JP2003043249A - Polarizing functional element, optical isolator, laser diode module and method for manufacturing polarizing functional element - Google Patents

Polarizing functional element, optical isolator, laser diode module and method for manufacturing polarizing functional element

Info

Publication number
JP2003043249A
JP2003043249A JP2001226126A JP2001226126A JP2003043249A JP 2003043249 A JP2003043249 A JP 2003043249A JP 2001226126 A JP2001226126 A JP 2001226126A JP 2001226126 A JP2001226126 A JP 2001226126A JP 2003043249 A JP2003043249 A JP 2003043249A
Authority
JP
Japan
Prior art keywords
film
dielectric
polarizing
substrate
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001226126A
Other languages
Japanese (ja)
Inventor
Nobuo Imaizumi
伸夫 今泉
Kenichi Shiraki
健一 白木
Hiramichi Sato
平道 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP2001226126A priority Critical patent/JP2003043249A/en
Priority to US10/130,474 priority patent/US7002742B2/en
Priority to PCT/JP2001/008152 priority patent/WO2002025325A1/en
Publication of JP2003043249A publication Critical patent/JP2003043249A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a polarizing functional element having a polarizing film in which a light transmitting dielectric grating and a conductive metal film are alternately arranged in a plurality of numbers to form a stripe structure in one body so that the reflection dispersion of the incident light is suppressed and loss of light is prevented. SOLUTION: The polarizing functional element is provided with a light transmitting substrate 1 and the following polarizing film 4 having such a stripe structure as integrated with the substrate 1. The polarizing film 4 is produced by alternately arranging a plurality of ultrathin and smooth metal thin films 3a, 3b having 5 to 20 nm film thickness as aimed specification and within ±10% variance of the thickness and the light transmitting dielectric gratings 2a, 2b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、偏光機能素子、光
アイソレータ並びにレーザダイオードモジュールに関
し、また、偏光機能素子の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarization function element, an optical isolator, a laser diode module, and a manufacturing method of the polarization function element.

【0002】[0002]

【従来の技術】従来、光透過性の誘電体格子と導電性の
金属膜とを交互に多数積層することにより縞構造の偏光
機能素子を構成することが知られている(特開昭60―
97304号)。この偏光機能素子は、入射光を積層方
向と垂直な方向から入射させると、層と平行な成分は吸
収し、層と直交する成分は透過させることから偏光機能
を発揮できる。
2. Description of the Related Art Conventionally, it has been known to construct a polarization functional element having a stripe structure by alternately laminating a large number of light-transmitting dielectric gratings and conductive metal films (Japanese Patent Laid-Open No. 60-60).
97304). When the incident light is incident from the direction perpendicular to the stacking direction, this polarization function element absorbs the component parallel to the layer and transmits the component orthogonal to the layer, and thus can exhibit the polarization function.

【0003】然し、その偏光機能素子では、光透過性の
誘電体格子と導電性の金属膜とを単に多数交互に積層す
るだけであるため、入射光の反射分散を防ぐよう金属膜
を極薄状に形成すると、積層構造が金属膜から剥離する
虞れがある。また、金属膜による剥離等に鑑みる積層数
にも限界があるため、積層方向の厚さに限界があってビ
ーム径の大きな光は入射できないものとなる。
However, in the polarization function element, since a large number of light-transmitting dielectric gratings and conductive metal films are simply laminated alternately, the metal film is extremely thin so as to prevent reflection dispersion of incident light. If formed into a shape, the laminated structure may be separated from the metal film. Further, there is a limit to the number of layers that can be taken into consideration due to peeling due to a metal film, and thus there is a limit to the thickness in the layering direction, so that light with a large beam diameter cannot enter.

【0004】その他に、ファラデー効果を有する磁気光
学結晶体を基板として備え、所定の幅,深さの平行な凹
溝を基板の表面に多数設けると共に、金属薄膜として金
属層を基板の溝内に充填形成し、偏光子一体型のファラ
デー回転子を構成することが提案されている(特許第3
067026号)。
In addition, a magneto-optical crystal body having a Faraday effect is provided as a substrate, a large number of parallel concave grooves having a predetermined width and depth are provided on the surface of the substrate, and a metal layer is formed as a metal thin film in the groove of the substrate. It is proposed to form a Faraday rotator integrated with a polarizer by filling and forming (Patent No. 3).
067026).

【0005】このファラデー回転子では、所定の幅を維
持し、且つ、その幅よりも大きい深さで平行の微小な凹
溝をガーネット等の固い磁気光学結晶体の表面に多数設
ける必要があるが、その溝加工は実際上極めて困難であ
り、また、微小な溝を所定の深さ通りに正確に掘り、金
属層を溝内に充填するという加工を高精度に制御するこ
とも困難である。
In this Faraday rotator, it is necessary to maintain a predetermined width and to provide a large number of parallel fine grooves with a depth larger than the width on the surface of a hard magneto-optical crystal such as garnet. However, the groove processing is extremely difficult in practice, and it is also difficult to precisely control the processing of precisely digging a minute groove to a predetermined depth and filling the metal layer in the groove.

【0006】これに対し、細長状の微細な凹凸を石英基
板の板面に形成し、半導体の薄膜を凹凸の全面に形成し
た後、凹凸の側面に形成された薄膜を残すと共に、凹凸
の表面並びに底面に形成された薄膜を除去し、更に、石
英基板と同程度の屈折率を有する透明体を凹部内から表
面に固着することにより、石英と半導体薄膜が交互に配
列する縞構造の偏光膜を基板と一体構造に設けることが
提案されている(特開平4−256904号)。
On the other hand, elongated fine irregularities are formed on the plate surface of the quartz substrate, a semiconductor thin film is formed on the entire surface of the irregularities, and then the thin film formed on the side surfaces of the irregularities is left and the surface of the irregularities is formed. In addition, the thin film formed on the bottom surface is removed, and a transparent body having a refractive index similar to that of the quartz substrate is fixed to the surface from the inside of the recess to form a striped polarizing film in which quartz and semiconductor thin films are alternately arranged. Has been proposed to be integrated with the substrate (Japanese Patent Laid-Open No. 4-256904).

【0007】その製造工程からすると、まず、半導体の
薄膜を高周波スパッタリングにより凹凸の全面に形成す
ることが行われるが、この全面被膜では凹凸の側面には
均一厚みに付着し難いため、偏光膜として活用される側
面の薄膜を高精度に膜厚制御するのが難しい。殊に、そ
の膜厚が厚いと、入射光が反射分散し、光損失が大きく
なるから、性能が低下する。
According to the manufacturing process, first, a semiconductor thin film is formed on the entire surface of the unevenness by high-frequency sputtering. However, since it is difficult for this entire surface film to adhere to the side surface of the unevenness to a uniform thickness, it is used as a polarizing film. It is difficult to control the thickness of the thin film used on the side surface with high precision. In particular, when the film thickness is large, incident light is reflected and dispersed, resulting in a large optical loss, and the performance deteriorates.

【0008】[0008]

【発明が解決しようとする課題】本発明は、光透過性の
誘電体格子と導電性の金属膜とが交互に複数並ぶ縞構造
で一体構造を呈すると共に、入射光の反射分散を抑えら
れて光損失の発生を防げる偏光膜を備え、光透過率,偏
光性能等の性能に優れる偏光機能素子並びに光アイソレ
ータを提供することを目的とする。
SUMMARY OF THE INVENTION According to the present invention, a striped structure in which a plurality of light-transmitting dielectric gratings and conductive metal films are alternately arranged is formed, and the reflection dispersion of incident light is suppressed. An object of the present invention is to provide a polarization functional element and an optical isolator which are provided with a polarizing film capable of preventing the occurrence of light loss and are excellent in performance such as light transmittance and polarization performance.

【0009】本発明は、同じ電気入力に対しても、発振
出力が大きくしかも出力が安定するレーザダイオードモ
ジュールを提供することを目的とする。
It is an object of the present invention to provide a laser diode module having a large oscillation output and a stable output even for the same electric input.

