JP2003035335A - Positive vibration-free system - Google Patents

Positive vibration-free system

Info

Publication number
JP2003035335A
JP2003035335A JP2001223155A JP2001223155A JP2003035335A JP 2003035335 A JP2003035335 A JP 2003035335A JP 2001223155 A JP2001223155 A JP 2001223155A JP 2001223155 A JP2001223155 A JP 2001223155A JP 2003035335 A JP2003035335 A JP 2003035335A
Authority
JP
Japan
Prior art keywords
vibration
pressure
vibration isolation
actuator
isolation table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001223155A
Other languages
Japanese (ja)
Inventor
Takashi Maeda
孝 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001223155A priority Critical patent/JP2003035335A/en
Publication of JP2003035335A publication Critical patent/JP2003035335A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/709Vibration, e.g. vibration detection, compensation, suppression or isolation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a stable and speedy floating action to prevent an interference with an external equipment and the like due to disorder during floating behavior in the vibration-free system which is equipped with a pneumatic actuator and makes a pressure feedback compensation of the actuator. SOLUTION: When detecting a displacement valve of a vibration-free table which is vibration controlled and supported by the supporting mechanism and feeding back a compensation signal which compensates a difference between the detected displacement value and a target value of that of the vibration-free table from a reference position to the pneumatic actuator which applies a driving power to the vibration-free table to control the vibration-free table to be placed in the specified position, decides whether the signal of the difference between the pressure signal of the pressure detecting means to detect the pressure of the actuator and the targeted pressure value should be fed back to the actuator and switch the actuator in a suitable timing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、精密機器搭載用の
除振台の所定位置への円滑な位置制御動作を実現する能
動除振装置およびその制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active vibration isolator which realizes a smooth position control operation of a vibration isolation table for mounting precision equipment to a predetermined position, and a control method thereof.

【0002】[0002]

【従来の技術】半導体露光装置等の精密機器の高精度化
に伴い、これらを搭載する精密除振装置の高性能化が求
められている。半導体露光装置において、適切かつ迅速
な露光を行なうためには、床等の装置設置基礎からの振
動をはじめとする外部からの振動を極力除去した除振台
が必要である。これらの振動が露光ステージに伝達する
ことによる露光への悪影響を排除することが求められて
いる。また、半導体露光装置では、その稼働に際しステ
ップアンドリピートあるいはスキャン等の露光用XYス
テージの繰り返し動作が行なわれる。これらの動作は除
振台の振動を励起する。したがって、除振台には床等の
設置基礎からの振動をはじめとする外部振動に対する除
振性能と、除振台に搭載された機器の動作によって発生
する振動に対する制振性能とをバランス良く実現するこ
とが求められる。特に、スキャン露光装置では、露光用
ステージがスキャン動作をしている状態で露光を行なう
ため、外部振動に対する除振性能や、除振台に搭載され
た露光用ステージ等の機器の動作によって発生する振動
に対する制振性能への要求は厳しく、一段と高性能な除
振装置が不可欠なものとなっている。このような要求に
対して、近年では除振台の振動やその基準位置に対する
変位量をセンサで検出し、その出力信号を補償して除振
台に制御力を加えるアクチュエータにフィードバックす
ることにより、能動的に除振台の振動および位置制御を
行なう除振装置が実用化されている。
2. Description of the Related Art As precision equipment such as a semiconductor exposure apparatus is becoming more precise, higher performance of a precision vibration isolation apparatus equipped with such equipment is required. In order to perform appropriate and quick exposure in a semiconductor exposure apparatus, it is necessary to provide a vibration isolation table that eliminates external vibrations such as vibrations from the equipment installation foundation such as a floor. It is required to eliminate the adverse effects on the exposure due to the transmission of these vibrations to the exposure stage. Further, in the semiconductor exposure apparatus, the operation of the exposure XY stage such as step-and-repeat or scan is repeated during its operation. These operations excite the vibration of the vibration isolation table. Therefore, the anti-vibration table achieves a good balance of anti-vibration performance against external vibrations such as vibrations from the installation foundation such as floors and vibration control performance against vibrations generated by the operation of the equipment installed on the anti-vibration table. Required to do. Particularly, in a scan exposure apparatus, since exposure is performed in a state where the exposure stage is performing a scanning operation, it occurs due to the vibration isolation performance against external vibration and the operation of equipment such as the exposure stage mounted on the vibration isolation table. The demand for vibration damping performance against vibration is strict, and even higher-performance vibration isolator is indispensable. In response to such a demand, in recent years, the vibration of the vibration isolation table and the displacement amount with respect to the reference position are detected by a sensor, and the output signal is compensated and fed back to an actuator that applies a control force to the vibration isolation table. A vibration isolation device that actively controls the vibration and position of the vibration isolation table has been put into practical use.

【0003】[0003]

【発明が解決しようとする課題】半導体露光装置等の精
密機器には空気バネ等を用いた能動除振装置が用いられ
ている。これらの能動除振装置において精密機器を搭載
する除振台は、動作開始時に素早く通常(定常)動作状
態に移る必要がある。また、除振台および除振台に搭載
された機器と、除振台に搭載されていない外部機器との
空間の余裕は少ない場合が多い。したがって除振台は所
定の目標位置まで、所望の経路に従って浮上することが
望まれる。除振台に搭載される機器には、除振台が直上
の目標位置に直線的に浮上することを前提としているも
のが多いため、それらの適用例において除振台はその着
地位置の直上の所定目標位置まで直線的に浮上すること
が求められる。また、除振台に搭載されていない外部機
器との干渉を防ぐためにも、浮上動作時の変位量を小さ
く抑える必要がある。さらに、除振台に搭載された精密
機器の動作によっては、除振台に搭載されていない外部
機器との機器部品等の受渡しのために、円滑に除振台の
位置制御を行なうことが求められる。
An active vibration isolation device using an air spring or the like is used in precision equipment such as a semiconductor exposure device. In these active vibration isolation devices, the vibration isolation table on which precision equipment is mounted needs to quickly shift to a normal (steady state) operation state at the start of operation. In addition, the space between the vibration isolation table and the equipment mounted on the vibration isolation table and the external equipment not mounted on the vibration isolation table is often small. Therefore, it is desired that the vibration isolation table float up to a predetermined target position along a desired path. Since many of the devices mounted on the vibration isolation table assume that the vibration isolation table floats straight up to the target position directly above, the vibration isolation table in those application examples is located directly above the landing position. It is required to levitate linearly to a predetermined target position. Further, in order to prevent interference with an external device that is not mounted on the vibration isolation table, it is necessary to keep the displacement amount during the levitation operation small. In addition, depending on the operation of the precision equipment installed on the vibration isolation table, it may be necessary to smoothly control the position of the vibration isolation table in order to deliver device parts to external equipment not mounted on the vibration isolation table. To be

