JP2003045811A - Method for manufacturing semiconductor device and wafer processing system - Google Patents

Method for manufacturing semiconductor device and wafer processing system

Info

Publication number
JP2003045811A
JP2003045811A JP2001231330A JP2001231330A JP2003045811A JP 2003045811 A JP2003045811 A JP 2003045811A JP 2001231330 A JP2001231330 A JP 2001231330A JP 2001231330 A JP2001231330 A JP 2001231330A JP 2003045811 A JP2003045811 A JP 2003045811A
Authority
JP
Japan
Prior art keywords
germanium
monogermane
wafer
nozzles
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001231330A
Other languages
Japanese (ja)
Other versions
JP4792180B2 (en
Inventor
Takaaki Noda
孝暁 野田
Atsushi Moriya
敦 森谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2001231330A priority Critical patent/JP4792180B2/en
Publication of JP2003045811A publication Critical patent/JP2003045811A/en
Application granted granted Critical
Publication of JP4792180B2 publication Critical patent/JP4792180B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a semiconductor device and a wafer processing system for forming silicon germanium film excellent in film thickness and germanium ratio in-plane and plane-to-plane uniformity by a low-pressure CVD method by using mono-silane and mono-germanium. SOLUTION: The method for manufacturing a semiconductor device and the wafer processing system comprises the steps of: applying gas including mono-silane and mono-germanium to the surface of the wafer 4 loaded on boats 3 in a reactor furnace 11 heated with a heater 6; depositing polysilicon germanium film on the surface of the wafer 4; and feeding the mono-germanium into a reactor 11 through a plurality of nozzles 12a to 12e having different lengths in the reactor 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体デバイスの
製造方法および基板処理装置に関し、特に、減圧CVD
法(化学気相堆積法)によって、ポリまたはアモルファ
スシリコンゲルマニウムを成膜する半導体デバイスの製
造方法および基板処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device manufacturing method and a substrate processing apparatus, and more particularly to low pressure CVD.
The present invention relates to a method for manufacturing a semiconductor device and a substrate processing apparatus for forming a film of poly or amorphous silicon germanium by a chemical vapor deposition method.

【0002】[0002]

【従来の技術】IC、LSI等の半導体デバイスを製造
する工程においては、減圧CVD法(化学気相堆積法)
によって、基板上に薄膜を成膜することが行われてい
る。そのような成膜工程の中の一つとして、減圧CVD
法によって、ポリシリコンゲルマニウム膜をMOSトラ
ンジスタのゲート電極部分に形成することが試されてい
る。
2. Description of the Related Art In a process of manufacturing a semiconductor device such as an IC and an LSI, a low pressure CVD method (chemical vapor deposition method) is used.
According to this, a thin film is formed on a substrate. As one of such film forming processes, low pressure CVD
It has been tried to form a polysilicon germanium film on the gate electrode portion of a MOS transistor by the method.

【0003】従来、MOSトランジスタのゲート電極部
分にはシリコンが使用されてきたが、近年のゲート絶縁
膜の薄膜化に伴い、ゲートにバイアス電圧を印加した際
のゲートの空乏化や、熱処理工程におけるドーパントの
電極からチャネル部分への突き抜けが、デバイス特性を
悪化させる大きな問題点となっていた。上記の問題点
は、シリコンに代えてシリコンゲルマニウムを用いるこ
とによって大幅に改善されることが判明している。
Conventionally, silicon has been used for the gate electrode portion of a MOS transistor, but with the recent thinning of the gate insulating film, depletion of the gate when a bias voltage is applied to the gate and heat treatment process are performed. Penetration of the dopant from the electrode to the channel portion has been a major problem that deteriorates device characteristics. It has been found that the above problems are greatly improved by using silicon germanium instead of silicon.

【0004】[0004]

【発明が解決しようとする課題】シリコンに代えてシリ
コンゲルマニウムを用いた場合、同じ成膜条件下(50
0℃)での成膜速度は、シリコンの場合と比較して、ゲ
ルマニウム比率が20%の時で約6倍、ゲルマニウム比
率が30%の時で約14倍に増加する。それに伴い、反
応炉内を通過する際の反応ガスの消費量も増加し、その
消費量の増加割合は、シリコンよりもゲルマニウムのほ
うが1cmあたりの質量が2.3倍程度大きいため顕
著である。ゲルマニウムの原料ガスであるモノゲルマン
を反応炉下部から1本のノズルで炉内に供給した場合、
モノゲルマンの消費により、反応炉内の上流側と下流側
でガス濃度が顕しく異なり、膜厚およびゲルマニウム比
率の面内・面間均一性は大幅に悪化する。
When silicon germanium is used instead of silicon, the same film forming conditions (50
The film formation rate at 0 ° C. increases about 6 times when the germanium ratio is 20% and about 14 times when the germanium ratio is 30% as compared with the case of silicon. Along with that, the consumption of the reaction gas when passing through the reaction furnace also increases, and the increase rate of the consumption is remarkable because germanium has a mass per cm 3 of about 2.3 times larger than that of silicon. . When monogermane, which is the source gas of germanium, is fed into the furnace from the lower part of the reaction furnace with one nozzle,
Due to the consumption of monogermane, the gas concentration is significantly different between the upstream side and the downstream side in the reaction furnace, and the in-plane / in-plane uniformity of the film thickness and the germanium ratio is significantly deteriorated.