【0010】本発明は、入射光の反射分散を抑えて光損
失の発生を防げるよう導電性の金属膜を極薄状に形成で
き、光透過率,偏光性能等の性能に優れる偏光機能素子
を簡単で安価に製造可能な偏光機能素子の製造方法を提
供することを目的とする。
The present invention provides a polarization functional element which is capable of forming a conductive metal film in an extremely thin shape so as to suppress reflection dispersion of incident light and prevent occurrence of light loss, and which is excellent in performance such as light transmittance and polarization performance. An object of the present invention is to provide a method for manufacturing a polarization functional element that can be manufactured easily and at low cost.

【0011】[0011]

【課題を解決するための手段】本発明の請求項1に係る
偏光機能素子においては、光透過性の基板を備え、目標
仕様の膜厚が5〜20nm範囲のいずれかで、厚みのバ
ラ付きが±10%範囲の極薄で平滑な導電性の金属薄膜
を光透過性の誘電体格子と交互に複数並べた縞構造の偏
光膜を基板と一体構造に設けることにより構成されてい
る。
According to a first aspect of the present invention, there is provided a polarization functional element comprising a light-transmissive substrate, a target specification film thickness of 5 to 20 nm, and a variation in thickness. Is formed by providing a polarizing film having a striped structure in which a plurality of ultrathin and smooth conductive metal thin films in the range of ± 10% are alternately arranged with a light transmissive dielectric grating in a structure integrated with a substrate.

【0012】本発明の請求項2に係る偏光機能素子にお
いては、各縞構造が相平行する偏光膜を基板の両面に設
けることにより構成されている。
In the polarization function element according to the second aspect of the present invention, the polarization films in which the respective stripe structures are parallel to each other are provided on both surfaces of the substrate.

【0013】本発明の請求項3に係る偏光機能素子にお
いては、縞構造の偏光膜と光透過性の誘電体膜との積層
膜を無反射膜としてシリコン基板と一体構造に設けるこ
とにより構成されている。
A polarization function element according to a third aspect of the present invention is constituted by providing a laminated film of a polarizing film having a stripe structure and a light-transmitting dielectric film as a non-reflective film in an integrated structure with a silicon substrate. ing.

【0014】本発明の請求項4に係る偏光機能素子にお
いては、縞構造の偏光膜と光透過性の誘電体膜とを交互
に複数積層した積層膜を無反射膜としてシリコン基板と
一体構造に設けることにより構成されている。
In the polarization function element according to a fourth aspect of the present invention, a laminated film in which a plurality of stripe-structured polarizing films and light-transmitting dielectric films are alternately laminated is used as a non-reflective film so as to be integrated with the silicon substrate. It is configured by providing.

【0015】本発明の請求項5に係る偏光機能素子にお
いては、光透過性の基板を備え、目標仕様の膜厚が5〜
20nm範囲のいずれかで、厚みのバラ付きが±10%
範囲の極薄で平滑な導電性の金属薄膜を光透過性の誘電
体格子と交互に複数並べた縞構造で、その縞構造の格子
がファラデー回転結晶体の回転角に対応する角度だけ異
方向に傾く偏光膜を基板の両面に設けることにより構成
されている。
According to a fifth aspect of the present invention, there is provided a polarization function element, which comprises a light-transmissive substrate and has a target specification film thickness of 5 to 5.
± 10% variation in thickness in any of the 20 nm range
A striped structure in which a plurality of ultra-thin and smooth conductive metal thin films are alternately arranged with a light-transmitting dielectric lattice, and the striped lattice has different directions at angles corresponding to the rotation angle of the Faraday rotation crystal. It is configured by providing a polarizing film inclined to the both sides of the substrate.

【0016】本発明の請求項6に係る偏光機能素子にお
いては、ファラデー回転結晶体を基板として備え、その
ファラデー回転結晶体の上に形成する縞構造の偏光膜
と、この偏光膜の上に形成する光透過性の誘電体膜との
積層膜を無反射膜としてファラデー回転結晶体と一体構
造に設けることにより構成されている。
In the polarization functional element according to claim 6 of the present invention, a Faraday rotation crystal is provided as a substrate, and a polarizing film having a stripe structure is formed on the Faraday rotation crystal, and is formed on the polarization film. It is configured by providing a laminated film with a light-transmitting dielectric film as a non-reflective film integrally with the Faraday rotation crystal.

【0017】本発明の請求項7に係る光アイソレータに
おいては、請求項5または6に記載の偏光機能素子を光
アイソレータ素子として組み付けることにより構成され
ている。
An optical isolator according to a seventh aspect of the present invention is constructed by assembling the polarization function element according to the fifth or sixth aspect as an optical isolator element.

【0018】本発明の請求項8に係るレーザダイオード
モジュールにおいては、請求項7に記載の光アイソレー
タを組付け搭載することにより構成されている。
A laser diode module according to an eighth aspect of the present invention is constructed by assembling and mounting the optical isolator according to the seventh aspect.

【0019】本発明の請求項9に係る偏光機能素子の製
造方法においては、光透過性の基板を備え、誘電体層を
基板の上に形成した後、その誘電体層から所定の間隔を
隔て相並行する複数の誘電体ベース格子を形成すると共
に、導電性金属を誘電体ベース格子の片側面に斜め方向
より蒸着させて導電性の金属薄膜を形成し、更に、導電
性金属の薄膜と誘電体ベース格子の残余間隔を埋める誘
電体付加層を形成し、この誘電体付加層と誘電体ベース
格子とから導電性の金属薄膜を挟む縞構造の偏光膜を基
板と一体構造に形成するようにされている。
According to a ninth aspect of the present invention, there is provided a method for manufacturing a polarization functional element, comprising a light-transmissive substrate, forming a dielectric layer on the substrate, and then separating the dielectric layer with a predetermined distance. A plurality of parallel dielectric base lattices are formed, and a conductive metal thin film is formed by vapor-depositing a conductive metal on one side surface of the dielectric base lattice in an oblique direction. A dielectric additional layer is formed to fill the remaining space of the body-based grating, and a striped polarizing film sandwiching a conductive metal thin film from the dielectric additional layer and the dielectric base grating is formed integrally with the substrate. Has been done.

【0020】本発明の請求項10に係る偏光機能素子の
製造方法においては、導電性金属を誘電体ベース格子の
片側面ずつ異なる斜め方向より蒸着させて導電性の金属
薄膜を誘電体ベース格子の両面に形成するようにされて
いる。
In the method of manufacturing a polarization functional element according to a tenth aspect of the present invention, a conductive metal thin film is deposited on the dielectric base grid by depositing a conductive metal from different oblique directions on each side surface of the dielectric base grid. It is designed to be formed on both sides.

【0021】本発明の請求項11に係る偏光機能素子の
製造方法においては、目標仕様の膜厚が5〜20nm範
囲のいずれかで、厚みのバラ付きが±10%範囲の極薄
で平滑な導電性の金属薄膜を光透過性の誘電体格子と交
互に複数並べた縞構造の偏光膜を基板と一体構造に形成
するようにされている。
According to the eleventh aspect of the present invention, in the method of manufacturing a polarization functional element, the target specification film thickness is in the range of 5 to 20 nm, and the thickness variation is within ± 10% and is extremely thin and smooth. A polarizing film having a stripe structure, in which a plurality of conductive metal thin films are alternately arranged with a light-transmitting dielectric grating, is formed integrally with the substrate.

【0022】[0022]

【発明の実施の形態】以下、添付図面を参照して説明す
ると、図示実施の形態は、図1並びに図8〜図11で示
す偏光フィルタ素子を偏光機能素子として構成する場
合、図12で示す光アイソレータ素子を偏光機能素子と
して構成する場合が挙げられている。また、光アイソレ
ータ素子の応用例としては、図13で示す光アイソレー
タと、図14で示すレーザダイオードモジュールとが挙
げられている。なお、偏光機能素子に係る実施の形態
中、同じ構成部分は共通の符号を用いて示す。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, referring to the accompanying drawings, the illustrated embodiment is shown in FIG. 12 when the polarizing filter element shown in FIGS. 1 and 8 to 11 is constituted as a polarization functional element. The case where the optical isolator element is configured as a polarization function element is mentioned. Further, as an application example of the optical isolator element, the optical isolator shown in FIG. 13 and the laser diode module shown in FIG. 14 are mentioned. In the embodiments relating to the polarization function element, the same components are denoted by common reference numerals.