【0004】除振台の位置制御には空気圧駆動式アクチ
ュエータが用いられているものがあり、より精密な制御
を行なうため、空気圧駆動式アクチュエータの空気圧を
検出しフィードバックする圧力制御が導入されている。
圧力制御の導入により定常動作時の圧力変動が抑えられ
高精度の制御が可能となる。しかしながら、圧力制御の
導入された除振装置において、浮上動作を行なうと、制
御系の設定状態によっては、浮上中のオーバーシュート
による姿勢の乱れが発生してしまう場合がある。
An air pressure driven actuator is used for position control of the vibration isolation table, and in order to perform more precise control, pressure control for detecting and feeding back air pressure of the air pressure driven actuator is introduced. .
The introduction of pressure control suppresses pressure fluctuations during steady operation and enables highly accurate control. However, if a vibration isolation device with pressure control introduced performs a levitating operation, the posture may be disturbed due to overshoot during levitating depending on the setting state of the control system.

【0005】本発明の目的は、能動除振装置において、
圧力制御の導入に伴う浮上中の装置の姿勢の乱れを抑制
するために、浮上中のオーバーシュートを抑えた安定か
つ迅速な浮上動作を実現することにある。
An object of the present invention is to provide an active vibration isolator,
In order to suppress the disturbance of the posture of the floating device due to the introduction of the pressure control, it is to realize a stable and quick floating operation in which the overshoot during the floating is suppressed.

【0006】[0006]

【課題を解決するための手段】上述の目的を達成するた
めの本発明に係る能動除振装置は、除振台と、該除振台
を防振支持する支持機構と、前記除振台に制御力を加え
る空気圧駆動式アクチュエータと、基準位置に対する前
記除振台の変位量を検出する変位検出手段と、前記空気
圧駆動式アクチュエータの空気圧を検出する圧力検出手
段と、基準位置に対する前記除振台の変位量の目標値と
前記変位検出手段の出力信号の差信号を補償して前記空
気圧駆動式アクチュエータにフィードバックするととも
に、前記空気圧駆動式アクチュエータの基準位置での圧
力値に設定された圧力目標値と前記圧力検出手段の出力
信号の差信号を補償して前記空気圧駆動式アクチュエー
タにフィードバックする補償器と、前記補償器の補償方
法を切換える切換手段とを備えたことを特徴とする。こ
の能動除振装置においては、さらに、前記切換手段の設
定切換え時期を判定する判定手段を設けることが好まし
い。この判定手段は、例えば、前記除振台の位置や前記
圧力検出手段の出力信号に基づいて前記切換手段の設定
切換え時期を判定する。
SUMMARY OF THE INVENTION An active vibration isolator according to the present invention for achieving the above object comprises an anti-vibration table, a support mechanism for supporting the anti-vibration table for vibration isolation, and an anti-vibration table. Pneumatic drive type actuator for applying control force, displacement detection means for detecting displacement amount of the vibration isolation table with respect to a reference position, pressure detection means for detecting air pressure of the pneumatic drive type actuator, and vibration isolation table for the reference position The target value of the displacement amount and the difference signal between the output signal of the displacement detecting means and feedback to the pneumatic drive actuator, and the pressure target value set to the pressure value at the reference position of the pneumatic drive actuator. And a compensator for compensating the difference signal between the output signals of the pressure detecting means and feeding back to the pneumatically driven actuator, and a switching for switching the compensating method of the compensator. Characterized by comprising a stage. In this active vibration isolation device, it is preferable that a determination means for determining the setting switching timing of the switching means is further provided. The determination means determines the setting switching timing of the switching means based on, for example, the position of the vibration isolation table or the output signal of the pressure detection means.

【0007】また、本発明に係る能動除振装置の制御方
法は、支持機構により防振支持された除振台の基準位置
に対する変位量を検出し、検出した変位量と前記基準位
置に対する前記除振台の変位量の目標値との差信号を補
償した補償信号を前記除振台に駆動力を加える空気圧駆
動式アクチュエータにフィードバックして前記除振台を
所定の位置に制御する際に、前記アクチュエータの圧力
を検出する圧力検出手段の圧力信号と前記アクチュエー
タの圧力目標値との差信号を前記空気圧駆動式アクチュ
エータにフィードバックするか否かを適切なタイミング
で切換えることを特徴とする。適切なタイミングとは、
例えば、除振台が前記基準位置近傍に達した時、または
前記アクチュエータの空気圧が前記圧力目標値を超えた
時である。
Further, in the control method for the active vibration isolation device according to the present invention, the displacement amount of the vibration isolation table, which is vibration-isolated and supported by the support mechanism, with respect to the reference position is detected, and the detected displacement amount and the vibration isolation with respect to the reference position are detected. When controlling the vibration isolation table to a predetermined position by feeding back a compensation signal that compensates the difference signal between the displacement amount of the oscillation table and the target value to the pneumatic drive actuator that applies a driving force to the vibration isolation table, It is characterized in that whether or not the difference signal between the pressure signal of the pressure detecting means for detecting the pressure of the actuator and the target pressure value of the actuator is fed back to the pneumatic actuator is switched at an appropriate timing. What is proper timing?
For example, when the vibration isolation table reaches the vicinity of the reference position, or when the air pressure of the actuator exceeds the pressure target value.

【0008】[0008]

【作用】本発明に係る第1の能動除振装置は、圧力制御
を導入した補償方法を用いる際の浮上動作において、オ
ーバーシュートを抑制した動作を実現するために、以下
に説明する方法に従って、補償演算方法切換手段を用い
て適切なタイミングで補償方法の切換えを行なう。圧力
制御を導入した補償方法を用いた場合の浮上中のオーバ
ーシュートを抑制するために、補償方法を浮上開始時に
圧力制御を使用しない状態に設定し、安定浮上位置に達
した後、補償方法を圧力制御を使用する状態に切換え
る。上述の方法で補償方法の切換えを行なった場合、浮
上中の圧力制御によるオーバーシュートが抑えられ、安
定な浮上動作が可能になる。
According to the first active vibration isolator of the present invention, in order to realize the operation in which the overshoot is suppressed in the levitation operation when the compensating method introducing the pressure control is used, the following method is used. The compensation method switching means is used to switch the compensation method at an appropriate timing. In order to suppress the overshoot during ascent when using the compensation method that introduced pressure control, set the compensation method to the state where pressure control is not used at the start of ascent, and after the stable ascent position is reached, the compensation method is set. Switch to the state where pressure control is used. When the compensation method is switched by the above-described method, overshoot due to pressure control during levitation is suppressed, and stable levitation operation is possible.