【0005】本発明の目的は、上記課題を解決し、モノ
シランとモノゲルマンとを使用して、減圧CVD法によ
って、膜厚およびゲルマニウム比率の面内・面間均一性
が良好なシリコンゲルマニウム膜を基板上に形成する半
導体デバイスの製造方法および基板処理装置を提供する
ことである。
An object of the present invention is to solve the above problems and to obtain a silicon germanium film having good in-plane / in-plane uniformity of film thickness and germanium ratio by a low pressure CVD method using monosilane and monogermane. To provide a method for manufacturing a semiconductor device formed on a substrate and a substrate processing apparatus.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
に、本発明は、請求項1に記載のように、反応ガスとし
てモノシランとモノゲルマンとを使用し、反応炉内にお
いて、減圧CVD法により、基板上にポリまたはアモル
ファスシリコンゲルマニウムを成膜する半導体デバイス
の製造方法において、前記モノゲルマンを長さの異なる
複数本のノズルを用いて前記反応炉内に途中供給するこ
とを特徴とする半導体デバイスの製造方法を構成する。
In order to solve the above-mentioned problems, the present invention uses a monosilane and a monogermane as a reaction gas as described in claim 1 and uses a low pressure CVD method in a reaction furnace. According to the method of manufacturing a semiconductor device in which a poly or amorphous silicon germanium film is formed on a substrate, the monogermane is supplied midway into the reaction furnace by using a plurality of nozzles having different lengths. A device manufacturing method is configured.

【0007】また、本発明は、請求項2に記載のよう
に、基板を処理する反応管と、前記基板を加熱するヒー
タと、前記反応管内にモノシランを供給するノズルと、
前記反応管内にモノモノゲルマンを供給するノズルとを
有し、前記モノモノゲルマンを供給するノズルは、長さ
の異なる複数本のノズルからなることを特徴とする基板
処理装置を構成する。
Further, according to the present invention, as described in claim 2, a reaction tube for processing a substrate, a heater for heating the substrate, a nozzle for supplying monosilane into the reaction tube,
And a nozzle for supplying monomonogermane into the reaction tube, and the nozzle for supplying monomonogermane comprises a plurality of nozzles having different lengths.

【0008】[0008]

【発明の実施の形態】図1は、本発明の実施の形態例で
ある基板処理装置の概要を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an outline of a substrate processing apparatus which is an embodiment of the present invention.

【0009】本発明の半導体デバイスの製造方法におい
ては、反応ガスとしてモノシランとモノゲルマンとを使
用し、反応炉11内において、減圧CVD法によって、
基板であるウエハ4の上にシリコンゲルマニウム膜を成
膜する半導体デバイスの製造方法において、図1に示す
ような長さの異なる多数本ノズル12a〜12eを通し
てモノゲルマンを炉内に供給することを特徴とする。
In the method for manufacturing a semiconductor device of the present invention, monosilane and monogermane are used as reaction gases, and a low pressure CVD method is used in the reaction furnace 11.
In a method of manufacturing a semiconductor device in which a silicon germanium film is formed on a wafer 4 which is a substrate, monogermane is supplied into a furnace through a large number of nozzles 12a to 12e having different lengths as shown in FIG. And

【0010】本発明がなされる前の予備的考察におい
て、膜厚およびゲルマニウム比率の面内・面間均一性を
良好(3%以下)にするには、反応ガスの流れに沿っ
て、成膜反応が始まる箇所から成膜が反応終わる箇所ま
での間で、モノシランガスおよびモノゲルマンガス、特
に前述したようにモノゲルマンガスの消費を10%以下
に保つことが必要であることが、経験上、認められてい
る。
In the preliminary consideration before the present invention was made, in order to obtain good in-plane / in-plane uniformity of the film thickness and the germanium ratio (3% or less), the film was formed along the flow of the reaction gas. Experience shows that it is necessary to keep the consumption of monosilane gas and monogermane gas, especially monogermane gas at 10% or less from the point where the reaction starts to the point where film formation ends. Has been.

