JP2003034817A - Method of manufacturing clean steel - Google Patents

Method of manufacturing clean steel

Info

Publication number
JP2003034817A
JP2003034817A JP2001212576A JP2001212576A JP2003034817A JP 2003034817 A JP2003034817 A JP 2003034817A JP 2001212576 A JP2001212576 A JP 2001212576A JP 2001212576 A JP2001212576 A JP 2001212576A JP 2003034817 A JP2003034817 A JP 2003034817A
Authority
JP
Japan
Prior art keywords
steel
ladle
slag
inclusions
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001212576A
Other languages
Japanese (ja)
Other versions
JP4146107B2 (en
Inventor
Koichi Sakamoto
浩一 坂本
Seii Kimura
世意 木村
Ikuo Hoshikawa
郁生 星川
Toyoshi Takimoto
豊志 滝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001212576A priority Critical patent/JP4146107B2/en
Publication of JP2003034817A publication Critical patent/JP2003034817A/en
Application granted granted Critical
Publication of JP4146107B2 publication Critical patent/JP4146107B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a highly clean steel which does not cause cracks in wiring and is superior in fatigue strength, by reducing an amount of hard non-metallic inclusions which unavoidably come from ladle refractory in a smelting step. SOLUTION: This method for manufacturing the clean steel by repeating the several cycles of an operation on a silicon killed steel, one cycle of which consists of taking molten steel produced in a converter or an electric furnace into a ladle to perform a secondary refining, discharging the smelted molten steel out of the ladle, continuously casting it, returning the ladle to the converter or the electric furnace, and taking the molten steel again, while using several ladles in combination, is characterized by making only the ladle which received only the silicon killed steel or the rimmed steel last time, to receive the silicon killed steel, until the repetition finishes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷間伸線性に優れ
た高強度鋼線、特に極細線タイヤコード用鋼や高強度ば
ね用鋼の素材として有用な清浄鋼を製造するための有用
な方法に関するものである。
TECHNICAL FIELD The present invention relates to a high-strength steel wire excellent in cold drawability, and particularly useful for producing a clean steel useful as a material for a steel for an ultrafine wire tire cord or a steel for a high-strength spring. It is about the method.

【0002】[0002]

【従来の技術】冷間加工によって0.1〜0.5mmに
伸線される極細鋼線や高い疲労強度が必要とされるばね
用鋼材では、鋼材中に存在する硬質の非金属介在物を極
力低減することが必要である。こうした観点から、上記
の様な用途に用いられる鋼材としては、上記非金属介在
物の存在を極力低減した高清浄鋼が用いられるのが一般
的である。
2. Description of the Related Art In ultra-fine steel wire drawn to 0.1 to 0.5 mm by cold working and spring steel materials requiring high fatigue strength, hard non-metallic inclusions present in the steel material are used. It is necessary to reduce it as much as possible. From such a point of view, as the steel material used for the above-mentioned applications, it is general to use highly clean steel in which the presence of the non-metallic inclusions is reduced as much as possible.

【0003】鋼材中における硬質の非金属介在物を低減
するという観点から、これまでにも様々な技術が提案さ
れている。例えば、特公平6−74484号や同6−7
4485号には、非金属介在物が冷間加工中に延伸また
は破壊し易くし、実質的に鋼破断の原因とならない軟質
なものに制御するため、非金属介在物の組成および存在
率を規定することが示されており、これによって鋼材の
冷間加工性および疲労強度を良好にすることが提案され
ている。
Various techniques have been proposed so far from the viewpoint of reducing hard non-metallic inclusions in steel materials. For example, Japanese Patent Publication No. 6-74484 and 6-7
No. 4485 stipulates the composition and abundance of non-metallic inclusions so that the non-metallic inclusions are easily stretched or broken during cold working and are controlled to be soft that does not substantially cause steel fracture. It has been proposed to improve the cold workability and fatigue strength of steel materials.

【0004】しかしながら、非金属介在物の組成を軟質
なものに制御しても、実際に冷間加工時の断線や疲労の
起点となる介在物は、製造過程で取鍋内に付着した前回
チャージのスラグや取鍋耐火物などから不可避的に混入
してくるアルミナ系介在物、スピネル系介在物、ジルコ
ン・ジルコニア系介在物、フォルステライト系介在物等
の硬質介在物が圧倒的に多く、これらは僅かな存在量で
あっても断線や疲労の原因となる。
However, even if the composition of the non-metallic inclusions is controlled to be soft, the inclusions that actually become the starting points of wire breakage and fatigue during cold working are the same as the previous charge that adhered to the ladle during the manufacturing process. Hard inclusions such as alumina-based inclusions, spinel-based inclusions, zircon-zirconia-based inclusions, forsterite-based inclusions that are inevitably mixed in from slag and ladle refractory Will cause wire breakage and fatigue even if the amount is small.

【0005】事実、冷間伸線時に断線した線材の破断面
に観察される介在物は、鋼中に僅かしか存在しないとさ
れる上記硬質介在物が95%以上を占めており、本発明
者らにより特にアルミナ系介在物、ジルコン・ジルコニ
ア系介在物がその大半を占めていることが分かった。こ
れに対して、軟質介在物が破断面に観察される割合は、
殆ど皆無である。従って、これらの硬質介在物の存在量
を極少化することこそが、冷間伸線性に優れた線材を実
現する上で極めて重要である。
In fact, 95% or more of the hard inclusions, which are considered to be present in the steel, account for 95% or more of the inclusions observed in the fracture surface of the wire rod which is broken during cold drawing. It was found from the results that alumina-based inclusions and zircon-zirconia-based inclusions occupy most of them. On the other hand, the proportion of soft inclusions observed on the fracture surface is
Almost nothing. Therefore, it is extremely important to minimize the amount of these hard inclusions in order to realize a wire rod having excellent cold drawability.

【0006】取鍋耐火物などから不可避的に混入してく
るアルミナ系介在物を低減するという観点から、例えば
特開昭62−203647号、特許第267658号、
特開平6−212237号、特公平7−103416号
等の様な各種技術も提案されている。これらの技術で
は、基本的には、非アルミナ系耐火物を内張りした取
鍋、タンデッシュおよびノズル等を使用すことによっ
て、アルミナ系介在物の低減を図るものである。また、
具体的に使用される非アルミナ系耐火物としては、ジル
コン・ジルコニア系の耐火物が使用されている。
From the viewpoint of reducing the amount of alumina inclusions that are inevitably mixed in from ladle refractories, etc., for example, JP-A-62-203647 and JP-A-267658,
Various techniques such as JP-A-6-212237 and JP-B-7-103416 have been proposed. These techniques basically aim to reduce alumina inclusions by using a ladle, a tundish, a nozzle, etc. lined with a non-alumina refractory material. Also,
As a non-alumina refractory specifically used, a zircon / zirconia refractory is used.