【0009】また、本発明に係る第2の能動除振装置
は、圧力制御を導入した補償方法を用いる際の浮上動作
において、オーバーシュートを抑制し、より短時間での
動作を実現するために、以下に説明する方法に従って、
補償演算方法切換手段を用いて適切なタイミングで補償
方法の切換えを行なう。圧力制御を導入した補償方法を
用いた場合の浮上中のオーバーシュートを抑制するため
に、補償方法を浮上開始時に圧力制御を使用しない状態
に設定し、圧力値が、安定浮上位置での圧力値に設定さ
れた圧力目標値に達した後、補償方法を圧力制御を使用
する状態に切換える。上述の方法で補償方法の切換えを
行ない浮上した場合、浮上中の圧力制御によるオーバー
シュートが抑えられ、安定な浮上動作が可能になる。ま
た、圧力制御を使用しない場合の浮上動作に対する浮上
完了までの時間の増加も少ない。
In addition, the second active vibration isolator according to the present invention is intended to suppress overshoot and realize an operation in a shorter time during the levitation operation when the compensation method introducing the pressure control is used. , According to the method described below
The compensation method switching means is used to switch the compensation method at an appropriate timing. In order to suppress overshoot during levitation when using the compensation method that introduced pressure control, set the compensation method to the state that pressure control is not used at the start of levitation, and the pressure value is the pressure value at the stable levitation position. After the pressure target value set in step 1 is reached, the compensation method is switched to the state in which pressure control is used. When the compensating method is switched by the above-mentioned method to levitate, overshoot due to pressure control during levitating is suppressed, and stable levitating operation becomes possible. Further, the increase in the time required to complete the levitation for the levitation operation when pressure control is not used is small.

【0010】[0010]

【実施例】以下、本発明の実施例につき、図面とともに
説明する。 [第1の実施例]図1は、本発明の第1の実施例に係る
能動除振装置の構成を示す。同図において、除振台1は
床等の装置設置基礎2上に、除振台1を防振支持すると
ともに除振台1に鉛直および水平方向の制御力を加える
複数個の除振マウント3を介して載置されている。除振
台1には、その基準位置に対する鉛直方向の変位量を検
出する鉛直変位検出手段4、および除振台1の基準位置
に対する水平方向の変位量を検出する水平変位検出手段
5が取り付けられている。
Embodiments of the present invention will be described below with reference to the drawings. [First Embodiment] FIG. 1 shows the configuration of an active vibration isolator according to the first embodiment of the present invention. In the figure, a vibration isolation table 1 is provided on a device installation foundation 2 such as a floor, and a plurality of vibration isolation mounts 3 for supporting the vibration isolation table 1 against vibrations and applying vertical and horizontal control forces to the vibration isolation table 1. Is placed through. The vibration isolation table 1 is provided with vertical displacement detection means 4 for detecting the vertical displacement amount with respect to the reference position, and horizontal displacement detection means 5 for detecting the horizontal displacement amount with respect to the reference position of the vibration isolation table 1. ing.

【0011】鉛直変位検出手段4および水平変位検出手
段5の出力は補償演算手段7に接続され、補償演算手段
7の出力は除振マウント3に接続されている。また、補
償演算手段7には補償演算方法切換手段8の出力が接続
されている。
The outputs of the vertical displacement detection means 4 and the horizontal displacement detection means 5 are connected to the compensation calculation means 7, and the output of the compensation calculation means 7 is connected to the vibration isolation mount 3. Further, the output of the compensation calculation method switching means 8 is connected to the compensation calculation means 7.

【0012】除振マウント3は、いずれも不図示の、除
振台1に鉛直方向の制御力を加える鉛直アクチュエー
タ、除振台1に水平方向の制御力を加える水平アクチュ
エータ、除振台1を鉛直方向に防振支持する鉛直支持手
段、および除振台1を水平方向に防振支持する水平支持
手段から構成されている。鉛直アクチュエータおよび水
平アクチュエータには、空気バネの内部圧力をそれへの
空気の給排気を調整するバルブによって制御する空気圧
駆動式アクチュエータを用いる。除振マウント3のアク
チュエータには、また、ボイスコイルモータなどの電磁
駆動のリニアモータや、磁気浮上吸引アクチュエータな
どを併用することができる。鉛直アクチュエータおよび
水平アクチュエータとして用いる空気圧駆動式アクチュ
エータは、それぞれ鉛直支持手段および水平支持手段と
して兼用することもできる。
The anti-vibration mount 3 includes a vertical actuator that applies a vertical control force to the anti-vibration base 1, a horizontal actuator that applies a horizontal control force to the anti-vibration base 1, and an anti-vibration base 1 which are not shown. It is composed of vertical support means for supporting the vibration isolation in the vertical direction and horizontal support means for supporting the vibration isolation table 1 in the horizontal direction. The vertical and horizontal actuators use pneumatically driven actuators that control the internal pressure of the air spring by means of valves that regulate the supply and exhaust of air to it. An electromagnetically driven linear motor such as a voice coil motor, a magnetic levitation suction actuator, or the like can be used together with the actuator of the vibration isolation mount 3. The pneumatic actuators used as the vertical actuator and the horizontal actuator can also be used as the vertical support means and the horizontal support means, respectively.

【0013】空気圧駆動式アクチュエータは、その空気
圧の変動量を検出する圧力検出手段6が取り付けられて
いる。圧力検出手段6の出力は補償演算手段7に接続さ
れている。浮上状態判定手段9は、鉛直変位検出手段4
および水平変位検出手段5の出力に接続されており、そ
の出力値により浮上状態の判定を行なう。浮上状態判定
手段9の出力は補償演算方法切換手段8に接続されてお
り、その出力信号により補償演算方法切換手段8は補償
演算手段7における補償演算方法の切換えを行なう。
The pneumatic actuator is equipped with a pressure detecting means 6 for detecting the amount of fluctuation of the pneumatic pressure. The output of the pressure detection means 6 is connected to the compensation calculation means 7. The floating state determination means 9 is a vertical displacement detection means 4
Also, it is connected to the output of the horizontal displacement detecting means 5, and the floating state is determined based on the output value. The output of the floating state determination means 9 is connected to the compensation calculation method switching means 8, and the compensation calculation method switching means 8 switches the compensation calculation method in the compensation calculation means 7 according to the output signal.