【0011】モノゲルマンガスを反応炉11下部から1
本のノズルで炉内に供給する形態で、モノゲルマンガス
の消費を10%以下に保つために必要なモノゲルマン流
量は、8インチウエハ用の内径26cmで高さが130
cmの反応管内で、成膜される部分の表面積(反応管内
壁およびウエハ表面)と実際の成膜速度(実験値)を考
慮して見積もると、ゲルマニウム比率20%の場合約1
40sccmとなる。実際は安全のために反応ガスを1
0%程度に希釈して用いるので、1400sccmの希
釈モノゲルマンを流すことになる。この時に必要なモノ
シラン流量はゲルマニウム比率20%で成膜温度が50
0℃の場合、約2800sccm(非希釈)である。ゲ
ルマニウム比率をデバイス特性改善のためにもっと上げ
ようとすると、前述したようにゲルマニウム比率を上げ
ると成膜速度は速くなるので、ゲルマニウム比率30%
の時に、モノゲルマンガスの消費を10%以下に保つた
めに必要なモノゲルマンおよびモノシランの流量はそれ
ぞれ500sccm(実際は5000sccmの希釈モ
ノゲルマン)および5000sccm(非希釈)とな
り、このような大流量のガスを流して、反応炉内を一般
的なプロセス圧力(30〜60Pa)にする場合には特
大排気容量のポンプが必要であり現実的ではない。
Monogermane gas was fed from the bottom of the reactor 1 to 1
The monogermane flow rate required to keep the consumption of monogermane gas at 10% or less in the form of supplying the gas into the furnace with this nozzle is 26 cm in inner diameter for an 8-inch wafer and 130 in height.
When the surface area of the portion where the film is formed (inner wall of the reaction tube and the surface of the wafer) and the actual film formation rate (experimental value) are estimated in a cm reaction tube, it is about 1 when the germanium ratio is 20%
It becomes 40 sccm. Actually 1 reaction gas for safety
Since it is diluted to about 0% and used, 1400 sccm of diluted monogermane is used. The flow rate of monosilane required at this time is 20% germanium and the film formation temperature is 50%.
At 0 ° C., it is about 2800 sccm (undiluted). If the germanium ratio is increased to improve the device characteristics, increasing the germanium ratio increases the film formation rate as described above.
At that time, the flow rates of monogermane and monosilane required to keep the consumption of monogermane gas at 10% or less are 500 sccm (actually 5000 sccm diluted monogermane) and 5000 sccm (undiluted), respectively. Is required to bring the inside of the reaction furnace to a general process pressure (30 to 60 Pa), a pump with an extra large exhaust capacity is required, which is not realistic.

【0012】これらの計算結果から、多数本ノズルを用
いてモノゲルマンを炉内に途中供給し、モノゲルマンの
消費を、反応ガスの流れに沿って、成膜反応が始まる箇
所から成膜が反応終わる箇所までの間で、10%以下に
保つことが、膜厚およびゲルマニウム比率の面内・面間
均一性が良好なシリコンゲルマニウム膜の形成を行う上
で重要であるといえる。本発明は、このような考察に基
づいてなされたものである。なお、このような条件下で
形成されたシリコンゲルマニウム膜はポリシリコンゲル
マニウム膜であるが、これとは異なる条件下ではアモル
ファスシリコンゲルマニウム膜が形成される場合もあ
る。
From these calculation results, monogermane was supplied into the furnace halfway through the use of a large number of nozzles, and the consumption of monogermane was detected along with the flow of the reaction gas in the film formation reaction from the point where the film formation reaction started. It can be said that maintaining 10% or less until the end is important for forming a silicon germanium film having good in-plane / in-plane uniformity of film thickness and germanium ratio. The present invention has been made based on such considerations. Although the silicon germanium film formed under such conditions is a polysilicon germanium film, an amorphous silicon germanium film may be formed under conditions different from this.

【0013】本発明に係る基板処理装置の一例として、
反応ガスとしてモノシラン(SiH )とモノゲルマン
(GeH)とを使用して、反応炉内でボートに複数枚
のウエハを垂直方向に積層支持した状態で、炉体下部よ
りガスを導入し垂直方向に上昇させ、そのガスを用いた
CVD法により、前記ウエハ上に薄膜を形成する減圧C
VD装置の構造概略図を図1に示す。
As an example of the substrate processing apparatus according to the present invention,
Monosilane (SiH Four) And Monogerman
(GeHFour) And use multiple sheets in a boat in the reactor
With the wafers in the vertical direction stacked and supported,
Gas was introduced to raise it in the vertical direction, and that gas was used.
Low pressure C for forming a thin film on the wafer by the CVD method
A schematic structure of the VD device is shown in FIG.

