JP2003039429A - Fiber base for composite material - Google Patents

Fiber base for composite material

Info

Publication number
JP2003039429A
JP2003039429A JP2001235029A JP2001235029A JP2003039429A JP 2003039429 A JP2003039429 A JP 2003039429A JP 2001235029 A JP2001235029 A JP 2001235029A JP 2001235029 A JP2001235029 A JP 2001235029A JP 2003039429 A JP2003039429 A JP 2003039429A
Authority
JP
Japan
Prior art keywords
composite material
base material
dimensional structure
matrix
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001235029A
Other languages
Japanese (ja)
Inventor
Shigeru Nishiyama
西山  茂
Masahiro Shinya
雅弘 新屋
Takeshi Tanamura
武司 田那村
Tetsuro Hirokawa
哲朗 広川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikibo Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Shikibo Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikibo Ltd, Mitsubishi Heavy Industries Ltd filed Critical Shikibo Ltd
Priority to JP2001235029A priority Critical patent/JP2003039429A/en
Priority to PCT/JP2002/007825 priority patent/WO2003013817A1/en
Priority to US10/484,818 priority patent/US20040247845A1/en
Priority to EP02755731A priority patent/EP1413415A4/en
Publication of JP2003039429A publication Critical patent/JP2003039429A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Manufacturing Of Multi-Layer Textile Fabrics (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance smoothness of a surface by raising a strength of an outer surface of a fiber base for a composite material including an interlaminar or connecting surface's shearing strength and raising an impregnation efficiency of a matrix at the time of complexing. SOLUTION: The fiber base for the composite material is obtained by superposing single or a plurality of three-dimensional structures 3 obtained by knitting long fibers, raising the interlaminar or connecting surface's shearing strength, expediting a permeability of a matrix near and in a surface, and treating gigging 5 for enhancing the smoothness of the surface. The gigging is executed for the fiber base for the composite material obtained by superposing two-dimensional structures obtained by knitting the long fibers or superposing the two-dimensional structures and the plurality of the three-dimensional structures. The gigging is executed by needle punching. A short fiber web is inserted between fiber textures simultaneously upon the gigging at the time of the needle punching as needed. Thus, the surface is smoothed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、コンポジット(複
合材)、航空機構造部材、航空機スキンパネル、ウイン
グパネル、窓枠、耐熱材、防音材その他の用途に用いら
れる複合材料用繊維基材の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved fiber base material for composite materials used for composites, aircraft structural members, aircraft skin panels, wing panels, window frames, heat-resistant materials, soundproofing materials and other applications. It is about.

【0002】[0002]

【従来の技術】上記用途に用いられている複合材料用繊
維基材は、所定の形状や厚みを得るために、通常、三次
元基材を単体で用いるか、または、複数重ね合わせて用
いられ、その際、二次元基材も適宜組み合わせて用いら
れ、マトリックスを含浸させて乾燥硬化処理されたり、
あるものは含浸焼成され、完成品とされる。
2. Description of the Related Art In order to obtain a predetermined shape and thickness, a fiber base material for a composite material used for the above-mentioned applications is usually a single three-dimensional base material or a plurality of superposed base materials. , At that time, a two-dimensional base material is also appropriately combined and used, and a matrix is impregnated and dried and cured,
Some are impregnated and fired to obtain finished products.

【0003】[0003]

【発明が解決しようとする課題】従来の複合材料用繊維
基材の構造は、例えば、三次元織物の場合、X方向糸
条、Y方向糸条、及びZ方向糸条で構成され、必要に応
じて、さらにこれらと30°、45°、60°などの角
度で交差する方向の糸条を追加挿入したもの等が提供さ
れている。これらに用いられる糸条は、通常、連続した
長繊維からなるフィラメントを必要本数引き揃えて1本
の糸として用いられている。
In the case of a three-dimensional woven fabric, a conventional structure of a fiber base material for a composite material is composed of X-direction yarns, Y-direction yarns, and Z-direction yarns. In accordance therewith, there is provided, for example, a yarn in which a yarn in a direction intersecting with these at an angle of 30 °, 45 °, 60 ° or the like is additionally inserted. The yarn used for these is usually used as one yarn by aligning a required number of filaments made of continuous long fibers.

【0004】しかしながら、複合化時点でマトリックス
を含浸処理する際、複合材料用繊維基材の各方向糸条の
交差する内部空間へのマトリックスの含浸性が低く、ボ
イドが出来易い。そのため、複合化された完成品は、層
間剪断強度、面外強度(剥離強度)が不足するという問
題があった。また、三次元織物を複数層重ね合わせて基
材とする場合、織物間には繊維の交絡がなく、接合面の
接合強度は非常に弱いものであった。
However, when the matrix is impregnated at the time of forming the composite, the impregnating property of the matrix into the internal space where the unidirectional yarns of the fiber material for the composite material intersect is low, and voids are easily formed. Therefore, the composited finished product has a problem that the interlaminar shear strength and the out-of-plane strength (peel strength) are insufficient. In addition, when a plurality of layers of three-dimensional woven fabric were used as a base material, there was no entanglement of fibers between the woven fabrics, and the joining strength of the joining surface was very weak.