【0014】本実施例では、精密機器を搭載する除振台
1を装置設置基礎2から振動絶縁すべく所定位置まで浮
上させるために、基準位置に対する除振台1の鉛直方向
および水平方向の変位量を、鉛直変位検出手段4および
水平変位検出手段5によりそれぞれ検出し、基準位置に
対する除振台1の変位量の目標値と、鉛直変位検出手段
4および水平変位検出手段5の検出信号との差信号を補
償演算手段7により補償し、除振マウント3のアクチュ
エータにフィードバックする。
In this embodiment, in order to levitate the vibration isolation table 1 for mounting precision equipment from the apparatus installation foundation 2 to a predetermined position for vibration isolation, the vibration isolation table 1 is displaced vertically and horizontally with respect to the reference position. The amount of displacement is detected by the vertical displacement detection means 4 and the horizontal displacement detection means 5, respectively, and the target value of the displacement amount of the vibration isolation table 1 with respect to the reference position and the detection signals of the vertical displacement detection means 4 and the horizontal displacement detection means 5 are detected. The difference signal is compensated by the compensation calculation means 7 and fed back to the actuator of the vibration isolation mount 3.

【0015】除振マウント3のアクチュエータには空気
圧駆動式のアクチュエータが用いられるが、安定浮上時
(浮上した状態で安定な状態にある時)のアクチュエー
タの空気圧に不正な変動があると、除振台1上に搭載さ
れた精密機器(本体装置)が変形する等の悪影響を及ぼ
す。そこで安定浮上時のアクチュエータの空気圧変動を
抑えるためアクチュエータの空気圧の圧力フィードバッ
クを行なう。アクチュエータの空気圧を圧力検出手段6
により検出し、基準位置に安定浮上した状態での圧力値
に設定した圧力目標値と、圧力検出手段6の検出信号と
の差信号を補償演算手段7により補償し、除振マウント
3のアクチュエータにフィードバックする。本実施例で
は圧力フィードバックは各脚毎に行なう。
A pneumatically driven actuator is used as the actuator of the vibration isolation mount 3, but if there is an illegal fluctuation in the air pressure of the actuator during stable levitation (when it is in a stable state when it is levitated), vibration isolation is performed. The precision equipment (main body device) mounted on the table 1 is adversely affected such as being deformed. Therefore, pressure feedback of the air pressure of the actuator is performed in order to suppress the air pressure fluctuation of the actuator during stable levitation. The air pressure of the actuator is detected by the pressure detecting means 6
Is detected by the compensation calculation means 7 to compensate the difference signal between the pressure target value set as the pressure value in a state of stable floating at the reference position and the detection signal of the pressure detection means 6, and the actuator of the vibration isolation mount 3 is compensated. provide feedback. In this embodiment, pressure feedback is performed for each leg.

【0016】図2に本実施例の制御ブロック図を示す。
本実施例では、補償演算手段7において前述の圧力フィ
ードバックを行なっている状態を圧力制御状態、行なっ
ていない状態を圧力非制御状態と呼ぶ。圧力制御状態で
浮上動作を行なう場合、浮上中の位置と圧力の不整合か
ら、圧力非制御での浮上よりもオーバーシュートが大き
くなってしまう場合がある。そこで浮上開始時点から安
定浮上に達するまでに、補償演算方法切換手段8により
補償演算手段7の補償方法の切換えを行なうことによっ
て、浮上中のオーバーシュートを抑制する。まず浮上開
始時点で補償演算手段7は補償演算方法切換手段8によ
り圧力非制御状態に設定され、浮上開始する。鉛直変位
検出手段4と鉛直浮上目標値との差信号が所定の値以内
に収束し、浮上状態判定手段9が安定浮上位置近傍にあ
ることを検出した後、補償演算方法切換手段8が補償演
算手段7を圧力制御状態へ切換える。
FIG. 2 shows a control block diagram of this embodiment.
In this embodiment, the state in which the above-mentioned pressure feedback is performed in the compensation calculation means 7 is called a pressure control state, and the state in which it is not performed is called a pressure non-control state. When the levitation operation is performed in the pressure controlled state, the overshoot may be larger than that in the non-pressure-controlled levitation due to the mismatch between the levitation position and the pressure. Therefore, the compensation calculation method switching unit 8 switches the compensation method of the compensation calculation unit 7 from the time when the levitation starts until the stable levitation is achieved, thereby suppressing overshoot during levitation. First, the compensation calculation means 7 is set to a pressure non-controlled state by the compensation calculation method switching means 8 at the start of ascent, and the ascent starts. After the difference signal between the vertical displacement detection means 4 and the vertical levitation target value converges within a predetermined value and the levitation state determination means 9 detects that it is in the vicinity of the stable levitation position, the compensation calculation method switching means 8 performs compensation calculation. Switch means 7 to the pressure controlled state.

【0017】次に動作について説明する。図3は圧力非
制御状態で浮上した場合、すなわち圧力制御を行なわな
い従来例の浮上動作波形を示している。t1で浮上開始
する。t2において目標値を越えオーバーシュートが発
生する。その後、t3において浮上目標位置DT1に収
束する。このときの除振台の変位波形はD1のようにな
り、除振マウント3のアクチュエータの空気圧値はP1
のように変化する。
Next, the operation will be described. FIG. 3 shows a levitation operation waveform of a conventional example in which the surface is levitated in a pressure non-controlled state, that is, pressure control is not performed. Start ascending at t1. At t2, the target value is exceeded and overshoot occurs. Then, at t3, it converges on the target flying position DT1. The displacement waveform of the vibration isolation table at this time is as shown by D1, and the air pressure value of the actuator of the vibration isolation mount 3 is P1.
It changes like.

【0018】図4は圧力制御を導入した補償方法で従来
の方法により浮上した場合の浮上動作波形を示してい
る。この従来の方法では、浮上開始時点から浮上中にお
いて補償方法は圧力制御状態になっている。t4で浮上
開始する。t5において目標値を越えオーバーシュート
が発生する。その後、t6において浮上目標位置DT2
に収束する。除振台の変位波形はD2のようになり、除
振マウント3のアクチュエータの空気圧値はP2のよう
に変化する。このように、圧力制御を導入した従来の方
法で浮上を行なうと、圧力制御を導入しない従来の補償
方法での浮上に比べ大きなオーバーシュートが発生する
場合があり、それによって浮上中に除振台1の姿勢が乱
れ、除振台に搭載されていない外部機器等との接触の可
能性が増加してしまう場合があった。
FIG. 4 shows a levitating operation waveform in the case of levitating by a conventional method by a compensation method introducing pressure control. In this conventional method, the compensating method is in the pressure control state during the levitation from the start of the levitation. Start ascending at t4. At t5, the target value is exceeded and overshoot occurs. Then, at t6, the floating target position DT2
Converge to. The displacement waveform of the vibration isolation table becomes as shown by D2, and the air pressure value of the actuator of the vibration isolation mount 3 changes as shown by P2. In this way, when levitation is performed by the conventional method that introduces pressure control, a large overshoot may occur compared to levitation by the conventional compensation method that does not introduce pressure control, which causes the vibration isolation table during levitation. There is a case where the posture of No. 1 is disturbed and the possibility of contact with an external device or the like not mounted on the vibration isolation table increases.

【0019】除振装置やこの除振装置の除振台に搭載さ
れた本体装置への悪影響を排除するため、外部機器等と
の接触の可能性を最小限にする必要がある。そこで第1
の実施例においては、オーバーシュートを抑えた浮上動
作波形を得るために、以下に説明する方法に従って、補
償演算方法切換手段8および浮上状態判定手段9を用い
て適切なタイミングでの制御方法の切換えを行なう。浮
上動作を2段階に分けることにより、圧力制御を導入し
た際の浮上中のオーバーシュートを抑制する。設定する
浮上動作の段階は、圧力非制御状態で所定の位置まで浮
上する段階と、所定位置で圧力制御状態に切換え、除振
台1の姿勢が安定するまでの段階の2段階である。
It is necessary to minimize the possibility of contact with external equipment in order to eliminate adverse effects on the vibration isolator and the main body mounted on the vibration isolation table of the vibration isolator. So first
In this embodiment, in order to obtain the levitating motion waveform with suppressed overshoot, the compensation calculation method switching means 8 and the flying state determination means 9 are used to switch the control method at appropriate timing according to the method described below. Do. By dividing the levitation operation into two stages, overshoot during levitation when pressure control is introduced is suppressed. The stages of the levitation operation to be set are two stages, that is, a stage of levitating to a predetermined position in the pressure non-controlled state, and a stage of switching to the pressure controlled state at the predetermined position and stabilizing the posture of the vibration isolation table 1.

【0020】図5は本実施例の浮上方法を適用した場合
の浮上動作波形を示している。t7で浮上開始する。浮
上開始時点で、補償演算方法切換手段8は補償演算手段
7の補償方法を圧力非制御状態に設定する。浮上中の動
作波形は図1に示した圧力制御を導入しない場合の浮上
動作波形と同じになる。t8で浮上状態判定手段9が安
定浮上位置近傍への収束を判定した後、この浮上状態判
定手段9は補償演算方法切換手段8に、補償方法切換え
許可信号を出力する。補償方法切換え許可信号を受けた
補償演算方法切換手段8は補償演算手段7の補償方法を
圧力制御状態に切換える。t9で浮上目標位置DT3に
収束し除振台1の姿勢が安定し浮上が完了する。除振台
の変位波形はD3のようになり、除振マウント3のアク
チュエータの空気圧値はP3のように変化する。補償方
法の切換えによる姿勢の乱れは圧力制御状態での浮上の
オーバーシュートに比べ小さい。その結果、浮上動作波
形D3はオーバーシュートの抑えられた安定したものと
なる。このように、浮上動作において圧力非制御状態で
初期浮上動作を行ない、安定浮上位置で圧力制御状態に
切換えることにより、オーバーシュートを抑えた浮上動
作が可能になる。また、安定浮上位置では、圧力制御が
行なわれるので、より精密な位置制御が行なわれる。
FIG. 5 shows a levitating operation waveform when the levitating method of this embodiment is applied. Start ascending at t7. At the start of floating, the compensation calculation method switching means 8 sets the compensation calculation method of the compensation calculation means 7 to the pressure non-controlled state. The operation waveform during levitation is the same as the levitation operation waveform when the pressure control shown in FIG. 1 is not introduced. At t8, the flying state determination means 9 determines convergence to the vicinity of the stable flying position, and then the flying state determination means 9 outputs a compensation method switching permission signal to the compensation calculation method switching means 8. Upon receiving the compensation method switching permission signal, the compensation calculation method switching means 8 switches the compensation method of the compensation calculation means 7 to the pressure control state. At t9, it converges to the levitation target position DT3, the posture of the vibration isolation table 1 is stabilized, and levitation is completed. The displacement waveform of the vibration isolation table becomes as shown by D3, and the air pressure value of the actuator of the vibration isolation mount 3 changes as shown by P3. Disturbance of the posture due to the switching of the compensation method is smaller than that of the levitation overshoot in the pressure control state. As a result, the levitating operation waveform D3 becomes stable with suppressed overshoot. In this way, in the levitation operation, the initial levitation operation is performed in the pressure non-controlled state, and the pressure control state is switched to the stable levitation position, whereby the levitation operation with suppressed overshoot is possible. Further, since the pressure control is performed at the stable floating position, more precise position control is performed.

【0021】[第2の実施例]次に本発明による第2の
実施例について説明する。図6は本発明の第2の実施例
に係る能動除振装置の構成を示す。同図において、除振
台1は床等の装置設置基礎2上に、除振台1を防振支持
するとともに除振台1に鉛直および水平方向の制御力を
加える複数個の除振マウント3を介して載置されてい
る。除振台1には、その基準位置に対する鉛直方向の変
位量を検出する鉛直変位検出手段4、および除振台1の
基準位置に対する水平方向の変位量を検出する水平変位
検出手段5が取り付けられている。
[Second Embodiment] Next, a second embodiment according to the present invention will be described. FIG. 6 shows the configuration of an active vibration isolator according to the second embodiment of the present invention. In the figure, a vibration isolation table 1 is provided on a device installation foundation 2 such as a floor, and a plurality of vibration isolation mounts 3 for supporting the vibration isolation table 1 against vibrations and applying vertical and horizontal control forces to the vibration isolation table 1. Is placed through. The vibration isolation table 1 is provided with vertical displacement detection means 4 for detecting the vertical displacement amount with respect to the reference position, and horizontal displacement detection means 5 for detecting the horizontal displacement amount with respect to the reference position of the vibration isolation table 1. ing.

【0022】変位検出手段4,5の出力は補償演算手段
7に接続され、補償演算手段7の出力は除振マウント3
に接続されている。また、補償演算手段7には補償演算
方法切換手段8の出力が接続されている。除振マウント
3は、いずれも不図示の、除振台1に鉛直方向の制御力
を加える鉛直アクチュエータ、除振台1に水平方向の制
御力を加える水平アクチュエータ、除振台1を鉛直方向
に防振支持する鉛直支持手段、および除振台1を水平方
向に防振支持する水平支持手段から構成されている。
The outputs of the displacement detection means 4 and 5 are connected to the compensation calculation means 7, and the output of the compensation calculation means 7 is the vibration isolation mount 3.
It is connected to the. Further, the output of the compensation calculation method switching means 8 is connected to the compensation calculation means 7. The anti-vibration mount 3 includes a vertical actuator that applies a vertical control force to the anti-vibration table 1, a horizontal actuator that applies a horizontal control force to the anti-vibration table 1, and an anti-vibration table 1 that are not shown in the vertical direction. It is composed of vertical support means for vibration-proof support and horizontal support means for vibration-proof support of the vibration isolation table 1 in the horizontal direction.

