JP2003034751A - Electroconductive resin composition - Google Patents
Electroconductive resin compositionInfo
- Publication number
- JP2003034751A JP2003034751A JP2001223022A JP2001223022A JP2003034751A JP 2003034751 A JP2003034751 A JP 2003034751A JP 2001223022 A JP2001223022 A JP 2001223022A JP 2001223022 A JP2001223022 A JP 2001223022A JP 2003034751 A JP2003034751 A JP 2003034751A
- Authority
- JP
- Japan
- Prior art keywords
- resin composition
- weight
- resin
- parts
- conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Conductive Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、導電性樹脂組成物
に関し、ことに、固体高分子電解質型燃料電池のセパレ
ータ材料として用いることが可能な、高導電率を有する
導電性樹脂組成物に関する。TECHNICAL FIELD The present invention relates to a conductive resin composition, and more particularly to a conductive resin composition having a high conductivity which can be used as a separator material for a solid polymer electrolyte fuel cell.
【0002】[0002]
【従来の技術】近年、火力発電あるいはガソリンエンジ
ンなどに代わるクリーンなエネルギー源もしくはクリー
ンな動力源として燃料電池が注目されるようになってき
ている。図2は特開2001−15131号公報に開示
された従来の燃料電池の構成を説明する構成説明図であ
り、6はセパレータ、7は負極、8は電解質板、9は正
極、10および14はセパレータに設けられた溝(凹
部)を示している。この溝10および14は、水素、酸
素と電極の接触面積を大きくするためのもので、発電効
率を向上させるために重要な役割を担っている。2. Description of the Related Art In recent years, fuel cells have been attracting attention as a clean energy source or a clean power source that replaces thermal power generation or a gasoline engine. FIG. 2 is a configuration explanatory view for explaining the configuration of the conventional fuel cell disclosed in JP 2001-15131 A, 6 is a separator, 7 is a negative electrode, 8 is an electrolyte plate, 9 is a positive electrode, and 10 and 14 are The groove (recess) provided in the separator is shown. The grooves 10 and 14 are for increasing the contact area between hydrogen and oxygen and the electrode, and play an important role for improving the power generation efficiency.
【0003】従来の燃料電池は前述の構成を有し、電解
質板8で挟まれた負極7および正極9に接触するよう
に、各々、酸素O2及び水素H2が流され、正極9側にお
いて、次式(1)
2H2 → 4H++4e- −−−(1)
の反応により電子が生成され、他方、負極7側において、次式(2)
O2+4H++4e- → 2H2O −−−(2)
によりH2Oが生成され、正極側から負極側に電子が移
動することにより発電が行われることになる。燃料電池
は正負の電極間に挟まれた電解質の種類から、リン酸
型、溶融炭酸塩型、高温固体電解質型、固体高分子電解
質型、アルカリ型等に分類されるが、実用に際しては、
活物質として水素と空気が使用でき、また、発電効率が
高いことから、リン酸型、溶融炭酸塩型が主流となって
いる。しかしながら、これら燃料電池の運転温度は、リ
ン酸型で約200℃、溶融炭酸塩型で約650℃と高
く、セパレータにも高温での耐熱性が要求されるため、
セパレータ材料としては金属、黒鉛シート、ガラス状カ
ーボン等の高耐熱性を有する材料が必要である上、これ
ら材料に上述したような溝形成を施す必要があり加工に
手間がかかり低コスト化が困難で普及の障害となってい
た。The conventional fuel cell has the above-described structure, and oxygen O 2 and hydrogen H 2 are flowed so as to come into contact with the negative electrode 7 and the positive electrode 9 sandwiched between the electrolyte plates 8, and at the positive electrode 9 side. , An electron is generated by the reaction of the following formula (1) 2H 2 → 4H + + 4e − − − − (1), and on the other hand, on the negative electrode 7 side, the following formula (2) O 2 + 4H + + 4e − → 2H 2 O − -(2) produces H 2 O, and the electrons move from the positive electrode side to the negative electrode side to generate power. Fuel cells are classified into phosphoric acid type, molten carbonate type, high temperature solid electrolyte type, solid polymer electrolyte type, alkaline type, etc. according to the type of electrolyte sandwiched between positive and negative electrodes.
Since hydrogen and air can be used as active materials, and the power generation efficiency is high, phosphoric acid type and molten carbonate type are the mainstream. However, the operating temperature of these fuel cells is as high as about 200 ° C. for the phosphoric acid type and about 650 ° C. for the molten carbonate type, and the separator is also required to have heat resistance at high temperatures.
As the separator material, materials having high heat resistance such as metal, graphite sheet, and glassy carbon are required, and it is necessary to form the groove as described above in these materials, and it is difficult to process and it is difficult to reduce cost. Was an obstacle to the spread.
【0004】これに対し、近年、燃料電池の本格的な普
及を目指し、固体高分子電解質型と呼ばれるタイプの燃
料電池が注目されてきている。この固体高分子電解質型
燃料電池は、高分子イオン交換膜を挟んで、例えばカー
ボン製の電極板が配置され、さらにその外側にセパレー
タが配置された単位セルから構成されるもので、従来の
燃料電池に比べ低温の動作(70〜100℃)が可能
で、軽量かつ量産性に優れ、低コスト化が図れるといっ
た特徴を有している。そのため、セパレータも熱可塑性
樹脂等の高分子材料を用いた樹脂成形品にて構成するこ
とが可能であり、射出成形法を用いて製造できるため、
低コスト化が図りやすいという利点を有している。ただ
し、樹脂は電気絶縁性を有するため、高い導電性が必要
とされる燃料電池用セパレータとして用いるためには導
電性の大幅な改善が必要不可欠である。この樹脂の導電
性向上は、通常、導電性フィラー等の導電性粒子を樹脂
に添加することにより行われるが、導電性フィラーを多
量充填すると成形性が低下し樹脂使用の利点が消失する
という相反する問題が生じる。そのため、熱可塑性樹脂
を用いた燃料電池用セパレータは未だ実用化されてはい
なかった。On the other hand, in recent years, fuel cells of the type called solid polymer electrolyte type have been attracting attention, aiming at the full-scale spread of fuel cells. This solid polymer electrolyte fuel cell is composed of a unit cell in which an electrode plate made of, for example, carbon is arranged with a polymer ion exchange membrane sandwiched, and a separator is further arranged outside the electrode plate. It has the features that it can operate at a lower temperature (70 to 100 ° C) than a battery, is lightweight, has excellent mass productivity, and can be manufactured at low cost. Therefore, the separator can also be formed of a resin molded product using a polymer material such as a thermoplastic resin, and can be manufactured using an injection molding method.
It has an advantage that the cost can be easily reduced. However, since the resin has an electrical insulating property, a significant improvement in conductivity is indispensable for use as a fuel cell separator that requires high conductivity. The conductivity of the resin is usually improved by adding conductive particles such as a conductive filler to the resin. However, when a large amount of the conductive filler is filled, the moldability is deteriorated and the advantage of using the resin disappears. Problem arises. Therefore, a fuel cell separator using a thermoplastic resin has not yet been put to practical use.
【0005】[0005]
【発明が解決しようとする課題】本発明はかかる状況に
鑑みてなされたもので、所定の形状への加工性と高導電
性が同時に必要とされる燃料電池用セパレータとして用
いることのできる、導電性樹脂組成物を提供することを
目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and can be used as a separator for a fuel cell that requires simultaneously processability into a predetermined shape and high conductivity. The purpose of the present invention is to provide a resin composition.
【0006】[0006]
【課題を解決するための手段】本発明者らは、上記目的
を達成するために鋭意検討した結果、熱可塑性樹脂の成
形性を損なわないよう導電性粒子を少量混合した後にカ
ーボンナノチューブを少量添加し射出成形すると、カー
ボンナノチューブが導電性粒子間の導通を取る役目をす
ることにより高導電性が付与されることを見出し、従来
成し得なかった良好な成形性および高い導電性を同時に
満たす導電性樹脂組成物を実現する本願発明に到達した
ものである。Means for Solving the Problems As a result of intensive studies for achieving the above object, the present inventors have found that a small amount of carbon nanotubes are added after mixing a small amount of conductive particles so as not to impair the moldability of the thermoplastic resin. When injection molding is performed, it was found that high conductivity is imparted by the carbon nanotubes functioning to establish conduction between the conductive particles, and it is possible to simultaneously achieve good moldability and high conductivity that could not be achieved in the past. The present invention, which realizes a functional resin composition, has been reached.