【0005】また、低価格化のため単繊維径や引き揃え
本数の多い太い繊維を使用する傾向が増えており、繊維
基材表面の糸条交絡点での糸条のループによる凸部が高
くなり、その分、表面や隣接する接合面にできる凹部も
深くなり、複合化時点でマトリックスを含浸させた際、
前記凹部へのマトリックスの溜り量が他の部分より多く
なるという問題もあった。
Further, there is an increasing tendency to use thick fibers having a large number of single fiber diameters and aligned fibers for the purpose of cost reduction, and the convex portion due to the yarn loop at the yarn entanglement point on the surface of the fiber base material is high. As a result, the recesses formed on the surface and the adjacent joint surface become deeper by that amount, and when the matrix is impregnated at the time of compounding,
There is also a problem that the amount of matrix accumulated in the recesses becomes larger than that in other portions.

【0006】そこで、本発明の目的は、複合材料用繊維
基材において、層間および接合面を含め面外の強度を高
め、複合化時点のマトリックスの含浸効率を高め合わせ
て表面や接合面の平滑性を高めることにある。
Therefore, an object of the present invention is to increase the out-of-plane strength of the fiber base material for a composite material, including the interlayer and the joint surface, and to enhance the impregnation efficiency of the matrix at the time of compositing to make the surface and joint surface smooth. It is to improve sex.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の請求項1に記載の複合材料用繊維基材は、
長繊維で編織された三次元構造体が単体または複数重ね
合わされ、層間や接合面の剪断強度を高め、また、表面
付近および内部にマトリックスの浸透性を促進し、面の
平滑性を高めるための起毛処理が施されたものである。
この構成により、複合化時、マトリックスが三次元構造
体の各方向糸条の起毛処理部の毛細管現象によって内部
空間に浸透する速度が高まり、含浸時間の短縮や含浸回
数の減少が図れ、含浸効率を向上させ、ボイドが減少す
る。そして、マトリックスの含浸硬化後には、起毛処理
部のアンカー効果で層同士また接合面間の結合力を増大
させることができる。従って、複合材料用繊維基材の層
間および接合面の剪断強度を含め面外強度(剥離強度)
を高めることができる。
In order to achieve the above object, the fiber base material for composite material according to claim 1 of the present invention comprises:
Three-dimensional structures woven and woven with long fibers are singly or stacked together to increase the shear strength of the interlayers and joint surfaces, and to promote the permeability of the matrix near and inside the surface and to improve the smoothness of the surface. It has been brushed.
With this configuration, when composited, the speed at which the matrix permeates into the internal space due to the capillary action of the raised portion of the yarns in each direction of the three-dimensional structure increases the impregnation time and the number of impregnations. Improve and reduce voids. After the matrix is impregnated and hardened, the binding effect between the layers or between the bonding surfaces can be increased by the anchor effect of the raised portion. Therefore, the out-of-plane strength (peel strength) including the shear strength of the interlayer and joint surface of the fiber base material for composite materials
Can be increased.

【0008】また、本発明の請求項2に記載の複合材料
用繊維基材は、長繊維で編織された二次元構造体または
二次元構造体と三次元構造体が複数重ね合わされ、表面
および内部に層間や接合面の剪断強度を高め、また、マ
トリックスの浸透性を促進するための起毛処理が施され
たものである。この構成により、複合化時、マトリック
スが三次元構造体または二次元構造体の各方向糸条の起
毛処理部の毛細管現象によって内部空間に浸透する速度
が高まり、含浸時間の短縮や含浸回数の減少が図れ、含
浸効率を向上させ、ボイドが減少する。そして、マトリ
ックスの含浸硬化後には、起毛処理部のアンカー効果で
層同士また接合面間の結合力を増大させることができ
る。従って、複合材料用繊維基材の層間および接合面の
剪断強度を含め面外強度(剥離強度)を高めることがで
きる。
Further, in the fiber base material for a composite material according to claim 2 of the present invention, a plurality of two-dimensional structures or two-dimensional structures and three-dimensional structures woven and woven with long fibers are superposed, and the surface and the inside Further, a brushing treatment is performed to increase the shear strength of the layers and the joint surface and to promote the permeability of the matrix. With this structure, the speed at which the matrix permeates into the internal space due to the capillary phenomenon of the nap treatment part of the yarns in each direction of the three-dimensional structure or the two-dimensional structure during compounding, shortens the impregnation time and the number of impregnations. Can improve the impregnation efficiency and reduce voids. After the matrix is impregnated and hardened, the binding effect between the layers or between the bonding surfaces can be increased by the anchor effect of the raised portion. Therefore, the out-of-plane strength (peel strength) including the shear strength of the interlayer and the joint surface of the fiber base material for a composite material can be increased.

【0009】上記起毛処理は、ニードルパンチングによ
って施される。この構成により、起毛処理の操作が簡単
に実施でき、大幅なコスト低減が図れると共に、繊維束
間の空隙部や層間に面内の基材繊維の一部が起毛化され
て押し込まれ、複合化時、起毛処理部の毛細管現象によ
るマトリックスの引き込み作用とニードルの通過穴を侵
入路とするマトリックスの流入速度の向上及び内部空気
の置換排気の促進とによってマトリックスの浸透性が促
進される。従って、安価な方法で内部空間へのマトリッ
クスの充填率を向上させ、複合材料用繊維基材の層間剪
断強度を含め面外強度(剥離強度)を高めることができ
る。
The raising process is performed by needle punching. With this configuration, the raising process can be easily performed, and the cost can be significantly reduced, and at the same time, a part of the base fiber in the plane is pushed and pushed between the gaps between the fiber bundles and the layers to form a composite. At this time, the permeability of the matrix is promoted by the action of drawing the matrix due to the capillary action of the nap raising section, the improvement of the inflow rate of the matrix through the passage hole of the needle as the entry path, and the promotion of displacement and exhaust of the internal air. Therefore, the filling rate of the matrix into the internal space can be improved by an inexpensive method, and the out-of-plane strength (peel strength) including the interlaminar shear strength of the fiber base material for composite material can be increased.