【0023】鉛直アクチュエータ、水平アクチュエータ
には、空気バネの内部圧力をそれへの空気の給排気を調
整するバルブによって制御する空気圧駆動式アクチュエ
ータを用いる。また、ボイスコイルモータなどの電磁駆
動のリニアモータ、磁気浮上吸引アクチュエータ、など
を併用したものを用いることができる。鉛直アクチュエ
ータ、水平アクチュエータとして用いる空気圧駆動式ア
クチュエータは、これを鉛直支持手段および水平支持手
段として兼用することもできる。
As the vertical actuator and the horizontal actuator, a pneumatically driven actuator is used which controls the internal pressure of the air spring by means of a valve that regulates the supply and exhaust of air to and from it. Further, a combination of an electromagnetically driven linear motor such as a voice coil motor and a magnetic levitation suction actuator can be used. The pneumatic drive type actuator used as the vertical actuator and the horizontal actuator can also be used as the vertical support means and the horizontal support means.

【0024】空気圧駆動式アクチュエータは、その空気
圧の変動量を検出する圧力検出手段6が取り付けられて
いる。圧力検出手段6の出力は補償演算手段7および浮
上状態判定手段9に接続されている。浮上状態判定手段
9は、圧力検出手段6の出力値により浮上状態の判定を
行なう。浮上状態判定手段9の出力は補償演算方法切換
手段8に接続されており、その出力値により補償演算方
法切換手段8は補償演算手段7に対し補償演算方法の切
換えを行なう。
The pneumatic actuator is equipped with pressure detection means 6 for detecting the amount of fluctuation of the pneumatic pressure. The output of the pressure detection means 6 is connected to the compensation calculation means 7 and the floating state determination means 9. The floating state determination means 9 determines the floating state based on the output value of the pressure detection means 6. The output of the floating state determination means 9 is connected to the compensation calculation method switching means 8, and the compensation calculation method switching means 8 switches the compensation calculation method to the compensation calculation means 7 according to the output value.

【0025】本実施例では、圧力制御状態で浮上した場
合のオーバーシュートを抑えるために、圧力非制御状態
で所定の圧力まで浮上する段階と、所定圧力に達したの
ち圧力制御状態に切換え、除振台1が安定浮上するまで
の段階の2段階に浮上動作を分ける。浮上動作段階の遷
移は、浮上開始時点から安定浮上位置に達するまでの間
に、補償演算方法切換手段8によって補償演算手段7の
補償方法を切換えることにより行なわれる。浮上開始時
点で補償演算方法切換手段8は補償演算手段7を圧力非
制御状態に設定し、浮上開始する。圧力検出手段の出力
信号が圧力目標値を超えたことを浮上状態判定手段9が
検出した後、補償演算方法切換手段8が補償演算手段7
を圧力制御状態に切換える。
In this embodiment, in order to suppress the overshoot when the surface is floated in the pressure control state, the step of ascending to a predetermined pressure in the pressure non-control state and the switching to the pressure control state after reaching the predetermined pressure are performed. The levitation operation is divided into two stages, that is, the stage until the shaking table 1 stably floats. The transition of the levitation operation stage is performed by switching the compensation method of the compensation calculation means 7 by the compensation calculation method switching means 8 from the time when the levitation starts until the stable floating position is reached. At the start of floating, the compensation calculation method switching means 8 sets the compensation calculation means 7 in the pressure non-controlled state and starts floating. After the floating state determination means 9 detects that the output signal of the pressure detection means exceeds the target pressure value, the compensation calculation method switching means 8 causes the compensation calculation means 7 to operate.
To the pressure control state.

【0026】図7は本実施例の浮上方法での浮上動作波
形を示している。t10で浮上動作を開始する。浮上開
始時点で、補償演算方法切換手段8は補償演算手段7の
補償方法を圧力非制御状態に設定する。したがって、空
気圧駆動式アクチュエータの空気圧が圧力目標値に達し
補償演算手段7の補償方法を圧力制御状態に切換えるま
での動作波形は圧力制御を導入しない場合(図3)の浮
上動作波形と同じになる。t11で浮上状態判定手段9
が圧力目標値を超えたことを判定し、補償演算方法切換
手段8に切換え許可信号を出力する。補償演算方法切換
手段8は補償演算手段7を圧力制御状態に切換える。t
12で浮上目標位置DT4に収束し除振台1が安定浮上
位置に収束し浮上完了する。除振台1の変位波形はD4
のようになり、除振マウント3のアクチュエータの空気
圧値はP4のように変化する。補償方法の切換えによる
姿勢の乱れは図4に示す圧力制御状態のままでの浮上の
オーバーシュートに比べ小さい。その結果浮上開始位置
からの浮上動作波形D4はオーバーシュートの抑えられ
た安定したものとなる。位置の収束を待たずに切換えを
行なうので、安定浮上に達するまでの時間を図5の場合
より短縮出来る。以上のように補償方法を切換えること
で浮上中のオーバーシュートを抑えることにより、装置
の姿勢を乱すことなく浮上動作を行なうことができる。
FIG. 7 shows a levitating operation waveform in the levitating method of this embodiment. The floating operation starts at t10. At the start of floating, the compensation calculation method switching means 8 sets the compensation calculation method of the compensation calculation means 7 to the pressure non-controlled state. Therefore, the operation waveform until the air pressure of the pneumatic actuator reaches the pressure target value and the compensation method of the compensation calculation means 7 is switched to the pressure control state is the same as the levitation operation waveform when pressure control is not introduced (FIG. 3). . Floating state determination means 9 at t11
Exceeds the pressure target value and outputs a switching permission signal to the compensation calculation method switching means 8. The compensation calculation method switching means 8 switches the compensation calculation means 7 to the pressure control state. t
At 12, the vibration levitation target position DT4 is converged, the vibration isolation table 1 converges to the stable levitation position, and the levitation is completed. The displacement waveform of the vibration isolation table 1 is D4
The air pressure value of the actuator of the vibration isolation mount 3 changes as shown in P4. Disturbance of the posture due to the switching of the compensation method is smaller than that of the floating overshoot in the pressure control state shown in FIG. As a result, the levitation operation waveform D4 from the levitation start position becomes stable with overshoot suppressed. Since the switching is performed without waiting for the position to converge, the time required to reach stable levitation can be shortened as compared with the case of FIG. As described above, by switching the compensation method to suppress the overshoot during the levitation, the levitation operation can be performed without disturbing the posture of the apparatus.

