JP2003039133A - Axial thickening process method - Google Patents

Axial thickening process method

Info

Publication number
JP2003039133A
JP2003039133A JP2001230097A JP2001230097A JP2003039133A JP 2003039133 A JP2003039133 A JP 2003039133A JP 2001230097 A JP2001230097 A JP 2001230097A JP 2001230097 A JP2001230097 A JP 2001230097A JP 2003039133 A JP2003039133 A JP 2003039133A
Authority
JP
Japan
Prior art keywords
workpiece
axial
shaft
rotation
bending angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001230097A
Other languages
Japanese (ja)
Other versions
JP3788751B2 (en
Inventor
Tadashi Iura
忠 井浦
Nagatoshi Okabe
永年 岡部
Hiroshi Iura
洋 井浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iura Co Ltd
Original Assignee
Iura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iura Co Ltd filed Critical Iura Co Ltd
Priority to JP2001230097A priority Critical patent/JP3788751B2/en
Publication of JP2003039133A publication Critical patent/JP2003039133A/en
Application granted granted Critical
Publication of JP3788751B2 publication Critical patent/JP3788751B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/08Upsetting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide forming conditions (axial compression stress σC, bending angle θ) in the axial thickening process characterized by the feature that a material W to be processed is held by a pair of holding sections having the prescribed clearance L0 estranged and, by approximating the one holding section to the other holding section, an axial compression stress P, a peri-axial revolution, and a bend of the bending angle by biasing the one holding section to the other holding section so as to slant, act on the material W to be processed so that the desired thickening section figuration is formed. SOLUTION: The thickening deformation behavior is mathematically modeled and the mathematical model has enabled forming conditions (the axial compression stress σC, and the bending angle θ) for the desired thickening against an optional axial diameter material to be guided.

