に基づき具体的に説明したが、本発明は上記実施
の形態に限定されるものではない。例えば、NdGaO
基板にGaN原子を吸着させる際の基板およびGa原
子の温度は上記実施例で適用した温度に制限されず、G
a温度が基板温度よりも0.5℃から5℃低くなるよう
にすれば、基板上にGa原子を吸着させることができ
る。
Although the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the above embodiments. For example, NdGaO
The temperature of the substrate and the Ga atom when adsorbing GaN atoms on the 3 substrate is not limited to the temperature applied in the above-mentioned embodiment, and G
Ga atoms can be adsorbed on the substrate by setting the temperature a to 0.5 ° C. to 5 ° C. lower than the substrate temperature.

【0041】また、本実施例では、GaN薄膜の形成工
程においてGa原子やNHを基板上に供給するための
キャリアガスとしてNを用いたが、Nの代わりにH
を用いることもできる。ただし、窒化物系化合物を成
長させるので、Nをキャリアガスとするのが望まし
い。
Further, in the present embodiment, N 2 was used as the carrier gas for supplying Ga atoms and NH 3 onto the substrate in the GaN thin film forming step, but H 2 was used instead of N 2.
2 can also be used. However, since a nitride compound is grown, it is desirable to use N 2 as a carrier gas.

【0042】また、Ga化合物半導体結晶の成長条件と
しては、GaCl分圧が1.0×10−3〜1.0×1
−2atm、NH分圧が1.0×10−1〜4.0
×10−1atm、成長速度が30〜100μm/h、
成長温度が930〜1050℃、冷却速度が4〜10
℃/minであることが望ましい。
Further, as a growth condition of the Ga compound semiconductor crystal, the GaCl partial pressure is 1.0 × 10 −3 to 1.0 × 1.
0 -2 atm, NH 3 partial pressure 1.0 × 10 -1 to 4.0
× 10 −1 atm, growth rate 30 to 100 μm / h,
Growth temperature 930-1050 ° C, cooling rate 4-10
C./min is desirable.

【0043】[0043]