【0007】これら技術は、アルミナ系介在物の低減と
いう側面からすれば、効果的な方法である。しかしなが
ら、取鍋内に付着した前回チャージのスラグを起因とす
るアルミナの混入は防ぐことができず、取鍋耐火物起源
の介在物としては、アルミナ系介在物に代わって硬質の
ジルコン・ジルコニア系介在物が混入することになるの
で、非金属介在物低減の為の根本的な解決策とはなり得
ない。
These techniques are effective methods from the viewpoint of reducing alumina inclusions. However, it is not possible to prevent the mixing of alumina caused by the slag of the previous charge that has adhered to the inside of the ladle, and instead of the alumina-based inclusions, hard zircon / zirconia-based inclusions are used as the inclusions from the ladle refractory. Since inclusions are mixed in, it cannot be a fundamental solution for reducing non-metallic inclusions.

【0008】一方、溶鋼を精錬する段階で使用するスラ
グの組成を調整することによって、硬質の非金属介在物
の低減を図ることも行われている。例えば、特開平6−
330147号には、取鍋内二次精錬に際して、Ca
O,SiO2,CaF2を主成分とし、CaO/SiO2
(塩基度):1.2〜2.0およびAl23:0.5〜
2.0%に調整したスラグを形成することによって鋼材
の高清浄化を図る技術も提案されている。こうした技術
では、スラグ塩基度をできるだけ高目に設定すると共
に、スラグ中に存在するAl23を低減することによっ
て、非金属介在物へのAl23富化を抑制して、非金属
介在物の低融点、高延性化を図るものである。しかしな
がら、こうした技術においても、取鍋耐火物からの非金
属介在物が混入してくる状況下においては、根本的な解
決策とはなり得ず、依然として改善の余地がある。
On the other hand, it is also attempted to reduce hard nonmetallic inclusions by adjusting the composition of slag used in the step of refining molten steel. For example, JP-A-6-
No. 330147 indicates that when the secondary refining in the ladle is performed, Ca
O, SiO 2 , CaF 2 as main components, CaO / SiO 2
(Basicity): 1.2-2.0 and Al 2 O 3: 0.5 to
There is also proposed a technique for highly cleaning steel materials by forming slag adjusted to 2.0%. In such a technique, the slag basicity is set as high as possible, and the Al 2 O 3 existing in the slag is reduced to suppress the enrichment of Al 2 O 3 in the non-metallic inclusions and It is intended to lower the melting point and increase the ductility of inclusions. However, even such a technique cannot be a fundamental solution in the situation where non-metallic inclusions from the ladle refractory are mixed, and there is still room for improvement.

【0009】[0009]

【発明が解決しようとする課題】これまで提案されてい
る各種従来技術では、冷間伸線等の加工性に最も悪影響
を及ぼすとされる硬質介在物、即ち製造工程で取鍋内に
付着した前回チャージのスラグや耐火物から不可避的に
混入してくるアルミナ系介在物、ジルコン・ジルコニア
系介在物の様な硬質介在物を完全に排除するには至ら
ず、根本的な解決策にはなっていないのが実状である。
In the various prior arts proposed so far, hard inclusions that are said to have the most adverse effect on the workability such as cold drawing, that is, adhere to the ladle during the manufacturing process. Hard inclusions such as alumina-based inclusions and zircon-zirconia-based inclusions that are inevitably mixed from the slag and refractory previously charged cannot be completely eliminated, and this is a fundamental solution. The reality is that they do not.

【0010】本発明はこうした状況の下になされたもの
であって、その目的は、精錬段階で取鍋耐火物等から不
可避的に混入してくる硬質の非金属介在物を極力低減
し、伸線時に断線が生じたり、製品使用時に折損するこ
となく疲労強度にも優れた高清浄鋼を製造する為の有用
な方法を提供することにある。
The present invention has been made under such circumstances, and its purpose is to reduce hard non-metallic inclusions which are inevitably mixed from ladle refractory or the like in the refining stage, and to expand It is an object of the present invention to provide a useful method for producing a highly clean steel which is excellent in fatigue strength without being broken during wire drawing or breaking during product use.

【0011】[0011]

【課題を解決するための手段】上記目的を達成し得た本
発明方法とは、転炉または電気炉で製造された溶鋼を取
鍋に受鋼して二次精錬を施し、精錬後の溶鋼を取鍋から
排出して連続鋳造した後、該取鍋を前記転炉または電気
炉に再び戻して溶鋼を受鋼する工程を1サイクルとする
操業を、複数の取鍋を組み合わせて循環使用して、シリ
コンキルド鋼について連続して複数回繰り返すに際し
て、この繰り返しが終了するまでは、該シリコンキルド
鋼を受鋼する取鍋は、前回のチャージで受鋼する鋼種が
シリコンキルド鋼またはリムド鋼のみである様にして操
業する点に要旨を有するものである。
Means for Solving the Problems The method of the present invention capable of achieving the above-mentioned object is that molten steel produced in a converter or an electric furnace is subjected to secondary refining by receiving steel in a ladle, and the molten steel after refining After the ladle is discharged from the ladle and continuously cast, the ladle is returned to the converter or the electric furnace and the molten steel is received. When the silicon-killed steel is continuously repeated several times, until the end of this repetition, the ladle that receives the silicon-killed steel has only the silicon-killed steel or the rimmed steel as the steel type to be received by the previous charge. It has the gist of operating in such a manner.

【0012】上記本発明方法において、内張り耐火物が
アルミナ系耐火物である取鍋を使用するに際しては、取
鍋内表面の付着スラグ中のAl23濃度が70%以下に
なる様に制御して操業することが好ましい。また取鍋内
表面の付着スラグのAl23濃度を70%以下に制御す
る為の具体的な手段としては、トップスラグ組成を、塩
基度(CaO/SiO2):1〜3とすると共に、Al2
3濃度:10%以下に制御する構成が挙げられる。
In the above method of the present invention, when using a ladle whose refractory lining is an alumina refractory, control is performed so that the Al 2 O 3 concentration in the adhered slag on the inner surface of the ladle is 70% or less. It is preferable to operate after that. Further, as a concrete means for controlling the Al 2 O 3 concentration of the adhered slag on the inner surface of the ladle to 70% or less, the top slag composition is set to basicity (CaO / SiO 2 ): 1 to 3 and , Al 2
The O 3 concentration may be controlled to 10% or less.