Description

【発明の詳細な説明】 【0001】 【発明が属する技術分野】本発明は、金属軸材あるいは
金属管の中間部に素材径よりも大径なる肥大部を形成す
る軸肥大加工方法に関するものである。 【0002】 【従来の技術】従来、被加工材となる金属軸材あるいは
金属管の中間部に被加工材軸径よりも大径なる肥大部を
設けるには、別部品を溶接する方法あるいは大径の被加
工材から削り出す方法がとられている。しかしながら、
前者の場合には溶接熱による影響があり、後者の場合に
は素材を削り出すことにより資源の無駄という問題点が
ある。 【0003】そこで、本願出願人は新しい加工技術とし
て被加工材を一対の保持部により所定間隔離間させた状
態で保持し、この被加工材に一定の軸圧縮力を負荷した
一定保持状態で、軸の回転により引張・圧縮の曲げ応力
を繰り返して部分的に軸を肥大させる方法を考案し、日
本国特許第1993956号を取得している。この加工
方法を用いれば、加工時の温度上昇がほとんど無く、ま
た、素材に機械的損傷を伴わない省エネルギー、省資源
及び切削油を必要としない環境に優しい加工を行うこと
ができる。 【0004】しかしながら、この軸肥大加工方法は肥大
化現象について明らかにされていない部分が多く、テス
ト加工を繰り返した上で初期掴み間隔、軸圧縮力及び曲
げ角度等を選定し、所望の肥大部を成形する必要があっ
た。 【0005】 【発明が解決しようとする課題】解決しようとする問題
点は、所望の肥大部形状を成形する際の成形条件(初期
掴み間隔、軸圧縮圧力、曲げ角度)を提供することであ
る。 【0006】 【課題を解決するための手段】本発明は、軸径Dなる
被加工材Wの中間部に所望の肥大部を一体的に成形する
ため、互いに対向する一対の保持部を所定間隔L離間
した状態で被加工材Wを保持し、少なくとも一方の保持
部を相対的に他方の保持部に接近させることによって軸
圧縮力Pを作用させるとともに、軸周りの回転と少なく
とも一方の保持部を他方の保持部の軸心に対して傾斜す
る方向に偏倚させることによって被加工材Wに回転と曲
げ角度θの曲げを作用させ、両保持部間の被加工材Wの
曲げ内側に生じる凸部を全周に累積肥大させた後、曲げ
戻しによる被加工材Wの真直化を行った後、回転及び軸
圧縮状態を停止させる軸肥大加工方法において、N回転
後の直径D,幅lとなる肥大部を成形する数式モデ
ルを 【数7】【数8】 として表し、ここでεは軸径Dが2倍に肥大したと
きの平均軸方向歪みであり、Nは回転回数であり、N
は回転時定数であり、この回転時定数Nは、 【数9】 とし、ここで、回転時定数Nの曲げ角度依存係数N
及び加圧応力依存指数αを 【数10】 【数11】 とし、被加工材Wの軸径Dに依存する寸法効果、すな
わち軸径依存係数ηを 【数12】 とし、これらから導出される軸肥大加工条件(曲げ角度
θ,軸圧縮応力σ)によって前記肥大部を一体的に成
形することを最も主要な特徴とする。 【0007】この発明によれば、所望の肥大部を成形す
る加工条件(曲げ角度θ,軸圧縮応力σ)を数式モデ
ルによって導き出すことができる。そのため、実作業に
おいて、所望の肥大部(直径D,幅l)成形のため
に試作を繰り返すことなく、被加工材Wの中間部に肥大
部を成形できる効果を奏する。 【0008】 【発明の実施の形態】第1図に、本発明を実施するとき
に用いる軸肥大加工装置を示す。この軸肥大加工装置1
は、ベースフレーム2上に固着された駆動回転部3を備
えている。該駆動回転部3は被加工材Wを保持した状態
で、この被加工材Wを軸周りに回転可能に構成されてい
る。詳述するとベースフレーム2に固着した支持筒体4
内にベアリング(図示せず)を介して保持筒5を回転自
在に枢止する。そして、この保持筒5前端部に駆動源と
なるモータ6に止着したギヤ7に噛合するようギヤ8を
止着している。なお、保持筒5内にはスリーブ(図示せ
ず)を挿通させ、被加工材Wを保持可能としている。そ
して、この駆動回転部3に対向するように従動回転部9
が設けられる。該従動回転部9はベースフレーム2上を
前後に移動可能な摺動フレーム10上で、摺動フレーム
10に軸着され回動自在な回動フレーム11に固着され
た支持筒12を備えている。この支持筒12内にはベア
リング(図示せず)を介して保持筒13が枢止され、回
動フレーム11に一端部を止着した加圧圧縮手段14に
よって前後に摺動可能な構成とされている。すなわち、
該従動回転部9の保持筒13は支持筒12内を回転自在
であるとともに前後に摺動可能な構成である。15は偏
倚手段であり、摺動フレーム11後部に軸支されたナッ
ト部材16と、回動フレーム11後部に取り付けられた
モータ17の出力軸に止着したネジ18を螺合させてな
るものであって、該モータ17の正逆転により摺動フレ
ーム10に対して回動フレーム11を回動させるもので
ある。また、図示されていないがベースフレーム2と摺
動フレーム10間には送り手段が設けられており、駆動
回転部3に対して摺動フレーム10を前後に移動可能に
構成している。なお、前記駆動回転部3と従動回転部9
の夫々の保持部となるスリーブの軸心は同一直線上に位
置する状態から従動回転部9側のスリーブ軸心が傾斜す
るよう構成されている。 【0009】上記のような構成の軸肥大加工装置1を用
いて、軸肥大加工を行う手順は次のようになる。まず、
駆動回転部3及び従動回転部9の保持部を夫々同一軸線
上に配置するとともに所定間隔L離間させた状態で被
加工材Wを保持する。然る後、従動回転部9側の保持部
を駆動回転部3側に接近させ、軸圧縮力Pを作用させ
る。この状態で両保持部間の距離はlとなる。そし
て、軸周りの回転を加えた後、回動フレーム11を回動
させ、被加工材Wに曲げ角度θの曲げを作用させる。す
ると、両回転部3,9間の被加工材Wには、軸圧縮力P
及び曲げ角度θの曲げが作用した状態となっており、曲
げ内側に形成される凸部が軸周りの回転により全周に累
積され、素材径Dよりも大径の肥大部が形成される。
次に回動フレーム11を元の状態すなわち、駆動回転部
3と従動回転部9が同一軸線上に位置するよう配置し、
数回転させた後、軸圧縮力Pと軸周りの回転を停止さ
せ、両回転部3,9より被加工材Wを抜き取れば所望の
肥大部が一体的に成形された軸材ができる。 【0010】上記の軸肥大加工方法をより効率的に行う
ために、以下のような実験を行い肥大部の変形挙動に対
して数式によるモデル化を計った。まず、数式モデル化
するための実験方法としては、駆動回転部3と従動回転
部9の夫々の保持部が同一直線上にある状態で被加工材
Wを保持し{第2図(a)参照}、設定の軸圧縮力Pを
まず負荷した{第2図(b)参照}。この負荷の後、両
保持部間の間隔を測定し、肥大部の幅の初期値lとす
る。次いで、従動回転部9側の保持部を駆動回転部3側
の保持部に対して傾斜するように回動フレーム11を回
動させて曲げ角度θの曲げを付加し、軸の回転を開始し
軸肥大加工を行った{第2図(c)参照}。その後、こ
の実験では1回転ごとに肥大部の幅l 及び最大外径D
を測定した{第2図(f)参照}。なお、実験条件と
しては、被加工材Wとして、軸径D=10のみがき棒
鋼(JIS G 3123;SGD400−D)を用
い、肥大部の初期設定保持部間隔L=14mmとし、
軸圧縮力P=40〜70kN(軸圧縮応力σ=509
〜891MPa)とし、各軸圧縮力Pに対して曲げ角度
θを4,6,8°に設定し、軸回転速度10rpmに
て、室温(25℃)大気中で軸肥大加工実験を行った。
そして、軸肥大加工中の軸圧縮力P及び曲げモーメント
は従動回転部9側の保持部に設けたロードセルで測定し
た。 【0011】第3図は上記の実験結果を基に曲げ角度θ
をパラメータとして、軸圧縮力P=42kN(軸加圧応
力535MPa)の条件下で、肥大部が回転回数Nの増
大とともに圧縮していく挙動をl/lとNの関係で
示し、回転回数Nの増大とともに軸肥大していく挙動を
/DとNの関係で示したものである。この軸肥大
変形挙動に対して、数式モデル化をはかると、夫々、次
式(1),(2)のように表すことができる。 【数13】 【数14】 ここで、εは軸径Dが2倍に肥大したときの平均軸
方向歪みであり、Nはl/l,D/Dの実測
値に式(1),(2)を適合させたときの回転時定数で
ある。第3図中の推定線にみられるように、式(1),
(2)でよく数式モデル化できていることがわかる。こ
の数式モデル化の特長としては、回転時定数Nと軸肥
大加工条件(軸圧縮応力σ,曲げ角度θ)によって軸
肥大挙動を推定できることである。 【0012】次に、軸肥大加工過程での変形機構は、曲
げによる最大圧縮変形が軸の回転で移動することにより
軸肥大が進行するというメカニズムであるが、1回転後
の次の回転においても曲げ変形が生じるには1回転中に
軸の圧縮変形が進行しなければならない。したがって、
軸圧縮力Pの増大なしに軸圧縮変形が進行するには変形
抵抗の低下が生じていることになる。そこで、このメカ
ニズムに対するモデル化として第4図のような変形モデ
ルを考案し、1回転中の連続的な変形過程に対して、曲
げと回転による軸肥大変形と、バウシンガー効果による
降伏強さの低下での軸圧縮変形とに分離して、この交番
変形過程による解析モデルを提唱した。第5図は軸圧縮
力P(軸圧縮応力σ=535MPa)一定のままで、
軸圧縮変形が実測値の通りに進行するという条件下で、
第4図に示すモデルに基づき変形挙動データに対して逆
解析したときの変形抵抗応力の低下挙動を示しており、
回転及び曲げによる引張・圧縮の交番塑性変形によって
バウシンガー効果が生じ、明瞭に降伏強さの低下が発現
していることがわかる。 【0013】次に軸肥大過程における曲げモーメントの
挙動について説明する。第6図は軸圧縮応力σ=65
0MPa,曲げ角度θ=6°の一定加工条件下での回転
回数Nの増大に伴う軸肥大過程における曲げモーメント
抵抗Mの増大挙動の実測値及びモデル解析値を示してい
る。第6図に示すように実測値と解析値がよく一致して
いることがわかる。 【0014】そして、上記の内容より軸肥大変形挙動を
推定すると次のようになる。第7図は軸圧縮応力σ
パラメータとして回転時定数Nと曲げ角度θの関係を
示している。この図より軸肥大加工の条件(軸圧縮応力
σ,曲げ角度θ)に依存する回転時定数は次式(3)
で表され、軸肥大変形挙動の数式モデル化における重要
なパラメータとなるものである。 【数15】 ここで、回転時定数Nの曲げ角度依存指数N 及び
加圧応力依存指数αは、夫々曲げ角度θから次式
(4),(5)で推定できる。 【数16】 【数17】 【0015】そこで、設定加工条件(σC=545MP
a,θ=6°)をもとに式(3)〜式(5)を用いて回
転時定数Nを推定し、回転回数Nの増大に伴う軸肥大
変形の挙動を逆解析すると、第8図に示す通り、実測値
の近似曲線と上式(1)〜(5)に基づく推定曲線が略
々一致しており、数式モデル化できていることは明確で
ある。 【0016】次に、軸径Dの異なる被加工材Wを用い
て次のような実験を行った。この実験方法は、駆動回転
部3の保持部と従動回転部9の保持部が同一軸上にある
状態で、被加工材Wを装着し、掴み間隔Lを測定した
後{第2図(a)参照}、設定の軸圧縮力Pをまず負荷
した。そのときの両保持部の間隔を再度測定し、被加工
材Wの幅の初期値lとする{第2図(b)参照}。次
いで、従動回転部9の保持部を第2図(c)のように面
内回転させ曲げ角度θを付加し、被加工材Wの回転を開
始し、軸肥大加工を行った。この実験では、1回転ごと
に肥大部の幅l及び最大径Dを測定した。ここでN
は回転回数を示す。なお、この実験条件は、軸圧縮応力
σ、曲げ角度θ、被加工部の初期幅lとしては、表
1のように軸径Dに応じて適当に選定して、室温25
℃にて回転速度10rpmで行った。さらに、被加工材