【0014】4ゾーンに分かれたヒータ6の内側に、反
応炉11の外筒である石英製のアウターチューブ1およ
びアウターチューブ1内部の反応管であるインナーチュ
ーブ2が設置されており、この2種のチューブの間をメ
カニカルブースタポンプ7およびドライポンプ8を用い
て真空引きしている。従って、インナーチューブ2内側
に導入される反応ガスは、インナーチューブ2内を上昇
し、2種のチューブ1、2の間を下降して排気される。
ウエハ4が装填された石英ボート3はインナーチューブ
2内に設置され、反応ガスにさらされた時に気相中およ
びウエハ4表面での反応により、ウエハ4上に薄膜が形
成される。断熱板5はボート3と装置下部との間を断熱
するためのものである。また、図1中、9はボート回転
軸であり、10はステンレス製蓋である。
Inside the heater 6 divided into four zones, an outer tube 1 made of quartz which is an outer cylinder of the reaction furnace 11 and an inner tube 2 which is a reaction tube inside the outer tube 1 are installed. A vacuum is evacuated between the tubes using the mechanical booster pump 7 and the dry pump 8. Therefore, the reaction gas introduced into the inner tube 2 rises in the inner tube 2 and descends between the two types of tubes 1 and 2 to be exhausted.
The quartz boat 3 loaded with the wafer 4 is placed in the inner tube 2, and when exposed to the reaction gas, a thin film is formed on the wafer 4 by the reaction in the gas phase and on the surface of the wafer 4. The heat insulating plate 5 is for heat insulating between the boat 3 and the lower part of the device. Further, in FIG. 1, 9 is a boat rotating shaft, and 10 is a stainless lid.

【0015】なお、ボート3には、ウエハ4を支持する
スロットが合計172個設けられており、一番下のスロ
ットから数えて10スロット目まではダミーのウエハ4
が、11から167スロット目までは製品のウエハ4
が、168から172スロット目まではダミーのウエハ
4が支持される。また、図1中のトップ領域、センタ領
域、ボトム領域とは、それぞれ、129から167スロ
ット目までの製品のウエハ4の存在する領域、37から
128スロット目までの製品のウエハ4の存在する領
域、11から36スロット目までの製品のウエハ4の存
在する領域のことを示している。また、4つに分かれた
ヒータゾーンのうち、一番下のL(Lower)ゾーンは1ス
ロット目より下側の、ウエハが殆ど存在しない領域に対
応しており、下から二番目のCL(Center Lower)ゾーン
は2から56スロット目までのダミーのウエハ4と製品
のウエハ4とが混在する領域に対応しており、下から三
番目すなわち上から二番目のCU(Center Upper)ゾーン
は57から172スロット目までの製品のウエハ4とダ
ミーのウエハ4とが混在する領域に対応しており、下か
ら四番目すなわち一番上のU(Upper)ゾーンはそれより
上側のウエハの存在しない領域に対応している。
The boat 3 is provided with a total of 172 slots for supporting the wafers 4, and the dummy wafers 4 up to the tenth slot counting from the bottom slot.
However, from the 11th to the 167th slot, product wafer 4
However, the dummy wafer 4 is supported from the 168th slot to the 172nd slot. Further, the top area, the center area, and the bottom area in FIG. 1 are the area where the wafer 4 of the product from the 129th to 167th slot exists, and the area where the wafer 4 of the product from the 37th to 128th slot exists, respectively. , 11 to the 36th slot, the area where the wafer 4 of the product exists. Further, among the four heater zones, the lowermost L (Lower) zone corresponds to a region below the first slot where almost no wafer exists, and the second CL (Center) from the bottom The Lower) zone corresponds to a region where the dummy wafer 4 and the product wafer 4 coexist from the 2nd to the 56th slots, and the third CU (Center Upper) zone from the bottom, that is, the second from the top, is from 57. It corresponds to an area where the product wafer 4 and the dummy wafer 4 are mixed up to the 172th slot, and the fourth U from the bottom, that is, the uppermost U (Upper) zone is an area where no upper wafer exists. It corresponds.