【0023】偏光機能素子は、基板1を備え、光透過性
の誘電体格子2a,2b…と導電性の金属薄膜3a,3
b…とが相平行で交互に複数並ぶ縞構造の偏光膜4を基
板1と一体構造に設けることを基本形態に構成されてい
る。この基板1としては、偏光フィルタ素子を構成する
場合でシリコン基板を備え、光アイソレータ素子を構成
する場合でファラデー回転結晶体が備えられている。
The polarization function element comprises a substrate 1, a light-transmitting dielectric grating 2a, 2b ... And a conductive metal thin film 3a, 3b.
.. is arranged in parallel with each other, and the basic configuration is to provide the polarizing film 4 having a striped structure in parallel with the substrate 1 in an integrated structure. As the substrate 1, a silicon substrate is provided when forming a polarization filter element, and a Faraday rotation crystal body is provided when forming an optical isolator element.

【0024】その偏光機能素子では、目標仕様の膜厚が
5〜20nm範囲のいずれかで、厚みのバラ付きが±1
0%範囲の極薄で平滑な導電性の金属薄膜3a,3b…
を光透過性の誘電体格子2a,2b…と交互に複数並べ
て設けることにより縞構造の偏光膜4が形成されてい
る。
In the polarization function element, the variation in thickness is ± 1 when the target specification film thickness is in the range of 5 to 20 nm.
Ultra-thin and smooth conductive metal thin films 3a, 3b in 0% range ...
Are arranged side by side with the light-transmitting dielectric gratings 2a, 2b ... Alternately, so that the polarizing film 4 having a striped structure is formed.

【0025】その偏光機能素子を実装する場合、光軸に
対し、光学面を垂直に配置し或いは8°程度の角度を付
けて組み立てられるが、金属薄膜3a,3b…の膜厚が
5±10%nm以下になると、垂直入射により、TE損
失が小さくなり、偏光子として機能しない。一方、傾斜
角が8°で金属薄膜3a,3b…の膜厚が20±10%
nm以上になると、TM損失が大きくなり、挿入損失が
大きくなって性能が劣化する。このため、いずれのもの
も、目標とする特性が得られない。
When the polarization function element is mounted, the optical surface is arranged perpendicular to the optical axis or assembled at an angle of about 8 °, but the metal thin films 3a, 3b ... Have a film thickness of 5 ± 10. When it is less than% nm, the TE loss becomes small due to the normal incidence, and it does not function as a polarizer. On the other hand, the inclination angle is 8 ° and the film thickness of the metal thin films 3a, 3b ... Is 20 ± 10%.
When the thickness is greater than or equal to nm, the TM loss increases, the insertion loss increases, and the performance deteriorates. Therefore, none of them can achieve the target characteristics.

【0026】その金属薄膜3a,3b…は極薄で凹凸の
少ない平滑なものであるため、この金属薄膜3a,3b
…による偏光膜4では入射光の反射分散を抑えられて光
損失の発生を防げ、TM損失を小さく且つTE損失を大
きく保てるよう構成できる。また、縞構造の偏光膜4を
シリコン基板またはファラデー回転結晶体でなる基板1
の上に形成することから、その膜自体も強固な一体構造
に構成できる。
Since the metal thin films 3a, 3b ... Are extremely thin and smooth with few irregularities, the metal thin films 3a, 3b.
The polarizing film 4 according to ... Can be configured to suppress reflection dispersion of incident light, prevent occurrence of optical loss, and keep TM loss small and TE loss large. In addition, the polarizing film 4 having a striped structure is formed of a silicon substrate or a substrate 1 made of a Faraday rotation crystal.
Since it is formed on the above, the film itself can be configured to have a strong integral structure.

【0027】その縞構造の偏光膜4に加えて、光透過性
の誘電体膜5を偏光膜4の上に形成することにより、偏
光膜4と光透過性の誘電体膜5とから無反射膜6が形成
されている。この無反射膜6では、入射光の反射分散を
より確実に抑えられて光損失の発生を防げるため、光透
過率,偏光性能等の性能に優れる偏光機能素子として構
成できる。
By forming a light-transmitting dielectric film 5 on the polarizing film 4 in addition to the striped polarizing film 4, there is no reflection from the polarizing film 4 and the light-transmitting dielectric film 5. The film 6 is formed. The non-reflective film 6 can more reliably suppress the reflection dispersion of incident light and prevent the occurrence of light loss, so that the anti-reflection film 6 can be configured as a polarization functional element having excellent properties such as light transmittance and polarization performance.

【0028】その偏光機能素子として偏光フィルタ素子
を製造する場合、基板1はシリコン結晶体の他に、BK
−7ガラス,鉛ガラス,ゲルマニウム結晶体,ニオブ酸
リチューム結晶体が用いられる。誘電体格子2a,2b
…は、SiO,TiO,Al,Ta
ZrO等の誘電体材料により形成できる。金属薄膜3
a,3b…は、タンタル,銀,銅,アルミ等の導電性金
属から形成できる。
When manufacturing a polarization filter element as the polarization function element, the substrate 1 is made of BK in addition to the silicon crystal.
-7 glass, lead glass, germanium crystal, and lithium niobate crystal are used. Dielectric grating 2a, 2b
... is SiO 2 , TiO 2 , Al 2 O 3 , Ta 2 O 5 ,
It can be formed of a dielectric material such as ZrO 2 . Metal thin film 3
The a, 3b ... Can be formed from a conductive metal such as tantalum, silver, copper, or aluminum.

【0029】その偏光フィルタ素子を製造する場合、ま
ず、図2で示すように誘電体材料から所定厚みの誘電体
ベース層20をスパッタリングまたは真空蒸着によりシ
リコン基板1の板面に形成する。次に、縞状のマスクを
誘電体ベース層20の表面に載置し、X線リソグラフィ
ー法及びECR,エッチング法により、図3で示すよう
に所定の間隔を隔て相並行する複数の誘電体ベース格子
20a,20b…を所定の間隔に形成する。
When manufacturing the polarization filter element, first, as shown in FIG. 2, a dielectric base layer 20 having a predetermined thickness is formed on the plate surface of the silicon substrate 1 by sputtering or vacuum evaporation. Next, a striped mask is placed on the surface of the dielectric base layer 20, and a plurality of dielectric bases that are parallel to each other at predetermined intervals are formed by X-ray lithography, ECR, and etching, as shown in FIG. The gratings 20a, 20b ... Are formed at a predetermined interval.

【0030】その誘電体ベース格子20a,20b…に
は、分子線エピタキシー(MBE)や原子層エピタキシ
ー(ALE)或いはスパッタリング,真空蒸着等を適用
し、図4で示すように導電性金属を斜め上方より飛ばす
ことにより金属薄膜30a,30b…を薄膜状に形成す
る。この導電性金属は、専ら、斜め上方より誘電体ベー
ス格子20a,20b…の片側面に向けて飛ばすため、
金属薄膜30a,30b…は膜厚を薄く精密に形成でき
る。但し、導電性金属は誘電体ベース格子20a,20
b…の上面にも付着するが、これは後工程で除去でき
る。
Molecular beam epitaxy (MBE), atomic layer epitaxy (ALE), sputtering, vacuum deposition, or the like is applied to the dielectric base gratings 20a, 20b, ... And a conductive metal is slanted upward as shown in FIG. By skipping further, the metal thin films 30a, 30b ... Are formed in a thin film shape. Since this conductive metal is exclusively blown from diagonally above toward one side surface of the dielectric base lattices 20a, 20b ...
The metal thin films 30a, 30b ... Can be formed thinly and precisely. However, the conductive metal is the dielectric base gratings 20a, 20
Although it adheres also to the upper surface of b ..., this can be removed in a later process.