Wとして、みがき棒鋼(JIS G 3123;SGD
400−D)の軸径D=8,10,12,25mmを
用いた。 【表1】 【0017】第9図は軸径D=8,10,12mmご
とに、回転回数Nの増大に伴う肥大部の幅の減少をl
/lで示し、径の増大挙動をD/Dで示してい
る。これら軸肥大変形挙動に対して数式モデル化をはか
ると、夫々、次式(6),(7)で表すことができる。 【数18】 【数19】 すなわち、上式(6),(7)は前述した式(1),
(2)と同様であることからわかるように、軸径D
るいは曲げ角度θの値の如何に関わらず、何れも軸圧縮
応力σの場合の挙動に対しても式(6),(7)でよ
く、軸肥大挙動に関して適切に数式モデル化できている
ことになる。 【0018】次に変形挙動に及ぼす軸圧縮応力σ・曲
げ角度θ・軸径Dの影響について説明する。被加工材
Wの軸径D及び軸肥大加工条件(軸圧縮応力σ,曲
げ角度θ)に依存する回転時定数Nは軸径D=10
mmの場合、軸径依存係数η=1として、次式(8)で
推定できることは上述した通りである。 【数20】 ここで、曲げ角度依存係数N 及び加圧応力依存指数
αは、夫々、次式(9),(10)で推定できる。 【数21】 【数22】 第10図は、軸径D=8,10,12mmごとに回転
時定数Nと軸圧縮応力σの関係を示す。これらの関
係に見られる軸径Dに依存する寸法効果は次式(1
1)で表される軸径依存係数ηを用いることができる。 【数23】ここで、mは寸法効果における曲げ角度依存指数を示し
ている。θは基準角度定数である。 【0019】第11図は曲げ角度θをパラメータとし
て、式(11)に基づく軸径依存係数ηとD/D
関係を示したものである。この図より、明らかなよう
に、丸棒の寸法効果は曲げ角度θが大きくなると現わ
れ、軸径Dが小さいほど、回転時定数Nは大きくな
る。すなわち、肥大部の最終目標径に達するまでの回転
回数Nが多くなる。以上の結果により,第1図で示す軸
肥大加工装置での加工範囲では、目標とする加工寸法・
形状に対する加工条件の設定に式(8)〜(10)を適
用できることは明らかであり、数式モデル化できてい
る。 【0020】上述してきた数式モデルを軸径D>12
mmの丸棒の軸肥大加工へ適用させると、第12図のよ
うになる。第12図は軸径D=25mmのみがき棒鋼
に対して軸圧縮応力一定(σ=573MPa)にて曲
げ角度θ=3°で加工実験を行ったときの肥大部におけ
る変形挙動を実測値と推定値で示したものである。式
(8)〜(10)での目標加工条件(軸圧縮応力σ
曲げ角度θ)の推定により軸径D=25mmでも肥大
部の変形挙動を予測できていることがわかる。 【0021】上述してきた通り、軸肥大変形挙動を式
(6),(7)で適切にモデル化できており、さらに式
(8)〜(10)により目標加工条件(軸圧縮応力
σ,曲げ角度θ)の推定により肥大部の変形挙動を予
測することができる。すなわち、表2に示す各材料定数
を上記実施形態で説明した実験により明確にしておけ
ば、所望の肥大部形状(直径D,幅l)から成型条
件を推定することによって所望形状の肥大部を一体的に
備えた軸材を成型することができる。 【表2】 【0022】 【発明の効果】以上説明したように本発明によれば、従
来試し加工を繰り返して所望の肥大部を成形する成形条
件を導き出していたが、軸肥大変形挙動の数式によるモ
デル化によって、この加工条件を推定することが可能と
なった。すなわち、この数式モデル化によって肥大部形
状(直径D,幅l)から成型条件を推定することに
よって所望形状の肥大部を一体的に備えた軸材を成型す
ることができる。
DETAILED DESCRIPTION OF THE INVENTION [0001] TECHNICAL FIELD The present invention relates to a metal shaft or
Form an enlarged part larger than the material diameter in the middle of the metal tube
The present invention relates to a shaft enlargement processing method. [0002] 2. Description of the Related Art Conventionally, a metal shaft material or a work material has been used.
In the middle part of the metal tube, add an enlarged part larger than the workpiece diameter.
This can be done by welding separate parts or by adding large diameter
The method of shaving from the work material is taken. However,
The former case is affected by the welding heat, while the latter case
Has the problem of wasting resources by cutting out materials
is there. [0003] Therefore, the present applicant has adopted a new processing technique.
The work material is separated by a predetermined distance by a pair of holding parts.
And a constant axial compression force was applied to the workpiece.
With constant rotation, the rotation of the shaft causes the tensile and compression bending stress
Devise a method to partially enlarge the axis by repeating
Obtained home patent No. 1993956. This processing
With the method, there is almost no temperature rise during processing,
Energy and resource saving without mechanical damage to the material
Perform environmentally friendly processing that does not require cutting oil
Can be. [0004] However, this shaft enlargement processing method is an enlargement method.
There are many parts that have not been clarified about
The initial gripping interval, axial compression force and bending
It is necessary to select the desired angle and form the desired enlarged part.
Was. [0005] The problem to be solved
The points are the molding conditions (the initial
Grip spacing, axial compression pressure, bending angle).
You. [0006] According to the present invention, a shaft diameter D0Become
A desired enlarged part is integrally formed in the middle part of the workpiece W
Therefore, a pair of holding portions facing each other are separated by a predetermined distance L.0Separation
In this state, the workpiece W is held and at least one of the workpieces is held.
Part by moving the part relatively close to the other holding part.
Apply compression force P and reduce rotation around the axis.
And one of the holding parts is inclined with respect to the axis of the other holding part.
The workpiece W is rotated and bent by
Of the workpiece W between the two holding portions.
After accumulating the protrusions inside the bend and accumulating it all around,
After straightening the workpiece W by return, the rotation and shaft
In the shaft enlargement processing method to stop the compression state, N rotation
Later diameter DN, Width lNMathematical model for molding the enlarged part
The (Equation 7)(Equation 8) Where ε0Is the shaft diameter D0Has grown twice as large
N is the number of rotations, N0
Is a rotation time constant, and this rotation time constant N0Is (Equation 9) Where the rotation time constant N0Angle dependence coefficient N of0
*And the stress-dependent index α (Equation 10) (Equation 11) And the shaft diameter D of the workpiece W0Depends on the size effect,
That is, the shaft diameter dependence coefficient η (Equation 12) And the shaft enlargement conditions (bending angle) derived from these
θ, axial compression stress σC) To form the enlarged part integrally.
Shape is the most important feature. According to the present invention, a desired enlarged portion is formed.