【0016】モノゲルマン(GeH)を反応炉11内
に供給する石英ノズル12a〜12eは長さが異なり、
合計5本設けられており、12aはモノシラン(SiH
)を供給するノズルとともに炉口部(図中、左下)に
設けられており、12b、12c、12d及び12e
は、前記炉口部を通り、それぞれの噴出口が30スロッ
ト目、70スロット目、110スロット目及び150ス
ロット目の位置に対応するように、設けられている。こ
のような長さの異なる複数本ノズル12a〜12eを用
いることによって、モノゲルマンを反応炉炉11内に途
中供給することができる。
The quartz nozzles 12a to 12e for supplying monogermane (GeH 4 ) into the reaction furnace 11 have different lengths,
There are 5 in total, and 12a is monosilane (SiH
4 ) is provided at the furnace opening (lower left in the figure) together with a nozzle for supplying 12b, 12c, 12d and 12e.
Are provided so as to pass through the furnace opening and the respective ejection ports correspond to the positions of the 30th slot, the 70th slot, the 110th slot and the 150th slot. By using the plurality of nozzles 12a to 12e having different lengths, monogermane can be supplied into the reaction furnace 11 halfway.

【0017】また、断熱板5はLゾーンに対応するヒー
タ6よりも下側に設置される。
Further, the heat insulating plate 5 is installed below the heater 6 corresponding to the L zone.

【0018】本発明に係る半導体デバイスの製造方法の
一例として、図1に示した基板処理装置を用いる成膜手
順を図2に示す。
As an example of the method for manufacturing a semiconductor device according to the present invention, FIG. 2 shows a film forming procedure using the substrate processing apparatus shown in FIG.

【0019】まず反応炉11内を成膜温度に安定化させ
た後、基板であるウエハ4を装填したボート3を反応炉
11内にロード(挿入)する。リアクター(反応炉1
1)内を排気し、ボート3やチューブ1、2に吸着した
水分等を脱離させるためにNパージを行う。リアクタ
ー(反応炉11)内リークチェックを行った後、モノシ
ランとモノゲルマンの流量を設定し、反応炉11内にガ
スを流して圧力を安定化させ成膜を行う。成膜が終了し
たら配管内をNでサイクルパージし、Nでリアクタ
ー内を大気圧まで戻す。大気圧に戻ったらボート3をア
ンロードし、ウエハ4を自然冷却する。最後にウエハ4
をボート3から取り出す。
First, after stabilizing the inside of the reaction furnace 11 to the film formation temperature, the boat 3 loaded with the wafer 4 as the substrate is loaded (inserted) into the reaction furnace 11. Reactor (Reactor 1
1) The inside is evacuated, and N 2 purge is performed in order to desorb the water and the like adsorbed on the boat 3 and the tubes 1 and 2. After performing a leak check in the reactor (reaction furnace 11), the flow rates of monosilane and monogermane are set, and gas is flowed in the reaction furnace 11 to stabilize the pressure and form a film. In the pipe After deposition is complete and the cycle purged with N 2, returning the reactor to atmospheric pressure with N 2. After returning to atmospheric pressure, the boat 3 is unloaded and the wafer 4 is naturally cooled. Finally the wafer 4
Is taken out of the boat 3.

【0020】[実施の形態例] (複数本ノズルを用いたモノゲルマンの途中供給)図1
に例示した基板処理装置において、長さの異なる複数本
ノズルを用いてモノゲルマンを反応炉内に途中供給する
ことで、膜厚およびゲルマニウム比率の面内・面間均一
性が良好なポリシリコンゲルマニウム膜の形成が可能と
なる。
[Embodiment Example] (Supply of monogermane using plural nozzles halfway) FIG.
In the substrate processing apparatus illustrated in Fig. 1, by supplying monogermane into the reaction furnace halfway using multiple nozzles of different lengths, polysilicon germanium with good in-plane / in-plane uniformity of film thickness and germanium ratio is obtained. A film can be formed.

【0021】実際に実験を行った結果、得られた膜厚お
よびゲルマニウム比率の面内・面間均一性を、従来例を
も含めて、モノゲルマン供給形態で比較して図3に示
す。
As a result of an actual experiment, the in-plane / in-plane uniformity of the obtained film thickness and germanium ratio, including the conventional example, are shown in FIG.