【0031】その金属薄膜30a,30b…を形成した
後、図5で示すように誘電体ベース格子20a,20b
…と同材質の誘電体材料21をスパッタリングまたは真
空蒸着により金属薄膜30a,30b…と誘電体ベース
格子20a,20b…の残余間隔に埋める。次に、図6
で示すように誘電体ベース格子20a,20b…の上面
が露出するまで余分な誘電体材料21並びに金属薄膜3
0a,30bを…研摩等により取り除く。
After forming the metal thin films 30a, 30b ..., As shown in FIG. 5, dielectric base gratings 20a, 20b are formed.
The dielectric material 21 of the same material as the above is filled in the remaining space between the metal thin films 30a, 30b ... And the dielectric base gratings 20a, 20b ... By sputtering or vacuum deposition. Next, FIG.
As shown in FIG. 3, excess dielectric material 21 and metal thin film 3 are formed until the upper surfaces of the dielectric base gratings 20a, 20b ... Are exposed.
0a and 30b are removed by polishing or the like.

【0032】その誘電体材料21からは、誘電体付加層
21a,21b…を形成できると共に、誘電体付加層2
1a,21b…と誘電体ベース格子20a,20b…と
から誘電体格子2a,2b…を形成できる。また、誘電
体格子2a,2b…と金属薄膜3a,3bとから基本形
態となる縞構造の偏光膜4を形成できる。
.. can be formed from the dielectric material 21 and the dielectric addition layer 2 can be formed.
Dielectric gratings 2a, 2b ... Can be formed from 1a, 21b ... And dielectric base gratings 20a, 20b. Further, the dielectric film 2a, 2b ... And the metal thin films 3a, 3b can form the polarizing film 4 having a striped structure as a basic form.

【0033】その偏光膜4を含む多層構造積層膜を無反
射膜6として形成するときは、図7で示すように少なく
とも誘電体膜5を縞構造の偏光膜4に重ねて積層し、ま
た、誘電体膜5を下地層としてTiO/SiO,T
/SiOの誘電体膜を更に積層することによ
り反射防止膜を形成するようにできる。
When the multilayer structure laminated film including the polarizing film 4 is formed as the antireflection film 6, at least the dielectric film 5 is laminated and laminated on the polarizing film 4 having the striped structure as shown in FIG. Using the dielectric film 5 as a base layer, TiO 2 / SiO 2 , T
The antireflection film can be formed by further laminating a dielectric film of a 2 O 5 / SiO 2 .

【0034】上述した工程から、金属薄膜3a,3b…
は目標仕様の膜厚が5〜20nm範囲のいずれかで、厚
みのバラ付きが±10%範囲の膜厚に形成する。これに
対し、誘電体格子2a,2b…は幅50〜300nm程
度に形成し、縞構造の高さは200〜1000nm程度
に形成すればよい。
From the above steps, the metal thin films 3a, 3b ...
Is formed to have a target specification film thickness in the range of 5 to 20 nm and a thickness variation of ± 10%. On the other hand, the dielectric gratings 2a, 2b ... May be formed with a width of about 50 to 300 nm, and the height of the stripe structure may be formed with a height of about 200 to 1000 nm.

【0035】このように偏光フィルタ素子を製造すると
きには、目標仕様の膜厚が5〜20nm範囲のいずれか
で、厚みのバラ付きが±10%範囲の極薄で凹凸の少な
い平滑な導電性の金属薄膜3a,3b…を設けることに
より縞構造の偏光膜4が形成されているため、入射光の
反射分散を抑えられて光損失の発生を防げ、TM損失を
小さく且つTE損失を大きく保てるよう構成できる。そ
れと共に、偏光膜4と誘電体層5とから無反射膜6を形
成することにより光透過率,偏光性能等の性能に優れる
偏光フィルタ素子を構成できる。
When the polarizing filter element is manufactured as described above, when the film thickness of the target specification is in the range of 5 to 20 nm and the variation in the thickness is within ± 10%, it is extremely thin and has a smooth conductive surface with few irregularities. Since the polarizing film 4 having the striped structure is formed by providing the metal thin films 3a, 3b, ..., The reflection dispersion of the incident light is suppressed, the optical loss is prevented, the TM loss is small and the TE loss is large. Can be configured. At the same time, by forming the non-reflective film 6 from the polarizing film 4 and the dielectric layer 5, a polarizing filter element having excellent performance such as light transmittance and polarization performance can be constructed.

【0036】工程的には、X線リソグラフィー法及びE
CR,エッチング法を適用することにより複数の誘電体
ベース格子20a,20b…を所定の高さに形成し、分
子線エピタキシー(MBE)や原子層エピタキシー(A
LE)或いはスパッタリング,真空蒸着等により金属薄
膜3a,3b…を形成するものであるから、偏光フィル
タ素子として簡単な工程で安価なものに構成できる。
In terms of steps, the X-ray lithography method and E
A plurality of dielectric base lattices 20a, 20b ... Are formed at a predetermined height by applying the CR or etching method, and molecular beam epitaxy (MBE) or atomic layer epitaxy (A
Since the metal thin films 3a, 3b ... Are formed by LE), sputtering, vacuum deposition, or the like, the polarizing filter element can be constructed at a low cost by a simple process.

【0037】その有効性を確認するべく、シリコン結晶
体(Si)を基板とし、二酸化珪素(SiO)から誘
電体格子を形成し、銀(Ag)から金属薄膜を形成し、
二酸化珪素(SiO)を下地層とする無反射膜を形成
することにより、金属薄膜の膜厚(目標値):20n
m,周期幅:220nm,高さ:400nmの偏光機能
素子を作製した。
In order to confirm its effectiveness, a silicon crystal (Si) is used as a substrate, a dielectric lattice is formed from silicon dioxide (SiO 2 ), and a metal thin film is formed from silver (Ag),
By forming a non-reflective film using silicon dioxide (SiO 2 ) as a base layer, the thickness of the metal thin film (target value): 20 n
A polarizing functional element having m, a period width of 220 nm and a height of 400 nm was manufactured.

【0038】その金属薄膜が目標値の20nm膜厚のも
のであると、TM損失:約0.014dBで、TE損
失:約23.5dBのものが得られた。また、膜厚のバ
ラ付きが+10%の22nm膜厚のものであると、TM
損失:約0.017dBで、TE損失:約25.0dB
のものとなり、膜厚のバラ付きが−10%の18nm膜
厚のものであると、TM損失:約0.011dBで、T
E損失:約22.0dBのものとなった。
When the metal thin film had a target film thickness of 20 nm, TM loss: about 0.014 dB and TE loss: about 23.5 dB were obtained. In addition, if the film thickness variation is + 10% and the film thickness is 22 nm, TM
Loss: about 0.017 dB, TE loss: about 25.0 dB
When the film thickness variation is −10% and the film thickness is 18 nm, the TM loss is about 0.011 dB and the T
E loss: It became about 22.0 dB.

【0039】ここで、TM損失を小さく且つTE損失を
大きいものが特性的に良好で、20nmの場合ではTE
損失:20dB以上が好ましいところから、目標仕様の
膜厚が20nmで、厚みのバラ付きが±10%範囲の2
2nm膜厚並びに18nm膜厚のものでも、光透過率,
偏光性能等の性能に優れる偏光機能素子として構成でき
る。
Here, a material having a small TM loss and a large TE loss is excellent in characteristics, and TE is 20 nm.
Loss: Since 20 dB or more is preferable, the target specification film thickness is 20 nm and the thickness variation is within ± 10% of 2
Even with 2 nm and 18 nm film thickness, the light transmittance,
It can be configured as a polarization function element having excellent performance such as polarization performance.

【0040】その偏光機能素子を実装する場合、上述し
たように光軸に対し、光学面を垂直に配置し或いは8°
程度の角度を付けて組み立てられるが、金属薄膜3a,
3b…の膜厚が5±10%nm以下になると、垂直入射
により、TM損失が0.002dBとなり、TE損失が
2.5dBとなるため、偏光子として機能しない。一
方、傾斜角が8°で金属薄膜3a,3b…の膜厚が20
±10%nm以上になると、TM損失が0.24dBと
なり、TE損失が48dBとなり、挿入損失が大きくな
って性能が劣化する。このため、いずれのものも、目標
とする特性が得られない。
When the polarization function element is mounted, the optical surface is arranged perpendicular to the optical axis or 8 ° as described above.
The metal thin film 3a, which can be assembled at a certain angle,
When the film thickness of 3b ... Is 5 ± 10% nm or less, TM loss becomes 0.002 dB and TE loss becomes 2.5 dB due to vertical incidence, and thus it does not function as a polarizer. On the other hand, the inclination angle is 8 ° and the film thickness of the metal thin films 3a, 3b ...
When it becomes ± 10% nm or more, TM loss becomes 0.24 dB, TE loss becomes 48 dB, and insertion loss becomes large and performance deteriorates. Therefore, none of them can achieve the target characteristics.