【0027】[0027]

【発明の効果】以上に説明したように本発明に係る能動
除振装置は、圧力制御を導入した補償方法を用いる際の
浮上動作において、オーバーシュートを抑制した動作を
実現するために、浮上中に補償方法の切換えを行なう。
補償方法の切換えを上述の方法で行なうことにより、圧
力制御を導入した場合に発生する浮上中の本体装置の姿
勢の乱れが減少し、外部機器への接触等の装置への衝撃
による悪影響を避けることが可能になる。
As described above, the active anti-vibration device according to the present invention is in the levitating state in order to realize the operation in which the overshoot is suppressed in the levitating operation when the compensation method introducing the pressure control is used. Switch the compensation method.
By switching the compensation method in the above-mentioned manner, the disturbance of the posture of the main body during floating that occurs when pressure control is introduced is reduced, and adverse effects due to impact on the equipment such as contact with external equipment are avoided. It will be possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1の実施例に係る能動除振装置の
構成図である。
FIG. 1 is a configuration diagram of an active vibration isolation device according to a first embodiment of the present invention.

【図2】 図1の補償演算手段および補償演算切換方法
変換手段による制御ブロック図である。
FIG. 2 is a control block diagram by the compensation calculation means and the compensation calculation switching method conversion means of FIG.

【図3】 圧力制御を行なわない第1の従来例と同じ圧
力非制御状態で浮上した場合の動作状態を示す図であ
る。
FIG. 3 is a diagram showing an operating state in the case of levitating in the same pressure non-controlled state as in the first conventional example in which pressure control is not performed.

【図4】 圧力制御を導入した第2の従来例と同じ圧力
制御状態で浮上した場合の動作状態を示す図である。
FIG. 4 is a diagram showing an operating state in the case of levitating in the same pressure control state as the second conventional example in which pressure control is introduced.

【図5】 図1の装置による補償方法切換の方法で浮上
した場合の動作状態を示す図である。
FIG. 5 is a diagram showing an operation state in the case of levitating by the method of switching the compensation method by the apparatus of FIG.

【図6】 本発明の第2の実施例に係る能動除振装置の
構成図である。
FIG. 6 is a configuration diagram of an active vibration isolator according to a second embodiment of the present invention.

【図7】 図6の装置による補償方法切換の方法で浮上
した場合の動作状態を示す図である。
FIG. 7 is a diagram showing an operation state in the case of levitating by the method of switching the compensation method by the apparatus of FIG.

【符号の説明】[Explanation of symbols]

1:除振台、2:装置設置基礎、3:除振マウント、
4:鉛直変位検出手段、5:水平変位検出手段、6:圧
力検出手段、7:補償演算手段、8:補償方法切換手
段、9:浮上状態判定手段、t1,t4,t7,t1
0:浮上開始時刻、t2,t5:最終目標位置到達時
刻、t3,t6,t9,t12:最終目標位置収束時
刻、t8,t11:補償方法切換え時刻、DT1〜DT
4:最終目標値、D1〜D4:浮上動作変位波形、P1
〜P4:浮上動作圧力波形。
1: Vibration isolation table, 2: Device installation foundation, 3: Vibration isolation mount,
4: Vertical displacement detection means, 5: Horizontal displacement detection means, 6: Pressure detection means, 7: Compensation calculation means, 8: Compensation method switching means, 9: Floating state determination means, t1, t4, t7, t1
0: Ascent start time, t2, t5: Final target position arrival time, t3, t6, t9, t12: Final target position convergence time, t8, t11: Compensation method switching time, DT1 to DT
4: Final target value, D1 to D4: Levitating motion displacement waveform, P1
-P4: Levitating pressure waveform.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 除振台と、該除振台を防振支持する支持
機構と、前記除振台に制御力を加える空気圧駆動式アク
チュエータと、基準位置に対する前記除振台の変位量を
検出する変位検出手段と、前記空気圧駆動式アクチュエ
ータの圧力を検出する圧力検出手段と、基準位置に対す
る前記除振台の変位量の目標値と前記変位検出手段の出
力信号の差信号を補償して前記空気圧駆動式アクチュエ
ータにフィードバックし、かつ前記除振台の基準位置で
の圧力値に設定された圧力目標値と前記圧力検出手段の
出力信号の差信号を補償して前記空気圧駆動式アクチュ
エータにフィードバックする補償器と、前記補償器の補
償方法を切換える補償方法切換手段とを備えたことを特
徴とする能動除振装置。
1. An anti-vibration table, a support mechanism for supporting the anti-vibration table in a vibration-proof manner, a pneumatic drive actuator for applying a control force to the anti-vibration table, and a displacement amount of the anti-vibration table with respect to a reference position. Displacement detecting means, pressure detecting means for detecting the pressure of the pneumatically driven actuator, and a difference signal between a target value of the displacement amount of the vibration isolation table with respect to a reference position and an output signal of the displacement detecting means to compensate the difference signal. It feeds back to the pneumatic drive actuator, and compensates the difference signal between the pressure target value set to the pressure value at the reference position of the vibration isolation table and the output signal of the pressure detecting means and feeds back to the pneumatic drive actuator. An active vibration isolator comprising a compensator and a compensation method switching means for switching a compensation method of the compensator.
【請求項2】 前記補償方法切換手段は前記補償器の補
償方法を、圧力フィードバックを含む補償方法と圧力フ
ィードバックを含まない補償方法とに切換えることを特
徴とする請求項1に記載の能動除振装置。
2. The active vibration isolation according to claim 1, wherein the compensation method switching means switches the compensation method of the compensator between a compensation method including pressure feedback and a compensation method not including pressure feedback. apparatus.
【請求項3】 前記除振台の振動を検出する振動検出手
段と、振動検出手段による検出信号を補償して前記アク
チュエータにフィードバックする補償器とをさらに有す
ることを特徴とする請求項1または2に記載の能動除振
装置。
3. A vibration detecting means for detecting the vibration of the vibration isolation table, and a compensator for compensating a detection signal from the vibration detecting means and feeding back to the actuator. The active vibration isolator according to 1.
【請求項4】 前記除振台の位置または前記空気圧駆動
式アクチュエータの空気圧を判定する浮上判定手段をさ
らに備え、前記補償方法切換手段は、該浮上判定手段の
出力に基づいて、前記補償器の補償方法を切換えること
を特徴とする請求項1〜3のいずれか1つに記載の能動
除振装置。
4. A levitation determination means for determining the position of the vibration isolation table or the air pressure of the pneumatically driven actuator is further provided, and the compensation method switching means is based on the output of the levitation determination means. The active vibration isolator according to any one of claims 1 to 3, wherein a compensation method is switched.
【請求項5】 支持機構により防振支持された除振台の
基準位置に対する変位量を検出し、検出した変位量と前
記基準位置に対する前記除振台の変位量の目標値との差
信号を補償した補償信号を前記除振台に駆動力を加える
空気圧駆動式アクチュエータにフィードバックして前記
除振台を所定の位置に制御する際に、前記アクチュエー
タの圧力を検出する圧力検出手段の圧力信号と圧力目標
値との差信号を前記アクチュエータにフィードバックす
るか否かを適切なタイミングで切換えることを特徴とす
る能動除振装置の制御方法。
5. A displacement amount of a vibration isolation table, which is vibration-isolated and supported by a support mechanism, with respect to a reference position is detected, and a difference signal between the detected displacement amount and a target value of the displacement amount of the vibration isolation table with respect to the reference position is detected. A pressure signal of a pressure detecting means for detecting the pressure of the actuator when controlling the vibration isolation table to a predetermined position by feeding back the compensated compensation signal to the pneumatically driven actuator that applies a driving force to the vibration isolation table; A control method for an active vibration isolator, comprising switching whether or not a difference signal from a target pressure value is fed back to the actuator at an appropriate timing.
【請求項6】 前記差信号を前記空気圧駆動式アクチュ
エータにフィードバックする圧力制御の導入による浮上
中のオーバーシュートの増加を抑制するように、前記切
換えを行なうことで、浮上中の除振台の姿勢の乱れを抑
えることを特徴とする請求項5に記載の制御方法。
6. The posture of the vibration isolation table during levitation by performing the switching so as to suppress an increase in overshoot during levitation due to introduction of pressure control for feeding back the difference signal to the pneumatically driven actuator. The control method according to claim 5, wherein the disturbance of
【請求項7】 前記切換えのタイミングを前記除振台の
位置または前記空気圧駆動式アクチュエータの空気圧に
基づいて決定することを特徴とする請求項5または6に
記載の制御方法。
7. The control method according to claim 5, wherein the switching timing is determined based on the position of the vibration isolation table or the air pressure of the pneumatically driven actuator.
【請求項8】 前記切換えを前記除振台の浮上位置が基
準位置近傍に収束した時点で行なうことを特徴とする請
求項7に記載の制御方法。
8. The control method according to claim 7, wherein the switching is performed when the floating position of the vibration isolation table converges near the reference position.
【請求項9】 前記切換えを前記空気圧駆動式アクチュ
エータの圧力が圧力目標値を超えた時点で行なうことを
特徴とする請求項7に記載の制御方法。
9. The control method according to claim 7, wherein the switching is performed when the pressure of the pneumatically driven actuator exceeds a target pressure value.
JP2001223155A 2001-07-24 2001-07-24 Positive vibration-free system Pending JP2003035335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001223155A JP2003035335A (en) 2001-07-24 2001-07-24 Positive vibration-free system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001223155A JP2003035335A (en) 2001-07-24 2001-07-24 Positive vibration-free system

Publications (1)

Publication Number Publication Date
JP2003035335A true JP2003035335A (en) 2003-02-07

Family

ID=19056531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001223155A Pending JP2003035335A (en) 2001-07-24 2001-07-24 Positive vibration-free system

Country Status (1)

Country Link
JP (1) JP2003035335A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016369A (en) * 2008-06-18 2010-01-21 Asml Netherlands Bv Lithographic apparatus having feed forward pressure pulse compensation for metrology frame
JP2013205764A (en) * 2012-03-29 2013-10-07 Hitachi High-Technologies Corp Exposure device
CN104154173A (en) * 2014-08-27 2014-11-19 武汉华中天勤光电系统有限公司 Vibration reduction compensation device for inner ring and outer ring of photoelectric platform
KR20170013977A (en) * 2014-06-03 2017-02-07 에이에스엠엘 네델란즈 비.브이. Object positioning system, control system, lithographic apparatus, object positioning method and device manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016369A (en) * 2008-06-18 2010-01-21 Asml Netherlands Bv Lithographic apparatus having feed forward pressure pulse compensation for metrology frame
JP2013205764A (en) * 2012-03-29 2013-10-07 Hitachi High-Technologies Corp Exposure device
KR20170013977A (en) * 2014-06-03 2017-02-07 에이에스엠엘 네델란즈 비.브이. Object positioning system, control system, lithographic apparatus, object positioning method and device manufacturing method
CN106462079A (en) * 2014-06-03 2017-02-22 Asml荷兰有限公司 Object positioning system, control system, lithographic apparatus, object positioning method and device manufacturing method
JP2017524964A (en) * 2014-06-03 2017-08-31 エーエスエムエル ネザーランズ ビー.ブイ. Object positioning system, control system, lithographic apparatus, object positioning method and device manufacturing method
KR102430289B1 (en) * 2014-06-03 2022-08-08 에이에스엠엘 네델란즈 비.브이. Object positioning system, control system, lithographic apparatus, object positioning method and device manufacturing method
CN104154173A (en) * 2014-08-27 2014-11-19 武汉华中天勤光电系统有限公司 Vibration reduction compensation device for inner ring and outer ring of photoelectric platform

Similar Documents

Publication Publication Date Title
EP0767320B1 (en) Vibration damping apparatus
US5876012A (en) Vibration cancellation apparatus
JP5166253B2 (en) System and method for actively dampening vibrations
US20010040324A1 (en) Anti-vibration apparatus, exposure apparatus using the same, device manufacturing method, and anti-vibration method
JPH09326362A (en) Vibration suppressor and aligner
JP2001271868A (en) Vibration damping device
JPH10259851A (en) Active vibration isolation device
US6684132B2 (en) Active anti-vibration apparatus and exposure apparatus
JPH07111215B2 (en) Vibration isolation device
US7073644B2 (en) Anti-vibration system for use in exposure apparatus
JP2003035335A (en) Positive vibration-free system
JPH08326834A (en) Active type vibration removing device
JP3581499B2 (en) Vibration isolation device and control method thereof
JP2001020996A (en) Vibration resistant device and semiconductor manufacturing device
JP2005273904A (en) Vibration-preventing system
JPH08195179A (en) Active vibration removing device for electronic microscope
JP2004003567A (en) Active vibration resistant device and its control method
JP3720490B2 (en) Active vibration isolator
JP2000012435A (en) Oscillation removing device and aligner
JPH1082448A (en) Vibration absorbing device
JPH06117481A (en) Vibration isolator
KR100473230B1 (en) Apparatus for exposure and vibration removing
JPH10252822A (en) Vibration resistant device and control method thereof
JP2019124265A (en) Active vibration isolator
JP2000027929A (en) Vibration eliminating device