【0010】また、ニードルパンチング時、起毛処理と
同時に、表面若しくは内部に配設された短繊維ウェブ層
が三次元構造体または二次元構造体の内部空間に挿入配
設される。この構成により、繊維束間の空隙部や層間に
面内の基材繊維の一部が起毛化されて押し込まれると同
時に、短繊維も押し込まれるため、複合化時、毛細管現
象によるマトリックスの引き込み作用が一層向上し、内
部空間へのマトリックスの充填率が高まる。また、マト
リックスの含浸硬化後のアンカー効果も向上し、複合材
料用繊維基材の層間剪断強度を含め面外強度(剥離強
度)を一層高めることができる。
During needle punching, simultaneously with the raising process, the short fiber web layer disposed on the surface or inside is inserted and disposed in the internal space of the three-dimensional structure or the two-dimensional structure. With this configuration, some of the base fibers in the plane are pushed into the voids and layers between the fiber bundles, and at the same time short fibers are also pushed in.Therefore, the matrix pulling action by the capillary phenomenon at the time of compounding Is further improved, and the filling rate of the matrix into the internal space is increased. In addition, the anchor effect after impregnation and curing of the matrix is also improved, and the out-of-plane strength (peel strength) including the interlaminar shear strength of the fiber base material for composite material can be further increased.

【0011】また、上記ニードルパンチングは、三次元
構造体または二次元構造体の表面に対して垂直に、また
は角度を付けて施される。この構成によって、基材繊維
の起毛部や短繊維の押し込み方向が適宜に設定され、層
間剪断強度や面外強度(剥離強度)を高めることができ
る。
The above needle punching is performed perpendicularly or at an angle to the surface of the three-dimensional structure or the two-dimensional structure. With this configuration, the raised portion of the base fiber and the pushing direction of the short fiber are appropriately set, and the interlaminar shear strength and the out-of-plane strength (peel strength) can be increased.

【0012】前記三次元構造体または二次元構造体の表
面の糸条交絡点の凸部が平滑化処理される。この構成に
よって、繊維基材表面の凹凸を少なくし、マトリックス
の溜り量を平均化してレジンリッチ部をなくすことがで
きる。
The convex portions of the yarn entanglement points on the surface of the three-dimensional structure or the two-dimensional structure are smoothed. With this configuration, it is possible to reduce irregularities on the surface of the fiber base material, average the amount of accumulated matrix, and eliminate the resin-rich portion.

【0013】前記凸部の平滑化処理は、ニードルパンチ
ングまたはグラインディングによって施される。この構
成によって、繊維基材表面の平滑化処理が容易となると
共に、基材繊維の表面が起毛化され、マトリックスの含
浸効率を高めることができる。
The smoothing process of the convex portion is performed by needle punching or grinding. With this configuration, the surface of the fiber base material can be easily smoothed, and the surface of the base fiber is raised, so that the efficiency of impregnation of the matrix can be improved.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面に基づいて説明する。図1の(A)(B)と図2
の(A)(B)は本発明に係る複合材料用繊維基材の第
1実施形態の概略構造とその拡大説明図であり、図3の
(A)(B)は本発明に係る複合材料用繊維基材の第6
実施形態の概略構造とその拡大説明図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. 1A and 1B and FIG.
3A and 3B are a schematic structure and a magnified explanatory view of a first embodiment of a fiber base material for a composite material according to the present invention, and FIGS. 3A and 3B are composite materials according to the present invention. No. 6 of textile base materials
It is a schematic structure of an embodiment, and an enlarged explanatory view thereof.

【0015】図1の(A)(B)に示す第1実施形態
は、XY平面(図1の紙面に直角な平面)にX方向糸条
1とY方向糸条2とを直交させて所定間隔で所定本数配
置した層をZ方向に複数積層し、これをZ方向糸条3で
結束させて構成された三次元構造体4を2層分積層した
場合であって、この場合、Z方向糸条3は三次元構造体
4の表面側でチェーンステッチ3aを形成し、裏面側で
バックステッチ3bを形成して連続したものとされてい
る。この三次元構造体4を2層分積層したものに対し、
フック状或いは二股状先端を有するニードル(図示省
略)で垂直または角度を付けてパンチングを行い、図1
の(B)に示すように、起毛5を形成させる。この起毛
5は、ニードルが刺し通された位置のX方向糸条1、Y
方向糸条2、Z方向糸条3の全部または一部の糸条表面
がフック状或いは二股状先端によって掻き削られてフィ
ブリル化されることによって形成される。
In the first embodiment shown in FIGS. 1A and 1B, the X-direction yarn 1 and the Y-direction yarn 2 are orthogonal to each other on the XY plane (a plane perpendicular to the paper surface of FIG. 1). A case in which a plurality of layers arranged in a predetermined number at intervals are laminated in the Z direction, and two layers of a three-dimensional structure 4 configured by binding the layers with Z direction yarns 3 are laminated, and in this case, the Z direction. The thread 3 is continuous by forming a chain stitch 3a on the front surface side of the three-dimensional structure 4 and forming a back stitch 3b on the back surface side. For this two-dimensional stack of three-dimensional structure 4,
A needle (not shown) having a hook-shaped or bifurcated tip is used to perform punching vertically or at an angle, and
The raised hairs 5 are formed as shown in FIG. This nap 5 has X-direction yarn 1, Y at the position where the needle has been pierced.
The whole or a part of the yarn surface of the direction yarn 2 and the Z direction yarn 3 is scraped by a hook-shaped or bifurcated tip to be fibrillated.