【0007】本発明にかかる導電性樹脂組成物は、熱可
塑性樹脂中に、導電性粒子とカーボンナノチューブを分
散してなり、500mΩ・cm以下の体積抵抗値を有す
るもので、熱可塑性樹脂中に少量のカーボンナノチュー
ブを添加し分散させ、このカーボンナノチューブにより
導電性粒子間の導通をとることにより、少量の導電性粒
子の配合により高い導電性が実現されるため、熱可塑性
樹脂の成形性が損なわれることがない。このため、かか
る熱可塑性樹脂を用いた射出成形により、任意の形状で
高導電性を有する熱可塑性樹脂組成物を得ることが可能
で、燃料電池用セパレータの低コスト製造が実現され
る。The electrically conductive resin composition according to the present invention comprises electrically conductive particles and carbon nanotubes dispersed in a thermoplastic resin and has a volume resistance value of 500 mΩ · cm or less. Add a small amount of carbon nanotubes and disperse them, and use the carbon nanotubes to establish conduction between the conductive particles, so that high conductivity can be achieved by blending a small amount of conductive particles, so that the moldability of the thermoplastic resin is impaired. Never be Therefore, by injection molding using such a thermoplastic resin, it is possible to obtain a thermoplastic resin composition having high conductivity in an arbitrary shape, and low-cost production of a fuel cell separator is realized.
【0008】本発明にかかる導電性樹脂組成物は、体積
抵抗値が20mΩ・cm以下とすることができる。The conductive resin composition according to the present invention can have a volume resistance value of 20 mΩ · cm or less.
【0009】本発明にかかる導電性樹脂組成物は、カー
ボンナノチューブが熱可塑性樹脂に2〜25重量%添加
された構成とすることができる。The conductive resin composition according to the present invention may have a structure in which carbon nanotubes are added to the thermoplastic resin in an amount of 2 to 25% by weight.
【0010】本発明にかかる導電性樹脂組成物は、導電
性粒子が10〜50体積%配合された構成とすることが
できる。The conductive resin composition according to the present invention may have a composition containing 10 to 50% by volume of conductive particles.
【0011】本発明にかかる導電性樹脂組成物は、導電
性粒子を非酸化物系セラミックとすることができる。In the conductive resin composition according to the present invention, the conductive particles can be a non-oxide ceramic.
【0012】本発明にかかる導電性樹脂組成物は、非酸
化物系セラミックを金属ホウ化物、金属窒化物および金
属炭化物のうち少なくともいずれか1つの素材で構成す
ることができる。In the conductive resin composition according to the present invention, the non-oxide ceramic can be composed of at least one material selected from metal borides, metal nitrides and metal carbides.
【0013】本発明にかかる導電性樹脂組成物は、熱可
塑性樹脂をポリフェニレンサルファイド系樹脂、ポリフ
ェニレンエーテル系樹脂、液晶ポリマー系樹脂、ポリス
チレン系樹脂、ABS系樹脂およびポリアセタール系樹
脂のうち少なくともいずれか1つの素材にて構成するこ
とができる。In the conductive resin composition according to the present invention, the thermoplastic resin is a polyphenylene sulfide resin, a polyphenylene ether resin, a liquid crystal polymer resin, a polystyrene resin, an ABS resin or a polyacetal resin. It can be composed of one material.
【0014】[0014]
【発明の実施の形態】図1は本発明にかかる導電性樹脂
組成物の構成を表す断面図で、樹脂1に添加された少量
のカーボンナノチューブ2が、隣接する導電性粒子3間
の電気的結合の橋渡しを行うために、従来のような導電
性粒子の多量添加がなくても、樹脂1に良好な導電性が
付与される様子を示している。かかる導電性樹脂組成物
においては、少量の導電性粒子の添加で高い導電性が得
られるため、熱可塑性樹脂の流動性が損なわれることが
ない。そのため、かかるカーボンナノチューブおよび導
電性粒子が添加された熱可塑性樹脂は射出成形法による
成形が可能となり、得られた導電性樹脂組成物は高導電
性を有し、燃料電池のセパレータとして使用することが
できる。FIG. 1 is a cross-sectional view showing the constitution of a conductive resin composition according to the present invention, in which a small amount of carbon nanotubes 2 added to a resin 1 is electrically connected between adjacent conductive particles 3. It is shown that good conductivity is imparted to the resin 1 without adding a large amount of conductive particles as in the conventional case for bridging the bonds. In such a conductive resin composition, high conductivity is obtained by adding a small amount of conductive particles, so that the fluidity of the thermoplastic resin is not impaired. Therefore, the thermoplastic resin containing such carbon nanotubes and conductive particles can be molded by an injection molding method, and the conductive resin composition obtained has high conductivity and should be used as a separator for a fuel cell. You can
【0015】この発明における熱可塑性樹脂は、射出成
形等に適用できる程度の熱可塑性を有するものであれば
特に制限されることはなく、種々の熱可塑性樹脂が使用
可能である。これらの熱可塑性樹脂の中でも成形性の点
で、特に、ポリフェニレンサルファイド系樹脂、ポリフ
ェニレンエーテル系樹脂、液晶ポリマー系樹脂、ポリス
チレン系樹脂、ABS系樹脂およびポリアセタール系樹
脂等を好適に使用することができる。The thermoplastic resin in the present invention is not particularly limited as long as it has a thermoplasticity applicable to injection molding and the like, and various thermoplastic resins can be used. Among these thermoplastic resins, polyphenylene sulfide-based resins, polyphenylene ether-based resins, liquid crystal polymer-based resins, polystyrene-based resins, ABS-based resins, polyacetal-based resins, and the like can be preferably used in terms of moldability. .
【0016】この発明に用いる導電性粒子は、導電性を
有した粒子であれば特に制限されるものではなく、カー
ボン系導電材料や酸化物系セラミックス導電材料あるい
は非酸化物系セラミック粒子等を適用することができ、
これら材料の中でも、高導電性を有する点で、特に非酸
化物系セラミック粒子が好ましく、かかる高導電性を有
する非酸化物系セラミック粒子としては、金属ホウ化
物、金属窒化物、金属炭化物等の粒子を好適に使用する
ことができる。かかる導電性粒子の形状は、特に、単一
の球状や楕円状に限らず、複数個の粒子が連結したよう
な形状や針状もしくは長尺状のような様々な形状であっ
てもよい。The conductive particles used in the present invention are not particularly limited as long as they are particles having conductivity, and carbon-based conductive material, oxide-based ceramic conductive material, non-oxide-based ceramic particles, etc. are applied. You can
Among these materials, non-oxide ceramic particles are particularly preferable in terms of having high conductivity, and examples of such non-oxide ceramic particles having high conductivity include metal borides, metal nitrides, and metal carbides. Particles can be preferably used. The shape of the conductive particles is not limited to a single spherical shape or an elliptical shape, and may be a shape in which a plurality of particles are connected, or various shapes such as a needle shape or a long shape.
【0017】この発明に用いるカーボンナノチューブと
しては、市販のカーボンナノチューブが適用可能であ
り、例えば、マテリアルサイエンス社製のシングルウォ
ールカーボンナノチューブが好適に使用できる。As the carbon nanotubes used in the present invention, commercially available carbon nanotubes can be applied, and for example, single wall carbon nanotubes manufactured by Material Science Co. can be suitably used.
【0018】この発明の導電性樹脂組成物において、カ
ーボンナノチューブを熱可塑性樹脂に2〜25重量%添
加すると、少量の導電性粒子の添加で500m・Ω以下
の体積抵抗値が安定的に得られる。特に、7〜25重量
%添加した場合には20m・Ω以下の体積抵抗値が得ら
れるため、高導電率の樹脂組成物を得る点で好ましい。
また、かかるカーボンナノチューブが添加された熱可塑
性樹脂に、導電性粒子を10〜50体積%、好ましくは
30〜40体積%配合した場合には熱可塑性樹脂の良好
な流動性が損なわれることがなく、所定の形状を有する
導電性樹脂組成物が容易に得られる。さらに、7〜15
重量%のカーボンナノチューブと30〜40体積%の導
電性粒子を添加した場合には熱可塑性樹脂の流動性の低
下が最小限に抑制されるため実用上、最も好ましい。In the conductive resin composition of the present invention, when carbon nanotubes are added to the thermoplastic resin in an amount of 2 to 25% by weight, a volume resistance value of 500 m · Ω or less can be stably obtained by adding a small amount of conductive particles. . In particular, when 7 to 25 wt% is added, a volume resistance value of 20 m · Ω or less is obtained, which is preferable from the viewpoint of obtaining a resin composition having high conductivity.
When the conductive resin is added to the thermoplastic resin containing the carbon nanotubes in an amount of 10 to 50% by volume, preferably 30 to 40% by volume, good fluidity of the thermoplastic resin is not impaired. A conductive resin composition having a predetermined shape can be easily obtained. Furthermore, 7 to 15
The addition of wt% carbon nanotubes and 30 to 40 vol% conductive particles is most preferable in practice because the decrease in fluidity of the thermoplastic resin is suppressed to a minimum.
【0019】[0019]
【実施例】以下、この発明の導電性樹脂組成物を実施例
により説明する。なお、かかる実施例においては、カー
ボンナノチューブとしてマテリアルサイエンス株式会社
製のシングルウォールカーボンナノチューブ(直径0.
7〜1nm、長さ2〜20μm、以下SWCNTとも称
す)を用いた。また、熱可塑性樹脂としては株式会社ト
ープレン製のポリフェニレンサルファイド樹脂「LR−
03」(以下PPSとも称す)、三菱エンジニアリング
プラスチックス株式会社製のポリフェニレンエーテル樹
脂「ユピエースAH8」(以下PPEとも称す)、ユニ
チカ株式会社製の液晶ポリマー「ロッドランLC−50
00」(以下LCPとも称す)、旭化成株式会社製のポ
リスチレン樹脂「スタイロン679R」(以下PSとも
称す)、旭化成社株式会社製のABS樹脂「スタイラッ
ク190F」(以下ABSとも称す)、三菱エンジニア
リングプラスチックス株式会社製のポリアセタール樹脂
「ユピタールF40」(以下POMとも称す)または三
菱エンジニアリングプラスチックス株式会社製のポリブ
チレンテレフタレート樹脂「ノバデュラン5010R
7」(以下PBTとも称す)を用いた。さらに、導電性
粒子としては日本新金属株式会社製の二ホウ化チタン粉
末(以下TiB2とも称す)、二ホウ化クロム(以下C
rB2とも称す)若しくは窒化チタン(以下TiNとも
称す)または和光純薬工業株式会社製のCu粉末を用い
た。一方、カーボンナノチューブと各熱可塑性樹脂の混
錬は東洋精機株式会社製のラボプラストミルを用いて行
った。また、導電率は、三菱化学株式会社製の抵抗率計
(LeostaHP MCP−T410)を用いた4探
針法にて測定し、導電率の測定前に各試料表面を#10
00のサンドペーパーにて研磨した。また、各試料の耐
久性は、90℃の温水に2000時間浸漬し、重量及び
導電率の変化を測定することにより評価した。EXAMPLES The conductive resin composition of the present invention will be described below with reference to examples. In the examples, single-wall carbon nanotubes (diameter: 0.
7 to 1 nm, length 2 to 20 μm, hereinafter also referred to as SWCNT). As the thermoplastic resin, polyphenylene sulfide resin "LR-" manufactured by Topren Co., Ltd.
03 "(hereinafter also referred to as PPS), polyphenylene ether resin" Yupiace AH8 "(hereinafter also referred to as PPE) manufactured by Mitsubishi Engineering Plastics Co., Ltd., liquid crystal polymer" Rod Run LC-50 "manufactured by Unitika Co., Ltd.
00 "(hereinafter also referred to as LCP), polystyrene resin" Styron 679R "(hereinafter also referred to as PS) manufactured by Asahi Kasei Corporation, ABS resin" Styrac 190F "(hereinafter also referred to as ABS) manufactured by Asahi Kasei Corporation, Mitsubishi Engineering Plastics Co., Ltd. polyacetal resin "Iupital F40" (hereinafter also referred to as POM) or Mitsubishi Engineering Plastics polybutylene terephthalate resin "Novaduran 5010R"
7 ”(hereinafter also referred to as PBT) was used. Further, as conductive particles, titanium diboride powder (hereinafter also referred to as TiB 2 ) manufactured by Nippon Shinkin Co., Ltd., chromium diboride (hereinafter C
rB 2 ) or titanium nitride (hereinafter also referred to as TiN) or Cu powder manufactured by Wako Pure Chemical Industries, Ltd. was used. On the other hand, the kneading of carbon nanotubes and each thermoplastic resin was performed using a Labo Plastomill manufactured by Toyo Seiki Co., Ltd. The conductivity is measured by the 4-probe method using a resistivity meter (Leosta HP MCP-T410) manufactured by Mitsubishi Chemical Corporation, and each sample surface is # 10 before the conductivity is measured.
Polished with sandpaper of No. 00. The durability of each sample was evaluated by immersing it in warm water at 90 ° C. for 2000 hours and measuring changes in weight and conductivity.
【0020】実施例1
上記したSWCNT 15重量部とPPS 85重量部
を、ミキサーを用いて15分間乾式混合し、ラボプラス
トミルで320℃にて均一に溶融混練した。この溶融混
練物36重量部とTiB2粉末64重量部を同様に32
0℃で溶融混練を行い、冷却後粉砕することにより、T
iB2を約35体積%含む樹脂組成物を得た。この樹脂
組成物を原料とし、射出成形機を用いて大きさ100m
m×100mm、厚さ2mmの板状試験片を成形した。
得られた試験片に対し上述の方法にて導電率測定を実施
したところ、燃料電池セパレータに必要とされる50
(S/cm)[体積抵抗値換算で20mΩ・cm]に対
し、138(S/cm)[体積抵抗値換算で約7.3m
Ω・cm]の高い導電率が得られた。また、この板状試
験片に対し、上述の耐久性試験を実施したところ、初期
値と比較した試験片の重量変化は1%以内、導電率の変
化も10%以内であり、かかる導電性樹脂組成物は優れ
た耐久性を有することが判明した。Example 1 15 parts by weight of SWCNT described above and 85 parts by weight of PPS were dry-mixed for 15 minutes using a mixer, and uniformly melt-kneaded at 320 ° C. with a Labo Plastomill. 36 parts by weight of this melt-kneaded product and 64 parts by weight of TiB 2 powder were similarly added to 32 parts.
By melt-kneading at 0 ° C, cooling and pulverizing,
A resin composition containing about 35% by volume of iB 2 was obtained. Using this resin composition as a raw material and using an injection molding machine, a size of 100 m
A plate-like test piece with m × 100 mm and a thickness of 2 mm was molded.
When the conductivity of the obtained test piece was measured by the above-mentioned method, it was found that 50
(S / cm) [20 mΩ · cm in terms of volume resistance value], 138 (S / cm) [approximately 7.3 m in terms of volume resistance value]
A high conductivity of Ω · cm] was obtained. In addition, when the above-mentioned durability test was performed on this plate-shaped test piece, the change in weight of the test piece compared with the initial value was within 1% and the change in conductivity was within 10%. The composition was found to have excellent durability.
【0021】実施例2
上記したSWCNT 7重量部とPPS 93重量部を、
ミキサーを用いて15分間乾式混合し、ラボプラストミ
ルで320℃にて均一に溶融混練した。この溶融混練物
35.5重量部とTiB2粉末64.5重量部を同様に
320℃で溶融混練を行い、冷却後粉砕することによ
り、TiB2を約35体積%含む樹脂組成物を得た。こ
の樹脂組成物を原料とし、射出成形機を用いて大きさ1
00mm×100mm、厚さ2mmの板状試験片を成形
した。得られた試験片に対し上述の方法にて導電率測定
を実施したところ、83.3(S/cm)[体積抵抗値
換算で約12.0mΩ・cm]という高い導電率が得ら
れた。また、この板状試験片に対し、上述の耐久性試験
を実施したところ、初期値と比較した試験片の重量変化
は1%以内、導電率の変化も10%以内であり、かかる
導電性樹脂組成物は優れた耐久性を有することが判明し
た。Example 2 7 parts by weight of SWCNT described above and 93 parts by weight of PPS were added,
The mixture was dry-mixed for 15 minutes using a mixer and uniformly melt-kneaded at 320 ° C. with a Labo Plastomill. 35.5 parts by weight of this melt-kneaded product and 64.5 parts by weight of TiB 2 powder were similarly melt-kneaded at 320 ° C., cooled, and then pulverized to obtain a resin composition containing about 35% by volume of TiB 2 . . Using this resin composition as a raw material, an injection molding machine is used to obtain a size 1
A plate-shaped test piece having a size of 00 mm × 100 mm and a thickness of 2 mm was molded. When the conductivity of the obtained test piece was measured by the above method, a high conductivity of 83.3 (S / cm) [about 12.0 mΩ · cm in terms of volume resistance value] was obtained. In addition, when the above-mentioned durability test was performed on this plate-shaped test piece, the change in weight of the test piece compared with the initial value was within 1% and the change in conductivity was within 10%. The composition was found to have excellent durability.
【0022】実施例3
上記したSWCNT 15重量部とPPE 85重量部
を、ミキサーを用いて15分間乾式混合し、ラボプラス
トミルで320℃にて均一に溶融混練した。この溶融混
練物33重量部とTiB2粉末67重量部を同様に32
0℃で溶融混練を行い、冷却後粉砕することにより、T
iB2を約34体積%含む樹脂組成物を得た。この樹脂
組成物を原料とし、射出成形機を用いて大きさ100m
m×100mm、厚さ2mmの板状試験片を成形した。
得られた試験片に対し上述の方法にて導電率測定を実施
したところ、97.2(S/cm)[体積抵抗値換算で
約10.3mΩ・cm]という高い導電率が得られた。
また、この板状試験片に対し、上述の耐久性試験を実施
したところ、初期値と比較した試験片の重量変化は1%
以内、導電率の変化も10%以内であり、かかる導電性
樹脂組成物は優れた耐久性を有することが判明した。Example 3 15 parts by weight of SWCNT and 85 parts by weight of PPE were dry-mixed for 15 minutes using a mixer, and uniformly melt-kneaded at 320 ° C. with a Labo Plastomill. 33 parts by weight of this melt-kneaded product and 67 parts by weight of TiB2 powder are similarly added to 32 parts by weight.
By melt-kneading at 0 ° C, cooling and pulverizing,
A resin composition containing about 34% by volume of iB 2 was obtained. Using this resin composition as a raw material and using an injection molding machine, a size of 100 m
A plate-like test piece with m × 100 mm and a thickness of 2 mm was molded.
When the conductivity of the obtained test piece was measured by the above method, a high conductivity of 97.2 (S / cm) [about 10.3 mΩ · cm in terms of volume resistance value] was obtained.
Moreover, when the above-mentioned durability test was performed on this plate-shaped test piece, the weight change of the test piece compared with the initial value was 1%.
Within, the change in conductivity was also within 10%, and it was found that such a conductive resin composition has excellent durability.
【0023】実施例4
上記したSWCNT 15重量部とLCP 85重量部
を、ミキサーを用いて15分間乾式混合し、ラボプラス
トミルで320℃にて均一に溶融混練した。この溶融混
練物35.4重量部とTiB2粉末64.6重量部を同
様に320℃で溶融混練を行い、冷却後粉砕することに
より、TiB2を約37体積%含む樹脂組成物を得た。
この樹脂組成物を原料とし、射出成形機を用いて大きさ
100mm×100mm、厚さ2mmの板状試験片を成
形した。得られた試験片に対し上述の方法にて導電率測
定を実施したところ、166.7(S/cm)[体積抵
抗値換算で約6.0mΩ・cm]の高い導電率が得られ
た。また、この板状試験片に対し、上述の耐久性試験を
実施したところ、初期値と比較した試験片の重量変化は
1%以内、導電率の変化も10%以内であり、かかる導
電性樹脂組成物は優れた耐久性を有することが判明し
た。Example 4 The above-mentioned 15 parts by weight of SWCNT and 85 parts by weight of LCP were dry-mixed for 15 minutes using a mixer and uniformly melt-kneaded at 320 ° C. with a Labo Plastomill. 35.4 parts by weight of this melt-kneaded product and 64.6 parts by weight of TiB 2 powder were similarly melt-kneaded at 320 ° C., cooled, and then pulverized to obtain a resin composition containing about 37% by volume of TiB 2 . .
Using this resin composition as a raw material, a plate-shaped test piece having a size of 100 mm × 100 mm and a thickness of 2 mm was molded using an injection molding machine. When the conductivity of the obtained test piece was measured by the above-described method, a high conductivity of 166.7 (S / cm) [about 6.0 mΩ · cm in terms of volume resistance value] was obtained. In addition, when the above-mentioned durability test was performed on this plate-shaped test piece, the change in weight of the test piece compared with the initial value was within 1% and the change in conductivity was within 10%. The composition was found to have excellent durability.
【0024】実施例5
上記したSWCNT 15重量部とPS 85重量部を、
ミキサーを用いて15分間乾式混合し、ラボプラストミ
ルで320℃にて均一に溶融混練した。この溶融混練物
32.4重量部とTiB2粉末67.6重量部を同様に
320℃で溶融混練を行い、冷却後粉砕することによ
り、TiB2を約34体積%含む樹脂組成物を得た。こ
の樹脂組成物を原料とし、射出成形機を用いて大きさ1
00mm×100mm、厚さ2mmの板状試験片を成形
した。得られた試験片に対し上述の方法にて導電率測定
を実施したところ、130.6(S/cm)[体積抵抗
値換算で約7.7mΩ・cm]の高い導電率が得られ
た。また、この板状試験片に対し、上述の耐久性試験を
実施したところ、初期値と比較した試験片の重量変化は
1%以内、導電率の変化も10%以内であり、かかる導
電性樹脂組成物は優れた耐久性を有することが判明し
た。Example 5 15 parts by weight of the above SWCNT and 85 parts by weight of PS were added,
The mixture was dry-mixed for 15 minutes using a mixer and uniformly melt-kneaded at 320 ° C. with a Labo Plastomill. 32.4 parts by weight of this melt-kneaded product and 67.6 parts by weight of TiB 2 powder were similarly melt-kneaded at 320 ° C., cooled and then pulverized to obtain a resin composition containing about 34% by volume of TiB 2 . . Using this resin composition as a raw material, an injection molding machine is used to obtain a size 1
A plate-shaped test piece having a size of 00 mm × 100 mm and a thickness of 2 mm was molded. When the conductivity of the obtained test piece was measured by the method described above, a high conductivity of 130.6 (S / cm) [about 7.7 mΩ · cm in terms of volume resistance value] was obtained. In addition, when the above-mentioned durability test was performed on this plate-shaped test piece, the change in weight of the test piece compared with the initial value was within 1% and the change in conductivity was within 10%. The composition was found to have excellent durability.
【0025】実施例6
上記したSWCNT 15重量部とABS 85重量部
を、ミキサーを用いて15分間乾式混合し、ラボプラス
トミルで320℃にて均一に溶融混練した。この溶融混
練物33.4重量部とTiB2粉末66.6重量部を同
様に320℃で溶融混練を行い、冷却後粉砕することに
より、TiB2を約33体積%含む樹脂組成物を得た。
この樹脂組成物を原料とし、射出成形機を用いて大きさ
100mm×100mm、厚さ2mmの板状試験片を成
形した。得られた試験片に対し上述の方法にて導電率測
定を実施したところ、131.9(S/cm)[体積抵
抗値換算で約7.6mΩ・cm]の高い導電率が得られ
た。また、この板状試験片に対し、上述の耐久性試験を
実施したところ、初期値と比較した試験片の重量変化は
1%以内、導電率の変化も10%以内であり、かかる導
電性樹脂組成物は優れた耐久性を有することが判明し
た。Example 6 15 parts by weight of the above SWCNT and 85 parts by weight of ABS were dry-mixed for 15 minutes using a mixer and uniformly melt-kneaded at 320 ° C. by a Labo Plastomill. 33.4 parts by weight of this melt-kneaded product and 66.6 parts by weight of TiB 2 powder were similarly melt-kneaded at 320 ° C., cooled, and then pulverized to obtain a resin composition containing about 33% by volume of TiB 2 . .
Using this resin composition as a raw material, a plate-shaped test piece having a size of 100 mm × 100 mm and a thickness of 2 mm was molded using an injection molding machine. When the conductivity of the obtained test piece was measured by the above-mentioned method, a high conductivity of 131.9 (S / cm) [about 7.6 mΩ · cm in terms of volume resistance value] was obtained. In addition, when the above-mentioned durability test was performed on this plate-shaped test piece, the change in weight of the test piece compared with the initial value was within 1% and the change in conductivity was within 10%. The composition was found to have excellent durability.
【0026】実施例7
上記したSWCNT 15重量部とPOM 85重量部
を、ミキサーを用いて15分間乾式混合し、ラボプラス
トミルで320℃にて均一に溶融混練した。この溶融混
練物37.4重量部とTiB2粉末62.6重量部を同
様に320℃で溶融混練を行い、冷却後粉砕することに
より、TiB2を約35体積%含む樹脂組成物を得た。
この樹脂組成物を原料とし、射出成形機を用いて大きさ
100mm×100mm、厚さ2mmの板状試験片を成
形した。得られた試験片に対し上述の方法にて導電率測
定を実施したところ、159.7(S/cm)[体積抵
抗値換算で約6.3mΩ・cm]の高い導電率が得られ
た。また、この板状試験片に対し、上述の耐久性試験を
実施したところ、初期値と比較した試験片の重量変化は
1%以内、導電率の変化も10%以内であり、かかる導
電性樹脂組成物は優れた耐久性を有することが判明し
た。Example 7 15 parts by weight of SWCNT and 85 parts by weight of POM were dry-mixed for 15 minutes by using a mixer, and uniformly melt-kneaded at 320 ° C. with a Labo Plastomill. 37.4 parts by weight of this melt-kneaded product and 62.6 parts by weight of TiB 2 powder were similarly melt-kneaded at 320 ° C., cooled, and then pulverized to obtain a resin composition containing about 35% by volume of TiB 2 . .
Using this resin composition as a raw material, a plate-shaped test piece having a size of 100 mm × 100 mm and a thickness of 2 mm was molded using an injection molding machine. When the conductivity of the obtained test piece was measured by the method described above, a high conductivity of 159.7 (S / cm) [about 6.3 mΩ · cm in terms of volume resistance value] was obtained. In addition, when the above-mentioned durability test was performed on this plate-shaped test piece, the change in weight of the test piece compared with the initial value was within 1% and the change in conductivity was within 10%. The composition was found to have excellent durability.
【0027】実施例8
上記したSWCNT 5重量部とPPS 95重量部を、
ミキサーを用いて15分間乾式混合し、ラボプラストミ
ルで320℃にて均一に溶融混練した。この溶融混練物
28.9重量部とCrB2粉末71.1重量部を同様に
320℃で溶融混練を行い、冷却後粉砕することによ
り、CrB2を約37体積%含む樹脂組成物を得た。こ
の樹脂組成物を原料とし、射出成形機を用いて大きさ1
00mm×100mm、厚さ2mmの板状試験片を成形
した。得られた試験片に対し上述の方法にて導電率測定
を実施したところ、94.4(S/cm)[体積抵抗値
換算で約10.6mΩ・cm]の高い導電率が得られ
た。また、この板状試験片に対し、上述の耐久性試験を
実施したところ、初期値と比較した試験片の重量変化は
1%以内、導電率の変化も10%以内であり、かかる導
電性樹脂組成物は優れた耐久性を有することが判明し
た。Example 8 5 parts by weight of SWCNT described above and 95 parts by weight of PPS were added,
The mixture was dry-mixed for 15 minutes using a mixer and uniformly melt-kneaded at 320 ° C. with a Labo Plastomill. 28.9 parts by weight of this melt-kneaded product and 71.1 parts by weight of CrB 2 powder were similarly melt-kneaded at 320 ° C., cooled, and then pulverized to obtain a resin composition containing about 37% by volume of CrB 2 . . Using this resin composition as a raw material, an injection molding machine is used to obtain a size 1
A plate-shaped test piece having a size of 00 mm × 100 mm and a thickness of 2 mm was molded. When the conductivity of the obtained test piece was measured by the above-mentioned method, a high conductivity of 94.4 (S / cm) [about 10.6 mΩ · cm in terms of volume resistance value] was obtained. In addition, when the above-mentioned durability test was performed on this plate-shaped test piece, the change in weight of the test piece compared with the initial value was within 1% and the change in conductivity was within 10%. The composition was found to have excellent durability.
【0028】実施例9
上記したSWCNT 5重量部とPPS 95重量部を、
ミキサーを用いて15分間乾式混合し、ラボプラストミ
ルで320℃にて均一に溶融混練した。この溶融混練物
26.1重量部とTiN粉末73.9重量部を同様に3
20℃で溶融混練を行い、冷却後粉砕することにより、
TiNを約41体積%含む樹脂組成物を得た。この樹脂
組成物を原料とし、射出成形機を用いて大きさ100m
m×100mm、厚さ2mmの板状試験片を成形した。
得られた試験片に対し上述の方法にて導電率測定を実施
したところ、127.8(S/cm)[体積抵抗値換算
で約7.8mΩ・cm]の高い導電率が得られた。ま
た、この板状試験片に対し、上述の耐久性試験を実施し
たところ、初期値と比較した試験片の重量変化は1%以
内、導電率の変化も10%以内であり、かかる導電性樹
脂組成物は優れた耐久性を有することが判明した。Example 9 5 parts by weight of the above SWCNT and 95 parts by weight of PPS were added,
The mixture was dry-mixed for 15 minutes using a mixer and uniformly melt-kneaded at 320 ° C. with a Labo Plastomill. 26.1 parts by weight of this melt-kneaded product and 73.9 parts by weight of TiN powder were mixed in the same manner as described above.
By performing melt-kneading at 20 ° C., cooling and pulverizing,
A resin composition containing about 41% by volume of TiN was obtained. Using this resin composition as a raw material and using an injection molding machine, a size of 100 m
A plate-like test piece with m × 100 mm and a thickness of 2 mm was molded.
When the conductivity of the obtained test piece was measured by the method described above, a high conductivity of 127.8 (S / cm) [about 7.8 mΩ · cm in terms of volume resistance value] was obtained. In addition, when the above-mentioned durability test was performed on this plate-shaped test piece, the change in weight of the test piece compared with the initial value was within 1% and the change in conductivity was within 10%. The composition was found to have excellent durability.
【0029】実施例10
上記したSWCNT 5重量部とPPS 95重量部を、
ミキサーを用いて15分間乾式混合し、ラボプラストミ
ルで320℃にて均一に溶融混練した。この溶融混練物
12.2重量部とWC粉末87.8重量部を同様に32
0℃で溶融混練を行い、冷却後粉砕することにより、W
Cを約38体積%含む樹脂組成物を得た。この樹脂組成
物を原料とし、射出成形機を用いて大きさ100mm×
100mm、厚さ2mmの板状試験片を成形した。得ら
れた試験片に対し上述の方法にて導電率測定を実施した
ところ、91.7(S/cm)[体積抵抗値換算で約1
0.9mΩ・cm]の高い導電率が得られた。また、こ
の板状試験片に対し、上述の耐久性試験を実施したとこ
ろ、初期値と比較した試験片の重量変化は1%以内、導
電率の変化も10%以内であり、かかる導電性樹脂組成
物は優れた耐久性を有することが判明した。Example 10 5 parts by weight of SWCNT described above and 95 parts by weight of PPS were added,
The mixture was dry-mixed for 15 minutes using a mixer and uniformly melt-kneaded at 320 ° C. with a Labo Plastomill. 32 parts of 12.2 parts by weight of this melt-kneaded product and 87.8 parts by weight of WC powder were similarly added.
By melt-kneading at 0 ° C, cooling and pulverizing, W
A resin composition containing about 38% by volume of C was obtained. Using this resin composition as a raw material, an injection molding machine is used to measure a size of 100 mm ×
A plate-shaped test piece having a thickness of 100 mm and a thickness of 2 mm was molded. When the conductivity of the obtained test piece was measured by the above method, it was 91.7 (S / cm) [about 1 in terms of volume resistance value].
A high conductivity of 0.9 mΩ · cm] was obtained. In addition, when the above-mentioned durability test was performed on this plate-shaped test piece, the change in weight of the test piece compared with the initial value was within 1% and the change in conductivity was within 10%. The composition was found to have excellent durability.
【0030】比較例1
上記したPPS 35.1重量部とTiB2粉末64.9
重量部を同様に320℃で溶融混練を行い、冷却後粉砕
することにより、TiB2を約35体積%含む樹脂組成
物を得た。この樹脂組成物を原料とし、射出成形機を用
いて大きさ100mm×100mm、厚さ2mmの板状
試験片を成形した。得られた試験片に対し、上述の耐久
性試験を実施したところ、初期値と比較した試験片の重
量変化は1%以内、導電率の変化も10%以内であり、
耐久性には問題がなかった。しかしながら、上述の方法
にて導電率測定を実施したところ、得られた導電率は4
5.6(S/cm)[体積抵抗値換算で約21.9mΩ
・cm]と低い値であった。Comparative Example 1 35.1 parts by weight of the above PPS and TiB 2 powder 64.9
In the same manner, parts by weight were melt-kneaded at 320 ° C., cooled and pulverized to obtain a resin composition containing about 35% by volume of TiB 2 . Using this resin composition as a raw material, a plate-shaped test piece having a size of 100 mm × 100 mm and a thickness of 2 mm was molded using an injection molding machine. When the above-mentioned durability test was performed on the obtained test piece, the weight change of the test piece as compared with the initial value was within 1%, and the change in conductivity was also within 10%.
There was no problem in durability. However, when the conductivity was measured by the above method, the obtained conductivity was 4
5.6 (S / cm) [Approximately 21.9 mΩ in terms of volume resistance value]
・ Cm] was a low value.
【0031】比較例2
上記したPPS 19.3重量部とTiB2粉末80.7
重量部を同様に320℃で溶融混練を行い、冷却後粉砕
することにより、TiB2を約55体積%含む樹脂組成
物を得た。この樹脂組成物を原料とし、射出成形機を用
いて上記試験片の成形を試みたが、流動性が悪く、成形
不能であった。従って、導電率測定および耐久性試験は
実施できなかった。Comparative Example 2 19.3 parts by weight of the above-mentioned PPS and TiB 2 powder 80.7
In the same manner, parts by weight were melt-kneaded at 320 ° C., cooled and then pulverized to obtain a resin composition containing about 55 vol% of TiB 2 . An attempt was made to mold the above test piece using this resin composition as a raw material using an injection molding machine, but the flowability was poor and molding was impossible. Therefore, the conductivity measurement and the durability test could not be performed.
【0032】比較例3
上記したSWCNT 30重量部とPPS 70重量部
を、ミキサーを用いて15分間乾式混合し、ラボプラス
トミルで320℃にて均一に溶融混練した。この溶融混
練物36.7重量部とTiB2粉末63.3重量部を同
様に320℃で溶融混練を行い、冷却後粉砕することに
より、TiB2を約35体積%含む樹脂組成物を得た。
この樹脂組成物を原料とし、射出成形機を用いて上記試
験片の成形を試みたが、流動性が悪く、成形不能であっ
た。従って、導電率測定および耐久性試験は実施できな
かった。Comparative Example 3 30 parts by weight of the above SWCNT and 70 parts by weight of PPS were dry-mixed for 15 minutes using a mixer, and uniformly melt-kneaded at 320 ° C. with a Labo Plastomill. 36.7 parts by weight of this melt-kneaded product and 63.3 parts by weight of TiB 2 powder were similarly melt-kneaded at 320 ° C., cooled, and then pulverized to obtain a resin composition containing about 35% by volume of TiB 2 . .
An attempt was made to mold the above test piece using this resin composition as a raw material using an injection molding machine, but the flowability was poor and molding was impossible. Therefore, the conductivity measurement and the durability test could not be performed.
【0033】比較例4
上記したSWCNT 20重量部とPPS 80重量部
を、ミキサーを用いて15分間乾式混合し、ラボプラス
トミルで320℃にて均一に溶融混練した。この溶融混
練物58.4重量部とTiB2粉末41.6重量部を同
様に320℃で溶融混練を行い、冷却後粉砕することに
より、TiB2を約18体積%含む樹脂組成物を得た。
この樹脂組成物を原料とし、射出成形機を用いて大きさ
100mm×100mm、厚さ2mmの板状試験片を成
形した。得られた試験片に対し、上述の耐久性試験を実
施したところ、初期値と比較した試験片の重量変化は1
%以内、導電率の変化も10%以内であり、耐久性には
問題がなかった。しかしながら、上述の方法にて導電率
測定を実施したところ、得られた導電率は2.1(S/
cm)[体積抵抗値換算で約476.2mΩ・cm]とか
なり低い値であった。Comparative Example 4 20 parts by weight of SWCNTs and 80 parts by weight of PPS were dry-mixed for 15 minutes using a mixer, and uniformly melt-kneaded at 320 ° C. with a Labo Plastomill. 58.4 parts by weight of this melt-kneaded product and 41.6 parts by weight of TiB 2 powder were similarly melt-kneaded at 320 ° C., cooled, and then pulverized to obtain a resin composition containing about 18% by volume of TiB 2 . .
Using this resin composition as a raw material, a plate-shaped test piece having a size of 100 mm × 100 mm and a thickness of 2 mm was molded using an injection molding machine. When the above-mentioned durability test was performed on the obtained test piece, the weight change of the test piece compared with the initial value was 1
%, The change in conductivity was also within 10%, and there was no problem in durability. However, when the conductivity was measured by the above method, the obtained conductivity was 2.1 (S /
cm) [about 476.2 mΩ · cm in terms of volume resistance value], which was a considerably low value.
【0034】比較例5
上記したSWCNT 15重量部とPBT 85重量部
を、ミキサーを用いて15分間乾式混合し、ラボプラス
トミルで320℃にて均一に溶融混練した。この溶融混
練物35.9重量部とTiB2粉末64.1重量部を同
様に320℃で溶融混練を行い、冷却後粉砕することに
より、TiB2を約35体積%含む樹脂組成物を得た。
この樹脂組成物を原料とし、射出成形機を用いて大きさ
100mm×100mm、厚さ2mmの板状試験片を成
形した。得られた試験片に対し上述の方法にて導電率測
定を実施したところ、145.8(S/cm)[体積抵
抗値換算で約6.9mΩ・cm]の高い導電率が得られ
た。しかしながら、この板状試験片に対し、上述の耐久
性試験を実施したところ、初期値と比較した試験片の重
量変化は1%以上、導電率の変化も10%以上であり、
耐久性に問題があることが判明した。Comparative Example 5 The above-mentioned 15 parts by weight of SWCNT and 85 parts by weight of PBT were dry-mixed for 15 minutes using a mixer, and uniformly melt-kneaded at 320 ° C. with a Labo Plastomill. 35.9 parts by weight of this melt-kneaded product and 64.1 parts by weight of TiB 2 powder were similarly melt-kneaded at 320 ° C., cooled and then pulverized to obtain a resin composition containing about 35% by volume of TiB 2 . .
Using this resin composition as a raw material, a plate-shaped test piece having a size of 100 mm × 100 mm and a thickness of 2 mm was molded using an injection molding machine. When the conductivity of the obtained test piece was measured by the above-mentioned method, a high conductivity of 145.8 (S / cm) [about 6.9 mΩ · cm in terms of volume resistance value] was obtained. However, when the above-mentioned durability test was carried out on this plate-shaped test piece, the weight change of the test piece as compared with the initial value was 1% or more, and the change in conductivity was 10% or more,
It turned out to be a problem with durability.
【0035】比較例6
上記したSWCNT 15重量部とPPS 85重量部
を、ミキサーを用いて15分間乾式混合し、ラボプラス
トミルで320℃にて均一に溶融混練した。この溶融混
練物22.3重量部と銅粉77.7重量部を同様に32
0℃で溶融混練を行い、冷却後粉砕することにより、C
uを約35体積%含む樹脂組成物を得た。この樹脂組成
物を原料とし、射出成形機を用いて大きさ100mm×
100mm、厚さ2mmの板状試験片を成形した。得ら
れた試験片に対し上述の方法にて導電率測定を実施した
ところ、127.8(S/cm)[体積抵抗値換算で約
7.8mΩ・cm]の高い導電率が得られた。しかしな
がら、この板状試験片に対し、上述の耐久性試験を実施
したところ、初期値と比較した試験片の重量変化は1%
以上、導電率の変化も10%以上であり、耐久性に問題
があることが判明した。Comparative Example 6 15 parts by weight of the above SWCNT and 85 parts by weight of PPS were dry-mixed for 15 minutes by using a mixer, and uniformly melt-kneaded at 320 ° C. with a Labo Plastomill. 22.3 parts by weight of this melt-kneaded product and 77.7 parts by weight of copper powder were similarly added to 32 parts by weight.
By melt-kneading at 0 ° C., cooling and pulverizing, C
A resin composition containing about 35% by volume of u was obtained. Using this resin composition as a raw material, an injection molding machine is used to measure a size of 100 mm ×
A plate-shaped test piece having a thickness of 100 mm and a thickness of 2 mm was molded. When the conductivity of the obtained test piece was measured by the method described above, a high conductivity of 127.8 (S / cm) [about 7.8 mΩ · cm in terms of volume resistance value] was obtained. However, when the above-mentioned durability test was performed on this plate-shaped test piece, the weight change of the test piece compared with the initial value was 1%.
As described above, the change in conductivity was 10% or more, and it was found that there was a problem in durability.
【0036】上記、実施例1〜10および比較例1〜6
の各実験条件と得られた結果を次表1にまとめた。The above Examples 1 to 10 and Comparative Examples 1 to 6
The respective experimental conditions and the obtained results are summarized in Table 1 below.
【表1】 [Table 1]
【0037】[0037]
【発明の効果】以上、本発明にかかる導電性樹脂組成物
は、熱可塑性樹脂中に、導電性粒子とカーボンナノチュ
ーブを分散してなり、500mΩ・cm以下の体積抵抗
値を有するもので、熱可塑性樹脂中に分散したカーボン
ナノチューブが導電性粒子間の導通配線の役割を果たす
ため、少量の導電性粒子の配合であっても、任意形状で
高導電性を有する導電性樹脂組成物を実現するものであ
る。また、体積抵抗値が20mΩ・cm以下である場合
には、燃料電池用セパレータのような高い導電性が要求
される部材に適用することが可能となり、好適である。INDUSTRIAL APPLICABILITY As described above, the conductive resin composition according to the present invention comprises conductive particles and carbon nanotubes dispersed in a thermoplastic resin and has a volume resistance value of 500 mΩ · cm or less. Since the carbon nanotubes dispersed in the plastic resin play a role of conducting wiring between the conductive particles, even if a small amount of the conductive particles is mixed, a conductive resin composition having high conductivity in an arbitrary shape is realized. It is a thing. Further, when the volume resistance value is 20 mΩ · cm or less, it can be applied to a member such as a fuel cell separator which is required to have high conductivity, which is preferable.
【0038】また、カーボンナノチューブが、熱可塑性
樹脂に2〜25重量%添加された場合には、樹脂組成物
の成形性が向上するため、任意の形状を有する導電性樹
脂組成物を簡便に得ることができる。When carbon nanotubes are added to the thermoplastic resin in an amount of 2 to 25% by weight, the moldability of the resin composition is improved, so that a conductive resin composition having an arbitrary shape can be easily obtained. be able to.
【0039】また、導電性粒子の配合量は10〜50体
積%が適しており、この配合量において樹脂組成物の良
好な成形性を維持しつつ導電性に優れた任意の形状を有
する導電性樹脂組成物を簡便に得ることができる。A suitable amount of the electrically conductive particles is 10 to 50% by volume, and the amount of the electrically conductive particles has an arbitrary shape while maintaining good moldability of the resin composition. The resin composition can be easily obtained.
【0040】また、導電性粒子として非酸化物系セラミ
ックを用いた場合には、カーボン系導電材料や酸化物系
セラミックス導電材料に比べ、導電性により優れた導電
性樹脂組成物を得ることができる。When a non-oxide ceramic is used as the conductive particles, a conductive resin composition having a higher conductivity than that of a carbon-based conductive material or an oxide-based ceramic conductive material can be obtained. .
【0041】また、上記非酸化物系セラミックが金属ホ
ウ化物、金属窒化物および金属炭化物のうち少なくとも
いずれかの素材で構成された場合には、これら非酸化物
系セラミックの高導電性により、導電性に優れかつ化学
的に安定な導電性樹脂組成物を得ることができる。When the non-oxide-based ceramic is made of at least one of metal boride, metal nitride and metal carbide, the non-oxide-based ceramic has a high conductivity, so that it is electrically conductive. A conductive resin composition having excellent properties and chemically stable can be obtained.
【0042】また、熱可塑性樹脂としてポリフェニレン
サルファイド系樹脂、ポリフェニレンエーテル系樹脂、
液晶ポリマー系樹脂、ポリスチレン系樹脂、ABS系樹
脂およびポリアセタール系樹脂のうち少なくともいずれ
かの素材にて構成された場合には、成形性に優れかつ耐
熱性の高い導電性樹脂組成物が低コストかつ容易に得る
ことができる。Further, as the thermoplastic resin, polyphenylene sulfide resin, polyphenylene ether resin,
When it is made of at least one of liquid crystal polymer resin, polystyrene resin, ABS resin and polyacetal resin, a conductive resin composition having excellent moldability and high heat resistance can be produced at low cost. Can be easily obtained.
【図1】 本発明にかかる導電性樹脂組成物の断面構成
を示す断面説明図である。FIG. 1 is a cross-sectional explanatory view showing a cross-sectional structure of a conductive resin composition according to the present invention.
【図2】 従来の燃料電池の構成を示す構成説明図であ
る。FIG. 2 is a configuration explanatory view showing a configuration of a conventional fuel cell.
1 樹脂、2 カーボンナノチューブ、3 導電性粒
子、6 セパレータ、7負極、8 電解質板、9 正
極、10、14 セパレータに設けられた溝(凹部)。1 resin, 2 carbon nanotubes, 3 conductive particles, 6 separators, 7 negative electrodes, 8 electrolyte plates, 9 positive electrodes, 10 and 14 grooves (recesses) provided in the separators.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/02 H01M 8/02 B 8/10 8/10 Fターム(参考) 4J002 BC031 BN151 CB001 CF001 CH071 CN011 DA017 DB016 DF016 DK006 FD116 FD117 GQ02 5G301 DA18 DA22 DA24 DA25 DA42 DD10 5H026 AA06 EE05 EE11 EE18 HH05 HH06 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01M 8/02 H01M 8/02 B 8/10 8/10 F term (reference) 4J002 BC031 BN151 CB001 CF001 CH071 CN011 DA017 DB016 DF016 DK006 FD116 FD117 GQ02 5G301 DA18 DA22 DA24 DA25 DA42 DD10 5H026 AA06 EE05 EE11 EE18 HH05 HH06
Claims (7)
ナノチューブを分散してなり、500mΩ・cm以下の
体積抵抗値を有する導電性樹脂組成物。1. A conductive resin composition having conductive particles and carbon nanotubes dispersed in a thermoplastic resin and having a volume resistance value of 500 mΩ · cm or less.
ある請求項1に記載の導電性樹脂組成物。2. The conductive resin composition according to claim 1, wherein the volume resistance value is 20 mΩ · cm or less.
塑性樹脂に2〜25重量%添加されてなる請求項1また
は2に記載の導電性樹脂組成物。3. The conductive resin composition according to claim 1, wherein the carbon nanotubes are added to the thermoplastic resin in an amount of 2 to 25% by weight.
されてなる請求項1から3のいずれかに記載の導電性樹
脂組成物。4. The conductive resin composition according to claim 1, wherein the conductive particles are mixed in an amount of 10 to 50% by volume.
である請求項1から4のいずれかに記載の導電性樹脂組
成物。5. The conductive resin composition according to claim 1, wherein the conductive particles are non-oxide ceramics.
物、金属窒化物および金属炭化物のうち少なくともいず
れか1つの素材で構成されてなる請求項5に記載の導電
性樹脂組成物。6. The conductive resin composition according to claim 5, wherein the non-oxide ceramic is made of at least one material selected from metal borides, metal nitrides and metal carbides.
ファイド系樹脂、ポリフェニレンエーテル系樹脂、液晶
ポリマー系樹脂、ポリスチレン系樹脂、ABS系樹脂お
よびポリアセタール系樹脂のうち少なくともいずれか1
つの素材にて構成されてなる請求項1から6のいずれか
に記載の導電性樹脂組成物。7. The thermoplastic resin is at least any one of polyphenylene sulfide resin, polyphenylene ether resin, liquid crystal polymer resin, polystyrene resin, ABS resin and polyacetal resin.
The conductive resin composition according to claim 1, which is composed of one material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001223022A JP2003034751A (en) | 2001-07-24 | 2001-07-24 | Electroconductive resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001223022A JP2003034751A (en) | 2001-07-24 | 2001-07-24 | Electroconductive resin composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003034751A true JP2003034751A (en) | 2003-02-07 |
Family
ID=19056420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001223022A Pending JP2003034751A (en) | 2001-07-24 | 2001-07-24 | Electroconductive resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003034751A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005187811A (en) * | 2003-12-05 | 2005-07-14 | Showa Denko Kk | Conductive resin composition and molded product thereof |
JP2005343749A (en) * | 2004-06-03 | 2005-12-15 | Shinko Electric Ind Co Ltd | Cemented carbide and method of manufacturing the same |
JP2006073334A (en) * | 2004-09-01 | 2006-03-16 | Mitsubishi Corp | Separator for fuel cell |
JP2006152131A (en) * | 2004-11-30 | 2006-06-15 | Mitsubishi Materials Corp | Resin composition and use of the same |
KR100727751B1 (en) | 2005-10-28 | 2007-06-13 | 제일모직주식회사 | Poly phenylenesulfide composition with improved melt strength |
JP2009117340A (en) * | 2007-11-07 | 2009-05-28 | Samsung Electro-Mechanics Co Ltd | Conductive paste and printed circuit board using the same |
JP2010053033A (en) * | 2008-08-29 | 2010-03-11 | Qinghua Univ | Method for manufacturing carbon nanotube/polymer composite |
JP2011132281A (en) * | 2009-12-22 | 2011-07-07 | Sumitomo Chemical Co Ltd | Thermoplastic resin composition and molded article of the same |
JP2012015118A (en) * | 2003-12-05 | 2012-01-19 | Showa Denko Kk | Conductive resin composition and molded article thereof |
JP2012012452A (en) * | 2010-06-30 | 2012-01-19 | Polyplastics Co | Polyarylene sulfide-based resin composition |
JP2013023579A (en) * | 2011-07-21 | 2013-02-04 | Tosoh Corp | Master batch |
US20130266794A1 (en) * | 2007-03-21 | 2013-10-10 | Hoganas Ab (Publ) | Powder metal polymer composites |
DE102016100052A1 (en) | 2015-06-24 | 2016-12-29 | Smk Corporation | CONTACT CONTACTING STRUCTURE |
WO2021149723A1 (en) * | 2020-01-22 | 2021-07-29 | Eneos株式会社 | Resin composition and molded resin article comprising said resin composition |
-
2001
- 2001-07-24 JP JP2001223022A patent/JP2003034751A/en active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005187811A (en) * | 2003-12-05 | 2005-07-14 | Showa Denko Kk | Conductive resin composition and molded product thereof |
JP2012015118A (en) * | 2003-12-05 | 2012-01-19 | Showa Denko Kk | Conductive resin composition and molded article thereof |
JP4636816B2 (en) * | 2004-06-03 | 2011-02-23 | 新光電気工業株式会社 | Cemented carbide and method for producing the same |
JP2005343749A (en) * | 2004-06-03 | 2005-12-15 | Shinko Electric Ind Co Ltd | Cemented carbide and method of manufacturing the same |
JP2006073334A (en) * | 2004-09-01 | 2006-03-16 | Mitsubishi Corp | Separator for fuel cell |
JP2006152131A (en) * | 2004-11-30 | 2006-06-15 | Mitsubishi Materials Corp | Resin composition and use of the same |
JP4678578B2 (en) * | 2004-11-30 | 2011-04-27 | 三菱マテリアル株式会社 | Manufacturing method of conductive yarn |
KR100727751B1 (en) | 2005-10-28 | 2007-06-13 | 제일모직주식회사 | Poly phenylenesulfide composition with improved melt strength |
US20130266794A1 (en) * | 2007-03-21 | 2013-10-10 | Hoganas Ab (Publ) | Powder metal polymer composites |
JP2009117340A (en) * | 2007-11-07 | 2009-05-28 | Samsung Electro-Mechanics Co Ltd | Conductive paste and printed circuit board using the same |
JP2010053033A (en) * | 2008-08-29 | 2010-03-11 | Qinghua Univ | Method for manufacturing carbon nanotube/polymer composite |
JP2011132281A (en) * | 2009-12-22 | 2011-07-07 | Sumitomo Chemical Co Ltd | Thermoplastic resin composition and molded article of the same |
JP2012012452A (en) * | 2010-06-30 | 2012-01-19 | Polyplastics Co | Polyarylene sulfide-based resin composition |
JP2013023579A (en) * | 2011-07-21 | 2013-02-04 | Tosoh Corp | Master batch |
DE102016100052A1 (en) | 2015-06-24 | 2016-12-29 | Smk Corporation | CONTACT CONTACTING STRUCTURE |
WO2021149723A1 (en) * | 2020-01-22 | 2021-07-29 | Eneos株式会社 | Resin composition and molded resin article comprising said resin composition |
CN114981355A (en) * | 2020-01-22 | 2022-08-30 | 引能仕株式会社 | Resin composition and resin molded article comprising the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003034751A (en) | Electroconductive resin composition | |
Boyaci San et al. | A review of thermoplastic composites for bipolar plate applications | |
CN100583522C (en) | Electroconductive resin composition and molded product thereof | |
CZ20013124A3 (en) | Highly conductive molding compounds and fuel cell bipolar plates comprising these compounds | |
US20030190516A1 (en) | Fuel cell separator and method of manufacture | |
JP2010123564A (en) | Molding material for fuel cell separator | |
US20020164516A1 (en) | Fuel cell separator composition, fuel cell separator and method of manufacture, and solid polymer fuel cell | |
TW200405599A (en) | Mesh reinforced fuel cell separator plate | |
WO2002027843A1 (en) | Fuel cell | |
US20040005493A1 (en) | Fuel cell separator and method of manufacture | |
TWI336538B (en) | Electrically conductive composite | |
JP4937529B2 (en) | Conductive resin composition for fuel cell separator and fuel cell separator | |
JP2002008676A (en) | Fuel cell separator and solid polymer type fuel cell | |
JP2009231034A (en) | Fuel cell separator, and its manufacturing method | |
JPH10334927A (en) | Separator for solid high polymer fuel cell and its manufacture | |
JP2001068128A (en) | Separator for fuel cell and manufacture thereof | |
JP4254698B2 (en) | Resin composition for fuel cell separator and fuel cell separator | |
JP5000853B2 (en) | Method for producing fuel cell separator material, fuel cell separator and fuel cell | |
KR100819478B1 (en) | Conductive resin composition for fuel cell separator and fuel cell separator | |
JP2007149466A (en) | Fuel cell separator, resin composition for it, and its manufacturing method | |
JP2004352986A (en) | Molding material for fuel cell separator | |
JP2004119346A (en) | Molding material for solid polymer type fuel cell separator, its manufacturing method and solid polymer type fuel cell separator | |
KR100801593B1 (en) | Bipolar plate for fuel cell | |
KR101041034B1 (en) | Composition for bipolar plate of fuel cell, manufacturing method thereof, and bipolar plate and fuel cell comprising the same | |
JP2005122974A (en) | Fuel cell separator and fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20040708 |