Processing conditions (bending angle θ, axial compression stress σC) To the formula model
Can be derived by Therefore, in actual work
In the desired enlarged portion (diameter DN, Width lN) For molding
Enlarges the middle of the workpiece W without repeating the trial production
This has the effect of forming the part. [0008] FIG. 1 shows a case where the present invention is implemented.
1 shows a shaft enlargement processing apparatus used for the present invention. This shaft enlargement processing device 1
Is equipped with a drive rotating unit 3 fixed on a base frame 2.
I have. The drive rotation unit 3 holds the workpiece W
The workpiece W is configured to be rotatable around an axis.
You. More specifically, the support cylinder 4 fixed to the base frame 2
The holding cylinder 5 is automatically rotated via a bearing (not shown) inside.
Being pivoted to be. A drive source is provided at the front end of the holding cylinder 5.
Gear 8 so as to mesh with the gear 7 fixed to the motor 6
I'm stationary. A sleeve (not shown) is provided in the holding cylinder 5.
) Can be inserted to hold the workpiece W. So
Then, the driven rotary unit 9 is opposed to the drive rotary unit 3.
Is provided. The driven rotating unit 9 is mounted on the base frame 2
On the sliding frame 10 which can be moved back and forth,
10 and fixed to a rotatable rotating frame 11
The supporting cylinder 12 is provided. In this support tube 12, a bare
The holding cylinder 13 is pivoted via a ring (not shown),
One end of the compression frame 14 is fixed to the moving frame 11.
Therefore, it is configured to be slidable back and forth. That is,
The holding cylinder 13 of the driven rotating part 9 is rotatable in the supporting cylinder 12.
And a structure that can slide back and forth. 15 is biased
Nut supported by the rear of the sliding frame 11
Attached to the rear part of the rotating frame 11
Do not screw the screw 18 fastened to the output shaft of the motor 17.
The motor 17 rotates in the forward and reverse directions to allow sliding movement.
For rotating the rotating frame 11 with respect to the
is there. Although not shown, the base frame 2 and the slide
Feeding means is provided between the moving frames 10, and
The sliding frame 10 can be moved back and forth with respect to the rotating part 3.
Make up. The driving rotation unit 3 and the driven rotation unit 9
The axes of the sleeves that are the holding parts of
The sleeve axis on the driven rotating part 9 side tilts from the
It is configured to: [0009] The shaft enlargement processing apparatus 1 having the above configuration is used.
The procedure for performing the shaft enlargement process is as follows. First,
The holding portions of the driving rotating portion 3 and the driven rotating portion 9 are each coaxial.
Arranged above and at a predetermined interval L0In the state of being separated
The workpiece W is held. After that, the holding part on the driven rotating part 9 side
To the drive rotating unit 3 side to apply the axial compression force P.
You. In this state, the distance between both holding portions is l0It becomes. Soshi
And rotate the rotating frame 11 after applying rotation about the axis.
Then, the workpiece W is bent at a bending angle θ. You
Then, the workpiece W between the rotating parts 3 and 9 has an axial compression force P
And the bending at the bending angle θ is in effect.
The protrusions formed on the inside of the shaft
Stacked, material diameter D0An enlarged part with a larger diameter is formed.
Next, the rotating frame 11 is returned to its original state,
3 and the driven rotation unit 9 are arranged so as to be located on the same axis,
After several rotations, the shaft compression force P and rotation around the shaft are stopped.
If the workpiece W is extracted from the rotating parts 3 and 9,
A shaft is formed in which the enlarged portion is integrally formed. [0010] The above-mentioned shaft enlargement processing method is performed more efficiently.
For this purpose, the following experiment was conducted to control the deformation behavior of the enlarged part.
And modeled by mathematical formulas. First, mathematical modeling
As an experimental method for performing this, the driving rotary unit 3 and the driven rotary
Workpiece with the respective holding parts of the part 9 being on the same straight line
While maintaining W (see FIG. 2 (a)), the set axial compression force P
First, a load was applied (see FIG. 2 (b)). After this load, both
Measure the distance between the holding parts, the initial value l of the width of the enlarged part0Toss
You. Next, the holding part on the driven rotating part 9 side is moved to the driving rotating part 3 side.
Of the rotating frame 11 so as to incline with respect to the holding portion.
To add a bend at the bend angle θ and start rotating the shaft.
Shaft enlargement was performed {see FIG. 2 (c)}. Then
In the experiment, the width l NAnd maximum outer diameter D
NWas measured {see FIG. 2 (f)}. The experimental conditions and
Then, as the workpiece W, the shaft diameter D0= 10 postcard sticks
For steel (JIS G 3123; SGD400-D)
The interval L of the initial setting of the enlarged section0= 14 mm,
Axial compressive force P = 40 to 70 kN (axial compressive stress σC= 509
89891 MPa) and the bending angle for each axial compression force P
θ is set to 4, 6, 8 °, and the shaft rotation speed is set to 10 rpm.
Then, an axial enlargement processing experiment was performed in a room temperature (25 ° C.) atmosphere.
Then, the axial compression force P and the bending moment during the shaft enlargement processing
Is measured with a load cell provided on the holding unit on the driven rotating unit 9 side.
Was. FIG. 3 shows the bending angle θ based on the above experimental results.
With the shaft compression force P = 42 kN (shaft pressure
Under the condition of 535 MPa), the enlarged part increases the number of rotations N.
The behavior of compressing with largeN/ L0And N
The behavior that the shaft enlarges as the number of rotations N increases
DN/ D0And N. This axial hypertrophy
When mathematical modeling is applied to the deformation behavior,
Expressions (1) and (2) can be used. (Equation 13) [Equation 14] Where ε0Is the shaft diameter D0Axis when the size of the swelling doubled
Directional distortion, N0Is lN/ L0, DN/ D0Actual measurement
The rotation time constant when formulas (1) and (2) are adapted to the values
is there. As can be seen from the estimation line in FIG.
It can be seen that the mathematical model was well formed in (2). This
The feature of the mathematical modeling is that the rotation time constant N0And axial manure
Large machining conditions (axial compression stress σC, Bending angle θ)
It is possible to estimate the hypertrophic behavior. Next, the deformation mechanism in the shaft enlargement process is a bending process.
The maximum compressive deformation due to displacement moves with the rotation of the shaft
It is a mechanism that axial hypertrophy progresses, but after one rotation
During the next rotation, bending deformation occurs during one rotation
The compression deformation of the shaft must proceed. Therefore,
Deformation occurs when axial compression deformation proceeds without increasing axial compression force P
This means that the resistance has decreased. Therefore, this mechanism
A transformation model as shown in Fig. 4
And a continuous deformation process during one rotation
Shaft enlargement deformation due to spinning and rotation, and due to the Bauschinger effect
This alternation is separated into axial compression deformation due to lower yield strength.
An analytical model based on the deformation process was put forward. Fig. 5 shows axial compression
Force P (axial compression stress σC= 535MPa)
Under the condition that axial compression deformation proceeds as measured value,
Reverse the deformation behavior data based on the model shown in FIG.
It shows the behavior of the decrease in the deformation resistance stress when analyzed.
By alternating plastic deformation of tension and compression by rotation and bending
Bauschinger effect occurs and yield strength clearly decreases
You can see that it is doing. Next, the bending moment in the axial enlargement process
The behavior will be described. Figure 6 shows the axial compression stress σC= 65
Rotation under constant processing conditions of 0MPa, bending angle θ = 6 °
Bending moment in axial enlargement process with increasing number N
It shows the measured value and the model analysis value of the increase behavior of the resistance M.
You. As shown in FIG. 6, the measured values and the analyzed values match well.
You can see that there is. From the above description, the axial enlargement deformation behavior
The estimation is as follows. Fig. 7 shows the axial compressive stress σCTo
Rotation time constant N as a parameter0And the bending angle θ
Is shown. From this figure, the condition of shaft enlargement processing (axial compression stress
σC, Bending angle θ) is given by the following equation (3)
Is important in mathematical modeling of axial hypertrophy deformation behavior
Parameters. (Equation 15) Here, the rotation time constant N0Angle dependence index N of0 *as well as
The pressurized stress dependence index α is calculated from the bending angle θ as
It can be estimated by (4) and (5). (Equation 16) [Equation 17] Then, the set processing conditions (σC= 545MP
a, θ = 6 °) based on equations (3) to (5).
Turn time constant N0Is estimated, and the shaft enlarges as the number of rotations N increases.
When the deformation behavior is analyzed in reverse, the measured values are obtained as shown in Fig. 8.
And the estimated curve based on the above equations (1) to (5) are approximately
It is clear that they can be modeled mathematically
is there. Next, the shaft diameter D0Using different workpieces W
The following experiment was conducted. This experimental method uses drive rotation
The holding part of the part 3 and the holding part of the driven rotating part 9 are on the same axis.
In the state, the workpiece W is mounted and the gripping interval L0Measured
Later (see FIG. 2 (a)), the set axial compression force P is first applied.
did. Measure the distance between both holding parts at that time again,
Initial value l of width of material W0{See FIG. 2 (b)}. Next
Then, the holding part of the driven rotating part 9 is faced as shown in FIG.
Inside rotation to add the bending angle θ and open the rotation of the workpiece W.
First, shaft enlargement was performed. In this experiment, every rotation
The width of the enlarged part lNAnd maximum diameter DNWas measured. Where N
Indicates the number of rotations. In addition, this experimental condition is the axial compression stress.
σC, Bending angle θ, initial width l of the processed part0As a table
Shaft diameter D as in 10Room temperature 25
C. at a rotation speed of 10 rpm. In addition, the workpiece
As W, a polished bar (JIS G 3123; SGD)
400-D) shaft diameter D0= 8, 10, 12, 25 mm
Using. [Table 1] FIG. 9 shows the shaft diameter D.0= 8,10,12mm
In addition, the decrease in the width of the enlarged portion due to the increase in the number of rotations N isN
/ L0And the increasing behavior of the diameter is DN/ D0Indicated by
You. Do mathematical modeling for these axial hypertrophic deformation behaviors?
Then, they can be expressed by the following equations (6) and (7), respectively. (Equation 18) [Equation 19] That is, the above equations (6) and (7) are replaced by the above equations (1) and (7).
As can be seen from the same as (2), the shaft diameter D0Ah
Or axial compression regardless of the value of the bending angle θ
Stress σCEquations (6) and (7) also apply to the behavior in the case of
And mathematical modeling of the axial hypertrophy behavior
Will be. Next, the axial compression stress σ affecting the deformation behaviorC・ Song
Angle θ / shaft diameter D0The effect of this will be described. Work material
Shaft diameter D of W0And shaft enlargement processing conditions (axial compression stress σC, Song
Rotation time constant N depending on0Is the shaft diameter D0= 10
mm, the shaft diameter dependent coefficient η = 1 and the following equation (8)
What can be estimated is as described above. (Equation 20) Here, the bending angle dependence coefficient N0 *And pressure-dependent index
α can be estimated by the following equations (9) and (10), respectively. [Equation 21] (Equation 22) FIG. 10 shows the shaft diameter D0= Rotate every 8,10,12mm
Time constant N0And axial compressive stress σCShows the relationship. These functions
Shaft diameter D seen in the section0Is dependent on the following equation (1)
The shaft diameter dependence coefficient η expressed by 1) can be used. [Equation 23]Here, m indicates the bending angle dependence index in the size effect.
ing. θ0Is a reference angle constant. FIG. 11 uses the bending angle θ as a parameter.
Thus, the shaft diameter dependence coefficient η based on the equation (11) and DN/ D0of
It shows the relationship. From this figure, it is clear
In addition, the size effect of the round bar appears when the bending angle θ increases.
And shaft diameter D0Is smaller, the rotation time constant N0Is big
You. In other words, rotation until reaching the final target diameter of the enlarged part
The number N increases. Based on the above results, the shaft shown in FIG.
In the processing range of the enlargement processing equipment, the target processing dimensions and
Formulas (8) to (10) are suitable for setting the processing conditions for the shape.
It is clear that it can be used
You. The mathematical model described above is used to calculate the shaft diameter D.0> 12
Fig. 12
Swell. FIG. 12 shows the shaft diameter D.0= 25mm post-bar steel
Constant axial compressive stress (σC= 573MPa)
In the enlarged part when a machining experiment was performed at an inclination angle θ = 3 °
The deformation behavior is shown by measured and estimated values. formula
Target processing conditions (axial compression stress σ) in (8) to (10)C,
The shaft diameter D is estimated by estimating the bending angle θ).0= Enlarged even at 25mm
It can be seen that the deformation behavior of the part can be predicted. As described above, the axial enlargement deformation behavior is expressed by the equation
(6) and (7) have been properly modeled.
According to (8) to (10), target processing conditions (axial compression stress
σC, Bending angle θ) to predict the deformation behavior of the enlarged area.
Can be measured. That is, each material constant shown in Table 2
Should be clarified by the experiment described in the above embodiment.
If the desired enlarged part shape (diameter DN, Width lN) From molding strip
By estimating the case, the enlarged part of the desired shape can be integrated
The provided shaft can be molded. [Table 2] [0022] According to the present invention, as described above,
Forming strip to form desired enlarged part by repeating trial processing
The model was derived from the formula
It is possible to estimate this processing condition by Dellization
became. In other words, the enlarged model
(Diameter DN, Width lN) To estimate the molding conditions
Therefore, it is possible to mold a shaft material that is integrally provided with a desired enlarged portion.
Can be

【図面の簡単な説明】 【図1】軸肥大加工装置の一実施形態を示す全体斜視図 【図2】軸肥大加工方法の加工手順を示す説明図 (a)図は被加工材Wの装着状態を示す説明図 (b)図は(a)図の状態から軸圧縮力を作用させた状
態を示す説明図 (c)図は(b)図の状態に曲げと回転を作用させた状
態を示す説明図 (d)図は(c)図の状態から肥大現象が進行した状態
を示す説明図 (e)図は(d)図の状態から曲げ戻しを行った状態を
示す説明図 (f)図は(e)図の状態から被加工材Wを取り出した
状態を示す説明図 【図3】曲げ角度θをパラメータとして、回転回数Nの
増大に伴う軸肥大挙動 【図4】変形モデル 【図5】モデル解析に変形抵抗応力の減少挙動 【図6】曲げモーメントの増加挙動 【図7】回転時定数Nと曲げ角度θの関係 【図8】回転回数Nと肥大部の幅D/D及び軸径l
/lの実測値と推定値 【図9】異なる軸径Dの被加工材Wを用いた時の回転
回数Nと肥大部の幅D/D及び軸径l/lの関
係 【図10】回転時定数Nと軸圧縮応力σの関係 【図11】軸径Dと軸径依存係数ηの関係 【図12】回転回数Nと肥大部の幅D/D及び軸径
/lの実測値と推定値 【符号の説明】 1 軸肥大加工装置 2 ベースフレーム 3 駆動回転部 9 従動回転部
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall perspective view showing an embodiment of a shaft enlargement processing apparatus. FIG. 2 is an explanatory view showing a processing procedure of a shaft enlargement processing method. (B) is a diagram illustrating a state in which an axial compression force is applied from the state of (a). (C) is a state in which bending and rotation are applied to the state of (b). (D) is an explanatory view showing a state in which the hypertrophy phenomenon has progressed from the state shown in (c). (E) is an explanatory view showing a state in which bending back has been performed from the state shown in (d). The figure is an explanatory view showing a state in which the workpiece W is taken out from the state shown in FIG. 3E. FIG. 3 is an axial hypertrophy behavior with an increase in the number of rotations N, using a bending angle θ as a parameter. 5) Deformation resistance stress decreasing behavior in model analysis [Fig. 6] Bending moment increasing behavior [Fig. 7] Rotation time constant N 0 and bending angle FIG. 8: Number of rotations N, width D N / D 0 of enlarged portion and shaft diameter l
Found an estimated value of N / l 0 9 width enlargement portion and the rotation number N when using the workpiece W of the different shaft diameter D 0 D N / D 0 and shaft diameter l N / l 0 [FIG. 10] Relationship between rotation time constant N 0 and axial compression stress σ [FIG. 11] Relationship between shaft diameter DN and shaft diameter dependent coefficient η [FIG. 12] Number of rotations N and width D N / D of enlarged portion 0 and actual value and estimated value of shaft diameter l N / l 0 [Description of Signs] 1 Shaft enlargement processing device 2 Base frame 3 Drive rotation unit 9 Follower rotation unit

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4E087 AA10 BA17 CA35 CB13 CC03 GA02 GA03    ────────────────────────────────────────────────── ─── Continuation of front page    F term (reference) 4E087 AA10 BA17 CA35 CB13 CC03                       GA02 GA03

Claims (1)

【特許請求の範囲】 【請求項1】 軸径Dなる被加工材Wの中間部に所望
の肥大部を一体的に成形するため、互いに対向する一対
の保持部を所定間隔L離間した状態で被加工材Wを保
持し、少なくとも一方の保持部を相対的に他方の保持部
に接近させることによって軸圧縮力Pを作用させるとと
もに、軸周りの回転と少なくとも一方の保持部を他方の
保持部の軸心に対して傾斜する方向に偏倚させることに
よって被加工材Wに回転と曲げ角度θの曲げを作用さ
せ、両保持部間の被加工材Wの曲げ内側に生じる凸部を
全周に累積肥大させた後、曲げ戻しにより被加工材Wの
真直化を行った後、回転及び軸圧縮状態を停止させる軸
肥大加工方法において、N回転後に直径D,幅l
なる肥大部を成形する数式モデルを 【数1】 【数2】 として表し、ここでεは軸径Dが2倍に肥大したと
きの平均軸方向歪みであり、Nは回転回数であり、N
は回転時定数であり、この回転時定数Nは、 【数3】 とし、ここで、回転時定数Nの曲げ角度依存係数N
及び加圧応力依存指数αを 【数4】 【数5】 とし、さらに被加工材Wの軸径Dに依存する寸法効果
ηを 【数6】 とし、これらから導出される軸肥大加工条件(曲げ角度
θ,軸圧縮応力σ)によって前記肥大部を一体的に成
形することを特徴とする軸肥大加工方法。
Patent Claims: 1. To integrally molded desired enlarged portion at an intermediate portion of the shaft diameter D 0 becomes workpiece W, spaced a predetermined distance L 0 to the pair of holding portions that face each other In this state, the workpiece W is held, and at least one of the holding portions is relatively approached to the other holding portion to apply the axial compressive force P. At the same time, the rotation around the axis and the at least one holding portion are caused to move to the other side. By biasing the workpiece W in a direction inclining with respect to the axis of the holding portion, the workpiece W is rotated and bent at a bending angle θ, and the convex portion formed inside the bending of the workpiece W between the two holding portions is entirely removed. after accumulated hypertrophy circumference, after straightening of the workpiece W by the bending back, made in the axial enlargement processing method for stopping the rotation and axial compression, the diameter D N after N rotation, a width l N hypertrophy The mathematical model for forming the part is (Equation 2) Where ε 0 is the average axial strain when the shaft diameter D 0 is doubled, N is the number of rotations, and N 0
Is a rotation time constant, and this rotation time constant N 0 is given by: And, wherein the bending angle dependence coefficient N 0 of the rotation time constant N 0
* And the stress dependence index α are given by (Equation 5) And the dimensional effect η depending on the shaft diameter D 0 of the workpiece W is given by A shaft enlargement method characterized by integrally forming the enlarged portion according to shaft enlargement processing conditions (bending angle θ, axial compressive stress σ C ) derived therefrom.
JP2001230097A 2001-07-30 2001-07-30 Shaft enlargement processing method Expired - Lifetime JP3788751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001230097A JP3788751B2 (en) 2001-07-30 2001-07-30 Shaft enlargement processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001230097A JP3788751B2 (en) 2001-07-30 2001-07-30 Shaft enlargement processing method

Publications (2)

Publication Number Publication Date
JP2003039133A true JP2003039133A (en) 2003-02-12
JP3788751B2 JP3788751B2 (en) 2006-06-21

Family

ID=19062353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001230097A Expired - Lifetime JP3788751B2 (en) 2001-07-30 2001-07-30 Shaft enlargement processing method

Country Status (1)

Country Link
JP (1) JP3788751B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169684A (en) * 2005-12-20 2007-07-05 Iura Co Ltd Pre-treatment for improving axial thickening workability
JP2007260730A (en) * 2006-03-29 2007-10-11 Iura Co Ltd Axial thickening-processing method
JP2011156568A (en) * 2010-02-02 2011-08-18 Neturen Co Ltd Axial enlarging method to workpiece
JP2013169572A (en) * 2012-02-21 2013-09-02 Neturen Co Ltd Monitoring system of shaft thickening machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5302592B2 (en) * 2008-07-31 2013-10-02 高周波熱錬株式会社 Workpiece enlargement processing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169684A (en) * 2005-12-20 2007-07-05 Iura Co Ltd Pre-treatment for improving axial thickening workability
JP2007260730A (en) * 2006-03-29 2007-10-11 Iura Co Ltd Axial thickening-processing method
JP2011156568A (en) * 2010-02-02 2011-08-18 Neturen Co Ltd Axial enlarging method to workpiece
JP2013169572A (en) * 2012-02-21 2013-09-02 Neturen Co Ltd Monitoring system of shaft thickening machine

Also Published As

Publication number Publication date
JP3788751B2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
TWI510305B (en) Method for bending pipes, rods, profiled sections and similar blanks, and corresponding device
JP6461963B2 (en) Cold pilger rolling mill and method for forming blanks into tubes
CN108687256B (en) Reinforcing bar bending machine for building and bending method thereof
JP4285053B2 (en) High dimensional accuracy tube and manufacturing method thereof
JP2003039133A (en) Axial thickening process method
JP2002192236A (en) Bender for long size material
JP2010005697A (en) Pipe bending method and pipe bending device
JP4927599B2 (en) Axial hypertrophy processing machine and processing method thereof
JP4832136B2 (en) Shaft enlargement processing method
CN206455035U (en) Helical blade rolls system
JPS6238048B2 (en)
JP2008309543A (en) Friction coefficient measuring device for inner surface of tube
JP4906849B2 (en) Steel pipe expansion forming method and steel pipe expansion forming apparatus
JP2011224588A (en) Device and method for forming deep hole of hollow component
CN115583004A (en) Flaring device for PVC (polyvinyl chloride) pipe
JPH0659503B2 (en) Stepped tube / tapered tube manufacturing method
JP5631438B2 (en) Pipe bending apparatus and method
JPS6240091B2 (en)
CN112705602A (en) Bent pipe machining process
Gandhi et al. Analytical modeling of top roller position for multiple pass (3-roller) cylindrical forming of plates
CN221715343U (en) Building materials tubular metal resonator is mechanism of shape again
CN205833849U (en) Necking machine for copper pipe
RU2566689C2 (en) Straightening of long ribbed part and device to this end (versions)
JP2005052851A (en) Method and device for forming screw blade
US20120186318A1 (en) Device for rolling threads

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3788751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term