【0022】図3中、「1ノズル」は従来例に該当する
形態であり、この場合に、モノゲルマンのノズルは1本
のみであり、その噴出口はモノシランの噴出口の近くに
ある。これに対して、「3ノズル」と「5ノズル」とは
本発明における形態であり、3ノズルの場合に、3本の
モノゲルマンのノズルの噴出口はモノシランの噴出口の
近くと、ボート3の70スロット目の近くと、150ス
ロット目の近くとにあり、5ノズルの場合に、5本のモ
ノゲルマンのノズルの噴出口はモノシランの噴出口の近
くと、ボート3の30スロット目の近くと、70スロッ
ト目の近くと、110スロット目の近くと、150スロ
ット目の近くとにある。各噴出口からは、ほぼ等量のモ
ノゲルマンが噴出するようになっている。
In FIG. 3, "1 nozzle" corresponds to the conventional example. In this case, there is only one nozzle of monogermane, and its ejection port is near the ejection port of monosilane. On the other hand, "3 nozzles" and "5 nozzles" are the forms in the present invention, and in the case of 3 nozzles, the ejection ports of the three monogermane nozzles are close to the monosilane ejection port and the boat 3 Near the 70th slot and near the 150th slot, and in the case of 5 nozzles, the nozzles of the five monogermane nozzles are near the monosilane nozzle and near the 30th slot of the boat 3. , 70th slot, 110th slot, and 150th slot. Almost the same amount of monogermane is ejected from each ejection port.

【0023】成膜温度は500℃、気相圧力は30P
a、ゲルマニウム比率は20%であり、モノゲルマンの
(非希釈)全流量は、図3最下行(Total GeH
流量で表示)に示したように、1ノズルの場合に5
0sccm、3ノズルおよび5ノズルの場合に58sc
cmである。モノシランおよびモノゲルマンは水素によ
って約10倍に希釈されて反応炉に供給される。
The film forming temperature is 500 ° C. and the vapor phase pressure is 30 P.
a, the germanium ratio is 20%, and the total flow rate of monogermane (undiluted) is as shown in the bottom line (Total GeH) of FIG.
As shown in (4 flow rate display), 5 for 1 nozzle
58 sc for 0 sccm, 3 nozzles and 5 nozzles
cm. Monosilane and monogermane are diluted with hydrogen about 10 times and supplied to the reactor.

【0024】実験の結果得られた膜厚の面内・面間均一
性およびゲルマニウム比率(Ge比率と表示)の面内・
面間均一性は図中に示されている。
In-plane uniformity of the film thickness and in-plane uniformity of the germanium ratio (expressed as Ge ratio) obtained as a result of the experiment.
The face-to-face uniformity is shown in the figure.

【0025】図3から明らかなように、多数本ノズルを
用いてモノゲルマンを炉内に供給することで、1本のノ
ズルのみで供給する形態(従来例)と比較して、大幅に
膜厚およびゲルマニウム比率の面内・面間均一性が改善
されていることが分かる。
As is apparent from FIG. 3, by supplying monogermane into the furnace by using a large number of nozzles, the film thickness can be drastically increased as compared with the case of supplying only one nozzle (conventional example). It can be seen that the in-plane / in-plane uniformity of the germanium ratio is improved.

【0026】[0026]

【発明の効果】本発明の実施によって、モノシランとモ
ノゲルマンとを使用して、減圧CVD法によって、膜厚
およびゲルマニウム比率の面内・面間均一性が良好なシ
リコンゲルマニウム膜を基板上に形成する半導体デバイ
スの製造方法および基板処理装置を提供することができ
る。
According to the present invention, a silicon germanium film having good in-plane / in-plane uniformity of film thickness and germanium ratio is formed on a substrate by a low pressure CVD method using monosilane and monogermane. It is possible to provide a semiconductor device manufacturing method and a substrate processing apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る、反応ガスとしてモノシラン(S
iH)とモノゲルマン(GeH)とを使用して薄膜
を形成する減圧CVD装置の構造概略図である。
FIG. 1 shows a monosilane (S) as a reaction gas according to the present invention.
FIG. 3 is a structural schematic diagram of a low pressure CVD apparatus for forming a thin film using iH 4 ) and monogermane (GeH 4 ).

【図2】減圧CVD法による成膜手順を説明する図であ
る。
FIG. 2 is a diagram illustrating a film forming procedure by a low pressure CVD method.

【図3】膜厚およびゲルマニウム比率の面内・面間均一
性の、モノゲルマン供給形態での比較を示す図である。
FIG. 3 is a diagram showing a comparison of in-plane / in-plane uniformity of film thickness and germanium ratio in a monogermane supply mode.

【符号の説明】[Explanation of symbols]

1…アウターチューブ、2…インナーチューブ、3…ボ
ート、4…ウエハ、5…断熱板、6…ヒータ、7…メカ
ニカルブースタポンプ、8…ドライポンプ、9…ボート
回転軸、10…ステンレス製蓋、11…反応炉、12a
〜12e…ノズル。
DESCRIPTION OF SYMBOLS 1 ... Outer tube, 2 ... Inner tube, 3 ... Boat, 4 ... Wafer, 5 ... Insulation plate, 6 ... Heater, 7 ... Mechanical booster pump, 8 ... Dry pump, 9 ... Boat rotating shaft, 10 ... Stainless lid, 11 ... Reactor, 12a
~ 12e ... Nozzle.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K030 AA05 AA06 BA09 BA29 CA04 EA03 EA06 FA10 KA04 KA49 LA15 5F045 AA06 AB01 AC01 AD09 AE19 AF09 BB02 BB03 DP19 DP28 DQ05 EC02 EE12 EF02 EF08 EK22 EM08    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4K030 AA05 AA06 BA09 BA29 CA04                       EA03 EA06 FA10 KA04 KA49                       LA15                 5F045 AA06 AB01 AC01 AD09 AE19                       AF09 BB02 BB03 DP19 DP28                       DQ05 EC02 EE12 EF02 EF08                       EK22 EM08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】反応ガスとしてモノシランとモノゲルマン
とを使用し、反応炉内において、減圧CVD法により、
基板上にポリまたはアモルファスシリコンゲルマニウム
を成膜する半導体デバイスの製造方法において、前記モ
ノゲルマンを長さの異なる複数本のノズルを用いて前記
反応炉内に途中供給することを特徴とする半導体デバイ
スの製造方法。
1. Using monosilane and monogermane as a reaction gas, and by a low pressure CVD method in a reaction furnace,
In a method for manufacturing a semiconductor device in which a poly or amorphous silicon germanium film is formed on a substrate, the monogermane is supplied to the reaction furnace halfway using a plurality of nozzles having different lengths. Production method.
【請求項2】基板を処理する反応管と、前記基板を加熱
するヒータと、前記反応管内にモノシランを供給するノ
ズルと、前記反応管内にモノモノゲルマンを供給するノ
ズルとを有し、前記モノモノゲルマンを供給するノズル
は、長さの異なる複数本のノズルからなることを特徴と
する基板処理装置。
2. A monotube containing a reaction tube for processing a substrate, a heater for heating the substrate, a nozzle for supplying monosilane into the reaction tube, and a nozzle for supplying monomonogermane into the reaction tube. The substrate processing apparatus is characterized in that the nozzles for supplying the liquid are composed of a plurality of nozzles having different lengths.
JP2001231330A 2001-07-31 2001-07-31 Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus Expired - Lifetime JP4792180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001231330A JP4792180B2 (en) 2001-07-31 2001-07-31 Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001231330A JP4792180B2 (en) 2001-07-31 2001-07-31 Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus

Publications (2)

Publication Number Publication Date
JP2003045811A true JP2003045811A (en) 2003-02-14
JP4792180B2 JP4792180B2 (en) 2011-10-12

Family

ID=19063401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001231330A Expired - Lifetime JP4792180B2 (en) 2001-07-31 2001-07-31 Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus

Country Status (1)

Country Link
JP (1) JP4792180B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015619A1 (en) * 2003-08-07 2005-02-17 Hitachi Kokusai Electric Inc. Substrate processing apparatus and method for manufacturing semiconductor device
JP2005268755A (en) * 2004-02-17 2005-09-29 Tokyo Electron Ltd Method of oxidizing workpiece, oxidation apparatus, and storage medium
JP2005311301A (en) * 2004-03-24 2005-11-04 Tokyo Electron Ltd Oxidizing method and oxidizing apparatus of workpiece, and storage medium
CN100397574C (en) * 2003-10-30 2008-06-25 台湾积体电路制造股份有限公司 Method for manufacturing multi-layer structure having strain and field effect transistor having strain layer
CN100397575C (en) * 2003-10-30 2008-06-25 台湾积体电路制造股份有限公司 Method for manufacturing multi-layerstructure having strain and field effect transistor having strair layer
US7648895B2 (en) 2003-10-20 2010-01-19 Tokyo Electron Limited Vertical CVD apparatus for forming silicon-germanium film
CN109427628A (en) * 2017-09-05 2019-03-05 株式会社国际电气 The manufacturing method and recording medium of substrate processing device, semiconductor devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164022A (en) * 1987-12-21 1989-06-28 Hitachi Ltd Formation of silicon germanium amorphous alloy film
JPH05259081A (en) * 1992-03-10 1993-10-08 Nec Corp Vapor growth device and thin film forming method
JPH06232042A (en) * 1993-01-29 1994-08-19 Oki Electric Ind Co Ltd Formation of si-ge thin film
JPH0745532A (en) * 1993-07-30 1995-02-14 Sony Corp Low pressure cvd equipment and film forming method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164022A (en) * 1987-12-21 1989-06-28 Hitachi Ltd Formation of silicon germanium amorphous alloy film
JPH05259081A (en) * 1992-03-10 1993-10-08 Nec Corp Vapor growth device and thin film forming method
JPH06232042A (en) * 1993-01-29 1994-08-19 Oki Electric Ind Co Ltd Formation of si-ge thin film
JPH0745532A (en) * 1993-07-30 1995-02-14 Sony Corp Low pressure cvd equipment and film forming method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100870807B1 (en) * 2003-08-07 2008-11-27 가부시키가이샤 히다치 고쿠사이 덴키 Substrate processing apparatus and method for manufacturing semiconductor device
WO2005015619A1 (en) * 2003-08-07 2005-02-17 Hitachi Kokusai Electric Inc. Substrate processing apparatus and method for manufacturing semiconductor device
US8673076B2 (en) 2003-08-07 2014-03-18 Hitachi Kokusai Electric Inc. Substrate processing apparatus and semiconductor device producing method
JPWO2005015619A1 (en) * 2003-08-07 2006-10-05 株式会社日立国際電気 Substrate processing apparatus and semiconductor device manufacturing method
US7622007B2 (en) 2003-08-07 2009-11-24 Hitachi Kokusai Electric Inc. Substrate processing apparatus and semiconductor device producing method
US7648895B2 (en) 2003-10-20 2010-01-19 Tokyo Electron Limited Vertical CVD apparatus for forming silicon-germanium film
CN100397575C (en) * 2003-10-30 2008-06-25 台湾积体电路制造股份有限公司 Method for manufacturing multi-layerstructure having strain and field effect transistor having strair layer
CN100397574C (en) * 2003-10-30 2008-06-25 台湾积体电路制造股份有限公司 Method for manufacturing multi-layer structure having strain and field effect transistor having strain layer
JP2005268755A (en) * 2004-02-17 2005-09-29 Tokyo Electron Ltd Method of oxidizing workpiece, oxidation apparatus, and storage medium
JP4586544B2 (en) * 2004-02-17 2010-11-24 東京エレクトロン株式会社 Process for oxidizing object, oxidation apparatus and storage medium
JP4609098B2 (en) * 2004-03-24 2011-01-12 東京エレクトロン株式会社 Process for oxidizing object, oxidation apparatus and storage medium
JP2005311301A (en) * 2004-03-24 2005-11-04 Tokyo Electron Ltd Oxidizing method and oxidizing apparatus of workpiece, and storage medium
CN109427628A (en) * 2017-09-05 2019-03-05 株式会社国际电气 The manufacturing method and recording medium of substrate processing device, semiconductor devices
JP2019047027A (en) * 2017-09-05 2019-03-22 株式会社Kokusai Electric Substrate processing apparatus, semiconductor device manufacturing method and program

Also Published As

Publication number Publication date
JP4792180B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
US11251040B2 (en) Cyclical deposition method including treatment step and apparatus for same
US6867152B1 (en) Properties of a silica thin film produced by a rapid vapor deposition (RVD) process
JP3265042B2 (en) Film formation method
US7211525B1 (en) Hydrogen treatment enhanced gap fill
US8753984B2 (en) Method and apparatus for forming silicon nitride film
CN1712560B (en) Vertical CVD apparatus and CVD method using the same
US8178448B2 (en) Film formation method and apparatus for semiconductor process
JP3819660B2 (en) Semiconductor device manufacturing method and semiconductor manufacturing apparatus
JP2003077845A (en) Manufacturing method of semiconductor device and substrate treatment apparatus
US10147599B2 (en) Methods for depositing low K and low wet etch rate dielectric thin films
US20040029379A1 (en) Thin film forming method and thin film forming device
JP2007516599A (en) Surface preparation before deposition on germanium
TW201411733A (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
TW201403710A (en) Method of manufacturing semiconductor device, method of processing substrate, substrate processing apparatus and non-transitory computer-readable recording medium
JP6523080B2 (en) Semiconductor device manufacturing method, substrate processing apparatus and program
JP2012074737A (en) Method for manufacturing semiconductor device and for processing substrate, and substrate processing apparatus
WO2020189288A1 (en) Film formation method and film formation apparatus
US20220139705A1 (en) Method of forming oxide layer and semiconductor structure
JP2003045811A (en) Method for manufacturing semiconductor device and wafer processing system
US7737051B2 (en) Silicon germanium surface layer for high-k dielectric integration
KR20120005402A (en) Method of manufacturing a semiconductor device and substrate processing apparatus
JP2001156063A (en) Method and apparatus for manufacturing semiconductor device
JP2003273020A (en) Substrate-processing method
JP4439796B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
JP2006210950A (en) Manufacturing method of semiconductor device, and semiconductor manufacturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4792180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term