【0016】図2の(A)(B)に示す第2実施形態
は、XY平面(図2の紙面に直角な平面)にX方向糸条
1とY方向糸条2とを直交させて所定間隔で所定本数配
置した層をZ方向に複数積層し、これをZ方向糸条3で
結束させて構成された三次元構造体4を単体で使用した
場合であって、この場合、Z方向糸条3は三次元構造体
4の表面側及び裏面側でバックステッチ3bを形成して
連続したものとされている。この三次元構造体4に対
し、フック状或いは二股状先端を有するニードル(図示
省略)で垂直または角度を付けてパンチングを行い、図
2の(B)に示すように、起毛5を形成させる。この起
毛5は、ニードルが刺し通された位置のX方向糸条1、
Y方向糸条2、Z方向糸条3の全部または一部の糸条表
面がフック状或いは二股状先端によって掻き削られてフ
ィブリル化されることによって形成される。
In the second embodiment shown in FIGS. 2A and 2B, the X-direction yarn 1 and the Y-direction yarn 2 are perpendicular to the XY plane (a plane perpendicular to the paper surface of FIG. 2). This is a case where a three-dimensional structure 4 constituted by laminating a plurality of layers arranged in a predetermined number at intervals in the Z direction and binding the layers with Z direction yarns 3 is used alone, and in this case, the Z direction yarns are used. The stripes 3 are formed by forming back stitches 3b on the front surface side and the back surface side of the three-dimensional structure 4 and continuing them. The three-dimensional structure 4 is punched vertically or at an angle with a needle (not shown) having a hook-shaped or bifurcated tip to form a nap 5 as shown in FIG. 2B. The naps 5 are the X-direction yarns 1 at the position where the needle is pierced,
It is formed by scraping all or part of the yarn surface of the Y-direction yarn 2 and the Z-direction yarn 3 by a hook-shaped or bifurcated tip and fibrillating.

【0017】図3の(A)(B)に示す第3実施形態
は、第1実施形態または第2実施形態の三次元構造体4
の表面に表れたZ方向糸条3の交絡点でのループの凸部
6に対して、ニードルパンチングまたはグラインディン
グによって糸条表面を掻き削ってフィブリル化し、この
フィブリル化された起毛7によって凹部8を埋めて平滑
化し、複合化時のマトリックス含浸工程において、上記
凹部8にマトリックスが溜り、レジンリッチ部となるこ
とを防止させたものである。
The third embodiment shown in FIGS. 3A and 3B is the three-dimensional structure 4 of the first or second embodiment.
With respect to the convex portion 6 of the loop at the entanglement point of the Z-direction yarn 3 appearing on the surface of the yarn, the yarn surface is scraped and fibrillated by needle punching or grinding, and the concave portion 8 is formed by this fibrillated nap 7. Is filled in and smoothed to prevent the matrix from accumulating in the concave portion 8 and becoming a resin rich portion in the matrix impregnation step at the time of compounding.

【0018】上記第1〜第3実施形態において、三次元
構造体4の内部、例えば、中間層や各層の間或いはニー
ドル側となる表面または裏面等に短繊維ウェブ層を配設
し、この状態でニードルパンチングを行ってもよい。こ
のようにすれば、三次元構造体4の糸条繊維に起毛化処
理を施しながら内部空間に短繊維を同時に挿入すること
ができる。
In the first to third embodiments described above, a short fiber web layer is provided inside the three-dimensional structure 4, for example, on the intermediate layer or between the layers or on the front surface or the back surface on the needle side, and in this state. Needle punching may be performed with. By doing so, it is possible to simultaneously insert the short fibers into the internal space while subjecting the yarn fibers of the three-dimensional structure 4 to the raising process.

【0019】以上説明したように、本発明の実施形態に
よれば、ニードルパンチングで基材繊維がフィブリル化
(起毛)され、起毛された面内の各方向糸条繊維や短繊
維ウェブが層間に押し込まれ、層同士がブリッジングさ
れるため、層間剪断強度、面外強度が向上する。また、
交差する面内の各方向糸条繊維の空隙部に起毛された繊
維や短繊維ウェブが押し込まれ、複合化時点でマトリッ
クスが呼び込まれ易くなり、空間が埋まり易く、含浸効
率が向上する。また、テーパのついたニードルを用いる
ことにより、針穴を形成し、この針穴がマトリックスの
通り道となり、マトリックスの移動速度を上げ、ボイド
を減少させることができる。また、マトリックスの含浸
時間の短縮や含浸回数の減少も図れる。
As described above, according to the embodiment of the present invention, the base fibers are fibrillated (raised) by needle punching, and the unidirectional yarn fibers and short fiber webs in the napped surface are sandwiched between the layers. Since the layers are pushed in and the layers are bridged, the interlaminar shear strength and the out-of-plane strength are improved. Also,
The napped fibers or short fiber webs are pushed into the voids of the unidirectional yarn fibers in the intersecting planes, the matrix is easily attracted at the time of compounding, the space is easily filled, and the impregnation efficiency is improved. Further, by using a tapered needle, a needle hole is formed, and this needle hole serves as a passageway for the matrix, thereby increasing the moving speed of the matrix and reducing voids. In addition, the impregnation time of the matrix and the number of impregnations can be reduced.

【0020】さらに、低価格化のため単繊維径や引き揃
え本数の多い太い繊維を使用した場合、表面で凹凸の大
きい三次元構造体ができるが、強度に影響の少ない表面
の糸条交絡点のループ凸部を返りの付いた針ややすり状
のもの(グラインダー)などで起毛することにより、表
面をフラットにさせて複合材料にした場合のレジンリッ
チ部をなくし表面性を向上させることができる。
Furthermore, when thick fibers having a large number of single fibers or a large number of aligned fibers are used for cost reduction, a three-dimensional structure having large irregularities is formed on the surface, but the yarn entanglement points on the surface have little influence on the strength. By raising the loop convex part with a barbed needle or file (grinder) etc., it is possible to improve the surface property by eliminating the resin rich part when the surface is made flat and made into a composite material. .

【0021】基材繊維の起毛化は、ニードルパンチング
により量産化して実施することができ、低コストに提供
することが出来る。ニードルパンチングは、層間剪断強
度を上げるために、結束糸条によるバンドル方向と異方
向のニードリングを行うのが好ましい。また、積層され
た複数の二次元構造体(織物)間のニードリングを行う
場合や、三次元構造体(織物)間に二次元構造体を配置
してニードリングを行うようにしてもよい。プリフォー
ムとなる繊維基材の素材は炭素繊維、セラミック繊維、
ガラス繊維や高強度有機繊維などがある。例えば、ガラ
ス系、カーボン系、セラミック系などの無機繊維のほか
アラミド繊維、ポリエステルなどの有機繊維も利用でき
る。マトリックスは、ポリマー、炭素、セラミックのほ
かアルミなどの金属も適用できる。繊維基材は、三次元
織物(単体または複数)、ステッチド(ニット)プリフ
ォーム、長繊維積層(二次元及び三次元の複数層を積層
したものや一部にZ糸を挿入したものなど)のプリフォ
ーム、などにフック状あるいは二股状先端を有するニー
ドルで垂直または角度を付けて適当な間隔密度、例え
ば、均等な密度でパンチングして繊維表面をフィブリル
化して起毛する。
The raising of the base fibers can be carried out by mass production by needle punching and can be provided at a low cost. Needle punching is preferably performed by needling in a direction different from the bundle direction by the binding yarn in order to increase the interlaminar shear strength. In addition, when performing needling between a plurality of stacked two-dimensional structures (fabric), it is also possible to arrange a two-dimensional structure between three-dimensional structures (fabric) and perform needling. The material of the fiber base material that becomes the preform is carbon fiber, ceramic fiber,
Examples include glass fiber and high-strength organic fiber. For example, glass-based, carbon-based, and ceramic-based inorganic fibers, as well as aramid fibers and polyester-based organic fibers can be used. The matrix can be made of polymer, carbon, ceramic, or metal such as aluminum. The fiber base material is a three-dimensional woven fabric (single or plural), a stitched (knit) preform, or a long fiber laminate (such as a laminate of two-dimensional and three-dimensional plural layers or a part of which a Z thread is inserted). A preform or the like is vertically or angled with a needle having a hook-shaped or bifurcated tip and punched at an appropriate interval density, for example, a uniform density to fibrillate the fiber surface and raise the hair.

【0022】[0022]

【発明の効果】請求項1の構成によれば、複合化時、マ
トリックスが三次元構造体の各方向糸条の起毛処理部の
毛細管現象によって内部空間に浸透する速度が高まり、
含浸時間の短縮や含浸回数の減少が図れ、含浸効率を向
上させ、ボイドが減少する。そして、マトリックスの含
浸硬化後には、起毛処理部のアンカー効果で層同士また
接合面間の結合力を増大させることができる。従って、
複合材料用繊維基材の層間および接合面の剪断強度を含
め面外強度(剥離強度)を高めることができる。
According to the structure of claim 1, at the time of compounding, the matrix permeates into the internal space at a higher speed due to the capillary phenomenon of the raised portion of the yarns in each direction of the three-dimensional structure,
The impregnation time can be shortened and the number of impregnations can be reduced to improve the impregnation efficiency and reduce voids. After the matrix is impregnated and hardened, the binding effect between the layers or between the bonding surfaces can be increased by the anchor effect of the raised portion. Therefore,
The out-of-plane strength (peel strength) including the shear strength of the interlayer and the joint surface of the fiber base material for a composite material can be increased.

【0023】請求項2の構成によれば、複合化時、マト
リックスが三次元構造体または二次元構造体の各方向糸
条の起毛処理部の毛細管現象によって内部空間に浸透す
る速度が高まり、含浸時間の短縮や含浸回数の減少が図
れ、含浸効率を向上させ、ボイドが減少する。そして、
マトリックスの含浸硬化後には、起毛処理部のアンカー
効果で層同士また接合面間の結合力を増大させることが
できる。従って、複合材料用繊維基材の層間および接合
面の剪断強度を含め面外強度(剥離強度)を高めること
ができる。
According to the second aspect of the present invention, at the time of compounding, the matrix permeates into the internal space at a higher speed due to the capillary phenomenon of the nap treatment portion of the unidirectional yarns of the three-dimensional structure or the two-dimensional structure, so that the matrix is impregnated. The time can be shortened and the number of impregnations can be reduced, the impregnation efficiency can be improved, and the voids can be reduced. And
After the matrix is impregnated and cured, the binding effect between the layers or between the bonding surfaces can be increased by the anchor effect of the raised portion. Therefore, the out-of-plane strength (peel strength) including the shear strength of the interlayer and the joint surface of the fiber base material for a composite material can be increased.

【0024】請求項3の構成によれば、起毛処理の操作
が簡単に実施でき、量産が可能であるから大幅なコスト
低減が図れると共に、繊維束間の空隙部や層間に面内の
基材繊維の一部が起毛化されて押し込まれ、複合化時、
起毛処理部の毛細管現象によるマトリックスの引き込み
作用とニードルの通過穴を侵入路とするマトリックスの
流入速度の向上及び内部空気の置換排気の促進とによっ
てマトリックスの浸透性が促進される。従って、安価な
方法で内部空間へのマトリックスの充填率を向上させ、
複合材料用繊維基材の層間剪断強度を含め面外強度(剥
離強度)を高めることができる。
According to the third aspect of the present invention, the raising operation can be easily carried out and mass production is possible, so that the cost can be largely reduced, and at the same time, the voids between the fiber bundles and the in-plane base material between the layers can be obtained. A part of the fiber is raised and pushed in,
The permeability of the matrix is promoted by the matrix drawing action by the capillary action of the nap raising section, the improvement of the inflow rate of the matrix through the passage hole of the needle as the entry path, and the promotion of displacement and exhaust of the internal air. Therefore, the filling rate of the matrix into the internal space is improved by an inexpensive method,
Out-of-plane strength (peel strength) including interlaminar shear strength of the fiber base material for composite material can be increased.

【0025】請求項4の構成によれば、繊維束間の空隙
部や層間に面内の基材繊維の一部が起毛化されて押し込
まれると同時に、短繊維も押し込まれるため、複合化
時、毛細管現象によるマトリックスの引き込み作用が一
層向上し、内部空間へのマトリックスの充填率が高ま
る。また、マトリックスの含浸硬化後のアンカー効果も
向上し、複合材料用繊維基材の層間および接合面の剪断
強度を含め面外強度(剥離強度)を一層高めることがで
きる。
According to the structure of claim 4, at the same time when a part of the base fiber in the plane is fluffed and pushed between the voids between the fiber bundles and the layers, short fibers are also pushed in. Further, the action of drawing the matrix by the capillary phenomenon is further improved, and the filling rate of the matrix into the internal space is increased. Further, the anchor effect after the impregnation and curing of the matrix is also improved, and the out-of-plane strength (peel strength) including the shear strength of the interlayer and the joint surface of the fiber base material for composite material can be further increased.

【0026】請求項5の構成によれば、基材繊維の起毛
部や短繊維の押し込み方向が適宜に設定され、層間およ
び接合面の剪断強度や面外強度(剥離強度)を高めるこ
とができる。
According to the structure of claim 5, the raising portion of the base fiber and the pushing direction of the short fiber are appropriately set, and the shear strength and the out-of-plane strength (peel strength) of the interlayer and the joint surface can be increased. .

【0027】請求項6の構成によれば、前記三次元構造
体または二次元構造体の表面の糸条交絡点の凸部が平滑
化処理される。この構成によって、繊維基材表面の凹凸
を少なくし、マトリックスの溜り量を平均化してレジン
リッチ部をなくすことができる。
According to the structure of claim 6, the convex portions of the yarn entanglement points on the surface of the three-dimensional structure or the two-dimensional structure are smoothed. With this configuration, it is possible to reduce irregularities on the surface of the fiber base material, average the amount of accumulated matrix, and eliminate the resin-rich portion.

【0028】請求項7の構成によれば、繊維基材表面の
平滑化処理が容易となると共に、基材繊維の表面が起毛
化され、マトリックスの含浸効率を高めることができ
る。
According to the structure of claim 7, the smoothing treatment of the surface of the fiber base material is facilitated, and the surface of the base fiber is raised, so that the matrix impregnation efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)(B)は本発明に係る複合材料用繊維基
材の第1実施形態の概略構造とその拡大説明図。
1A and 1B are a schematic structure of a fiber base material for a composite material according to a first embodiment of the present invention and an enlarged explanatory view thereof.

【図2】(A)(B)は本発明に係る複合材料用繊維基
材の第1実施形態の概略構造とその拡大説明図。
2A and 2B are a schematic structure of a fiber base material for a composite material according to a first embodiment of the present invention and an enlarged explanatory view thereof.

【図3】(A)(B)は本発明に係る複合材料用繊維基
材の第6実施形態の概略構造とその拡大説明図。
3A and 3B are a schematic structure of a fiber base material for a composite material according to a sixth embodiment of the present invention and an enlarged explanatory view thereof.

【符号の説明】[Explanation of symbols]

1 X方向糸条 2 Y方向糸条 3 Z方向糸条 3a チェーンステッチ 3b バックステッチ 4 三次元構造体 5 起毛 6 凸部 7 起毛 8 凹部 1 X direction thread 2 Y direction yarn 3 Z-direction yarn 3a chain stitch 3b backstitch 4 three-dimensional structure 5 napping 6 convex 7 napping 8 recess

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新屋 雅弘 愛知県名古屋市南区駈上1−11−3 グリ ーンパーク新瑞402号 (72)発明者 田那村 武司 滋賀県八日市市上之町2−7 (72)発明者 広川 哲朗 滋賀県近江八幡市多賀町485−4 Fターム(参考) 3B154 AA07 AA08 AA14 AB20 BA25 BB01 BB58 DA06 DA10 DA18 4F072 AA04 AB28 AC02 4F100 AD00 AD11 AG00 AK41 AK47 BA02 BA07 BA13 BA22 DG04A DG12A DG13A EC09A GB90 JK01 4L032 AA04 AA08 AB02 AB03 AC06 BD05 DA00 EA00    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masahiro Shinya             1-11-3 Kuri, Minami-ku, Nagoya-shi, Aichi Prefecture             Shin Park No.402 (72) Inventor Takeshi Tanamura             2-7 Kaminocho, Yokaichi, Shiga Prefecture (72) Inventor Tetsuro Hirokawa             485-4 Tagamachi, Omihachiman City, Shiga Prefecture F term (reference) 3B154 AA07 AA08 AA14 AB20 BA25                       BB01 BB58 DA06 DA10 DA18                 4F072 AA04 AB28 AC02                 4F100 AD00 AD11 AG00 AK41 AK47                       BA02 BA07 BA13 BA22 DG04A                       DG12A DG13A EC09A GB90                       JK01                 4L032 AA04 AA08 AB02 AB03 AC06                       BD05 DA00 EA00

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 長繊維で編織された三次元構造体が単体
または複数重ね合わされ、層間や接合面の剪断強度を高
め、また、表面付近および内部にマトリックスの浸透性
を促進し、面の平滑性を高めるための起毛処理が施され
た複合材料用繊維基材。
1. A three-dimensional structure woven and woven with long fibers is singly or plurally laminated to enhance the shear strength of an interlayer or a joint surface, promotes permeability of a matrix near and inside the surface, and smoothes the surface. A fibrous base material for a composite material, which has been subjected to a nap treatment for enhancing the property.
【請求項2】 長繊維で編織された二次元構造体が複数
重ね合わされ、または二次元構造体と三次元構造体が複
数重ね合わされ、層間や接合面の剪断強度を高め、ま
た、表面付近および内部にマトリックスの浸透性を促進
し、面の平滑性を高めるための起毛処理が施された複合
材料用繊維基材。
2. A plurality of two-dimensional structures woven or woven with long fibers are superposed, or a plurality of two-dimensional structures and three-dimensional structures are superposed to increase the shear strength of an interlayer or a joint surface, and A fibrous base material for a composite material, which is internally brushed to promote the permeability of the matrix and enhance the smoothness of the surface.
【請求項3】 起毛処理がニードルパンチングで施され
てなる請求項1または2に記載の複合材料用繊維基材。
3. The fiber base material for a composite material according to claim 1, wherein the raising treatment is performed by needle punching.
【請求項4】 ニードルパンチングによって、起毛処理
が施されると共に、表面若しくは内部に配設された短繊
維ウェブ層が三次元構造体または二次元構造体の内部空
間に挿入配設されてなる請求項1または2に記載の複合
材料用繊維基材。
4. A raising process is performed by needle punching, and the short fiber web layer disposed on the surface or inside is inserted and disposed in the internal space of the three-dimensional structure or the two-dimensional structure. Item 3. The fiber base material for composite material according to Item 1 or 2.
【請求項5】 ニードルパンチングが、三次元構造体ま
たは二次元構造体の表面に対して垂直に、または角度を
付けて施されてなる請求項3または4に記載の複合材料
用繊維基材。
5. The fiber base material for a composite material according to claim 3, wherein the needle punching is performed perpendicularly or at an angle to the surface of the three-dimensional structure or the two-dimensional structure.
【請求項6】 三次元構造体または二次元構造体の表面
の糸条交絡点の凸部が平滑化処理されてなる請求項1ま
たは2に記載の複合材料用繊維基材。
6. The fiber base material for a composite material according to claim 1, wherein the convex portions of the yarn entanglement points on the surface of the three-dimensional structure or the two-dimensional structure are smoothed.
【請求項7】 凸部の平滑化処理がニードルパンチング
またはグラインディングによって施されてなる請求項6
に記載の複合材料用繊維基材。
7. The smoothing process for the convex portion is performed by needle punching or grinding.
The fibrous base material for a composite material according to.
JP2001235029A 2001-08-02 2001-08-02 Fiber base for composite material Pending JP2003039429A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001235029A JP2003039429A (en) 2001-08-02 2001-08-02 Fiber base for composite material
PCT/JP2002/007825 WO2003013817A1 (en) 2001-08-02 2002-07-31 Composite material-use fiber base material
US10/484,818 US20040247845A1 (en) 2001-08-02 2002-07-31 Composite material-use fiber base material
EP02755731A EP1413415A4 (en) 2001-08-02 2002-07-31 Composite material-use fiber base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001235029A JP2003039429A (en) 2001-08-02 2001-08-02 Fiber base for composite material

Publications (1)

Publication Number Publication Date
JP2003039429A true JP2003039429A (en) 2003-02-13

Family

ID=19066535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001235029A Pending JP2003039429A (en) 2001-08-02 2001-08-02 Fiber base for composite material

Country Status (1)

Country Link
JP (1) JP2003039429A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005095079A1 (en) 2004-03-30 2005-10-13 Toray Industries, Inc. Preform, frp, and processes for producing these
WO2006013623A1 (en) 2004-08-03 2006-02-09 Mitsubishi Heavy Industries, Ltd. Shock absorbing compound material structure, process for producing the structure and traveling body or sailing body employing the structure
JP2012509414A (en) * 2008-11-19 2012-04-19 ビ−エイイ− システムズ パブリック リミテッド カンパニ− Fiber reinforced composite material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163132U (en) * 1979-05-11 1980-11-22
JPS58117160A (en) * 1981-12-28 1983-07-12 東レ株式会社 Beam material
JPS626956A (en) * 1985-06-27 1987-01-13 ソシエテ ユ−ロピエンヌ ド プロピユ ルシオン Method for producing three-dimensional structure by puncturing laminate of flat layers of fibrous material and fiber material used therein
JPH0351353A (en) * 1989-03-04 1991-03-05 Scapa Group Plc Preparation of three dimensional structure consisting of uniformly- needled fibrous material
JPH05220861A (en) * 1992-02-07 1993-08-31 Mitsubishi Gas Chem Co Inc Production of copper clad laminated sheet
WO2000056539A1 (en) * 1999-03-23 2000-09-28 Toray Industries, Inc. Composite reinforcing fiber base material, preform and production method for fiber reinforced plastic
JP2001096653A (en) * 1999-09-29 2001-04-10 Kawasaki Heavy Ind Ltd Composite material and manufacturing method for the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163132U (en) * 1979-05-11 1980-11-22
JPS58117160A (en) * 1981-12-28 1983-07-12 東レ株式会社 Beam material
JPS626956A (en) * 1985-06-27 1987-01-13 ソシエテ ユ−ロピエンヌ ド プロピユ ルシオン Method for producing three-dimensional structure by puncturing laminate of flat layers of fibrous material and fiber material used therein
JPH0351353A (en) * 1989-03-04 1991-03-05 Scapa Group Plc Preparation of three dimensional structure consisting of uniformly- needled fibrous material
JPH05220861A (en) * 1992-02-07 1993-08-31 Mitsubishi Gas Chem Co Inc Production of copper clad laminated sheet
WO2000056539A1 (en) * 1999-03-23 2000-09-28 Toray Industries, Inc. Composite reinforcing fiber base material, preform and production method for fiber reinforced plastic
JP2001096653A (en) * 1999-09-29 2001-04-10 Kawasaki Heavy Ind Ltd Composite material and manufacturing method for the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005095079A1 (en) 2004-03-30 2005-10-13 Toray Industries, Inc. Preform, frp, and processes for producing these
US8192662B2 (en) 2004-03-30 2012-06-05 Toray Industries, Inc. Processes for producing perform and FRP
WO2006013623A1 (en) 2004-08-03 2006-02-09 Mitsubishi Heavy Industries, Ltd. Shock absorbing compound material structure, process for producing the structure and traveling body or sailing body employing the structure
US7846540B2 (en) 2004-08-03 2010-12-07 Mitsubishi Heavy Industries, Ltd. Impact-absorbing composite structure
JP2012509414A (en) * 2008-11-19 2012-04-19 ビ−エイイ− システムズ パブリック リミテッド カンパニ− Fiber reinforced composite material
KR101318312B1 (en) * 2008-11-19 2013-10-15 배 시스템즈 피엘시 Fibre reinforced composite

Similar Documents

Publication Publication Date Title
RU2618066C2 (en) Method for laying intermediate material, ensuring cohesion of latter, method for producing multilayer systems designed for producing composite articles of intermediate material
CN100346860C (en) Production of high-density topping filtering material from three gradient
JPS626956A (en) Method for producing three-dimensional structure by puncturing laminate of flat layers of fibrous material and fiber material used therein
CA2504631A1 (en) Enhanced energy absorbing materials
US20180093446A1 (en) Non-crimp fabric and method of manufacturing
CN1646762A (en) Non-woven laminate composite with binder
JPS626957A (en) Method for producing three-dimensional axially symmetric structure by puncturing fibrous material layer and fiber material used therein
US20040247845A1 (en) Composite material-use fiber base material
EA006914B1 (en) Complex sheet comprising a drylaid veil of glass fibres, and a nonwoven fabric of organic fibres
Anand et al. Mechanical bonding
CN103085287A (en) One-piece fiber reinforcement for a reinforced polymer combining aligned and random fiber layers
US7509714B2 (en) Needled glass mat
RU2365687C1 (en) Needle-punched fabric and method of its production
JP2003502521A (en) Method of preparing a pultruded part and a reinforcing mat for the part
US3022813A (en) Method of making bonded non-woven fabric from textile fibers
KR101318312B1 (en) Fibre reinforced composite
US3506529A (en) Needled fabrics and process for making them
CA3080917A1 (en) Unidirectional non-crimp fabric and use thereof
JPH02277865A (en) Heat-bonded fabric and preparation thereof
JP2003039429A (en) Fiber base for composite material
CN110485047A (en) A kind of aeroplane brake discs quasi- three-dimensional preform and preparation method thereof
KR101394466B1 (en) Non-woven fabric complex sheet for waterproofing using mesh and its manufacturing method
CN105619905B (en) Including having the Composite Laminate for the interlayer through face region for being blended in fibrous layer
CN102242462A (en) Cotton batting and fabrication method thereof
JPH04257358A (en) Needle nonwoven fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050119

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050119

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050502