【0041】上述した実施の形態では、無反射膜6をシ
リコン基板1の片面のみに設ける場合で説明したが、図
8で示すように誘電体格子2a,2b…、2a,2b…
と導電性の金属薄膜3a,3b…、3a,3b…による
縞構造の偏光膜4,4を互いに平行な格子状に位置し、
誘電体膜5,5を含めて基板1の両面に設けられる。こ
れにより、偏光機能素子として性能を向上でき、偏光消
光比を増大できる。
In the above-described embodiment, the case where the antireflection film 6 is provided only on one surface of the silicon substrate 1 has been described, but as shown in FIG. 8, the dielectric gratings 2a, 2b ... 2a, 2b.
And polarizing films 4 and 4 having a striped structure formed of conductive metal thin films 3a, 3b ... 3a, 3b ...
It is provided on both surfaces of the substrate 1 including the dielectric films 5 and 5. As a result, the performance as a polarization functional element can be improved and the polarization extinction ratio can be increased.

【0042】また、上述した実施の形態では誘電体層5
を縞構造の偏光膜4に重ねることにより無反射膜6を形
成したが、図9で示すようにシリコン基板1の面上に形
成する光透過性の誘電体膜5と、複数相平行で交互に並
べて誘電体膜5の面上に形成する光透過性の誘電体格子
2a,2b…と導電性金属の薄膜3a,3b…とによる
縞構造の偏光膜4とを無反射膜6としてシリコン基板1
と一体構造に設けることにより構成できる。
Further, in the above-mentioned embodiment, the dielectric layer 5
The non-reflective film 6 was formed by stacking the film on the polarizing film 4 having a striped structure, and as shown in FIG. , Which are formed on the surface of the dielectric film 5 and are formed on the surface of the dielectric film 5, and the polarizing film 4 having a striped structure formed by the conductive metal thin films 3a, 3b. 1
And an integral structure.

【0043】その他、偏光膜4と誘電体膜5とから一層
の無反射膜6を設ける場合で説明したが、図10で示す
ように光透過性の誘電体層5,5’と、偏光膜4,4’
とを複数交互に積層させて多層構造の無反射膜6’をシ
リコン基板1と一体構造に形成する構成できる。この形
態においては、第1層目の誘電体膜5を厚み224nm
程度に、第1層目の偏光膜4を厚み218nm程度に、
第2層目の誘電体膜5’を厚み212nm程度に、第2
層目の偏光膜4’を厚み279nm程度に形成すればよ
い。
In addition, the case where a single antireflection film 6 is provided from the polarizing film 4 and the dielectric film 5 has been described, but as shown in FIG. 10, the light-transmitting dielectric layers 5 and 5'and the polarizing film. 4,4 '
Alternatively, a plurality of layers and may be alternately laminated to form the multi-layered antireflection film 6 ′ with the silicon substrate 1 in an integrated structure. In this embodiment, the first dielectric film 5 has a thickness of 224 nm.
To about 218 nm in thickness of the first-layer polarizing film 4,
The dielectric film 5'of the second layer is formed into
The polarizing film 4'of the layer may be formed to have a thickness of about 279 nm.

【0044】また、金属薄膜3a,3b…としては誘電
体ベース格子20a,20b…の片側面に形成する場合
で説明したが、図11で示すように金薄膜3a,3b
…,3a’,3b’…を誘電体ベース格子20a,20
b…の両側面に設けるようにできる。この場合には、蒸
着源より導電性金属を飛ばす方向を片面ずつ異なる方向
から飛ばすよう制御すればよい。
Although the metal thin films 3a, 3b ... Are formed on one side surface of the dielectric base gratings 20a, 20b ..., the gold thin films 3a, 3b are shown in FIG.
, 3a ', 3b' ... are dielectric base gratings 20a, 20
It can be provided on both sides of b ... In this case, the direction in which the conductive metal is blown from the vapor deposition source may be controlled so as to fly from different directions on each side.

【0045】その実施の形態として光アイソレータ素子
を製造する場合、基板1はTbBiFeガーネット等の
ガーネット構造を有するファラデー回転結晶体を主に、
外部磁界無しに磁気飽和している硬磁性ガーネット,ガ
ーネット以外のカドミウム,マンガン,水銀,テルル等
が用いられる。誘電体格子2a,2b…並びに金属薄膜
3a,3b…は、上述した偏光フィルタ素子のものと同
材料により形成できる。
When an optical isolator element is manufactured as the embodiment, the substrate 1 is mainly made of a Faraday rotation crystal having a garnet structure such as TbBiFe garnet.
Hard magnetic garnet that is magnetically saturated without an external magnetic field, cadmium other than garnet, manganese, mercury, tellurium, etc. are used. The dielectric gratings 2a, 2b ... And the metal thin films 3a, 3b ... Can be formed of the same material as that of the above-described polarization filter element.

【0046】その光アイソレータ素子を製造する場合、
図12で示すようにファラデー回転結晶体を基板1と
し、上述した各工程から偏光膜4,4(但し、無反射膜
の誘電体膜は省略する。)の各縞構造を互いにファラデ
ー回転角度に対応した約45°傾けて(図中、傾き方向
が点で示されている。)ファラデー回転結晶体でなる基
板1の両面に設ければよい。この光アイソレータ素子で
は、両面の無反射膜が偏光機能を発揮し、且つ、光の透
過率を高めるよう機能するから、低光損失で特性に優れ
た光アイソレータを構成できる。
When manufacturing the optical isolator element,
As shown in FIG. 12, the Faraday rotation crystal is used as the substrate 1, and the striped structures of the polarizing films 4 and 4 (however, the non-reflective dielectric film is omitted) from the above-described steps are set to the Faraday rotation angle. It may be provided on both sides of the substrate 1 made of a Faraday rotation crystal body with a corresponding inclination of about 45 ° (inclination direction is indicated by a dot in the figure). In this optical isolator element, the anti-reflection films on both surfaces exert the polarization function and also function to increase the light transmittance, so that an optical isolator with low optical loss and excellent characteristics can be constructed.

【0047】その光アイソレータ素子を用いては、図1
3で示すように円筒状等のマグネット7,ステンレス等
の金属ホルダー8を備え、上述したように偏光方向が互
いに45°傾く無反射膜6,6を設けた光アイソレータ
素子としてマグネット7の内部に嵌込み固定すると共
に、マグネット7を含む全体を金属ホルダー8の内部に
組み付けることにより高性能で特性に優れしかも安価で
小型な光アイソレータを構成できる。
Using the optical isolator element, as shown in FIG.
As shown in FIG. 3, a magnet 7 having a cylindrical shape and a metal holder 8 such as stainless steel are provided. By fitting and fixing and assembling the whole including the magnet 7 inside the metal holder 8, it is possible to construct a small-sized optical isolator having high performance and excellent characteristics.

【0048】その光アイソレータ素子としては、例えば
ガーネットの中で、外部磁界無しに磁気飽和している硬
磁性ガーネット(特開平9―328398号参照)のT
b−Bi−Fe−Ga−Al−O系基板を用いることに
より構成できる。この光アイソレータ素子によると、マ
グネットを組み付ける必要がないため、光アイソレータ
を小型で安価なものに構成できる。
As the optical isolator element, for example, T of hard magnetic garnet (see Japanese Patent Laid-Open No. 9-328398) which is magnetically saturated in the garnet without an external magnetic field.
It can be formed by using a b-Bi-Fe-Ga-Al-O-based substrate. According to this optical isolator element, since it is not necessary to assemble a magnet, the optical isolator can be made small and inexpensive.

【0049】その光アイソレータ10を備えては、図1
4で示すように光源となる半導体レーザチップ11,半
導体レーザチップ11のヒートシンク12,半導体レー
ザチップ11より発振するレーザ光を集光する円筒レン
ズ13,光ファイバー14,光ファイバー14を固定す
るジルコニア製のフェルール15,モジュールケース1
6を組み付けることによりレーザダイオードモジュール
を構成できる。
With the optical isolator 10 shown in FIG.
As shown by 4, a semiconductor laser chip 11 serving as a light source, a heat sink 12 of the semiconductor laser chip 11, a cylindrical lens 13 that collects laser light oscillated from the semiconductor laser chip 11, an optical fiber 14, and a ferrule made of zirconia for fixing the optical fiber 14 15, module case 1
A laser diode module can be constructed by assembling 6 together.

【0050】このレーザダイオードモジュールでは、従
来の偏光膜を用いた光アイソレータを備えて構成するも
のよりも、同じ電気入力に対して発振出力が大きくしか
も出力の安定したものに構成できる。
This laser diode module can be configured to have a large oscillation output and a stable output for the same electric input, as compared with a conventional optical isolator using a polarizing film.

【0051】[0051]

【発明の効果】以上の如く、本発明の請求項1に係る偏
光機能素子に依れば、光透過性の基板を備え、目標仕様
の膜厚が5〜20nm範囲のいずれかで、厚みのバラ付
きが±10%範囲の極薄で平滑な導電性の金属薄膜を光
透過性の誘電体格子と交互に複数並べた縞構造の偏光膜
を基板と一体構造に設けることにより、金属薄膜が極薄
で凹凸のない平滑なものに形成されているため、金属膜
による入射光の反射分散を抑えられてTM損失を小さく
且つTE損失を大きく保て、また、縞構造の偏光膜を基
板の上に形成することから、その膜自体も強固な一体構
造に構成でき、光透過率,偏光性能等の性能に優れる偏
光機能素子として構成できる。
As described above, according to the polarization function element according to the first aspect of the present invention, the polarizing functional element is provided with the light-transmissive substrate, and the target specification film thickness is in the range of 5 to 20 nm. By providing a polarizing film having a striped structure in which a plurality of extremely thin and smooth conductive metal thin films with a variation of ± 10% are alternately arranged with a light transmissive dielectric lattice, the metal thin film can be formed. Since it is formed to be extremely thin and smooth without unevenness, reflection dispersion of incident light by the metal film can be suppressed, TM loss can be kept small and TE loss can be kept large. Since it is formed on the above, the film itself can be configured to have a strong integral structure, and can be configured as a polarization functional element having excellent properties such as light transmittance and polarization performance.

【0052】本発明の請求項2に係る偏光機能素子に依
れば、縞構造が相平行する偏光膜を基板の両面に設ける
ことにより、偏光消光比を増大できて性能の優れた偏光
フィルタ素子として構成できる。
According to the polarization function element of the second aspect of the present invention, the polarization extinction ratio can be increased and the performance of the polarization filter element can be increased by providing the polarization films having the stripe structures parallel to each other on both sides of the substrate. Can be configured as

【0053】本発明の請求項3に係る偏光機能素子に依
れば、縞構造の偏光膜と光透過性の誘電体膜との積層膜
を無反射膜としてシリコン基板と一体構造に設けること
により、偏光消光比をより増大できて性能の優れた偏光
フィルタ素子として構成できる。
According to the polarization function element of the third aspect of the present invention, the laminated film of the polarizing film having the stripe structure and the light-transmitting dielectric film is provided as a non-reflective film in an integrated structure with the silicon substrate. Thus, the polarization extinction ratio can be further increased, and a polarization filter element having excellent performance can be constructed.

【0054】本発明の請求項4に係る偏光機能素子に依
れば、縞構造の偏光膜と光透過性の誘電体膜とを交互に
複数積層した積層膜を無反射膜としてシリコン基板と一
体構造に設けることにより、偏光消光比をより一層増大
できて性能の優れた偏光フィルタ素子として構成でき
る。
According to the polarization function element of the fourth aspect of the present invention, a laminated film in which a plurality of stripe-structured polarizing films and light-transmitting dielectric films are alternately laminated is used as a non-reflective film and integrated with a silicon substrate. By providing it in the structure, the polarization extinction ratio can be further increased, and a polarization filter element having excellent performance can be configured.

【0055】本発明の請求項5に係る偏光機能素子に依
れば、ファラデー回転結晶体を基板として備え、目標仕
様の膜厚が5〜20nm範囲のいずれかで、厚みのバラ
付きが±10%範囲の極薄で平滑な導電性の金属薄膜を
光透過性の誘電体格子と交互に複数並べた縞構造で、そ
の縞構造の格子がファラデー回転結晶体の回転角に対応
する角度だけ異方向に傾く偏光膜を基板の両面に設ける
ことにより、反射分散を抑えられて大きな光損失の発生
を防げるため、性能の優れた光アイソレータ素子として
構成できる。
According to the polarization function element of the fifth aspect of the present invention, the Faraday rotation crystal is provided as the substrate, the target specification film thickness is in the range of 5 to 20 nm, and the thickness variation is ± 10. % The ultra-thin and smooth conductive thin metal film in the range of% is arranged alternately with the light-transmitting dielectric lattice, and the lattice of the stripe structure is different by the angle corresponding to the rotation angle of the Faraday rotation crystal. By providing the polarizing films inclined in the direction on both surfaces of the substrate, reflection dispersion can be suppressed and a large optical loss can be prevented from occurring, so that the optical isolator element having excellent performance can be configured.

【0056】本発明の請求項6に係る偏光機能素子に依
れば、ファラデー回転結晶体を基板として備え、そのフ
ァラデー回転結晶体の上に形成する縞構造の偏光膜と、
この偏光膜の上に形成する光透過性の誘電体膜との積層
膜を無反射膜としてファラデー回転結晶体と一体構造に
設けることにより、反射分散を確実に抑えられて大きな
光損失の発生を防げるため、性能の優れた光アイソレー
タ素子として構成できる。
According to the polarization function element of claim 6 of the present invention, a Faraday rotation crystal is provided as a substrate, and a polarizing film having a stripe structure is formed on the Faraday rotation crystal.
By providing a laminated film with a light-transmitting dielectric film formed on this polarizing film as a non-reflective film in an integrated structure with the Faraday rotation crystal, reflection dispersion can be reliably suppressed and large optical loss can be prevented. Therefore, it can be configured as an optical isolator element having excellent performance.

【0057】本発明の請求項7に係る光アイソレータに
依れば、請求項5または6に記載の光アイソレータ素子
を組み付けることにより、高性能で特性に優れしかも安
価で小型なものに構成できる。
According to the optical isolator according to the seventh aspect of the present invention, by assembling the optical isolator element according to the fifth or sixth aspect, it is possible to construct a high performance, excellent characteristic, inexpensive, and small size.

【0058】本発明の請求項8に係るレーザダイオード
モジュールに依れば、請求項7に記載の光アイソレータ
を搭載することにより、同じ電気入力に対して発振出力
が大きくしかも出力の安定したものに構成できる。
According to the laser diode module of the eighth aspect of the present invention, by mounting the optical isolator of the seventh aspect, it is possible to obtain a large oscillation output and a stable output for the same electric input. Can be configured.

【0059】本発明の請求項9に係る偏光機能素子の製
造方法に依れば、導電性金属を誘電体ベース格子の片側
面に斜め方向より蒸着させて導電性の金属薄膜を形成す
ることにより、入射光の反射分散を抑えて光損失の発生
を防げる偏光膜を確実に形成でき、光透過率,偏光性能
等の性能に優れる偏光機能素子を簡単で製造できしかも
安価なものとして得られる。
According to the method for manufacturing a polarization function element according to the ninth aspect of the present invention, a conductive metal thin film is formed by obliquely depositing a conductive metal on one side surface of the dielectric base lattice. A polarizing film that suppresses the reflection dispersion of incident light and prevents the occurrence of light loss can be reliably formed, and a polarization functional element having excellent performance such as light transmittance and polarization performance can be easily manufactured and obtained at a low cost.

【0060】本発明の請求項10に係る偏光機能素子の
製造方法に依れば、導電性金属を誘電体ベース格子の片
側面ずつ異なる斜め方向より蒸着させて導電性の金属薄
膜を誘電体ベース格子の両面に形成することにより、入
射光の反射分散を抑えて光損失の発生を防げる偏光膜を
効率よく簡単に形成できる。
According to the method of manufacturing a polarization functional element according to the tenth aspect of the present invention, a conductive metal thin film is deposited on the dielectric base lattice in different diagonal directions on each side of the dielectric base lattice to form a conductive metal thin film on the dielectric base. By forming it on both sides of the grating, it is possible to efficiently and easily form a polarizing film that suppresses the reflection dispersion of incident light and prevents the occurrence of optical loss.

【0061】本発明の請求項11に係る偏光機能素子の
製造方法に依れば、目標仕様の膜厚が5〜20nm範囲
のいずれかで、厚みのバラ付きが±10%範囲の極薄で
平滑な導電性の金属薄膜を光透過性の誘電体格子と交互
に複数並べた縞構造の偏光膜を基板と一体構造に形成す
ることから、金属薄膜を極薄で凹凸の少ない平滑なもの
に形成できるため、金属膜による入射光の反射分散を抑
えられて光損失の発生を防げ、TM損失を小さく且つT
E損失を大きく保てる偏光機能素子として構成できる。
According to the method for manufacturing a polarization functional element according to claim 11 of the present invention, when the film thickness of the target specification is in the range of 5 to 20 nm, the variation in thickness is extremely thin within ± 10%. Since a polarizing film with a striped structure in which a plurality of smooth conductive metal thin films are alternately arranged with a light-transmitting dielectric grating is formed integrally with the substrate, the metal thin film can be made extremely thin and smooth with few irregularities. Since it can be formed, the reflection dispersion of incident light by the metal film can be suppressed, the occurrence of optical loss can be prevented, and the TM loss can be reduced and T
It can be configured as a polarization functional element capable of maintaining a large E loss.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態に係る偏光機能素子とし
て偏光フィルタ素子を示す説明図である。
FIG. 1 is an explanatory diagram showing a polarization filter element as a polarization function element according to an embodiment of the present invention.

【図2】図1の偏光機能素子の製造工程中で第1工程の
誘電体ベース層を形成する工程を示す説明図である。
FIG. 2 is an explanatory diagram showing a step of forming a dielectric base layer in the first step in the manufacturing process of the polarization function element of FIG.

【図3】図2の工程に引き続いて誘電体ベース格子を形
成する工程を示す説明図である。
FIG. 3 is an explanatory diagram showing a step of forming a dielectric base grating subsequent to the step of FIG.

【図4】図3の工程に引き続いて金属薄膜を形成する工
程を示す説明図である。
FIG. 4 is an explanatory diagram showing a step of forming a metal thin film subsequent to the step of FIG.

【図5】図4の工程に引き続いて誘電体付加層を形成す
る工程を示す説明図である。
FIG. 5 is an explanatory diagram showing a step of forming a dielectric additional layer subsequent to the step of FIG.

【図6】図5の工程に引き続いて誘電体付加層並びに金
属薄膜の余剰部分を除去する工程を示す説明図である。
FIG. 6 is an explanatory diagram showing a step of removing a dielectric addition layer and a surplus portion of a metal thin film subsequent to the step of FIG. 5;

【図7】図6の工程に引き続いて無反射膜となる誘電体
膜を形成する工程を示す説明図である。
FIG. 7 is an explanatory diagram showing a step of forming a dielectric film to be a non-reflective film, following the step of FIG. 6;

【図8】図1の変形例として偏光膜を基板の両面に設け
る偏光機能素子を示す説明図である。
FIG. 8 is an explanatory diagram showing a polarization function element in which polarizing films are provided on both surfaces of a substrate as a modification of FIG.

【図9】図1の変形例として誘電体膜,偏光膜の順に積
層した無反射膜を設ける偏光機能素子を示す説明図であ
る。
9 is an explanatory diagram showing a polarization functional element provided with a non-reflection film in which a dielectric film and a polarization film are laminated in this order as a modification of FIG.

【図10】図1の変形例として多層構造の無反射膜を設
ける偏光機能素子を示す説明図である。
10 is an explanatory diagram showing a polarization function element provided with a multi-layered antireflection film as a modified example of FIG. 1. FIG.

【図11】図1の変形例として金属薄膜を誘電体ベース
格子の両面に設ける偏光機能素子を示す説明図である。
FIG. 11 is an explanatory diagram showing a polarization functional element in which metal thin films are provided on both surfaces of a dielectric base grating as a modification of FIG.

【図12】本発明の一実施の形態に係る偏光機能素子と
して光アイソレータ素子を示す説明図である。
FIG. 12 is an explanatory diagram showing an optical isolator element as a polarization function element according to an embodiment of the present invention.

【図13】本発明に係る光アイソレータを示す説明図で
ある。
FIG. 13 is an explanatory diagram showing an optical isolator according to the present invention.

【図14】本発明に係るレーザダイオードモジュールを
示す説明図である。
FIG. 14 is an explanatory diagram showing a laser diode module according to the present invention.

【符号の説明】[Explanation of symbols]

1 基板(シリコン基板,ファラデー
回転結晶体) 2a,2b… 誘電体格子 20 誘電体ベース層 20a,20b… 誘電体ベース格子 21a,21b… 誘電体付加層 3a,3b… 金属薄膜 4 偏光膜 5 誘電体膜 6,6’ 無反射膜 10 光アイソレータ
1 Substrate (Silicon Substrate, Faraday Rotation Crystal) 2a, 2b ... Dielectric Lattice 20 Dielectric Base Layers 20a, 20b ... Dielectric Base Lattice 21a, 21b ... Dielectric Addition Layers 3a, 3b ... Metal Thin Film 4 Polarizing Film 5 Dielectric Body film 6, 6'non-reflective film 10 Optical isolator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 平道 東京都足立区新田3丁目8番22号 並木精 密宝石株式会社内 Fターム(参考) 2H049 BA05 BA08 BA45 BB03 BB65 BC01 BC25 2H099 AA01 BA02 CA02 DA05 2K009 AA07 BB01 CC03 DD03    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Heiichi Sato             3-8-22 Nitta, Adachi-ku, Tokyo Namiki             Mitsuge Co., Ltd. F term (reference) 2H049 BA05 BA08 BA45 BB03 BB65                       BC01 BC25                 2H099 AA01 BA02 CA02 DA05                 2K009 AA07 BB01 CC03 DD03

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 光透過性の誘電体格子と導電性の金属膜
とが交互に複数並ぶ縞構造の偏光膜を備える偏光機能素
子において、光透過性の基板を備え、目標仕様の膜厚が
5〜20nm範囲のいずれかで、厚みのバラ付きが±1
0%範囲の極薄で平滑な導電性の金属薄膜を光透過性の
誘電体格子と交互に複数並べた縞構造の偏光膜を基板と
一体構造に設けてなることを特徴とする偏光機能素子。
1. A polarizing functional element comprising a polarizing film having a stripe structure in which a plurality of light-transmitting dielectric gratings and conductive metal films are alternately arranged, and a polarizing film having a light-transmitting substrate and having a target specification film thickness. ± 1 variation in thickness in any of 5 to 20 nm range
A polarizing functional element characterized in that a polarizing film having a striped structure in which a plurality of ultra-thin and smooth conductive metal thin films in the range of 0% are alternately arranged with a light-transmitting dielectric grating is provided integrally with a substrate. .
【請求項2】 各縞構造が相平行する偏光膜を基板の両
面に設けてなることを特徴とする請求項1に記載の偏光
機能素子。
2. The polarization function element according to claim 1, wherein polarizing films having stripe structures parallel to each other are provided on both surfaces of the substrate.
【請求項3】 縞構造の偏光膜と光透過性の誘電体膜と
の積層膜を無反射膜としてシリコン基板と一体構造に設
けてなることを特徴とする請求項1または2に記載の偏
光機能素子。
3. The polarized light according to claim 1, wherein a laminated film of a polarizing film having a stripe structure and a light-transmitting dielectric film is provided as a non-reflective film in an integrated structure with a silicon substrate. Functional element.
【請求項4】 縞構造の偏光膜と光透過性の誘電体膜と
を交互に複数積層した積層膜を無反射膜としてシリコン
基板と一体構造に設けてなることを特徴とする請求項3
に記載の偏光機能素子。
4. A laminated film in which a plurality of striped polarizing films and light transmissive dielectric films are alternately laminated is provided as a non-reflective film in an integrated structure with a silicon substrate.
The polarizing functional element according to.
【請求項5】 ファラデー回転結晶体を基板として備
え、目標仕様の膜厚が5〜20nm範囲のいずれかで、
厚みのバラ付きが±10%範囲の極薄で平滑な導電性の
金属薄膜を光透過性の誘電体格子と交互に複数並べた縞
構造で、その縞格子がファラデー回転結晶体の回転角に
対応する角度だけ異方向に傾く偏光膜を基板の両面に設
けてなることを特徴とする請求項1に記載の偏光機能素
子。
5. A Faraday rotation crystal is provided as a substrate, and a target specification film thickness is in the range of 5 to 20 nm.
A striped structure in which a plurality of ultra-thin and smooth conductive metal thin films with a thickness variation of ± 10% are arranged alternately with a light-transmissive dielectric lattice, and the striped lattice corresponds to the rotation angle of the Faraday rotation crystal. The polarization function element according to claim 1, wherein the polarizing film is provided on both surfaces of the substrate, the polarizing films being inclined in different directions by corresponding angles.
【請求項6】 ファラデー回転結晶体を基板として備
え、そのファラデー回転結晶体の上に形成する縞構造の
偏光膜と、この偏光膜の上に形成する光透過性の誘電体
膜との積層膜を無反射膜としてファラデー回転結晶体と
一体構造に設けてなることを特徴とする請求項5に記載
の偏光機能素子。
6. A laminated film comprising a Faraday rotation crystal body as a substrate, a polarizing film having a stripe structure formed on the Faraday rotation crystal body, and a light-transmitting dielectric film formed on the polarization film. 6. The polarization function element according to claim 5, wherein is provided as a non-reflective film in an integrated structure with the Faraday rotation crystal.
【請求項7】 請求項5または6に記載の偏光機能素子
を光アイソレータ素子として組み付けてなることを特徴
とする光アイソレータ。
7. An optical isolator comprising the polarization function element according to claim 5 or 6 assembled as an optical isolator element.
【請求項8】 請求項7に記載の光アイソレータを組付
け搭載してなることを特徴とするレーザダイオードモジ
ュール。
8. A laser diode module in which the optical isolator according to claim 7 is mounted and mounted.
【請求項9】 光透過性の基板を備え、誘電体層を基板
の上に形成した後、その誘電体層から所定の間隔を隔て
相並行する複数の誘電体ベース格子を形成すると共に、
導電性金属を誘電体ベース格子の片側面に斜め方向より
蒸着させて導電性の金属薄膜を形成し、更に、導電性金
属の薄膜と誘電体ベース格子の残余間隔を埋める誘電体
付加層を形成し、この誘電体付加層と誘電体ベース格子
とから導電性の金属薄膜を挟む縞構造の偏光膜を基板と
一体構造に形成するようにしたことを特徴とする偏光機
能素子の製造方法。
9. A dielectric transparent substrate is provided, a dielectric layer is formed on the substrate, and a plurality of dielectric base gratings are formed in parallel with each other at a predetermined distance from the dielectric layer.
Conductive metal is obliquely deposited on one side of the dielectric base lattice to form a conductive metal thin film, and a dielectric addition layer is formed to fill the remaining gap between the conductive metal thin film and the dielectric base lattice. Then, a method of manufacturing a polarization function element, characterized in that a striped polarizing film sandwiching a conductive metal thin film from the dielectric additional layer and the dielectric base grating is formed integrally with a substrate.
【請求項10】 導電性金属を誘電体ベース格子の片側
面ずつ異なる斜め方向より蒸着させて導電性の金属薄膜
を誘電体ベース格子の両面に形成するようにしたことを
特徴とする請求項9に記載の偏光機能素子の製造方法。
10. A conductive metal thin film is formed on both sides of the dielectric base lattice by vapor-depositing a conductive metal in different oblique directions on each side surface of the dielectric base lattice. A method for manufacturing a polarization function element according to item 1.
【請求項11】 目標仕様の膜厚が5〜20nm範囲の
いずれかで、厚みのバラ付きが±10%範囲の極薄で平
滑な導電性の金属薄膜を光透過性の誘電体格子と交互に
複数並べた縞構造の偏光膜を基板と一体構造に形成する
ようにしたことを特徴とする請求項9または10に記載
の偏光機能素子の製造方法。
11. An ultrathin and smooth conductive metal thin film having a target specification film thickness in the range of 5 to 20 nm and a thickness variation of ± 10% is alternated with a light transmissive dielectric grating. 11. The method for manufacturing a polarization function element according to claim 9, wherein a plurality of striped polarizing films arranged side by side are formed integrally with the substrate.
JP2001226126A 2000-09-20 2001-07-26 Polarizing functional element, optical isolator, laser diode module and method for manufacturing polarizing functional element Withdrawn JP2003043249A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001226126A JP2003043249A (en) 2001-07-26 2001-07-26 Polarizing functional element, optical isolator, laser diode module and method for manufacturing polarizing functional element
US10/130,474 US7002742B2 (en) 2000-09-20 2001-09-19 Polarizing function element, optical isolator, laser diode module and method of producing polarizing function element
PCT/JP2001/008152 WO2002025325A1 (en) 2000-09-20 2001-09-19 Polarizing function element, optical isolator, laser diode module and method of producing polarizing function element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001226126A JP2003043249A (en) 2001-07-26 2001-07-26 Polarizing functional element, optical isolator, laser diode module and method for manufacturing polarizing functional element

Publications (1)

Publication Number Publication Date
JP2003043249A true JP2003043249A (en) 2003-02-13

Family

ID=19059001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001226126A Withdrawn JP2003043249A (en) 2000-09-20 2001-07-26 Polarizing functional element, optical isolator, laser diode module and method for manufacturing polarizing functional element

Country Status (1)

Country Link
JP (1) JP2003043249A (en)

Similar Documents

Publication Publication Date Title
JP4688394B2 (en) Embedded wire grid polarizer for the visible spectrum
US20210239888A1 (en) Transmission grating and laser device using the same, and method of producing transmission grating
WO2002025325A1 (en) Polarizing function element, optical isolator, laser diode module and method of producing polarizing function element
JP2002296554A (en) Faraday rotator
JP2005534981A (en) Precision phase lag device and method of manufacturing the same
JP2004157159A (en) Inorganic polarizing element, polarizing optical element, and liquid crystal element
US11537008B2 (en) Optical element, liquid crystal display device, and projection-type image display device
JP2010066571A (en) Polarizing element and production method, and liquid crystal projector
JP2000304933A (en) Polarizing filter and its manufacture
TW200528763A (en) Optical filter
JP2009092730A (en) Polarization conversion element
US6785037B2 (en) Faraday rotator
US6590694B2 (en) Faraday rotator
JPH11202126A (en) Dielectric multilayer film filter
JP2003043249A (en) Polarizing functional element, optical isolator, laser diode module and method for manufacturing polarizing functional element
JPH1195027A (en) Polarizing element of multilayer structure
JP4157634B2 (en) Optical isolator
WO2004046798A1 (en) Magnetooptic element and process for fabricating the same and optical isolator incorporating it
JP3541539B2 (en) Surface emitting semiconductor laser
JP2002090543A (en) Polarization functional element, optical isolator element, optical isolator and laser diode module
JP2004341076A (en) Optical isolator and laser diode module
JP2718112B2 (en) Birefringent diffraction grating polarizer and method of manufacturing the same
JP3616349B2 (en) Magneto-optic crystal plate with polarizing element
JP6999719B2 (en) Polarizing elements and LCD projectors
JP2741731B2 (en) Polarizer

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070226

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007