【発明の効果】本発明によれば、1または2種類以上の
希土類元素を含む希土類13(3B)族ペロブスカイト
結晶を基板としてその表面(一主面)にGaN系化合物
半導体結晶を成長させる方法において、前記希土類13
(3B)族ペロブスカイト結晶基板上にGa原子を吸着
させる工程と、吸着させたGa原子を窒化してGaN薄
膜を形成する工程と、を行うことにより高品質のGaN
単結晶薄膜を均一な膜厚で形成するようにしたので、G
aN薄膜がその上に成長されるGaN系化合物半導体結
晶の品質に悪影響を与える可能性は低くなり、結晶品質
を向上させることができるという効果を奏する。
According to the present invention, a method for growing a GaN-based compound semiconductor crystal on a surface (one main surface) of a rare earth 13 (3B) group perovskite crystal containing one or more kinds of rare earth elements as a substrate. , The rare earth 13
High-quality GaN is obtained by performing a step of adsorbing Ga atoms on a (3B) group perovskite crystal substrate and a step of nitriding the adsorbed Ga atoms to form a GaN thin film.
Since the single crystal thin film is formed to have a uniform thickness, G
The aN thin film is less likely to adversely affect the quality of the GaN-based compound semiconductor crystal grown on the aN thin film, and the crystal quality can be improved.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G077 AA03 BE15 DB01 ED06 EE01 HA02 5F041 AA40 CA40 CA46 CA67 5F045 AA15 AB14 AC03 AC12 AC15 AF07 BB12 DA53 5F052 DA04 KA01    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4G077 AA03 BE15 DB01 ED06 EE01                       HA02                 5F041 AA40 CA40 CA46 CA67                 5F045 AA15 AB14 AC03 AC12 AC15                       AF07 BB12 DA53                 5F052 DA04 KA01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 1または2種類以上の希土類元素を含む
希土類13(3B)族ペロブスカイト結晶を基板として
その表面にGaN系化合物半導体結晶を成長させる方法
において、 前記希土類13(3B)族ペロブスカイト結晶基板上に
Ga原子を吸着させる工程と、 吸着させたGa原子を窒化してGaN薄膜を形成する工
程と、 前記GaN薄膜上にGaN系化合物半導体結晶を成長さ
せる工程と、 を少なくとも有することを特徴とするGaN系化合物半
導体結晶の製造方法。
1. A method of growing a GaN-based compound semiconductor crystal on a surface of a rare earth 13 (3B) group perovskite crystal containing one or more kinds of rare earth elements as a substrate, wherein the rare earth 13 (3B) group perovskite crystal substrate is used. At least adsorbing Ga atoms thereon, nitriding the adsorbed Ga atoms to form a GaN thin film, and growing a GaN-based compound semiconductor crystal on the GaN thin film. Method for producing GaN-based compound semiconductor crystal.
【請求項2】 前記希土類13(3B)族ペロブスカイ
ト結晶基板上にGa原子を吸着させる工程において、前
記Ga原子の温度を前記基板の温度より0.5℃から5
℃の範囲で低くすることを特徴とする請求項1に記載の
GaN系化合物半導体結晶の製造方法。
2. In the step of adsorbing Ga atoms on the rare earth 13 (3B) group perovskite crystal substrate, the temperature of the Ga atoms is 0.5 ° C. to 5 ° C. below the temperature of the substrate.
The method for producing a GaN-based compound semiconductor crystal according to claim 1, wherein the temperature is lowered in the range of ° C.
【請求項3】 前記Ga原子を1分子層から数分子層の
厚さで基板に吸着させ、前記GaN薄膜を1分子層から
数分子層の厚さで形成することを特徴とする請求項1ま
たは請求項2に記載のGaN系化合物半導体結晶の製造
方法。
3. The Ga atom is adsorbed on the substrate in a thickness of 1 to several molecular layers, and the GaN thin film is formed in a thickness of 1 to several molecular layers. Alternatively, the method for producing a GaN-based compound semiconductor crystal according to claim 2.
【請求項4】 基板として用いられる前記希土類13
(3B)族ペロブスカイト結晶を構成する13(3B)
族元素は、Al,Ga,Inの中の少なくとも1つであ
ることを特徴とする請求項1から請求項3のいずれかに
記載のGaN系化合物半導体結晶の製造方法。
4. The rare earth 13 used as a substrate
13 (3B) that constitutes a (3B) group perovskite crystal
The method for producing a GaN-based compound semiconductor crystal according to claim 1, wherein the group element is at least one of Al, Ga, and In.
【請求項5】 前記希土類13(3B)族ペロブスカイ
ト結晶は、NdGaO結晶であることを特徴とする請
求項4に記載のGaN系化合物半導体結晶の製造方法。
5. The method for producing a GaN-based compound semiconductor crystal according to claim 4, wherein the rare earth 13 (3B) group perovskite crystal is an NdGaO 3 crystal.
JP2001237976A 2001-08-06 2001-08-06 GaN compound semiconductor crystal manufacturing method Expired - Fee Related JP4673514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001237976A JP4673514B2 (en) 2001-08-06 2001-08-06 GaN compound semiconductor crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001237976A JP4673514B2 (en) 2001-08-06 2001-08-06 GaN compound semiconductor crystal manufacturing method

Publications (2)

Publication Number Publication Date
JP2003048800A true JP2003048800A (en) 2003-02-21
JP4673514B2 JP4673514B2 (en) 2011-04-20