【0013】[0013]

【発明の実施の形態】本発明者らは、高清浄鋼中の硬質
介在物を極力低減するという観点から、様々な角度から
検討した。そして、混入するアルミナ系介在物やジルコ
ニア・ジルコン系介在物の起源は、取鍋に内張りされた
耐火物ばかりでなく、スラグと耐火物の反応による生成
層が精錬中に剥離・脱落して溶鋼中に混入・懸濁するこ
とにもよることを明らかにし、またその個数は取鍋内表
面の材質に依存しているとの知見が得られた。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have studied from various angles from the viewpoint of reducing hard inclusions in highly clean steel as much as possible. The origin of the alumina inclusions and zirconia / zircon inclusions mixed in is not only the refractory material lined in the ladle, but also the layer formed by the reaction of the slag and the refractory material that separates and falls off during refining It was also clarified that it was mixed and suspended in the inside, and it was found that the number depends on the material of the inner surface of the ladle.

【0014】上記の様な知見に基づき、硬質の非金属介
在物をできるだけ低減する為の具体的手段について、更
に検討を進めた。その結果、最も簡便な手段として、転
炉または電気炉で製造された溶鋼を取鍋に受鋼して二次
精錬を施し、精錬後の溶鋼を取鍋から排出して連続鋳造
した後、該取鍋を前記転炉または電気炉に再び戻して溶
鋼を受鋼する工程を1サイクルとする操業を行なうに際
に、上記の様にして取鍋を専用化すれば、画期的にアル
ミナ系介在物の個数を低減することができ、その他の断
線の原因となるスピネル系、ジルコニア・ジルコン系介
在物を極力低減できることを見出し、本発明を完成し
た。尚、上記精錬の方法については、何ら限定するもの
ではなく、炉外精錬法(LF法等の取鍋精錬法)や真空
脱ガスを中心とする循環脱ガス法(RH法)等のいずれ
をも含むものである。
Based on the above findings, further investigations have been made on specific means for reducing hard non-metallic inclusions as much as possible. As a result, as the simplest means, molten steel produced in a converter or an electric furnace is subjected to secondary refining by receiving steel in a ladle, and the molten steel after refining is discharged from the ladle and continuously cast, When the ladle is returned to the converter or the electric furnace again and the molten steel is received in one cycle, if the ladle is specialized as described above, the alumina system is revolutionary. The present invention has been completed by finding that the number of inclusions can be reduced and spinel-type and zirconia-zircon-type inclusions which cause other wire breakages can be reduced as much as possible. The refining method is not limited in any way, and any one of an out-of-furnace refining method (a ladle refining method such as the LF method) and a circulating degassing method (RH method) centering on vacuum degassing can be used. It also includes.

【0015】本発明において、取鍋を専用化するとは、
例えば或る取鍋が転炉から溶鋼を受鋼した場合に、二次
精錬を経て連続鋳造へ溶鋼を排出し、転炉に戻って次チ
ャージの溶鋼を受鋼するサイクルにおいては、使用する
取鍋を鋼種毎に専用化することを意味する。即ち、上記
の様な操業を行なうに当たっては、複数の取鍋を組み合
わせて循環使用して、或る鋼種について連続して複数回
繰り返して操業されるのであるが、この繰り返しが終了
するまでは、取鍋が受鋼する鋼種を同種であるである様
にして操業するものである。
In the present invention, dedicating a ladle means that
For example, when a ladle receives molten steel from a converter, it is used in a cycle in which molten steel is discharged to continuous casting through secondary refining and returned to the converter to receive the next charge of molten steel. This means that the pan is specialized for each steel type. That is, in performing the operation as described above, a plurality of ladles are combined and circulated, and a certain steel type is continuously and repeatedly operated a plurality of times, but until the repetition is completed, The ladle is operated with the same steel type received by the ladle.

【0016】また、ここでいう「鋼種」とは、基本的に
は溶鋼の化学成分によって区別されるものであるが、溶
鋼の脱酸状態によっても区別されるべきものであり、脱
酸状態が違っても、相反する脱酸を行なわなければ同種
の鋼種と扱うことができる。但し、本発明では、その効
果が最も発揮される場合として対象とする鋼種をシリコ
ンキルド鋼に限定し、該シリコンキルド鋼を受鋼する取
鍋は、前回のチャージで受鋼する鋼種がシリコンキルド
鋼またはリムド鋼のみである様にして操業するものであ
る。
The "steel type" here is basically distinguished by the chemical composition of the molten steel, but it should also be distinguished by the deoxidized state of the molten steel. Even if they are different, they can be treated as the same kind of steel if they do not carry out contradictory deoxidation. However, in the present invention, the steel type to be targeted as the case where the effect is most exerted is limited to the silicon killed steel, and the ladle that receives the silicon killed steel is the steel type that the steel type received by the previous charge is the silicon killed steel. It is operated as if it were steel or rimmed steel only.

【0017】次に、本発明のより具体的な構成による作
用効果について、その完成された経緯に沿って説明す
る。本発明においては、内張り耐火物がアルミナ系耐火
物である取鍋を使用するに際しては、取鍋内表面の付着
スラグのAl23濃度を70%以下に制御して操業する
ことが好ましい実施形態である。こうした構成を採用す
ることによって、溶鋼に接する取鍋壁面のスラグをゲー
レナイト(Gehlenite)を中心とする組成とすることが
でき、画期的にアルミナ系介在物の個数を低減でき、そ
の他の断線の原因となるジルコニア系、ジルコン系の介
在物を、問題が生じない程度にまで低減できるのであ
る。
Next, the function and effect of the more specific structure of the present invention will be described along with the background of its completion. In the present invention, when using a ladle whose refractory lining is an alumina refractory, it is preferable to operate by controlling the Al 2 O 3 concentration of the adhered slag on the inner surface of the ladle to 70% or less. It is a form. By adopting such a configuration, the slag on the wall surface of the ladle that is in contact with the molten steel can have a composition centered on Gehlenite, and the number of alumina-based inclusions can be dramatically reduced, and The zirconia-based and zircon-based inclusions, which are the causes, can be reduced to such an extent that no problem occurs.

【0018】一般に、取鍋内表面の素材として使用され
る耐火物は、その耐久性の観点から安定で強固な高融点
酸化物が望まれる。しかしながら、硬質介在物の起源
は、取鍋耐火物材質であるので、強固な高融点酸化物は
鋼の伸線加工性、疲労強度に対しては悪影響を及ぼすこ
とになるので、二律背反の関係にある。そこで、取鍋耐
火物の内表面にスラグ反応層を付着させ、取鍋耐火物か
らの混入を防止すれば良いとする着想に至った。
Generally, the refractory used as the material for the inner surface of the ladle is desired to be a stable and strong refractory oxide from the viewpoint of its durability. However, since the origin of hard inclusions is a ladle refractory material, strong refractory oxides have an adverse effect on the wire drawability and fatigue strength of steel. is there. Therefore, we came up with the idea that a slag reaction layer should be attached to the inner surface of the ladle refractory to prevent mixing from the ladle refractory.

【0019】こうした着想に基づき、本発明者らが更に
検討したところ、取鍋内表面に付着するスラグ中のAl
23濃度を70%以下にするれば、アルミナ系介在物の
混入が最低限抑制できることを見出した。また、こうし
た構成を達成する場合には、取鍋耐火物材質としては非
アルミナ系が有利であるが、アルミナ系の耐火物を用い
た場合であっても、ジルコン・ジルコニア系の様な非ア
ルミナ質を使用した場合と同様に、無害なスラグを安定
して付着させることができればそれほど差異がなくなる
ことも見出した。
Based on such an idea, the present inventors further studied and found that Al in the slag adhering to the inner surface of the ladle
It has been found that if the 2 O 3 concentration is 70% or less, the inclusion of alumina-based inclusions can be suppressed to a minimum. In addition, in order to achieve such a structure, a non-alumina type refractory material is advantageous as a refractory material, but even when an alumina type refractory material is used, a non-alumina type such as zircon / zirconia type is used. It was also found that, as with the case of using quality, if harmless slag can be adhered stably, the difference will be less.

【0020】こうした状況の下で本発明者らが更に検討
を加えた結果、次の様な知見が得られた。即ち、アルミ
ナ系耐火物を取鍋の内表面の材質として用い、CaO−
SiO2−Al23系の塩基性フラックスを添加してス
ラグ精錬する場合、取鍋内表面の酸化物組成は、スラグ
と耐火物の反応によって、使用したスラグと耐火物組成
の間を組成変化していくことになる。これは、非アルミ
ナ系の代表的な耐火物であるジルコン・ジルコニア系の
場合でも同様である。即ち、ジルコン・ジルコニア系の
場合には、スラグ組成との反応層は、アルミナ濃度は低
いものの、かなりの程度反応が進んでも高融点組成領域
であり、混入・懸濁したときに鋼の伸線加工性、疲労強
度に悪影響を及ぼす組成となるのである。
As a result of further studies conducted by the present inventors under these circumstances, the following findings were obtained. That is, alumina-based refractory is used as the material for the inner surface of the ladle, and CaO-
When slag refining is performed by adding a basic flux of SiO 2 —Al 2 O 3 system, the oxide composition on the inner surface of the ladle is between the used slag and the refractory composition due to the reaction between the slag and the refractory material. It will change. The same applies to the case of zircon / zirconia type, which is a typical non-alumina type refractory. That is, in the case of zircon / zirconia system, the reaction layer with the slag composition has a low alumina concentration, but is in the high melting point composition region even if the reaction proceeds to a considerable extent, and the wire drawing of steel when mixed and suspended. The composition has a bad influence on workability and fatigue strength.

【0021】一方、アルミナ系耐火物の場合には、スラ
グ組成が塩基度(CaO/SiO2):0.5〜1.
0、Al23濃度:10%以下の場合には、スラグ−耐
火物反応層の組成は約1300℃の低融点組成になる。
そして、この場合には却って低融点であるが故に、鋼表
面に生成した反応層も次の精錬時に溶融、剥離・混入し
てしまい、これらは無害であるが、精錬中に常に取鍋耐
火物材質である高融点のアルミナが溶鋼に曝される結果
となり、これら介在物混入源となることが分かった。
On the other hand, in the case of an alumina refractory, the slag composition has a basicity (CaO / SiO 2 ): 0.5-1.
0, Al 2 O 3 concentration: 10% or less, the composition of the slag-refractory reaction layer has a low melting point composition of about 1300 ° C.
And in this case, since the melting point is rather low, the reaction layer formed on the steel surface also melts, peels and mixes during the next refining, and these are harmless, but they are always ladle refractory during refining. It was found that the high melting point alumina, which is the material, is exposed to the molten steel and becomes a source of inclusions of these inclusions.

【0022】本発明では、上記の様な事実に鑑み、アル
ミナ系耐火物を用いると共に、スラグ組成をCaO/S
iO2:1〜3、Al23濃度:10%以下として、ス
ラグ−耐火物反応層組成がゲーレナイト(2CaO・S
iO2・Al23)を中心とする組成(より好ましく
は、ゲーレナイトよりも低アルミナ側を中心とする組
成)にすることによって、この反応層の融点を1550
℃程度に上げ、これによって次の精錬時に溶融、剥離・
混入しないようにすると共に、この組成がジルコン・ジ
ルコニア系耐火物−スラグとの反応層組成よりも、鋼の
伸線加工性、疲労強度に悪影響を及ぼさない組成となる
のである。即ち、ゲーレナイト組成の酸化物は、曲げ強
度が他の酸化物と比べて非常に弱いため、最も無害なの
である。
In view of the above facts, in the present invention, an alumina refractory is used, and the slag composition is CaO / S.
When io 2 : 1 to 3 and Al 2 O 3 concentration are 10% or less, the composition of the slag-refractory reaction layer is based on gehlenite (2CaO · S).
(iO 2 · Al 2 O 3 ) is the center of the composition (more preferably, the composition is more centered on the lower alumina side than the grenite), and the melting point of this reaction layer is 1550.
The temperature is raised to about ℃, which causes melting and peeling during the next refining.
In addition to being prevented from being mixed, this composition has a composition that does not adversely affect the wire drawing workability and fatigue strength of the steel, as compared with the composition of the reaction layer of the zircon / zirconia-based refractory-slag. That is, the oxide having a grenite composition is the most harmless because it has a very low bending strength as compared with other oxides.

【0023】また、上記ゲーレナイト化する為の具体的
な手段としては、アルミナ系耐火物を主成分とする耐火
物を使用した取鍋を用い、取鍋精錬時のトップスラグ
(上置きスラグ)の組成を塩基度(CaO/Si
2):1〜3、Al23濃度:10%以下に制御すれ
ば、次チャージの段階で取鍋内表面にAl23が70%
以下のスラグ反応層を付着させることができる。
Further, as a concrete means for making the above-mentioned gehlenite, a ladle using a refractory material containing an alumina refractory material as a main component is used, and a top slag (upper slag) at the time of refining the ladle is used. Basic composition (CaO / Si
O 2 ): 1-3, Al 2 O 3 concentration: If controlled to 10% or less, 70% Al 2 O 3 on the inner surface of the ladle at the next charging stage.
The following slag reaction layers can be deposited.

【0024】但し、上記の様なスラグ制御は、取鍋から
溶鋼を取り出すまでに行なわれていれば良く、例えば取
鍋精錬時のスラグ組成を塩基度(CaO/SiO2):
0.5〜1.0、Al23濃度:10%以下に制御し
て、スラグ系、脱酸系介在物の組成を制御する精錬を行
ない、その精錬終了後溶鋼を取出すまでにCaO含有物
質などを添加して、スラグ組成を塩基度(CaO/Si
2):1〜3、Al2 3濃度:10%以下の範囲に制
御して、スラグの取鍋への付着性を高めて、鍋表面にA
23濃度が70%以下であるスラグを付着させること
もできる。
However, the above-mentioned slag control is performed from the ladle.
It suffices if it is done before taking out the molten steel.
The slag composition at the time of pot refining is basic (CaO / SiO2):
0.5-1.0, Al2O3Concentration: Controlled below 10%
Refining to control the composition of slag-based and deoxidized inclusions.
Not included, CaO-containing substances before the molten steel is taken out after the refining
The quality of slag is adjusted to basicity (CaO / Si
O2): 1-3, Al2O 3Concentration: Controlled to within 10%
Control to increase the adhesion of slag to the ladle,
l2O3To attach slag with a concentration of 70% or less
You can also

【0025】本発明によれば、取鍋内表面に付着したス
ラグ中のAl23濃度を一律に70%以下(より好まし
くは、50%以下)とすると共に、スラグを安定して取
鍋内表面に付着させ、且つそのスラグとアルミナ耐火物
と反応した結果生成される層が、剥離等により混入せ
ず、しかも混入しても断線介在物とならない組成とする
ことによって、鋼の伸線加工性や疲労強度を上げること
が可能になったのである。
According to the present invention, the concentration of Al 2 O 3 in the slag adhering to the inner surface of the ladle is uniformly set to 70% or less (more preferably 50% or less), and the slag is stably fed to the ladle. Wire drawing of steel is made possible by the composition that is adhered to the inner surface and the layer formed as a result of reacting the slag with the alumina refractory does not mix due to peeling, etc. It has become possible to increase workability and fatigue strength.

【0026】こうした本発明方法によれば、ジルコン・
ジルコニア系等の耐火物を溶鋼と接触する材質として使
用しないことから、その他の断線原因となるジルコニア
系介在物を、問題が生じない程度まで低減できるのであ
る。
According to such a method of the present invention, zircon
Since no refractory such as zirconia is used as a material that comes into contact with the molten steel, other zirconia inclusions that cause disconnection can be reduced to the extent that problems do not occur.

【0027】尚、本発明では、タイヤーコード用鋼や高
強度ばね用鋼等に素材として有用な高清浄鋼を想定して
なされたものであり、その鋼種については特に限定する
ものではないが、例えば基本成分としてC:0.4〜
1.3%、Si:0.1〜2.5%、Mn:0.2〜
1.0%を含有するものが好ましく、更に必要によって
他の合金元素としてNi:0.01〜1.0%、Cu:
0.01〜1.0%およびCr:0.01〜1.5%よ
りなる群から選ばれる1種以上を含有するものは、冷間
伸線性の高められた好ましい鋼材として挙げることがで
きる。
The present invention has been made on the assumption of highly clean steel useful as a raw material for steel for tire cords, steel for high strength springs and the like, and the type of steel is not particularly limited. For example, C: 0.4 as a basic component
1.3%, Si: 0.1 to 2.5%, Mn: 0.2 to
The alloy containing 1.0% is preferable, and if necessary, other alloy elements Ni: 0.01 to 1.0%, Cu:
One containing at least one selected from the group consisting of 0.01 to 1.0% and Cr: 0.01 to 1.5% can be mentioned as a preferable steel material having enhanced cold drawability.

【0028】以下本発明を実施例によって更に詳細に説
明するが、下記実施例は本発明を限定する性質のもので
はなく、前・後記の趣旨に徴して設計変更することはい
ずれも本発明の技術的範囲に含まれるものである。
The present invention will be described in more detail with reference to the following examples, but the following examples are not intended to limit the present invention, and any modification of the design of the present invention can be made without departing from the spirit of the preceding and following paragraphs. It is included in the technical scope.

【0029】[0029]

【実施例】実験室レベルで、次の様な実験を行なった。
まず、転炉から出鋼される溶鋼を模擬した500kgの
溶鋼(成分組成:C:0.8%,Si:0.25%,M
n:0.6%)を溶製し、種々の耐火物内表面を呈する
取鍋に受鋼し、各種フラックスを添加して成分調整、電
極加熱、アルゴンバブリング行ない、スラグ精錬を実施
した。
Example The following experiment was conducted at the laboratory level.
First, 500 kg of molten steel (composition composition: C: 0.8%, Si: 0.25%, M
(n: 0.6%) was melted, steel was received in a ladle exhibiting various refractory inner surfaces, various fluxes were added to adjust components, perform electrode heating, perform argon bubbling, and perform slag refining.

【0030】この様にして溶製した溶鋼を、非アルミナ
系タンデッシュを介して鋳造し、得られた鋼塊を鋳造、
熱間圧延して直径:3〜10mmの線材とした。これら
線材中の硬質介在物の個数(20μm以上の介在物の個
数)を測定する一方、これを同条件で伸線し、伸線加工
性を評価すると共に、疲労強度を測定した。これらの測
定方法および評価基準は、下記の通りである。
The molten steel thus produced is cast through a non-alumina type tundish, and the obtained ingot is cast,
It was hot rolled into a wire having a diameter of 3 to 10 mm. While measuring the number of hard inclusions (the number of inclusions of 20 μm or more) in these wire rods, the wire rods were drawn under the same conditions to evaluate the wire drawing workability and the fatigue strength. These measuring methods and evaluation criteria are as follows.

【0031】(20μm以上の硬質介在物の個数)対象
となる熱間圧延後の線材1500gを約100g程度毎
に切断し、スケールを除去した後、約90℃の温硝酸溶
液に入れて鋼を酸に溶解した。この溶液を篩目10μm
のフィルターで濾過し、濾紙上に抽出された硬質介在物
(アルミナ、ジルコニア、ジルコン)をEPMAで組成
分析、個数計測した。これを鋼50g当たりの個数に換
算して求めた。
(Number of hard inclusions of 20 μm or more) 1500 g of the hot-rolled wire to be cut is cut at intervals of about 100 g, scales are removed, and the steel is placed in a warm nitric acid solution at about 90 ° C. Dissolved in acid. This solution is sieve mesh 10 μm
The hard inclusions (alumina, zirconia, zircon) extracted on the filter paper were subjected to composition analysis by EPMA and the number thereof was counted. This was calculated by converting the number into 50 g of steel.

【0032】(伸線加工性)伸線加工性の評価は、試験
伸線機を用いて実施した。即ち、熱間圧延後の線材
(5.5mmφ)を2.5mmφまで一次伸線し、熱処
理(空気パテンテェング)し、その後二次伸線して0.
8mmφとし、引き続き熱処理(鉛パテンティング)お
よびブラスめっきを施し、0.15mmφまで湿式伸線
し、鋼線10t当たりの断線回数に換算して評価した。
(Drawing workability) Evaluation of drawing workability was carried out using a test drawing machine. That is, the wire rod (5.5 mmφ) after hot rolling is subjected to primary wire drawing to 2.5 mmφ, heat treatment (air patenting), and then secondary wire drawing to 0.
8 mmφ, followed by heat treatment (lead patenting) and brass plating, wet drawing to 0.15 mmφ, and conversion to the number of wire breakages per 10 t of steel wire for evaluation.

【0033】(疲労強度)熱間圧延後の線材(5.5m
mφ)を、低温焼鈍(LA)→冷間線引加工(Drawing
4.8mmφ)→オイルテンパー[油焼入れと鉛浴(約
450℃)焼戻し連続工程]→簡易歪取焼鈍(ブルーイ
ング:約400℃)→ショットピーニング→歪取焼鈍を
行った後、試験片として4.8mmφ×650mmのワ
イヤーを採取し、中村式回転曲げ試験機において、試験
応力:公称応力940MPa、回転数:4000〜50
00rpm、中止回数:2×107回で行ない、破損し
た物のうち、介在物折損したものについて、折損率=介
在物折損本数/(介在物折損+中止本数)×100
(%)で評価した。
(Fatigue Strength) Wire rod after hot rolling (5.5 m)
mφ), low temperature annealing (LA) → cold wire drawing (Drawing
4.8 mmφ) → Oil temper [Oil quenching and lead bath (about 450 ° C) tempering continuous process] → Simple strain relief annealing (blueing: about 400 ° C) → Shot peening → Strain relief annealing, and then as a test piece A 4.8 mmφ × 650 mm wire was sampled, and in a Nakamura-type rotary bending tester, test stress: nominal stress of 940 MPa, rotation speed: 4000 to 50
00 rpm, number of discontinuations: 2 × 10 7 times, and among the damaged ones, breakage of inclusions, breakage rate = breakage of inclusions / (breakage of inclusions + number of cancels) × 100
It was evaluated by (%).

【0034】実施例1 同一の鍋を用い、前チャージに本発明の対象鋼であるシ
ルコンキルド鋼と同一のシリコンキルド鋼(実験No.
3、4)、および脱酸剤を投入しないリムド鋼(実験N
o.5)を処理した場合と、前チャージにアルミキルド
鋼(実験No.1)、アルミシリコンキルド鋼(実験N
o.2)を処理した場合を比較して上記の実験を行なっ
た。
Example 1 The same pan was used, and the same silicon killed steel as the steel of the present invention, which was the subject steel of the present invention, was used for precharging (Experiment No.
3, 4), and rimmed steel with no deoxidizer added (Experiment N
o. 5) treated and aluminum pre-charged aluminum killed steel (Experiment No. 1), aluminum silicon killed steel (Experiment N)
o. The above experiment was conducted by comparing the case where 2) was treated.

【0035】その結果を、鍋の基材質、前チャージスラ
グ塩基度、今回チャージ受鋼前の鍋内表面のアルミナ濃
度(付着スラグ中のアルミナ濃度)と共に下記表1に示
す。このとき、受鋼前の鍋内表面のアルミナ濃度につい
ては、受鋼前に側壁表面(高さ方向の中心部)2箇所、
底部中心部表面1箇所から、深さ方向に5mmサンプリ
ングし、各サンプルを粉砕後、蛍光X線分析により測定
し、その3点の平均値とした。下記表1から明らかな様
に、前チャージに同一鋼種、或は脱酸剤を用いない鋼で
取鍋を専用化することによって(実験No.3〜5)、
鋼の清浄化が高度に達成されて線材の特性が向上してい
ることが分かる。
The results are shown in Table 1 below together with the base material of the pot, the basicity of the pre-charged slag, and the concentration of alumina on the inner surface of the pot before the steel was charged this time (concentration of alumina in the adhered slag). At this time, regarding the alumina concentration on the inner surface of the pot before receiving the steel, two places on the side wall surface (the center in the height direction) before receiving the steel,
5 mm was sampled in the depth direction from one location on the center surface of the bottom portion, each sample was crushed and then measured by fluorescent X-ray analysis, and the average value of the three points was taken. As is clear from Table 1 below, by dedicating the ladle to the same steel type for pre-charging or steel without using a deoxidizer (Experiment No. 3 to 5),
It can be seen that the cleaning of the steel is highly achieved and the properties of the wire are improved.

【0036】[0036]

【表1】 [Table 1]

【0037】実施例2 スラグ塩基度(CaO/SiO2)を1、アルミナ濃度
を10%の一定とし、受鋼前最表面のアルミナ濃度と鋼
材特性の関係について調査した。その結果を、鍋の基材
質、受鋼前の鍋内表面のアルミナ濃度、スラグ塩基度、
スラグ中のAl 23濃度と共に下記表2に示す。また、
この結果に基づいて、鍋内表面のアルミナ濃度と硬質介
在物個数の関係を図1に、硬質介在物個数と断線回数の
関係を図2に、硬質介在物個数と折損率の関係を図3に
夫々示す。
[0037]Example 2 Slag basicity (CaO / SiO2) 1, alumina concentration
Is kept constant at 10%, and the alumina concentration on the outermost surface before steel receiving and the steel
The relationship of material properties was investigated. The result is the base material of the pot
Quality, alumina concentration on the inner surface of the pot before steel receiving, slag basicity,
Al in slag 2O3It is shown in Table 2 below together with the concentration. Also,
Based on this result, the concentration of alumina on the inner surface of the pan and
Figure 1 shows the relationship between the number of hard inclusions and the number of wire breaks.
Figure 2 shows the relationship, and Figure 3 shows the relationship between the number of hard inclusions and the breakage rate.
Show each.

【0038】これらの結果から明らかなように、受鋼前
鍋内表面のアルミナ濃度を70%以下とすることによっ
て(実験No.16〜25)、硬質介在物の個数の低減
が達成され(鋼の清浄化が達成され)て線材の特性が向
上していることが分かる。
As is clear from these results, the number of hard inclusions was reduced by setting the alumina concentration on the inner surface of the ladle before steel receiving to 70% or less (Experiment No. 16 to 25) (steel). It is understood that the cleaning of the wire is achieved) and the characteristics of the wire are improved.

【0039】[0039]

【表2】 [Table 2]

【0040】実施例3 受鋼前の鍋内表面のアルミナ濃度を90%の一定の条件
で、スラグ中のアルミナ濃度を5%として、スラグ塩基
度を変化させた実験を連続して2チャージ(前回チャー
ジ、今回チャージ)行ない、鍋内表面のアルミナ濃度の
変化を調査すると共に、2チャージ目(今回チャージ)
の材料について、上記の各特性を評価した。その結果
を、鍋の基材質、受鋼前の鍋内表面のアルミナ濃度、ス
ラグ塩基度、スラグ中のAl23濃度と共に下記表3に
示す。また、この結果に基づいて、スラグ塩基度と1チ
ャージ終了後の鍋内表面のアルミナ濃度の関係を図4
に、受鋼前の鍋内表面のアルミナ濃度と硬質介在物個数
の関係を図5に、硬質介在物個数と断線回数の関係を図
6に、硬質介在物個数と折損率の関係を図7に夫々示
す。
Example 3 An experiment in which the alumina concentration in the slag was set to 5% and the slag basicity was continuously changed to 2 charges under a constant condition of 90% alumina concentration on the inner surface of the pot before steel receiving ( Performed the previous charge, this time charge) and investigated the change in the alumina concentration on the inner surface of the pan, and the second charge (current charge)
Each of the above properties was evaluated for the material. The results are shown in Table 3 below together with the base material of the pot, the concentration of alumina on the inner surface of the pot before receiving steel, the slag basicity, and the Al 2 O 3 concentration in the slag. In addition, based on this result, the relationship between the slag basicity and the alumina concentration on the inner surface of the pot after one charge is shown in FIG.
Fig. 5 shows the relationship between the concentration of alumina on the inner surface of the pan before steel receiving and the number of hard inclusions, Fig. 6 shows the relationship between the number of hard inclusions and the number of wire breaks, and Fig. 7 shows the relationship between the number of hard inclusions and the breakage rate. , Respectively.

【0041】これらの結果から明らかな様に、スラグ塩
基度を1〜3(より好ましくは1〜2)とすることによ
って、鍋内表面のアルミナ濃度が70%以下となり、鋼
材の高度な清浄化が達成されて線材の特性が向上してい
ることが分かる。
As is clear from these results, by setting the slag basicity to 1 to 3 (more preferably 1 to 2), the alumina concentration on the inner surface of the pot becomes 70% or less, and the steel material is highly cleaned. It can be seen that the above has been achieved and the characteristics of the wire rod have been improved.

【0042】[0042]

【表3】 [Table 3]

【0043】実施例4 下記2通りの条件で精錬および鋳造を行ない、得られた
線材の特性について上記と同様にして評価した。
Example 4 Refining and casting were performed under the following two conditions, and the characteristics of the obtained wire were evaluated in the same manner as above.

【0044】(本発明)前チャージの精錬条件を、スラ
グ塩基度(CaO/SiO2)=0.75、スラグ中の
Al23濃度=10%以下として精錬し、その後焼石灰
を添加して、スラグ塩基度(CaO/SiO2)=2、
スラグ中のAl23濃度=10%以下にした後鋳造し、
その後受鋼し、CaO/SiO2=0.75、Al23
濃度=10%以下で精錬し、鋳造した。
(Invention) Refining conditions for pre-charge were as follows: slag basicity (CaO / SiO 2 ) = 0.75, Al 2 O 3 concentration in slag = 10% or less, and then calcination lime was added. Slag basicity (CaO / SiO 2 ) = 2,
Casting after adjusting the Al 2 O 3 concentration in the slag to 10% or less,
After that, steel was received and CaO / SiO 2 = 0.75, Al 2 O 3
It was refined and cast at a concentration of 10% or less.

【0045】(比較例)前チャージの精錬条件を、Ca
O/SiO2=0.75、Al23=10%以下として
精錬し、その後焼石灰を添加せずに、鋳造し、その後受
鋼し、CaO/SiO2=0.75、Al23=10%
以下で精錬し、鋳造した。
(Comparative Example) The refining conditions for the precharge were set to Ca
O / SiO 2 = 0.75, Al 2 O 3 = 10% or less for refining, then casting without adding burned lime, and then receiving steel, CaO / SiO 2 = 0.75, Al 2 O 3 = 10%
It was refined and cast below.

【0046】その結果を、鍋の基材質、受鋼前の鍋内表
面のアルミナ濃度、スラグ塩基度、スラグ中のAl23
濃度と共に下記表4に示すが、精錬時は低塩基度のスラ
グを用いても、精錬後のスラグの塩基度を1〜3(より
好ましくは1〜2)とすることによって、鋼の高度な清
浄化が達成されて線材の特性が向上していることが分か
る。
The results are shown as base material of the pot, alumina concentration on the inner surface of the pot before receiving steel, basicity of slag, Al 2 O 3 in slag.
Although it is shown in Table 4 below together with the concentration, even if a low basicity slag is used during refining, by adjusting the basicity of the slag after refining to 1 to 3 (more preferably 1 to 2), It can be seen that cleaning has been achieved and the properties of the wire have been improved.

【0047】[0047]

【表4】 [Table 4]

【0048】[0048]

【発明の効果】本発明は以上の様に構成されており、精
錬段階で取鍋耐火物等から不可避的に混入してくる硬質
介在物を極力低減し、伸線時に割れが生じたりすること
なく、疲労強度にも優れた高清浄鋼を製造する為の有用
な方法が実現できた。
EFFECTS OF THE INVENTION The present invention is configured as described above, and hard inclusions that are inevitably mixed from ladle refractory or the like in the refining stage are reduced as much as possible, and cracks may occur during wire drawing. It was possible to realize a useful method for producing highly clean steel with excellent fatigue strength.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例2に基づいて求められた鍋内表面アルミ
ナ濃度と硬質介在物個数の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the concentration of surface alumina in a pot and the number of hard inclusions determined based on Example 2.

【図2】実施例2に基づいて求められた硬質介在物個数
と断線回数の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the number of hard inclusions and the number of disconnections determined based on Example 2.

【図3】実施例2に基づいて求められた硬質介在物個数
と折損率の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the number of hard inclusions and the breakage rate obtained based on Example 2.

【図4】実施例3に基づいて求められたスラグ塩基度と
1チャージ終了後の鍋内表面のアルミナ濃度の関係を示
すグラフである。
FIG. 4 is a graph showing the relationship between the slag basicity determined based on Example 3 and the concentration of alumina on the inner surface of a pot after one charge.

【図5】実施例3に基づいて求められた受鋼前の鍋内表
面のアルミナ濃度と硬質介在物個数の関係を示すグラフ
である。
FIG. 5 is a graph showing the relationship between the concentration of alumina on the inner surface of a pan before receiving steel and the number of hard inclusions, which was determined based on Example 3.

【図6】実施例3に基づいて求められた硬質介在物個数
と断線回数の関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the number of hard inclusions and the number of disconnections determined based on Example 3.

【図7】実施例3に基づいて求められた硬質介在物個数
と折損率の関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the number of hard inclusions and the breakage rate obtained based on Example 3.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 星川 郁生 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 (72)発明者 滝本 豊志 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 Fターム(参考) 4K013 AA07 BA14 CF01 CF13 FA05 FA06 4K070 AA02 AB11 AC02 AC14 AC15 AC16 BC01 BC02 CC03 EA02 EA03    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Ikuo Hoshikawa             1 Kanazawa Town, Kakogawa City, Hyogo Prefecture             To Steel Works, Kakogawa Works (72) Inventor Toyoshi Takimoto             1 Kanazawa Town, Kakogawa City, Hyogo Prefecture             To Steel Works, Kakogawa Works F-term (reference) 4K013 AA07 BA14 CF01 CF13 FA05                       FA06                 4K070 AA02 AB11 AC02 AC14 AC15                       AC16 BC01 BC02 CC03 EA02                       EA03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 転炉または電気炉で製造された溶鋼を取
鍋に受鋼して二次精錬を施し、精錬後の溶鋼を取鍋から
排出して連続鋳造した後、該取鍋を前記転炉または電気
炉に再び戻して溶鋼を受鋼する工程を1サイクルとする
操業を、複数の取鍋を組み合わせて循環使用して、シリ
コンキルド鋼について連続して複数回繰り返すに際し
て、この繰り返しが終了するまでは、該シリコンキルド
鋼を受鋼する取鍋は、前回のチャージで受鋼する鋼種が
シリコンキルド鋼またはリムド鋼のみである様にして操
業することを特徴とする清浄鋼の製造方法。
1. A molten steel produced by a converter or an electric furnace is received in a ladle for secondary refining, the molten steel after the refining is discharged from the ladle and continuously cast, and then the ladle is aforesaid. When repeating the operation of returning the steel to the converter or electric furnace and receiving the molten steel as one cycle, by repeatedly using a plurality of ladles in combination and repeating it repeatedly for silicon killed steel, this repetition is repeated. Until the end, the ladle that receives the silicon-killed steel is operated such that the steel type that is received by the previous charge is only silicon-killed steel or rimmed steel. .
【請求項2】 内張り耐火物がアルミナ系耐火物である
取鍋を使用するに際しては、取鍋内表面の付着スラグ中
のAl23濃度が70%(質量%の意味、以下同じ)以
下になる様に制御して操業する請求項1に記載の製造方
法。
2. When using a ladle whose refractory lining is an alumina refractory, the concentration of Al 2 O 3 in the adhered slag on the inner surface of the ladle is 70% or less (meaning mass%, the same applies hereinafter) or less. The manufacturing method according to claim 1, which is operated by controlling so that
【請求項3】 トップスラグ組成を、塩基度(CaO/
SiO2):1〜3とすると共に、Al23濃度:10
%以下に制御する請求項2に記載の製造方法。
3. The top slag composition is adjusted to basicity (CaO /
SiO 2 ): 1-3 and Al 2 O 3 concentration: 10
The manufacturing method according to claim 2, which is controlled to be not more than%.
JP2001212576A 2001-05-18 2001-07-12 Manufacturing method of clean steel Expired - Fee Related JP4146107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001212576A JP4146107B2 (en) 2001-05-18 2001-07-12 Manufacturing method of clean steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-149931 2001-05-18
JP2001149931 2001-05-18
JP2001212576A JP4146107B2 (en) 2001-05-18 2001-07-12 Manufacturing method of clean steel

Publications (2)

Publication Number Publication Date
JP2003034817A true JP2003034817A (en) 2003-02-07
JP4146107B2 JP4146107B2 (en) 2008-09-03

Family

ID=26615356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001212576A Expired - Fee Related JP4146107B2 (en) 2001-05-18 2001-07-12 Manufacturing method of clean steel

Country Status (1)

Country Link
JP (1) JP4146107B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332398A (en) * 2006-06-12 2007-12-27 Kobe Steel Ltd Method for producing high cleanliness steel
CN100392111C (en) * 2003-10-27 2008-06-04 宝山钢铁股份有限公司 Method for manufacturing tool die steel plate produced by converter
CN103014220A (en) * 2012-12-26 2013-04-03 安阳钢铁股份有限公司 Method for controlling impurities in high-carbon steel
CN113699303A (en) * 2021-09-02 2021-11-26 广东韶钢松山股份有限公司 Smelting method for steel for automobile suspension spring

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5299447B2 (en) * 2011-02-23 2013-09-25 新日鐵住金株式会社 Melting method of low Al steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100392111C (en) * 2003-10-27 2008-06-04 宝山钢铁股份有限公司 Method for manufacturing tool die steel plate produced by converter
JP2007332398A (en) * 2006-06-12 2007-12-27 Kobe Steel Ltd Method for producing high cleanliness steel
CN103014220A (en) * 2012-12-26 2013-04-03 安阳钢铁股份有限公司 Method for controlling impurities in high-carbon steel
CN113699303A (en) * 2021-09-02 2021-11-26 广东韶钢松山股份有限公司 Smelting method for steel for automobile suspension spring
CN113699303B (en) * 2021-09-02 2022-12-06 广东韶钢松山股份有限公司 Smelting method for steel for automobile suspension spring

Also Published As

Publication number Publication date
JP4146107B2 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
EP3524704B1 (en) Fe-cr-ni alloy and method for producing same
KR101022068B1 (en) Process for producing steel for high-carbon steel wire material with excellent drawability and fatigue characteristics
JP5803824B2 (en) Method of melting carburized bearing steel
JP5277556B2 (en) Method for producing Ti-containing ultra-low carbon steel and method for producing Ti-containing ultra-low carbon steel slab
JP5299447B2 (en) Melting method of low Al steel
JP6937190B2 (en) Ni-Cr-Mo-Nb alloy and its manufacturing method
Kaushik et al. Inclusion characterisation–tool for measurement of steel cleanliness and process control: Part 2
JP2003034817A (en) Method of manufacturing clean steel
JP5398329B2 (en) Manufacturing method of high strength steel wire steel with excellent fatigue characteristics
TW201002832A (en) Steel-making method for titanium-containing ultralow carbon steel and method for manufacturing titanium-containing ultralow carbon steel slab
CN113046616B (en) Stainless steel excellent in surface properties and method for producing same
JP3852396B2 (en) Method for deoxidizing thin steel sheet and molten steel for thin steel sheet
JP2001342512A (en) Highly clean steel and production method
JP3533196B2 (en) High fatigue strength spring steel wire and its manufacturing method.
JP5398325B2 (en) Manufacturing method of high strength steel wire steel with excellent fatigue characteristics
JP4213368B2 (en) High strength wire rod with excellent cold wireability
JPH0362769B2 (en)
JP3632922B2 (en) Steel making and refining method for spring steel and spring steel wire obtained by using the steel making and refining method
JP3124469B2 (en) Method for producing slabs with few inclusion defects
JP2003183722A (en) Method for smelting high cleanliness steel
JP6984803B1 (en) Manufacturing method of slabs used as a material for high fatigue strength steel
JP2002105527A (en) Method for producing high cleanliness steel
JP3714190B2 (en) Method of deoxidizing thin steel sheet and molten steel for thin steel sheet
SU582301A1 (en) Method of inoculation and deoxidation of steels and alloys
JP4515025B2 (en) High strength steel wire rod with excellent cold drawability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080619

R150 Certificate of patent or registration of utility model

Ref document number: 4146107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees