JP2003036806A - Fixed anode type x-ray tube device and said manufacturing method - Google Patents

Fixed anode type x-ray tube device and said manufacturing method

Info

Publication number
JP2003036806A
JP2003036806A JP2001220090A JP2001220090A JP2003036806A JP 2003036806 A JP2003036806 A JP 2003036806A JP 2001220090 A JP2001220090 A JP 2001220090A JP 2001220090 A JP2001220090 A JP 2001220090A JP 2003036806 A JP2003036806 A JP 2003036806A
Authority
JP
Japan
Prior art keywords
anode
cooling
ray tube
fins
cooling surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001220090A
Other languages
Japanese (ja)
Other versions
JP4749615B2 (en
Inventor
Noriyuki Isojima
宣之 磯島
Tadakatsu Nakajima
忠克 中島
Mototatsu Doi
元達 土肥
Makoto Otsuka
誠 大塚
Yoshihiko Dan
芳彦 壇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2001220090A priority Critical patent/JP4749615B2/en
Publication of JP2003036806A publication Critical patent/JP2003036806A/en
Application granted granted Critical
Publication of JP4749615B2 publication Critical patent/JP4749615B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • X-Ray Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fixed anode type of X-ray tube capable of fully cooling an anode of a fixed anode type of X-ray tube and a target, and its manufacturing method. SOLUTION: An anode bottom 3a and an anode side 3b are connected at an anode bottom connection plate 16. In the fixed anode type of X-ray tube device comprising an anode 3, a side fin 21 is placed to an inner surface 11 of the anode side 3b, a cooling nozzle 8 employing a nozzle cover 20 to form the side fin 21 and a gap 12 is inserted to the anode side portion, and an insulating oil is injected to a bottom surface 22 employing a cooling bottom fin 23 from a head of the cooling nozzle 8. While the insulating oil be cooling the bottom surface 22 passes through the gap 21, the anode side 3b is cooled and cooling efficiency of the total anode is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固定陽極型X線管
装置に関し、特に陽極、及びターゲットを十分に冷却す
るに好適な固定陽極型X線管装置及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fixed anode X-ray tube apparatus, and more particularly to a fixed anode X-ray tube apparatus suitable for sufficiently cooling an anode and a target and a method for manufacturing the same.

【0002】[0002]

【従来の技術】固定陽極X線管装置は、小型で低コスト
な面を活かして、可搬型の小型X線装置や歯科用の小容
量のもの、あるいは工業用等の許容負荷の小さいものに
用いられている。
2. Description of the Related Art A fixed anode X-ray tube device is a small-sized portable X-ray device, a small-capacity device for dentistry, or a device with a small allowable load for industrial use, taking advantage of its small size and low cost. It is used.

【0003】この固定陽極X線管装置として、図2及び
図8に示すような構造のものが既に知られている。図2
は図8の要部拡大図である。図2において、1は陰極、
2はフィラメント、3は陽極、4はターゲット、5は支
持材、6は真空外囲器、7は外囲器接合材、8は冷却ノ
ズル、9は冷却面、10は絶縁配管、11は側壁内面、
12は隙間、13は支持材である。図8において、50
はX線管容器、51は絶縁油タンク、52は絶縁油ポン
プ、53は放熱器、54はファン、55は配管、56は
X線照射対象、57は絶縁支持材である。
As this fixed anode X-ray tube device, one having a structure as shown in FIGS. 2 and 8 is already known. Figure 2
FIG. 9 is an enlarged view of a main part of FIG. In FIG. 2, 1 is a cathode,
Reference numeral 2 is a filament, 3 is an anode, 4 is a target, 5 is a support material, 6 is a vacuum envelope, 7 is an envelope bonding material, 8 is a cooling nozzle, 9 is a cooling surface, 10 is an insulating pipe, and 11 is a side wall. Inside,
Reference numeral 12 is a gap, and 13 is a support material. In FIG. 8, 50
Is an X-ray tube container, 51 is an insulating oil tank, 52 is an insulating oil pump, 53 is a radiator, 54 is a fan, 55 is piping, 56 is an X-ray irradiation target, and 57 is an insulating support material.

【0004】以下同一機能を有するものは同じ符号で表
記し、説明を省略する。陰極1内のフィラメント2から
放出された熱電子は、陽極3に吸引、加速され陽極3に
埋め込まれたターゲット4に衝突する。衝突時の制動輻
射作用によりX線が発生し、放射窓24から外部に放射
され、X線照射対象56に照射される。
Hereinafter, components having the same function will be denoted by the same reference numerals, and the description thereof will be omitted. The thermoelectrons emitted from the filament 2 in the cathode 1 are attracted and accelerated by the anode 3 and collide with the target 4 embedded in the anode 3. X-rays are generated by the braking radiation effect at the time of collision, and are radiated to the outside from the radiation window 24, and are radiated to the X-ray irradiation target 56.

【0005】陽極3は支持材5により支持され、陰極1
とともに真空外囲器6内に収納されX線管が構成され
る。真空外囲器6と支持材5は外囲器接合材7で接続さ
れ、内部が真空に気密される。
The anode 3 is supported by a support material 5, and the cathode 1
Together with this, the X-ray tube is housed in the vacuum envelope 6. The vacuum envelope 6 and the support member 5 are connected by the envelope joint material 7, and the inside is hermetically sealed in vacuum.

【0006】ここで陽極に入射する電子ビームのエネル
ギのうち、X線のエネルギとなるのは1%以下で、残り
の99%以上は熱となり、その大部分が熱負荷として陽
極3に与えられる。
Of the energy of the electron beam incident on the anode, the energy of X-rays is 1% or less, the remaining 99% or more is heat, and most of it is given to the anode 3 as a heat load. .

【0007】陽極3は真空中に置かれるため、輻射によ
り外部に熱を放散するが、照射される電子ビームの強度
が増すとターゲット4の温度が上昇して劣化が進むおそ
れがある。そこで大容量の固定陽極型X線管では図2に
示すように、陽極3にターゲット4の裏面側から穴を開
け、冷却ノズル8を挿入し、絶縁配管10を介して供給
される絶縁油を、冷却面9に噴射して陽極3を冷却して
いる。噴射された絶縁油は、側壁内面11と冷却ノズル
8の隙間12と、支持材5、支持材13の内部を経て図
8に示す外部に設けた放熱器53に送られ、冷却後ポン
プ52で再びX線管に供給される。冷却に絶縁油を用い
るのは、陽極に100kV程度の高電圧が加えられるた
め電気的に外部と絶縁する必要があるためである。絶縁
配管10、絶縁支持材57を用いるのも同じ理由であ
る。
Since the anode 3 is placed in a vacuum, it radiates heat to the outside, but if the intensity of the electron beam irradiated is increased, the temperature of the target 4 may rise and deterioration may proceed. Therefore, in a large-capacity fixed anode X-ray tube, as shown in FIG. 2, a hole is made in the anode 3 from the back surface side of the target 4, a cooling nozzle 8 is inserted, and insulating oil supplied through the insulating pipe 10 is supplied. , Is sprayed onto the cooling surface 9 to cool the anode 3. The sprayed insulating oil is sent to the radiator 53 provided outside as shown in FIG. 8 through the gap 12 between the side wall inner surface 11 and the cooling nozzle 8, the inside of the support material 5 and the support material 13, and is cooled by the pump 52. It is supplied to the X-ray tube again. The reason why the insulating oil is used for cooling is that a high voltage of about 100 kV is applied to the anode, so that the anode must be electrically insulated from the outside. The insulating pipe 10 and the insulating support material 57 are used for the same reason.

【0008】通常ターゲット4には融点の高いタングス
テンを用い、陽極3には熱伝導率の高い銅を用いる。X
線発生に伴ってターゲット4で発生した熱は、熱伝導に
より陽極3に移動し、冷却面9で絶縁油に放散され、外
部に放出される。
Usually, the target 4 is made of tungsten having a high melting point, and the anode 3 is made of copper having a high thermal conductivity. X
The heat generated in the target 4 due to the generation of the rays moves to the anode 3 by heat conduction, is dissipated in the insulating oil on the cooling surface 9, and is discharged to the outside.

【0009】なお、この種の装置として関連するものに
は、例えば、「コロナ社刊、電子工学進歩シリーズ9
“CTスキャナ”第88頁(昭和55年5月15日 初版第
2刷発行)」に示されているものが挙げられる。
Devices related to this type of device include, for example, "Electronics Advancement Series 9 published by Corona Publishing Co., Ltd."
Examples are those shown in "CT Scanner" page 88 (published on May 15, 1980, first edition, second printing).

【0010】[0010]

【発明が解決しようとする課題】上記従来技術では加工
の容易さから、冷却面9、及び側壁内面11は平滑面と
なっている。さらに冷却ノズル8と側壁内面11の間の
隙間12が大きいため、隙間12を流れる絶縁油の流速
が小さくなり、側壁内面11から絶縁油へ放散する熱量
が小さくなっている。そのため所定値以上に熱電子の入
射エネルギが増えると、陽極3、及びターゲット4の温
度が上昇し、ターゲット表面の劣化が急速に進んで装置
の寿命が短くなるという問題があった。また冷却面9の
表面温度が高くなり、絶縁油の劣化が進むという問題が
あった。さらに、X線装置自体の小型化が求められてお
り、大きな熱負荷に対応できる小型で高効率な陽極3の
冷却面構造が必要とされている。
In the above prior art, the cooling surface 9 and the side wall inner surface 11 are smooth surfaces because of the ease of processing. Furthermore, since the gap 12 between the cooling nozzle 8 and the side wall inner surface 11 is large, the flow velocity of the insulating oil flowing through the gap 12 is small, and the amount of heat radiated from the side wall inner surface 11 to the insulating oil is small. Therefore, when the incident energy of thermoelectrons increases above a predetermined value, the temperatures of the anode 3 and the target 4 rise, and the target surface deteriorates rapidly, which shortens the life of the device. Further, there is a problem that the surface temperature of the cooling surface 9 becomes high and the insulating oil deteriorates. Further, there is a demand for downsizing of the X-ray apparatus itself, and a cooling surface structure of the anode 3 that is small and highly efficient that can handle a large heat load is required.

【0011】冷却構造の高効率化のためには冷却面にフ
ィンを設置して、伝熱面積を増加することが有効である
ことが一般の熱機器で古くから知られている。しかし、
固定陽極型X線管の冷却面の場合、有底円筒状の冷却面
に冷却ノズルを挿入する構造であることから、冷却面に
容易にフィンを加工することができないという問題があ
る。金型を用いた引き抜き加工を行えば、上記したフィ
ン加工は可能であるが、金型自体が高価であり、少量生
産の固定陽極型X線管の生産には不向きで、小量生産に
適したフィン付き冷却面を有する陽極の製造方法が必要
である。
It has been known for a long time in general thermal equipment that it is effective to install fins on the cooling surface to increase the heat transfer area in order to improve the efficiency of the cooling structure. But,
In the case of the cooling surface of the fixed anode type X-ray tube, since the cooling nozzle is inserted into the cylindrical cooling surface having the bottom, there is a problem that the fin cannot be easily processed on the cooling surface. The above-mentioned fin processing is possible if drawing is performed using a mold, but the mold itself is expensive and is not suitable for the production of fixed anode X-ray tubes in small volume production, and is suitable for small volume production. What is needed is a method of making an anode having a finned cooling surface.

【0012】本発明は、従来の固定陽極型X線管装置に
おける上記の問題点を解決するためになされたものであ
って、陽極とターゲットの冷却効率が高く、小型の冷却
構造と、その製造方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems in the conventional fixed anode type X-ray tube apparatus, and has a high cooling efficiency of the anode and the target, a small cooling structure, and its manufacture. The purpose is to provide a method.

【0013】[0013]

【課題を解決するための手段】上記目的は、以下によっ
て達成される。
The above object is achieved by the following.

【0014】(1)陽極と、該陽極と対向して配置され
る陰極とを真空外囲器内に収納して成るX線管と、該X
線管に冷却用絶縁油を供給する電気的絶縁機能を有する
配管と、絶縁油を噴出するノズルと、前記配管を経由し
て前記X線管に絶縁油を供給する外部冷却装置とから成
る固定陽極型X線管装置において、前記陽極は、絶縁油
により直接冷却される有底円筒状冷却面を具備し、前記
陽極の冷却面底部の冷却を前記ノズルから噴出する絶縁
油で行った後に、流出する絶縁油をノズルに設けたノズ
ルカバーと前記陽極の有底円筒内面との隙間に導いて、
前記有底円筒状冷却面を冷却する構造を形成し、前記有
底円筒状冷却面、もしくは該有底円筒状冷却面と前記冷
却面底部の両者にフィンを設ける。
(1) An X-ray tube in which an anode and a cathode arranged so as to face the anode are housed in a vacuum envelope, and the X-ray tube.
Fixing consisting of a pipe having an electrically insulating function for supplying insulating oil for cooling to a wire tube, a nozzle for ejecting insulating oil, and an external cooling device for supplying insulating oil to the X-ray tube via the pipe In the anode type X-ray tube device, the anode has a bottomed cylindrical cooling surface that is directly cooled by insulating oil, and after cooling the bottom of the cooling surface of the anode with insulating oil ejected from the nozzle, Insulating oil flowing out is introduced into the gap between the nozzle cover provided on the nozzle and the bottomed cylindrical inner surface of the anode,
A structure for cooling the bottomed cylindrical cooling surface is formed, and fins are provided on the bottomed cylindrical cooling surface, or both the bottomed cylindrical cooling surface and the cooling surface bottom portion.

【0015】(2)上記(1)の固定陽極型X線管装置
は、前記冷却面底部の部分で分離されその内部空洞部が
貫通した陽極円筒部内面、もしくは平面状になっている
冷却面底部と内部空洞部が貫通した陽極円筒部内面の両
者にフィンを加工する第1工程と、この第1工程の後に
前記底面部に前記円筒部をろう付けにより接合する第2
工程とにより製造する。
(2) In the fixed anode type X-ray tube device of the above (1), the inner surface of the anode cylindrical portion which is separated at the bottom portion of the cooling surface and penetrates the internal cavity portion, or the cooling surface which is flat. A first step of processing fins on both the bottom portion and the inner surface of the anode cylindrical portion through which the internal cavity portion penetrates, and a second step of joining the cylindrical portion to the bottom surface portion by brazing after the first step
It is manufactured by the following process.

【0016】(3)上記(1)の固定陽極型X線管装置の
円筒部と底面部との接合部の外径は円筒部外径よりも大
きくする。
(3) The outer diameter of the joint between the cylindrical portion and the bottom portion of the fixed anode type X-ray tube device of the above (1) is made larger than the outer diameter of the cylindrical portion.

【0017】(4)陽極と、該陽極と対向して配置され
る陰極とを真空外囲器内に収納して成るX線管と、該X
線管に冷却用絶縁油を供給する電気的絶縁機能を有する
配管と、絶縁油を噴出するノズルと、前記配管を経由し
て前記X線管に絶縁油を供給する外部冷却装置とから成
る固定陽極型X線管装置において、前記陽極は、絶縁油
により直接冷却される有底円錐面状冷却面を具備し、前
記陽極の冷却面底部の冷却を前記ノズルから噴出する絶
縁油で行った後に、流出する絶縁油を前記ノズルに設け
たノズルカバーと前記陽極の円錐状冷却面との隙間に導
いて、前記有底円錐面状冷却面を冷却する構造を形成
し、前記有底円錐面状冷却面、もしくは該有底円錐面状
冷却面と前記冷却面底部の両者にフィンを設ける。
(4) An X-ray tube in which an anode and a cathode arranged to face the anode are housed in a vacuum envelope;
Fixing consisting of a pipe having an electrically insulating function for supplying insulating oil for cooling to a wire tube, a nozzle for ejecting insulating oil, and an external cooling device for supplying insulating oil to the X-ray tube via the pipe In the anode type X-ray tube device, the anode has a bottomed conical cooling surface that is directly cooled by insulating oil, and after cooling the bottom of the cooling surface of the anode with insulating oil ejected from the nozzle, , A structure for cooling the bottomed conical cooling surface by guiding the outflowing insulating oil into the gap between the nozzle cover provided in the nozzle and the conical cooling surface of the anode, and forming the bottomed conical surface Fins are provided on the cooling surface, or both of the bottomed conical cooling surface and the cooling surface bottom portion.

【0018】(5)上記(4)の固定陽極型X線管装置
は、前記冷却面底部の部分で分離されその内部空洞部が
貫通した陽極円筒部内面、もしくは平面状になっている
冷却面底部と内部空洞部が貫通した陽極円筒部内面の両
者にフィンを加工する第1工程と、こ第1の工程の後
に、前記底面部に円筒部をろう付けにより接合する第2
工程とにより製造する。
(5) In the fixed anode type X-ray tube device of the above (4), the inner surface of the anode cylindrical portion separated by the bottom portion of the cooling surface and penetrated by the internal cavity portion, or the cooling surface having a flat surface. A first step of processing fins on both the bottom portion and the inner surface of the anode cylindrical portion through which the internal cavity portion penetrates, and a second step of brazing the cylindrical portion to the bottom portion after the first step.
It is manufactured by the following process.

【0019】(6)上記(1)と(4)の固定陽極X線管
装置の真空外囲器内に収納される陽極支持材と、円筒面
部と、底面部との接合は、同時に同じろう材でろう付け
により行う。
(6) The anode support member housed in the vacuum envelope of the fixed anode X-ray tube apparatus of (1) and (4) above, the cylindrical surface portion, and the bottom surface portion may be bonded at the same time. Brazing with wood is used.

【0020】(7)上記(1),(3),(4),(6)の
固定陽極型X線管装置は、冷却面底部フィンを、底面中
心から少なくともノズル半径以上の位置から、外周部に
放射状に設置し、 陽極側壁部フィンを、少なくとも底
面から前記冷却面底部フィンの高さより高い位置の側壁
内面に設置する。
(7) In the fixed anode type X-ray tube device according to the above (1), (3), (4) and (6), the cooling surface bottom fin is provided with an outer periphery from a position at least the nozzle radius from the center of the bottom surface. The anode side wall fins are installed on the inner surface of the side wall at a position higher than at least the height of the cooling surface bottom fins from the bottom surface.

【0021】(8)上記(1)〜(7)の固定陽極型X線
管装置は、陽極が受ける熱負荷が3kW以上であり、前
記側壁部フィン21のフィン高さは1〜4mmであり、
前記側壁部フィン21の厚さは0.8〜2mmであり、
前記側壁部フィン21のフィンピッチは0.8〜3mm
である。
(8) In the fixed anode type X-ray tube device of the above (1) to (7), the heat load received by the anode is 3 kW or more, and the fin height of the side wall fins 21 is 1 to 4 mm. ,
The sidewall fin 21 has a thickness of 0.8 to 2 mm,
The fin pitch of the sidewall fins 21 is 0.8 to 3 mm.
Is.

【0022】(9)上記(1)〜(8)の固定陽極型X線
管装置は、陽極の円筒部と底面部との接合部に接合位置
を合わせるための凹凸部を円筒部、もしくは底面部の少
なくとも一方に設けて成る。
(9) In the fixed anode type X-ray tube device according to the above (1) to (8), the concavo-convex portion for aligning the joint position with the joint portion between the cylindrical portion of the anode and the bottom portion is formed on the cylindrical portion or the bottom surface. It is provided on at least one of the parts.

【0023】[0023]

【発明の実施の形態】以下、本発明の第1の実施形態に
ついて図1を参照して説明する。図1において、3aは
陽極底部、3bは陽極側壁部、14は陽極筒、15は陽
極筒接合面、16は陽極底部接合面、17は陽極側壁部
接合面、18は支持材接合面、19は真空外囲器接合
面、20はノズルカバー、21は側壁部フィン、22は
底面、23は底面部フィンである。陽極底部3aと陽極
側壁部3bの材質は銅である。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of the present invention will be described below with reference to FIG. In FIG. 1, 3a is an anode bottom portion, 3b is an anode side wall portion, 14 is an anode cylinder, 15 is an anode cylinder joint surface, 16 is an anode bottom joint surface, 17 is an anode side wall joint surface, 18 is a support material joint surface, 19 Is a vacuum envelope joint surface, 20 is a nozzle cover, 21 is a sidewall fin, 22 is a bottom surface, and 23 is a bottom surface fin. The material of the anode bottom portion 3a and the anode side wall portion 3b is copper.

【0024】陰極1内のフィラメント2から放出された
熱電子は、陽極底部3aに吸引、加速され陽極底部3a
に埋め込まれたターゲット4に衝突する。衝突時の制動
輻射作用によりX線が発生する。陽極底部3aは陽極側
壁部3bと陽極底部接合面16で接合され、また陽極筒
14が陽極底部3aに陽極筒接合面15で接合され、全
体として陽極3を構成する。陽極側壁部接合面17で、
陽極3は支持材5に接合支持され、陰極1とともに真空
外囲器6内に収納される。ここで真空外囲器6と支持材
5は、外囲器接合材7により真空外囲器接合面19と支
持材接合面18で、それぞれ接続される。
The thermoelectrons emitted from the filament 2 in the cathode 1 are attracted to and accelerated by the anode bottom portion 3a.
Collides with the target 4 embedded in. X-rays are generated by the braking radiation effect at the time of collision. The anode bottom portion 3a is joined to the anode side wall portion 3b at the anode bottom portion joining surface 16, and the anode cylinder 14 is joined to the anode bottom portion 3a at the anode cylinder joining surface 15 to form the anode 3 as a whole. At the anode sidewall joint surface 17,
The anode 3 is joined and supported by the support material 5, and is housed in the vacuum envelope 6 together with the cathode 1. Here, the vacuum envelope 6 and the support member 5 are connected by the envelope joint member 7 at the vacuum envelope joint surface 19 and the support member joint surface 18, respectively.

【0025】陽極側壁部3bの内側は円筒状の空洞とな
っており、側壁内面11に側壁部フィン21を設ける。
ノズルカバー20を有する冷却ノズル8は、側壁部フィ
ン21と隙間12を形成するように陽極側壁部3b内部
に挿入され、冷却ノズル8の先端から、底面部フィン2
3を有する底面22に冷却用絶縁油が噴射される。底面
部フィン23は設置しなくても良いものとする。底面部
フィン23を設置した場合には伝熱面積が増加するた
め、底面22での熱放散が増加するため陽極3の温度を
下げることができる。
The inside of the anode side wall portion 3b is a hollow cavity, and the side wall fin 21 is provided on the side wall inner surface 11.
The cooling nozzle 8 having the nozzle cover 20 is inserted into the anode side wall portion 3b so as to form a gap 12 with the side wall fin 21, and the bottom surface fin 2 is inserted from the tip of the cooling nozzle 8.
The cooling insulating oil is sprayed on the bottom surface 22 having the number 3. The bottom surface fins 23 may not be installed. When the bottom surface fins 23 are installed, the heat transfer area increases, and the heat dissipation at the bottom surface 22 increases, so that the temperature of the anode 3 can be lowered.

【0026】底面22を冷却した絶縁油は隙間12を通
過する過程で、陽極側壁部3bを冷却する。陽極底部3
aと陽極側壁部3bの材質は熱伝導率の高い銅であるた
め、陽極底部接合面16を介して、高温となる陽極底部
3aから陽極側壁部3bに熱が移動する。
The insulating oil that has cooled the bottom surface 22 cools the anode side wall portion 3b while passing through the gap 12. Anode bottom 3
Since the material of a and the anode side wall portion 3b is copper having a high thermal conductivity, heat is transferred from the anode bottom portion 3a having a high temperature to the anode side wall portion 3b through the anode bottom joint surface 16.

【0027】したがって、側壁内面11に側壁部フィン
21を設置して、絶縁油流路の伝熱面積を増し、併せて
ノズルカバー20によって隙間12の断面積を小さくす
ることにより、隙間12を流れる絶縁油の流速を大きく
して熱伝達率を増加することで、陽極側壁部3bでの熱
放散が増加して、陽極3及びターゲット4の温度を大幅
に下げることができる。
Therefore, the side wall fins 21 are installed on the inner surface 11 of the side wall to increase the heat transfer area of the insulating oil flow path and, at the same time, reduce the cross-sectional area of the gap 12 by the nozzle cover 20 to flow through the gap 12. By increasing the flow rate of the insulating oil and increasing the heat transfer coefficient, the heat dissipation in the anode side wall portion 3b increases, and the temperatures of the anode 3 and the target 4 can be significantly reduced.

【0028】上記の冷却面構造によれば、陽極及びター
ゲットを効果的に冷却することが可能で、従来ターゲッ
トの劣化防止のために規制されていた以上の高いエネル
ギの電子ビームの照射が可能となり、より強い強度のX
線を連続して発生することが可能になる。
According to the above cooling surface structure, it is possible to effectively cool the anode and the target, and it becomes possible to irradiate an electron beam having a higher energy than that which has been conventionally regulated to prevent deterioration of the target. , Stronger intensity X
It is possible to generate lines continuously.

【0029】また、上記した固定陽極型X線管装置は以
下のようにして製造する。陽極筒14、陽極底部3a、
陽極側壁部3b、支持材5を別々に加工する。この時、
陽極側壁部3bは分割されているため、ワイヤカット加
工、或いは機械加工等により側壁内面11に側壁フィン
21を容易に加工することができる。また、上記と同様
に陽極底部3aも分割されているため、底面22にワイ
ヤカット加工、或いは機械加工等により底面部フィン2
3を容易に加工することができる。
The fixed anode X-ray tube device described above is manufactured as follows. Anode cylinder 14, anode bottom 3a,
The anode side wall portion 3b and the support material 5 are processed separately. This time,
Since the anode side wall portion 3b is divided, the side wall fin 21 can be easily processed on the side wall inner surface 11 by wire cutting, machining or the like. Further, since the anode bottom portion 3a is also divided in the same manner as described above, the bottom surface fin 2 is formed by wire-cutting or machining the bottom surface 22.
3 can be easily processed.

【0030】以上のように加工した陽極筒14、陽極底
部3a、陽極側壁部3b、支持材5を、溶融温度の高
い、例えば金銅ろう(融点約990℃)で同時にろう付
けする。
The anode cylinder 14, the anode bottom portion 3a, the anode side wall portion 3b, and the support material 5 processed as described above are simultaneously brazed with, for example, gold-copper brazing (melting point: about 990 ° C.) having a high melting temperature.

【0031】次に、外囲器接続材7を介して陽極3と真
空外囲器6、支持材13を溶融温度が相対的に低い、例
えば銀ろう(融点780℃)でろう付けする。
Next, the anode 3, the vacuum envelope 6 and the support material 13 are brazed via the envelope connecting material 7 with silver solder (melting point 780 ° C.) having a relatively low melting temperature.

【0032】上記した製造方法によれば、少量生産時で
も低コストで冷却面にフィンを設置することが可能とな
る。また、最も気密性を必要とする陽極3の真空外囲器
6内での接合面15,16,17は、溶融温度の高い同
じろう材で同時に接合するため、ろう付け回数を減らす
ことができる。さらに、一箇所づつろう付けを行う場合
と比較して、先にろう付けを行った箇所が、接合箇所が
近接しているため後工程中の熱により再度溶融して気密
性を損なうというおそれが無く、確実なろう付け作業を
行うことができる。
According to the manufacturing method described above, it becomes possible to install the fins on the cooling surface at a low cost even in a small-volume production. Further, since the joining surfaces 15, 16 and 17 of the anode 3 which requires the most airtightness in the vacuum envelope 6 are simultaneously joined with the same brazing material having a high melting temperature, the number of brazing can be reduced. . Furthermore, as compared with the case where brazing is performed one by one, there is a possibility that the location where the brazing is performed first is melted again by the heat in the subsequent process and the airtightness is impaired due to the proximity of the joining location. Without this, reliable brazing work can be performed.

【0033】尚、上記した実施の形態において陽極筒1
4は、X線発生時に生じる二次電子の影響が小さい場合
には、図12に示すように省略してもよい。
Incidentally, in the above-mentioned embodiment, the anode cylinder 1
4 may be omitted as shown in FIG. 12 when the influence of secondary electrons generated when X-rays are generated is small.

【0034】さらに、図13に示すようにシェル状の陽
極筒14aをネジ60により固定して陽極筒接合面15
でのろう付け箇所を減らす構成としてもよい。また図3
に示すように、陽極底部接合面16の面積が大きくなる
ように陽極底部3aと陽極側壁部3bの接続部外径を大
きくして、陽極底部3aと陽極側壁部3bとの接合部の
熱抵抗を低減して、陽極側壁部3bへの熱移動を促進
し、ターゲット4の温度を下げる構成としてもよい。
Further, as shown in FIG. 13, the shell-shaped anode cylinder 14a is fixed by a screw 60 and the anode cylinder joint surface 15 is fixed.
The number of brazing points may be reduced. See also FIG.
As shown in, the outer diameter of the connecting portion between the anode bottom portion 3a and the anode side wall portion 3b is increased so that the area of the anode bottom joint surface 16 is increased, and the thermal resistance of the joint portion between the anode bottom portion 3a and the anode side wall portion 3b is increased. May be reduced to promote heat transfer to the anode sidewall 3b and lower the temperature of the target 4.

【0035】或いは、図4に示すように、陽極側壁部3
bの側壁内面11を円錐面状に形成して、側壁内面11
上に側壁部フィン21を設ける構成としてもよい。この
場合、隙間12を一定にするためノズルカバー20を側
壁内面11に合わせて、円錐面状とする。上記の構成に
より陽極底部接合面16の面積が増加し、陽極底部3a
から陽極側壁部3bへの熱抵抗が低減し、高温となる陽
極底部3aから陽極側壁部3bへ、より多くの熱が移動
して、ターゲット4の温度を下げることができる。ま
た、接合面積が増えるためにろう付けによる接合をより
確実に行うことができる。
Alternatively, as shown in FIG. 4, the anode side wall portion 3
The side wall inner surface 11 of FIG.
The sidewall fins 21 may be provided on the top. In this case, in order to keep the gap 12 constant, the nozzle cover 20 is aligned with the inner surface 11 of the side wall to have a conical surface shape. With the above structure, the area of the anode bottom bonding surface 16 increases, and the anode bottom 3a
The heat resistance from the anode side wall portion 3b to the anode side portion 3b is reduced, and more heat is transferred from the anode bottom portion 3a having a high temperature to the anode side wall portion 3b, so that the temperature of the target 4 can be lowered. Further, since the joining area is increased, joining by brazing can be performed more reliably.

【0036】尚、陽極底部接合面16を、例えば図14
に示すように、陽極底部3a側に凹部を設ける構造とす
れば、陽極底部3aと陽極側壁部3bの接合作業工程で
の位置合わせが容易となり、接合を確実に行うことがで
きる。或いは、図15に示すように陽極底部3a、陽極
側壁部3bの両者に凹凸部を設ける構造としても同様の
効果を得ることができる。
It should be noted that the anode bottom bonding surface 16 is, for example, as shown in FIG.
As shown in FIG. 7, if the recess is provided on the anode bottom 3a side, the anode bottom 3a and the anode side wall 3b can be easily aligned in the joining process, and the joining can be performed reliably. Alternatively, as shown in FIG. 15, the same effect can be obtained by providing a structure in which uneven portions are provided on both the anode bottom portion 3a and the anode side wall portion 3b.

【0037】次に、本発明の第2の実施の形態を図5と
図6に示す。図5において、3は側壁部フィン21と底
面部フィン23を一体にした構造の陽極である。
Next, a second embodiment of the present invention is shown in FIGS. In FIG. 5, reference numeral 3 is an anode having a structure in which the sidewall fin 21 and the bottom fin 23 are integrated.

【0038】比較的大量にX線管を製造する場合には、
側壁部フィン21と底面部フィン23を陽極3に一体し
て形成できる金型を製作し、鋳造後金型を引き抜くこと
により陽極3を製造する方法がある。金型製作にコスト
がかかるが、大量に同一形状の陽極を製造する場合には
有利である。陽極3に陽極筒14と支持材5をろう付け
することで、第1の実施の形態と同様の冷却効率の高い
X線管を製造することができる。同じ効果の説明につい
ては重複を避けるため省略するが、この実施の形態で
は、第1の実施の形態に対し、図1の16で表わす陽極
3のろう付け箇所が1箇所減る利点がある。尚、上記し
た実施の形態について底面部フィン23は、陽極の温度
が使用上満足する程度に低い場合には、設けなくても良
い。
When manufacturing an X-ray tube in a relatively large amount,
There is a method of manufacturing the anode 3 by manufacturing a mold in which the side wall fins 21 and the bottom surface fins 23 can be integrally formed with the anode 3, and then pulling out the mold after casting. Although it is costly to manufacture the mold, it is advantageous when a large number of anodes having the same shape are manufactured. By brazing the anode cylinder 14 and the support material 5 to the anode 3, it is possible to manufacture an X-ray tube with high cooling efficiency similar to that of the first embodiment. The description of the same effect will be omitted for avoiding duplication, but this embodiment has an advantage that the number of brazing points of the anode 3 represented by 16 in FIG. 1 is reduced by one in comparison with the first embodiment. In the above-described embodiment, the bottom surface fins 23 may not be provided when the anode temperature is low enough to be used.

【0039】図6に示すように、陽極側壁部3bの側壁
内面11が円錐面状の場合でも上述した実施の形態と同
様の効果が得られる。上述した実施の形態において、底
面部フィン23を設ける場合には、図7に示すように底
面部フィン23は、底面中心から少なくとも冷却ノズル
8の半径以上外側の位置から外周方向に放射状に設置
し、陽極側壁部フィンを、少なくとも底面22から前記
冷却面底部フィンの高さh2より高い位置の側壁内面1
1に設置する構成としてもよい。
As shown in FIG. 6, even when the side wall inner surface 11 of the anode side wall portion 3b has a conical shape, the same effect as that of the above-described embodiment can be obtained. In the above-described embodiment, when the bottom surface fins 23 are provided, the bottom surface fins 23 are installed radially from the center of the bottom surface to the outer periphery of at least the radius of the cooling nozzle 8 as shown in FIG. , The anode side wall fins at least from the bottom surface 22 to a position higher than the height h2 of the cooling surface bottom fins by the side wall inner surface 1
It may be configured to be installed at 1.

【0040】冷却ノズル8の直下の部分は、冷却ノズル
8から出る絶縁油の流速が大きい。この部分に底面部フ
ィン23を設置すると、流速が大きいため圧力損失が大
きくなり、絶縁油の流量が低下するおそれがある。ま
た、冷却ノズル8直下の底面22では平滑面であっても
熱伝達率が高い。そこで、図7に示すように少なくとも
冷却ノズル8の半径以上の位置から底面部フィン23を
設置して、底面22の外周に向かって流速の下がる絶縁
油の流れを底面部フィン23間の流路に絞ることで、熱
伝達率の低下を防止し、底面22全体の平均熱伝達率を
平滑面の場合に対して向上することができ、陽極3、及
びターゲット4の温度を低下することができる。
In the portion directly below the cooling nozzle 8, the insulating oil flowing out from the cooling nozzle 8 has a high flow velocity. If the bottom surface fins 23 are installed in this portion, the flow velocity is large, so that the pressure loss is large and the flow rate of the insulating oil may be reduced. Further, the bottom surface 22 immediately below the cooling nozzle 8 has a high heat transfer coefficient even if it is a smooth surface. Therefore, as shown in FIG. 7, the bottom surface fins 23 are installed from at least the radius of the cooling nozzle 8 and the flow rate of the insulating oil that decreases toward the outer periphery of the bottom surface 22 is reduced by the flow path between the bottom surface fins 23. By restricting the heat transfer coefficient to 1, it is possible to prevent the heat transfer coefficient from decreasing, improve the average heat transfer coefficient of the entire bottom surface 22 as compared with the case of a smooth surface, and reduce the temperatures of the anode 3 and the target 4. .

【0041】また、陽極側壁部フィン21を、少なくと
も底面22から冷却面底部フィン23の高さh2より高
い位置の側壁内面11に設置することで、冷却面底部フ
ィン23間から流出する絶縁油が、隙間12に流入する
際に偏りの無い一様な流れとなり、陽極側壁部3b内面
での絶縁油への熱放散が確実となる。
Further, by disposing the anode side wall fins 21 on the side wall inner surface 11 at a position higher than at least the bottom surface 22 and the height h2 of the cooling surface bottom fins 23, insulating oil flowing out from between the cooling surface bottom fins 23 is removed. As a result, there is a uniform flow when flowing into the gap 12, and the heat dissipation to the insulating oil on the inner surface of the anode side wall portion 3b is ensured.

【0042】以上に述べた実施の形態について、陽極3
が3kW以上の大きな熱負荷を受ける場合には、図7に
記号で示す側壁部フィン21のフィン高さhを1〜4m
m、フィン厚さtを0.8〜2mm、フィンピッチpを
0.8〜3mmとすることが望ましい。
Regarding the above-described embodiment, the anode 3
Is subject to a large heat load of 3 kW or more, the fin height h of the sidewall fin 21 shown by the symbol in FIG.
m, the fin thickness t is 0.8 to 2 mm, and the fin pitch p is preferably 0.8 to 3 mm.

【0043】側壁部フィン21のフィン高さhと、陽極
3の冷却面の中で最も温度が高くなり、絶縁油の劣化に
影響を及ぼす陽極底面22の中心温度の間の関係を図9
に示す。フィン高さhが小さい場合には、伝熱面積が小
さくなり、熱放散の量が小さくなり、陽極底面22中心
部温度は高くなる。他方フィン高さhを所定値以上に大
きくしても、側壁部フィン21のフィン効率の低下と、
圧力損失の増加による絶縁油流量の低下のため熱放散量
が飽和に達して温度低下への効果が小さくなる。使用す
る絶縁油の熱伝導率、粘度等の物性を考慮すると、側壁
部フィン21のフィン高さhを1〜4mmとすることが
絶縁油劣化防止のために望ましい。
FIG. 9 shows the relationship between the fin height h of the side wall fins 21 and the center temperature of the anode bottom surface 22, which has the highest temperature in the cooling surface of the anode 3 and affects the deterioration of the insulating oil.
Shown in. When the fin height h is small, the heat transfer area is small, the amount of heat dissipation is small, and the temperature at the center of the anode bottom surface 22 is high. On the other hand, even if the fin height h is increased to a predetermined value or more, the fin efficiency of the sidewall fins 21 decreases,
Since the insulating oil flow rate decreases due to the increase in pressure loss, the amount of heat dissipation reaches saturation and the effect on the temperature decrease decreases. Considering physical properties such as thermal conductivity and viscosity of the insulating oil used, it is desirable that the fin height h of the side wall fins 21 be 1 to 4 mm in order to prevent deterioration of the insulating oil.

【0044】陽極側壁部フィン21のフィン厚さtと陽
極底面22の中心温度の間の関係についても、上記した
フィン高さhと同様の理由で図10に示す関係となり、
側壁部フィン21のフィン厚さtを0.8〜2mmとす
ることが絶縁油劣化防止のために望ましい。
The relationship between the fin thickness t of the anode sidewall fins 21 and the center temperature of the anode bottom surface 22 is as shown in FIG. 10 for the same reason as the fin height h described above.
It is desirable that the fin thickness t of the sidewall fin 21 be 0.8 to 2 mm in order to prevent deterioration of the insulating oil.

【0045】陽極側壁部フィン21のフィンピッチpと
陽極底面22の中心温度の間の関係を図11に示す。フ
ィンピッチpが小さい場合には、側壁部フィン21間の
流路の圧力損失が大きくなるため、絶縁油の流量が減少
して、熱放散の量が小さくなって、陽極底面22中心部
温度は高くなる。他方、フィンピッチを大きくすると、
同じ高さと厚さのフィンを使用していることを前提とす
ると、フィンの枚数を減らすことになり、伝熱面積が小
さくなり、熱放散の量が小さくなって、陽極底面22の
中心部温度は高くなる。使用する絶縁油の熱伝導率、粘
度等の物性を考慮すると、側壁部フィン21のフィン高
さhを1〜4mmとすることが絶縁油劣化防止のために
望ましい。
FIG. 11 shows the relationship between the fin pitch p of the anode sidewall fins 21 and the center temperature of the anode bottom surface 22. When the fin pitch p is small, the pressure loss in the flow path between the side wall fins 21 becomes large, so that the flow rate of the insulating oil decreases and the amount of heat dissipation becomes small. Get higher On the other hand, if you increase the fin pitch,
Assuming that fins of the same height and thickness are used, the number of fins is reduced, the heat transfer area is reduced, the amount of heat dissipation is reduced, and the temperature at the center of the anode bottom surface 22 is reduced. Will be higher. Considering physical properties such as thermal conductivity and viscosity of the insulating oil used, it is desirable that the fin height h of the side wall fins 21 be 1 to 4 mm in order to prevent deterioration of the insulating oil.

【0046】[0046]

【発明の効果】本発明によれば、冷却フィンを設けて伝
熱面積を増加することにより小型で高効率な冷却構造と
したため、陽極、及びターゲットを十分に冷却できる固
定陽極型X線管装置、及びその製造方法を提供すること
ができる。
According to the present invention, since a cooling fin is provided to increase a heat transfer area to form a compact and highly efficient cooling structure, a fixed anode type X-ray tube device capable of sufficiently cooling an anode and a target. And a manufacturing method thereof can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態の断面図。FIG. 1 is a sectional view of an embodiment of the present invention.

【図2】従来の固定陽極型X線管装置の一例の要部を示
す断面図。
FIG. 2 is a sectional view showing a main part of an example of a conventional fixed anode type X-ray tube device.

【図3】本発明の他の一実施の形態の断面図。FIG. 3 is a sectional view of another embodiment of the present invention.

【図4】本発明の他の一実施の形態の断面図。FIG. 4 is a cross-sectional view of another embodiment of the present invention.

【図5】本発明の他の一実施の形態の断面図。FIG. 5 is a sectional view of another embodiment of the present invention.

【図6】本発明の他の一実施の形態の断面図。FIG. 6 is a sectional view of another embodiment of the present invention.

【図7】本発明の実施の形態の要部を示す図。FIG. 7 is a diagram showing a main part of an embodiment of the present invention.

【図8】従来の固定陽極型X線管装置の一例の全体図。FIG. 8 is an overall view of an example of a conventional fixed anode X-ray tube device.

【図9】陽極側壁部フィン高さと陽極底面中心温度との
関係を示すグラフ。
FIG. 9 is a graph showing the relationship between the height of the fin on the side wall of the anode and the center temperature of the bottom surface of the anode.

【図10】陽極側壁部フィン厚さと陽極底面中心温度と
の関係を示すグラフ。
FIG. 10 is a graph showing the relationship between the thickness of the fin on the side wall of the anode and the center temperature of the bottom surface of the anode.

【図11】陽極側壁部フィンピッチと陽極底面中心温度
との関係を示すグラフ。
FIG. 11 is a graph showing the relationship between the anode sidewall fin pitch and the anode bottom center temperature.

【図12】本発明の他の一実施の形態の断面図。FIG. 12 is a sectional view of another embodiment of the present invention.

【図13】本発明の他の一実施の形態の断面図。FIG. 13 is a sectional view of another embodiment of the present invention.

【図14】本発明の他の一実施の形態の断面図。FIG. 14 is a sectional view of another embodiment of the present invention.

【図15】本発明の他の一実施の形態の断面図。FIG. 15 is a sectional view of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1陰極、2フィラメント、3陽極、3a陽極底面部、3
b陽極側壁部、4ターゲット、5支持材、6真空外囲
器、8冷却ノズル、9冷却面、11側壁内面、12隙
間、14陽極筒、15陽極筒接合面、16陽極底部接合
面、17陽極側壁部接合面、20ノズルカバー、21側
壁部フィン、22底面、23底面部フィン、24放射
窓、50X線管容器、52絶縁油ポンプ、53放熱器、
54ファン、56X線照射対象、57絶縁支持体
1 cathode, 2 filaments, 3 anode, 3a anode bottom part, 3
b anode side wall part, 4 target, 5 support material, 6 vacuum envelope, 8 cooling nozzle, 9 cooling surface, 11 side wall inner surface, 12 gap, 14 anode cylinder, 15 anode cylinder bonding surface, 16 anode bottom bonding surface, 17 Anode side wall joint surface, 20 nozzle cover, 21 side wall fin, 22 bottom surface, 23 bottom surface fin, 24 radiation window, 50 X-ray tube container, 52 insulating oil pump, 53 radiator,
54 fans, 56 X-ray irradiation targets, 57 insulating supports

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01J 35/00 H01J 35/00 A (72)発明者 大塚 誠 東京都千代田区内神田1丁目1番14号 株 式会社日立メディコ内 (72)発明者 壇 芳彦 東京都千代田区内神田1丁目1番14号 株 式会社日立メディコ内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01J 35/00 H01J 35/00 A (72) Inventor Makoto Otsuka 1-1-14 Uchikanda, Chiyoda-ku, Tokyo Incorporated in Hitachi Medical Co., Ltd. (72) Inventor Yoshihiko Dan, 1-1-14 Kanda, Uchida, Chiyoda-ku, Tokyo Inside Hitachi Medical Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 陽極と、該陽極と対向して配置される陰
極とを真空外囲器内に収納して成るX線管と、該X線管
に冷却用絶縁油を供給する電気的絶縁機能を有する配管
と、絶縁油を噴出するノズルと、前記配管を経由して前
記X線管に絶縁油を供給する外部冷却装置とから成る固
定陽極型X線管装置において、前記陽極は、絶縁油によ
り直接冷却される有底円筒状冷却面を具備し、前記陽極
の冷却面底部の冷却を前記ノズルから噴出する絶縁油で
行った後に、流出する絶縁油をノズルに設けたノズルカ
バーと前記陽極の有底円筒内面との隙間に導いて、前記
有底円筒状冷却面を冷却する構造を形成し、前記有底円
筒状冷却面、もしくは該有底円筒状冷却面と前記冷却面
底部の両者にフィンを設けることを特徴とする固定陽極
型X線管装置。
1. An X-ray tube comprising an anode and a cathode arranged to face the anode in a vacuum envelope, and an electrical insulation for supplying cooling oil to the X-ray tube. In a fixed anode X-ray tube device comprising a pipe having a function, a nozzle for ejecting insulating oil, and an external cooling device for supplying insulating oil to the X-ray tube via the pipe, the anode is insulated. A bottomed cylindrical cooling surface that is directly cooled by oil is provided, and after cooling the bottom portion of the cooling surface of the anode with insulating oil ejected from the nozzle, the insulating oil that flows out is provided on the nozzle cover and the nozzle cover. Leading to the gap between the inner surface of the bottomed cylinder and the anode to form a structure for cooling the bottomed cylindrical cooling surface, the bottomed cylindrical cooling surface, or the bottomed cylindrical cooling surface and the bottom of the cooling surface A fixed anode type X-ray tube device characterized in that fins are provided on both.
【請求項2】 前記冷却面底部の部分で分離されその内
部空洞部が貫通した陽極円筒部内面、もしくは平面状に
なっている冷却面底部と内部空洞部が貫通した陽極円筒
部内面の両者にフィンを加工する第1工程と、この第1
工程の後に前記底面部に前記円筒部をろう付けにより接
合する第2工程とにより製造することを特徴とする請求
項1に記載の固定陽極型X線管装置の製造方法。
2. The inner surface of the anode cylinder portion separated by the bottom portion of the cooling surface and penetrating the inner cavity portion thereof, or both the bottom surface of the cooling surface and the inner surface of the anode cylinder portion penetrating the inner cavity portion, which are flat. The first step of processing the fin and this first step
The method of manufacturing a fixed anode type X-ray tube device according to claim 1, further comprising a second step of joining the cylindrical portion to the bottom surface portion by brazing after the step.
【請求項3】 前記円筒部と底面部との接合部の外径を
円筒部外径よりも大きくすることを特徴とする請求項1
に記載の固定陽極型X線管装置。
3. The outer diameter of the joint portion between the cylindrical portion and the bottom portion is larger than the outer diameter of the cylindrical portion.
The fixed anode type X-ray tube device according to 1.
【請求項4】 陽極と、該陽極と対向して配置される陰
極とを真空外囲器内に収納して成るX線管と、該X線管
に冷却用絶縁油を供給する電気的絶縁機能を有する配管
と、絶縁油を噴出するノズルと、前記配管を経由して前
記X線管に絶縁油を供給する外部冷却装置とから成る固
定陽極型X線管装置において、前記陽極は、絶縁油によ
り直接冷却される有底円錐面状冷却面を具備し、前記陽
極の冷却面底部の冷却を前記ノズルから噴出する絶縁油
で行った後に、流出する絶縁油を前記ノズルに設けたノ
ズルカバーと前記陽極の円錐状冷却面との隙間に導い
て、前記有底円錐面状冷却面を冷却する構造を形成し、
前記有底円錐面状冷却面、もしくは該有底円錐面状冷却
面と前記冷却面底部の両者にフィンを設けることを特徴
とする固定陽極型X線管装置。
4. An X-ray tube comprising an anode and a cathode arranged to face the anode in a vacuum envelope, and electrical insulation for supplying cooling oil to the X-ray tube. In a fixed anode X-ray tube device comprising a pipe having a function, a nozzle for ejecting insulating oil, and an external cooling device for supplying insulating oil to the X-ray tube via the pipe, the anode is insulated. A nozzle cover having a bottomed conical cooling surface that is directly cooled by oil, and cooling the bottom of the cooling surface of the anode with insulating oil ejected from the nozzle, and then providing insulating oil that flows out to the nozzle. And a gap between the conical cooling surface of the anode, to form a structure for cooling the bottomed conical cooling surface,
A fixed anode type X-ray tube device characterized in that fins are provided on the bottomed conical cooling surface or both of the bottomed conical cooling surface and the bottom of the cooling surface.
【請求項5】 前記冷却面底部の部分で分離されその内
部空洞部が貫通した陽極円筒部内面、もしくは平面状に
なっている冷却面底部と内部空洞部が貫通した陽極円筒
部内面の両者にフィンを加工する第1工程と、こ第1の
工程の後に、前記底面部に円筒部をろう付けにより接合
する第2工程とにより製造することを特徴とする請求項
5に記載の固定陽極型X線管装置の製造方法。
5. The inner surface of the anode cylindrical portion which is separated at the bottom portion of the cooling surface and penetrates the inner cavity portion, or both of the flat cooling surface bottom portion and the inner surface of the anode cylindrical portion which penetrates the inner cavity portion. The fixed anode mold according to claim 5, which is manufactured by a first step of processing the fins and a second step of joining the cylindrical portion to the bottom surface portion by brazing after the first step. X-ray tube device manufacturing method.
【請求項6】 真空外囲器内に収納される陽極支持材
と、円筒面部と、底面部との接合を、同時に同じろう材
でろう付けにより行うことを特徴とする請求項2、及び
5に記載の固定陽極型X線管装置の製造方法。
6. The anode supporting material housed in the vacuum envelope, the cylindrical surface portion, and the bottom surface portion are simultaneously joined by brazing with the same brazing material. The method for manufacturing the fixed anode type X-ray tube device according to 1.
【請求項7】 冷却面底部フィンを、底面中心から少な
くともノズル半径以上の位置から、外周部に放射状に設
置し、陽極側壁部フィンを、少なくとも底面から前記冷
却面底部フィンの高さより高い位置の側壁内面に設置す
ることを特徴とする請求項1,3,4,6記載の固定陽
極型X線管装置。
7. The cooling surface bottom fins are installed radially from the center of the bottom surface at least at the nozzle radius or more to the outer periphery, and the anode side wall fins are provided at least at a position higher than the height of the cooling surface bottom fins from the bottom surface. The fixed anode type X-ray tube device according to claim 1, 3, 4, or 6, which is installed on an inner surface of a side wall.
【請求項8】 陽極が受ける熱負荷が3kW以上であ
り、前記側壁部フィン21のフィン高さは1〜4mmで
あり、前記側壁部フィン21の厚さは0.8〜2mmで
あり、前記側壁部フィン21のフィンピッチは0.8〜
3mmであることを特徴とする請求項1,2,3,4,
5,6,7記載の固定陽極型X線管装置およびその製造
方法。
8. The heat load applied to the anode is 3 kW or more, the fin height of the side wall fins 21 is 1 to 4 mm, and the thickness of the side wall fins 21 is 0.8 to 2 mm. The fin pitch of the sidewall fins 21 is 0.8 to
3 mm, Claims 1, 2, 3, 4,
A fixed anode X-ray tube device according to any one of 5, 6, and 7, and a method for manufacturing the same.
【請求項9】 陽極の円筒部と底面部との接合部に接合
位置を合わせるための凹凸部を円筒部、もしくは底面部
の少なくとも一方に設けることを特徴とする請求項1,
2,3,4,5,6,7,8記載の固定陽極型X線管装
置およびその製造方法。
9. The concavo-convex portion for adjusting the joining position to the joining portion between the cylindrical portion and the bottom portion of the anode is provided on at least one of the cylindrical portion and the bottom portion.
The fixed anode X-ray tube device according to 2, 3, 4, 5, 6, 7, and 8, and a method for manufacturing the same.
JP2001220090A 2001-07-19 2001-07-19 Fixed anode type X-ray tube device Expired - Lifetime JP4749615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001220090A JP4749615B2 (en) 2001-07-19 2001-07-19 Fixed anode type X-ray tube device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001220090A JP4749615B2 (en) 2001-07-19 2001-07-19 Fixed anode type X-ray tube device

Publications (2)

Publication Number Publication Date
JP2003036806A true JP2003036806A (en) 2003-02-07
JP4749615B2 JP4749615B2 (en) 2011-08-17

Family

ID=19053968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001220090A Expired - Lifetime JP4749615B2 (en) 2001-07-19 2001-07-19 Fixed anode type X-ray tube device

Country Status (1)

Country Link
JP (1) JP4749615B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009053A1 (en) * 2004-07-15 2006-01-26 Hitachi Medical Corporation Fixed anode x-ray tube, x-ray inspection device using the same, and x-ray irradiation device
JP2007257995A (en) * 2006-03-23 2007-10-04 Jobu:Kk X-ray generator
JP2008504663A (en) * 2004-06-30 2008-02-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X-ray tube cooling system
CN108093552A (en) * 2017-12-13 2018-05-29 中国科学院近代物理研究所 A kind of fluid channel target system for accelerator neutron generator
CN109817499A (en) * 2019-02-01 2019-05-28 中国科学院电子学研究所 High power density water cooling anode
JP2019114405A (en) * 2017-12-22 2019-07-11 キヤノン電子管デバイス株式会社 X-ray tube and manufacturing method thereof
WO2020067075A1 (en) * 2018-09-26 2020-04-02 株式会社 東芝 Rotating anode x-ray tube target, x-ray tube, and x-ray inspection device
CN111668079A (en) * 2020-06-17 2020-09-15 西门子爱克斯射线真空技术(无锡)有限公司 X-ray tube and anode for an X-ray tube
DE102021102734A1 (en) 2020-02-07 2021-08-12 Rigaku Corporation X-RAY TUBE, X-RAY ANALYSIS DEVICE, AND METHOD OF COOLING A TARGET IN AN X-RAY TUBE
CN113539764A (en) * 2020-04-13 2021-10-22 上海超群无损检测设备有限责任公司 X-ray tube cathode and anode clamping and spacing-adjustable mechanism

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729736U (en) * 1993-10-29 1995-06-02 株式会社島津製作所 Rotating anticathode X-ray tube

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5686448A (en) * 1979-12-17 1981-07-14 Hitachi Ltd X-ray tube and its manufacturing method
JPS603843A (en) * 1983-06-22 1985-01-10 Hitachi Ltd X-ray tube
JPS6273540A (en) * 1985-09-26 1987-04-04 Japan Atom Energy Res Inst Target of x-ray generating apparatus
DE4227495A1 (en) * 1992-08-20 1994-02-24 Philips Patentverwaltung Rotating anode x-ray tube with cooling device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729736U (en) * 1993-10-29 1995-06-02 株式会社島津製作所 Rotating anticathode X-ray tube

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008504663A (en) * 2004-06-30 2008-02-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X-ray tube cooling system
WO2006009053A1 (en) * 2004-07-15 2006-01-26 Hitachi Medical Corporation Fixed anode x-ray tube, x-ray inspection device using the same, and x-ray irradiation device
JP2007257995A (en) * 2006-03-23 2007-10-04 Jobu:Kk X-ray generator
JP4559377B2 (en) * 2006-03-23 2010-10-06 株式会社ジョブ X-ray generator
CN108093552A (en) * 2017-12-13 2018-05-29 中国科学院近代物理研究所 A kind of fluid channel target system for accelerator neutron generator
JP2019114405A (en) * 2017-12-22 2019-07-11 キヤノン電子管デバイス株式会社 X-ray tube and manufacturing method thereof
WO2020067075A1 (en) * 2018-09-26 2020-04-02 株式会社 東芝 Rotating anode x-ray tube target, x-ray tube, and x-ray inspection device
JPWO2020067075A1 (en) * 2018-09-26 2021-09-02 株式会社東芝 Targets for rotating anode X-ray tubes, X-ray tubes, and X-ray inspection equipment
JP7305666B2 (en) 2018-09-26 2023-07-10 株式会社東芝 TARGET FOR ROTATING ANODE X-RAY TUBE, X-RAY TUBE, AND X-RAY INSPECTION DEVICE
CN109817499A (en) * 2019-02-01 2019-05-28 中国科学院电子学研究所 High power density water cooling anode
DE102021102734A1 (en) 2020-02-07 2021-08-12 Rigaku Corporation X-RAY TUBE, X-RAY ANALYSIS DEVICE, AND METHOD OF COOLING A TARGET IN AN X-RAY TUBE
US11594393B2 (en) 2020-02-07 2023-02-28 Rigaku Corporation X-ray tube, x-ray analysis apparatus, and method of cooling target in x-ray tube
CN113539764A (en) * 2020-04-13 2021-10-22 上海超群无损检测设备有限责任公司 X-ray tube cathode and anode clamping and spacing-adjustable mechanism
CN111668079A (en) * 2020-06-17 2020-09-15 西门子爱克斯射线真空技术(无锡)有限公司 X-ray tube and anode for an X-ray tube
CN111668079B (en) * 2020-06-17 2023-04-07 西门子爱克斯射线真空技术(无锡)有限公司 X-ray tube and anode for an X-ray tube

Also Published As

Publication number Publication date
JP4749615B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
US9020101B2 (en) Target for X-ray generator, method of manufacturing the same and X-ray generator
JP6039283B2 (en) Radiation generator and radiation imaging apparatus
JP6039282B2 (en) Radiation generator and radiation imaging apparatus
US20200321184A1 (en) X-Ray Tube Single Anode Bore
JP5800578B2 (en) X-ray tube
JP4161328B2 (en) X-ray generator having a composite housing
EP2495747B1 (en) X-ray tube
US9530528B2 (en) X-ray tube aperture having expansion joints
JP2003036806A (en) Fixed anode type x-ray tube device and said manufacturing method
JP4435124B2 (en) X-ray tube
JP2009117083A (en) X-ray tube device
US8000450B2 (en) Aperture shield incorporating refractory materials
JP2002056792A (en) Changing method of focal dimension of x-ray tube for normalizing impact temperature
KR102095268B1 (en) Field Emission X-Ray Source Device
JP2006302648A (en) Rotary positive electrode x-ray tube device
JP2010097855A (en) X-ray tube device
JP2003123999A (en) X-ray tube device
JP4781156B2 (en) Transmission X-ray tube
JP2007042434A (en) X-ray tube
KR20210017140A (en) X-ray generator having a cooling means
JP2006012591A (en) Fixed anode x-ray tube device
US9728369B2 (en) Two-part high voltage vacuum feed through for an electron tube
JP6081589B2 (en) Cooling configuration for X-ray generator
JP2009289462A (en) Fixed-anode x-ray tube device
JP2021096951A (en) Cathode structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110516

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110518

R150 Certificate of patent or registration of utility model

Ref document number: 4749615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term