Family

ID=19068971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001237976A Expired - Fee Related JP4673514B2 (en) 2001-08-06 2001-08-06 GaN compound semiconductor crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP4673514B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102213A (en) * 2009-11-11 2011-05-26 Waseda Univ Single crystal substrate, method for producing the same, semiconductor thin film formed on the single crystal substrate, and semiconductor structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186329A (en) * 1994-12-28 1996-07-16 Japan Energy Corp Growth method of gallium nitride-based semiconductor crystal
JPH08186078A (en) * 1994-12-28 1996-07-16 Japan Energy Corp Growth method for gallium nitride based semiconductor crystal
JPH08208385A (en) * 1995-01-27 1996-08-13 Japan Energy Corp Method for growing gallium nitride semiconductor crystal
JPH0971496A (en) * 1995-09-07 1997-03-18 Japan Energy Corp Production of thick film of gallium nitride single crystal
JPH10335248A (en) * 1997-05-28 1998-12-18 Nippon Telegr & Teleph Corp <Ntt> Thin-film manufacturing apparatus
JP2000004045A (en) * 1998-06-15 2000-01-07 Japan Energy Corp Growth method for gallium nitride compound semiconductor single crystal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186329A (en) * 1994-12-28 1996-07-16 Japan Energy Corp Growth method of gallium nitride-based semiconductor crystal
JPH08186078A (en) * 1994-12-28 1996-07-16 Japan Energy Corp Growth method for gallium nitride based semiconductor crystal
JPH08208385A (en) * 1995-01-27 1996-08-13 Japan Energy Corp Method for growing gallium nitride semiconductor crystal
JPH0971496A (en) * 1995-09-07 1997-03-18 Japan Energy Corp Production of thick film of gallium nitride single crystal
JPH10335248A (en) * 1997-05-28 1998-12-18 Nippon Telegr & Teleph Corp <Ntt> Thin-film manufacturing apparatus
JP2000004045A (en) * 1998-06-15 2000-01-07 Japan Energy Corp Growth method for gallium nitride compound semiconductor single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102213A (en) * 2009-11-11 2011-05-26 Waseda Univ Single crystal substrate, method for producing the same, semiconductor thin film formed on the single crystal substrate, and semiconductor structure

Also Published As

Publication number Publication date
JP4673514B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
US7462893B2 (en) Method of fabricating GaN
JP4150527B2 (en) Crystal production method
JP4672753B2 (en) GaN-based nitride semiconductor free-standing substrate manufacturing method
JP2005320237A (en) NON-POLAR SINGLE CRYSTALLINE a-PLANE NITRIDE SEMICONDUCTOR WAFER AND ITS MANUFACTURING METHOD
JP2003178984A (en) Iii group nitride semiconductor substrate, and method for manufacturing it
JP2002343728A (en) Gallium nitride crystalline substrate and method for manufacturing the same
JP2004039810A (en) Group iii nitride semiconductor substrate and its manufacturing method
KR100715828B1 (en) Method of Growing Semiconductor Crystal
JP2003197541A (en) Method of manufacturing iii nitride film
JP2004111848A (en) Sapphire substrate, epitaxial substrate using it, and its manufacturing method
JP2002305155A (en) CRYSTAL GROWING APPARATUS FOR GaN-BASED COMPOUND SEMICONDUCTOR CRYSTAL
JP3785566B2 (en) GaN compound semiconductor crystal manufacturing method
JP2004269313A (en) Method for manufacturing gallium nitride crystal substrate
JP2003332234A (en) Sapphire substrate having nitride layer and its manufacturing method
JP2004006568A (en) Manufacture of 3-5 group compound semiconductor
US6875272B2 (en) Method for preparing GaN based compound semiconductor crystal
JP2002293697A (en) METHOD OF GROWING GaN EPITAXIAL LAYER
JP4673514B2 (en) GaN compound semiconductor crystal manufacturing method
JP2004307253A (en) Method for manufacturing semiconductor substrate
JP3779831B2 (en) Method of crystal growth of nitride III-V compound semiconductor and laminated structure of semiconductor obtained by the method
JP2003224072A (en) Semiconductor structure and manufacturing method therefor
JP2003142406A (en) Method for manufacturing semiconductor device
JP2003171200A (en) Crystal growth method for compound semiconductor and compound semiconductor device
JP3841201B2 (en) Manufacturing method of semiconductor device
JP2003218043A (en) METHOD OF MANUFACTURING GaN-BASED COMPOUND SEMICONDUCTOR CRYSTAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100811

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110121

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees