JPH10334927A - Separator for solid high polymer fuel cell and its manufacture - Google Patents

Separator for solid high polymer fuel cell and its manufacture

Info

Publication number
JPH10334927A
JPH10334927A JP9140729A JP14072997A JPH10334927A JP H10334927 A JPH10334927 A JP H10334927A JP 9140729 A JP9140729 A JP 9140729A JP 14072997 A JP14072997 A JP 14072997A JP H10334927 A JPH10334927 A JP H10334927A
Authority
JP
Japan
Prior art keywords
separator
carbon powder
fuel cell
thermosetting resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9140729A
Other languages
Japanese (ja)
Inventor
Mitsuru Shinozaki
充 篠崎
Akira Arao
明 新生
Isao Kinukawa
功 絹川
Yuichi Yabuta
祐一 薮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohwada Carbon Industrial Co Ltd
Original Assignee
Ohwada Carbon Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohwada Carbon Industrial Co Ltd filed Critical Ohwada Carbon Industrial Co Ltd
Priority to JP9140729A priority Critical patent/JPH10334927A/en
Publication of JPH10334927A publication Critical patent/JPH10334927A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0221Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separator for a solid high polymer fuel cell possessing performance such as gas nonpermeability, conductivity, sulfuric acid resistance, required strength, and lightness at a low cost by forming the separator with carbon powder and a thermosetting resin into the prescribed shape, mainly by the resin molding method. SOLUTION: Carbon powder such as natural graphite of 80-40 vol.% and a thermosetting resin such as a phenol resin of 20-60 vol.% are mixed, a solvent such as acetone is added, and they are kneaded into a flake shape and inserted into a die of the prescribed shape for press molding. A separator with the prescribed external shape and grooves on the surface and back face is formed, and mechanical machining such as boring and screw cutting is applied, as required, to obtain a final product. The separator preferably has an electrical specific resistance of 200000 μΩ.cm or below and the practical lower limit of about 5000 μΩ.cm, and the prescribed quantities of metal materials such as titanium, gold, and silver can be blended as required according to the conductivity and strength required.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子型燃料
電池のセパレーターおよびその製造方法に関する。
The present invention relates to a separator for a polymer electrolyte fuel cell and a method for producing the same.

【0002】[0002]

【従来の技術】燃料電池は、低公害で高い発電効率を持
つ次世代の発電装置として期待されている。この燃料電
池の種類としては、電解質の種類により、アルカリ型、
リン酸型、溶融炭酸塩型、固体電解質型、固体高分子型
などがある。この中で、固体高分子型燃料電池は、小規
模発電や可搬用電源としての用途が期待されている。
2. Description of the Related Art Fuel cells are expected as next-generation power generators having low pollution and high power generation efficiency. Depending on the type of electrolyte, the type of this fuel cell is alkaline,
There are phosphoric acid type, molten carbonate type, solid electrolyte type, solid polymer type and the like. Among these, polymer electrolyte fuel cells are expected to be used as small-scale power generation and portable power sources.

【0003】固体高分子型燃料電池のセパレーターに要
求される主たる性能は、水素、酸素、空気などのガス
を透過しにくいこと、電気比抵抗が低いこと、硫酸
性雰囲気において化学的に安定であること、部品とし
て必要な強度を有すること、軽量であること、であ
る。
[0003] The main performance required for a separator of a polymer electrolyte fuel cell is that it is difficult to permeate gases such as hydrogen, oxygen, and air, has a low electric resistivity, and is chemically stable in a sulfuric acid atmosphere. That it has the necessary strength as a part and that it is lightweight.

【0004】固体高分子型燃料電池は現在開発中である
が、そのセパレーターは、チタンや人造黒鉛などを材料
とした板材が使用され、この板材が切削などの機械加工
により形状加工されたものである。
[0004] A polymer electrolyte fuel cell is currently under development. A separator made of a plate made of titanium, artificial graphite, or the like is used, and the separator is formed by machining such as cutting. is there.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、チタン
材は、重いために上記の軽量性の要求を満足しにくいと
いう問題点がある。人造黒鉛は、ガス不透過性が良好で
なく、この面でまだ課題の多い材料である。しかも、両
者とも形状形成を機械加工で行うことからきわめて高価
なものとなっており、固体高分子型燃料電池の実用化の
ネックとなっているという問題点がある。
However, the titanium material has a problem that it is difficult to satisfy the above-mentioned requirement for lightness because it is heavy. Artificial graphite is a material which does not have good gas impermeability and still has many problems in this aspect. In addition, both are extremely expensive because the shapes are formed by machining, and there is a problem in that they are a bottleneck in the practical use of polymer electrolyte fuel cells.

【0006】そこで本発明は、このような問題点を解決
して、上述の各要求性能を備えた固体高分子型燃料電池
のセパレーターを安価に提供できるようにすることを目
的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above problems and to provide a polymer electrolyte fuel cell separator having the above-mentioned required performances at a low cost.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
本発明は、炭素粉末と熱硬化性樹脂とを成分とするとと
もに、樹脂成形法を主たる形状形成手段として形成され
ているようにしたものである。
In order to achieve this object, the present invention comprises a carbon powder and a thermosetting resin as components and is formed by a resin molding method as a main shape forming means. It is.

【0008】このような構成であると、炭素粉末と熱硬
化性樹脂とを成分としているため、材料的に安価であ
り、また樹脂成形法を主たる形状形成手段として形成さ
れているため安価に成形できる。しかも、炭素粉末と熱
硬化性樹脂とを成分として成形されているため、固体高
分子型燃料電池のセパレーターに要求されるガス不透過
性や低電気比抵抗や耐硫酸性や必要強度や軽量性などを
実用的なレベルで備えたものとなる。
[0008] With such a configuration, the carbon powder and the thermosetting resin are used as components, so that the material is inexpensive. Also, since the resin molding method is used as the main shape forming means, it is inexpensive. it can. Moreover, since it is molded using carbon powder and thermosetting resin as components, it is required to have gas impermeability, low electric resistivity, sulfuric acid resistance, required strength and light weight required for separators of polymer electrolyte fuel cells. And so on at a practical level.

【0009】[0009]

【発明の実施の形態】図1は固体高分子型燃料電池の基
本的な構成例を示す。ここで1は燃料極、2は電解質
板、3は酸化剤極である。4は本発明にもとづくセパレ
ーターで、表裏両面にそれぞれ多数の溝5が形成されて
いる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a basic configuration example of a polymer electrolyte fuel cell. Here, 1 is a fuel electrode, 2 is an electrolyte plate, and 3 is an oxidizer electrode. Reference numeral 4 denotes a separator according to the present invention, in which a large number of grooves 5 are formed on both front and back surfaces.

【0010】本発明のセパレーター4は、炭素粉末と熱
硬化性樹脂とを成分とするとともに、樹脂成形法を主た
る形状形成手段として、その外形や表裏両面の溝5など
が形成されている。
The separator 4 of the present invention contains carbon powder and a thermosetting resin as components, and is formed with the outer shape and grooves 5 on both front and rear surfaces as a main shape forming means by a resin molding method.

【0011】ここで用いられる炭素粉末は、セパレータ
ーの比電気抵抗を下げること、すなわちその導電性に寄
与するものであるが、公知の炭素質人造黒鉛粉末と黒鉛
質人造黒鉛粉末と天然黒鉛粉末とのいずれでもよく、ま
たはこれらの混合物を用いることもできる。特に、天然
黒鉛粉末を用いると、セパレーターの電気比抵抗を大き
く低減させることができる。
The carbon powder used here reduces the specific electrical resistance of the separator, that is, contributes to its electrical conductivity. The carbon powder is composed of known carbonaceous artificial graphite powder, graphite artificial graphite powder, and natural graphite powder. Or a mixture thereof can be used. In particular, when natural graphite powder is used, the electrical resistivity of the separator can be greatly reduced.

【0012】熱硬化性樹脂は、セパレーターに所要の成
形性とガス不透過性とを付与するためのものであるが、
具体的には、公知のフェノール樹脂やポリイミド樹脂や
エポキシ樹脂やフラン樹脂などを利用することができ
る。この内、特にフェノール樹脂は、所要の成形性やガ
ス不透過性を得やすく、また耐硫酸性にすぐれているた
め、好適に利用できる。このフェノール樹脂は、ノボラ
ック系フェノール樹脂とレゾール系フェノール樹脂との
いずれでもよく、またこれらの混合物を用いることもで
きる。
The thermosetting resin is for imparting required moldability and gas impermeability to the separator.
Specifically, a known phenol resin, polyimide resin, epoxy resin, furan resin, or the like can be used. Among them, a phenol resin is particularly preferably used because it easily obtains required moldability and gas impermeability and has excellent sulfuric acid resistance. The phenolic resin may be either a novolak phenolic resin or a resol phenolic resin, or a mixture thereof.

【0013】炭素粉末と熱硬化性樹脂との配合割合は、
(炭素粉末):(熱硬化性樹脂)=80容量%以下〜4
0容量%以上:20容量%以上〜60容量%以下である
ことが好ましい。熱硬化性樹脂の配合割合が20容量%
未満であると、この樹脂の配合割合が少なくなり過ぎ
て、所要の成形性やガス不透過性や強度を得にくくな
る。また熱硬化性樹脂の配合割合が60容量%を超える
と、すなわち炭素粉末の配合割合が40容量%に満たな
くなると、電気比抵抗が許容限度を超えて大きくなり過
ぎる傾向にある。したがって、配合割合を、(炭素粉
末):(熱硬化性樹脂)=70容量%以下〜50容量%
以上:30容量%以上〜50容量%以下とするのがさら
に好ましい。
The mixing ratio of the carbon powder and the thermosetting resin is as follows:
(Carbon powder): (Thermosetting resin) = 80% by volume or less to 4
0% by volume or more: preferably from 20% by volume to 60% by volume. 20% by volume of thermosetting resin
If it is less than this, the compounding ratio of this resin becomes too small, and it becomes difficult to obtain required moldability, gas impermeability and strength. When the compounding ratio of the thermosetting resin exceeds 60% by volume, that is, when the compounding ratio of the carbon powder is less than 40% by volume, the electrical resistivity tends to exceed the allowable limit and become too large. Therefore, the mixing ratio is set to (carbon powder) :( thermosetting resin) = 70% by volume or less to 50% by volume.
Above: More preferably from 30% by volume to 50% by volume.

【0014】本発明において、このセパレーターの電気
比抵抗は、200000μΩ・cm以下であることが好
ましい。この値を超えると、セパレーターの電気比抵抗
が大きくなり過ぎて、燃料電池の内部抵抗の増大を招く
不都合が生じやすくなる。この電気比抵抗は、小さけれ
ば小さいほど好ましいが、炭素粉末と熱硬化性樹脂とを
上記の範囲の割合で配合した場合の実際的な下限は50
00μΩ・cm程度となる。
In the present invention, the electrical resistivity of the separator is preferably 200000 μΩ · cm or less. If the value exceeds this value, the electrical resistivity of the separator becomes too large, and the inconvenience of increasing the internal resistance of the fuel cell tends to occur. Although the electric resistivity is preferably as small as possible, the practical lower limit when the carbon powder and the thermosetting resin are blended in the above range is 50.
It is about 00 μΩ · cm.

【0015】本発明のセパレーターは、炭素粉末と熱硬
化性樹脂とのほかに、耐硫酸性の金属材料を含むことが
できる。この金属材料はセパレーターの導電性や強度の
向上、調整に役立つものである。ただし、セパレーター
は燃料電池の内部の硫酸性雰囲気下で使用されるもので
あるため、この金属材料は上述のように耐硫酸性を有す
ることが必要である。したがって、この金属材料は、具
体的には、チタンや金や銀などの粉末や繊維などによっ
て構成することができる。この金属材料は、必要とする
導電度や強度に応じた適当な配合割合で含ませることが
できる。ただし、この配合割合が少な過ぎるとその効果
を得にくくなり、また多過ぎると、導電性や強度の向上
は図れても、コストや製品重量が増大して実用的でなく
なる。
[0015] The separator of the present invention may contain a sulfur-resistant metal material in addition to the carbon powder and the thermosetting resin. This metal material is useful for improving and adjusting the conductivity and strength of the separator. However, since the separator is used in a sulfuric acid atmosphere inside the fuel cell, this metal material needs to have sulfuric acid resistance as described above. Therefore, this metal material can be specifically composed of powder, fiber, or the like of titanium, gold, silver, or the like. This metal material can be contained at an appropriate mixing ratio according to the required conductivity and strength. However, if the mixing ratio is too small, it is difficult to obtain the effect. If the mixing ratio is too large, the conductivity and the strength can be improved, but the cost and the product weight increase, which is not practical.

【0016】次に本発明のセパレーターの製造方法につ
いて説明する。まず、炭素粉末とフェノール樹脂などの
熱硬化性樹脂とをたとえば上述の範囲の割合で配合し、
必要ならさらに金属材料を配合して、混合物を得る。次
に、この混合物にアセトンやメタノールなどの溶剤を加
えて混合し、熱ロール設備で熱間混練を行い、フレーク
状の混合物を得る。そして、このフレーク状の混合物を
粉砕して、成形原料とする。なお、上述のように熱ロー
ル設備により熱間混練を行うと成分の均一化に有効であ
るが、常温、非加圧の状態で混合を行ってもよい。
Next, a method for producing the separator of the present invention will be described. First, a carbon powder and a thermosetting resin such as a phenolic resin are blended, for example, at a ratio in the range described above,
If necessary, a metal material is further blended to obtain a mixture. Next, a solvent such as acetone or methanol is added to the mixture and mixed, and hot kneading is performed by a hot roll facility to obtain a flake-like mixture. Then, the flaky mixture is pulverized to obtain a forming raw material. In addition, as described above, hot kneading with a hot roll facility is effective for homogenization of components, but mixing may be performed at room temperature and in a non-pressurized state.

【0017】次に、得られた成形材料を用い、樹脂成形
法にてセパレーターの形状形成を行う。樹脂成形法とし
ては、プレス成形法、トランスファー成形法、射出成形
法などを適用することができる。このような樹脂成形法
によって、図1に示す矩形状のセパレーター4の外形の
みならず、その表裏両面の多数の溝5をも一度に成形す
る。これによれば、原則として切削などの機械加工が不
要であり、安価に成形することが可能である。なお、セ
パレーターの形状によっては、金型を用いた1回の樹脂
成形だけでは所定の形状が得られない場合がある。その
場合には、追加的に、得られた成形体に穴あけやねじ切
りなどの機械加工を施して、最終製品とする。
Next, using the obtained molding material, the shape of a separator is formed by a resin molding method. As the resin molding method, a press molding method, a transfer molding method, an injection molding method, or the like can be applied. By such a resin molding method, not only the outer shape of the rectangular separator 4 shown in FIG. 1 but also a large number of grooves 5 on both the front and back surfaces are formed at a time. According to this, in principle, machining such as cutting is unnecessary, and molding can be performed at low cost. Note that, depending on the shape of the separator, a predetermined shape may not be obtained by only one resin molding using a mold. In that case, the obtained molded body is additionally subjected to machining such as drilling and thread cutting to obtain a final product.

【0018】代表的な製造方法の具体例は以下の通りで
ある。すなわち、まず、固体レゾール型フェノール樹脂
と天然黒鉛粉末と微量の離型剤とを所定の割合で配合
し、それをメタノールなどの溶剤で適度な粘度に調整
し、熱ロール設備で混練する。そして、得られたフレー
ク状の混合物をミキサーで粉砕し、成形材料を得る。そ
の後、標準的には、得られた成形材料をホットプレス機
で樹脂成形する。このとき、金型を利用して130〜1
50℃で成形し、その後に150〜180℃で熱硬化性
樹脂の硬化を促進させる。
A specific example of a typical manufacturing method is as follows. That is, first, a solid resol-type phenol resin, natural graphite powder, and a trace amount of a release agent are blended at a predetermined ratio, adjusted to an appropriate viscosity with a solvent such as methanol, and kneaded with a hot roll facility. Then, the obtained flaky mixture is pulverized with a mixer to obtain a molding material. Thereafter, the obtained molding material is typically resin-molded by a hot press machine. At this time, 130-1
It is molded at 50 ° C. and then accelerates the curing of the thermosetting resin at 150 to 180 ° C.

【0019】[0019]

【実施例】次に実施例、比較例にもとづき本発明を具体
的に説明する。なお、以下において、セパレーターの性
能の評価は次の項目によって行った。
Next, the present invention will be specifically described based on examples and comparative examples. In the following, the performance of the separator was evaluated according to the following items.

【0020】(1)かさ比重[g/cm3 ] セパレーターの軽量性の目安になるとともに、下記の充
填率の計算の元になるもので、成形体すなわち成形され
たセパレーターを直接測定して値を得た。
(1) Bulk specific gravity [g / cm 3 ] It is a measure of the lightness of the separator and is the basis for calculation of the following filling rate. The value is obtained by directly measuring a molded body, that is, a molded separator. I got

【0021】(2)充填率[容積%] ガス不透過性の目安となるものである。上記かさ比重を
用いて、下記の式によって求めた。
(2) Filling rate [% by volume] This is a measure of gas impermeability. Using the above bulk specific gravity, it was determined by the following equation.

【0022】すなわち、たとえば原料の種類が炭素粉末
とフェノール樹脂と金属粉末との3種類である場合にお
いて、それぞれの原料種類をA、B、Cとする。そして
配合時の容積比率[%]をそれぞれVA 、VB 、VC
あらわし、比重[g/cm3]をρA 、ρB 、ρC であ
らわす。すると成形体であるセパレーターの比重の理論
値ρABC [g/cm3 ]は、 ρABC =(VA ρA +VB ρB +VC ρC )/(VA +VB +VC ) =(VA ρA +VB ρB +VC ρC )/100 であらわされ、充填率[容積%]は次式であらわされ
る。
That is, for example, when there are three types of raw materials, that is, carbon powder, phenol resin, and metal powder, the respective types of raw materials are A, B, and C. The expressed blended at a volume ratio [%] of V A, V B, respectively, in V C, represents the specific gravity [g / cm 3] ρ A , ρ B, with [rho C. Then the theoretical value of the specific gravity of the separator is a molded body ρ ABC [g / cm 3] is, ρ ABC = (V A ρ A + V B ρ B + V C ρ C) / (V A + V B + V C) = (V A ρ A + V B ρ B + V C ρ C ) / 100, and the filling rate [volume%] is represented by the following equation.

【0023】(充填率)=((成形体の実測かさ比重)
/ρABC )×100 (3)電気比抵抗[μΩ・cm] 定常直流電流供給器(タカバ(株)製)、デジタルマル
チメーター(タケダ理研(株)製)などを用いて、電圧
降下法により測定した。 (4)曲げ強度[kg/cm2 ] 引張強さ試験機((株)東京試験機製作所製)を用い
て、3点曲げ法により測定した。
(Filling rate) = ((measured bulk specific gravity of molded product)
/ Ρ ABC ) × 100 (3) Electric resistivity [μΩ · cm] Using a constant DC current supply (manufactured by Takaba Corporation), a digital multimeter (manufactured by Takeda Riken Co., Ltd.), etc., by the voltage drop method It was measured. (4) Bending strength [kg / cm 2 ] Measured by a three-point bending method using a tensile strength tester (manufactured by Tokyo Testing Machine Co., Ltd.).

【0024】(実施例1)炭素粉末として、粒径110
μm以上かつ160μm以下の黒鉛質人造黒鉛粉末を使
用した。また熱硬化性樹脂としてフェノール樹脂を使用
した。炭素粉末とフェノール樹脂との配合割合は、(炭
素粉末):(フェノール樹脂)=65容量%:35容量
%とした。
Example 1 A carbon powder having a particle size of 110
A graphite artificial graphite powder having a size of not less than μm and not more than 160 μm was used. A phenol resin was used as the thermosetting resin. The mixing ratio of the carbon powder and the phenol resin was (carbon powder) :( phenol resin) = 65% by volume: 35% by volume.

【0025】このような炭素粉末とフェノール樹脂とを
混合し、次いでメタノールを添加して熱ロールにて混練
し、その後に粉砕して成形原料とした。次に、この成形
原料をプレス成形した。その条件は、温度140℃、圧
力100kg/cm2 、時間30分とした。さらに成形
後に、150℃×16時間のキュアーを施して樹脂を硬
化させた。
The carbon powder and the phenol resin were mixed, then methanol was added, and the mixture was kneaded with a hot roll, and then pulverized to obtain a forming raw material. Next, this molding material was press-molded. The conditions were a temperature of 140 ° C., a pressure of 100 kg / cm 2 , and a time of 30 minutes. After molding, the resin was cured by curing at 150 ° C. for 16 hours.

【0026】このようにして得られたセパレーターの各
種特性値を測り、表1に記載の通りの結果を得た。
Various characteristic values of the thus obtained separator were measured, and the results as shown in Table 1 were obtained.

【0027】[0027]

【表1】 [Table 1]

【0028】(実施例2)炭素粉末とフェノール樹脂と
の配合割合を、(炭素粉末):(フェノール樹脂)=5
0容量%:50容量%とした。そして、それ以外は実施
例1と同じとして、セパレーターを得た。その各種特性
値は、表1に記載の通りであった。
(Example 2) The mixing ratio of the carbon powder and the phenol resin was calculated as follows: (carbon powder) :( phenol resin) = 5
0% by volume: 50% by volume. The rest was the same as in Example 1 to obtain a separator. The various characteristic values are as shown in Table 1.

【0029】(実施例3)炭素粉末とフェノール樹脂と
の配合割合を、(炭素粉末):(フェノール樹脂)=6
0容量%:40容量%とした。そして、それ以外は実施
例1と同じとして、セパレーターを得た。その各種特性
値は、表1に記載の通りであった。
(Example 3) The mixing ratio of the carbon powder and the phenol resin was calculated as follows: (carbon powder) :( phenol resin) = 6
0% by volume: 40% by volume. The rest was the same as in Example 1 to obtain a separator. The various characteristic values are as shown in Table 1.

【0030】(実施例4)炭素粉末とフェノール樹脂と
のほかに、耐硫酸性の金属材料として、還元銀粉末を配
合した。その配合割合は、(炭素粉末):(フェノール
樹脂):(還元銀粉末)=59容量%:40容量%:1
容量%とした。そして、それ以外は実施例1と同じとし
て、セパレーターを得た。その各種特性値は、表1に記
載の通りであった。
Example 4 In addition to carbon powder and phenolic resin, reduced silver powder was compounded as a sulfuric acid-resistant metal material. The mixing ratio is (carbon powder) :( phenol resin) :( reduced silver powder) = 59 vol%: 40 vol%: 1
% By volume. The rest was the same as in Example 1 to obtain a separator. The various characteristic values are as shown in Table 1.

【0031】(実施例5〜7)実施例4に比べ、還元銀
粉末と炭素粉末との配合割合を表1に記載の通りに変更
した。そして、それ以外は実施例4と同じとして、セパ
レーターを得た。その各種特性値は、表1に記載の通り
であった。
(Examples 5 to 7) Compared with Example 4, the mixing ratio of the reduced silver powder and the carbon powder was changed as shown in Table 1. The rest was the same as in Example 4 to obtain a separator. The various characteristic values are as shown in Table 1.

【0032】(実施例8)耐硫酸性の金属材料として、
ステンレス粉末(SUS316L、粒径10〜45μ
m)を配合した。その配合割合を、(炭素粉末):(フ
ェノール樹脂):(ステンレス粉末)=57.5容量
%:40.0容量%:2.5容量%とした。そして、そ
れ以外は実施例1と同じとして、セパレーターを得た。
その各種特性値は、表1に記載の通りであった。
Example 8 As a sulfuric acid-resistant metal material,
Stainless steel powder (SUS316L, particle size 10-45μ)
m). The mixing ratio was (carbon powder) :( phenol resin) :( stainless steel powder) = 57.5% by volume: 40.0% by volume: 2.5% by volume. The rest was the same as in Example 1 to obtain a separator.
The various characteristic values are as shown in Table 1.

【0033】(実施例9)耐硫酸性の金属材料として、
ステンレス繊維(SUS316、繊維径8μm、繊維長
5mm、収束5000本)を配合した。その配合割合
は、実施例8と同様に、(炭素粉末):(フェノール樹
脂):(ステンレス繊維)=57.5容量%:40.0
容量%:2.5容量%とした。そして、それ以外は実施
例8と同じとして、セパレーターを得た。その各種特性
値は、表1に記載の通りであった。
(Example 9) As a sulfuric acid-resistant metal material,
Stainless steel fibers (SUS316, fiber diameter 8 μm, fiber length 5 mm, convergence 5000) were blended. The compounding ratio was (carbon powder) :( phenol resin) :( stainless fiber) = 57.5% by volume: 40.0 as in Example 8.
% By volume: 2.5% by volume. Other than that, a separator was obtained in the same manner as in Example 8. The various characteristic values are as shown in Table 1.

【0034】(比較例1)炭素粉末とフェノール樹脂と
の配合割合を、(炭素粉末):(フェノール樹脂)=8
5容量%:15容量%とした。そして、それ以外は実施
例1と同じとして、セパレーターを得た。その各種特性
値は、表1に記載の通りであった。
(Comparative Example 1) The mixing ratio of the carbon powder and the phenol resin was calculated as follows: (carbon powder) :( phenol resin) = 8
5% by volume: 15% by volume. The rest was the same as in Example 1 to obtain a separator. The various characteristic values are as shown in Table 1.

【0035】(比較例2)炭素粉末とフェノール樹脂と
の配合割合を、(炭素粉末):(フェノール樹脂)=3
5容量%:65容量%とした。そして、それ以外は実施
例1と同じとして、セパレーターを得た。その各種特性
値は、表1に記載の通りであった。
(Comparative Example 2) The mixing ratio of the carbon powder and the phenol resin was calculated as follows: (carbon powder) :( phenol resin) = 3
5% by volume: 65% by volume. The rest was the same as in Example 1 to obtain a separator. The various characteristic values are as shown in Table 1.

【0036】以上において、実施例1〜9のセパレータ
ーは、いずれも樹脂成形法によって成形でき、したがっ
て安価に製造できるものであった。特に実施例1〜3の
セパレーターは、炭素粉末とフェノール樹脂とを配合し
たものであったが、その配合割合が好ましい範囲であっ
たため、いずれも充填率が高く、所要のガス不透過性を
有しているものであった。また材料的にも安価であっ
た。しかも、かさ比重が小さく、軽量に構成されたもの
であった。また電気比抵抗が十分に小さかった。しかも
曲げ強度も実用上十分な程度を有するものであった。こ
のため、燃料電池のセパレーターとして満足な特性を有
するものであった。
In the above, all of the separators of Examples 1 to 9 can be molded by a resin molding method and can be produced at low cost. In particular, the separators of Examples 1 to 3 were prepared by mixing carbon powder and a phenol resin. However, since the mixing ratio was within a preferable range, all of the separators had a high filling rate and required gas impermeability. I was doing it. It was also inexpensive in material. In addition, the bulk specific gravity was small and the weight was configured. Also, the electrical resistivity was sufficiently small. In addition, the bending strength was sufficiently high for practical use. For this reason, it had satisfactory characteristics as a fuel cell separator.

【0037】実施例4〜7のセパレーターは、実施例3
のものに金属材料としての還元銀粉末を加え、その添加
量すなわち配合割合を変化させたものであったが、いず
れも燃料電池のセパレーターとして満足な特性を有する
ものであった。特に、還元銀粉末の配合割合が増大する
につれて電気比抵抗が減少し、導電性が向上した。また
還元銀粉末の配合割合が増大するにつれて曲げ強度も向
上した。
The separators of Examples 4 to 7 are the same as those of Example 3.
These were prepared by adding reduced silver powder as a metal material and changing the added amount, that is, the blending ratio, but all had satisfactory characteristics as separators for fuel cells. In particular, as the blending ratio of the reduced silver powder increased, the electrical resistivity decreased, and the conductivity improved. The bending strength also improved as the proportion of the reduced silver powder increased.

【0038】実施例8および9のセパレーターは金属材
料としてステンレス粉末およびステンレス繊維が配合さ
れたものであったが、同様に燃料電池のセパレーターと
して満足な特性を有するものであった。これらステンレ
ス粉末およびステンレス繊維の配合割合はいずれも2.
5容積%であったが、電気比抵抗はステンレス繊維を配
合した実施例9の方が格段に改善され、また曲げ強度は
ステンレス粉末を配合した実施例8の方がすぐれたもの
であった。
The separators of Examples 8 and 9 were blended with stainless steel powder and stainless steel fiber as a metal material, but also had satisfactory characteristics as a fuel cell separator. The mixing ratio of these stainless steel powder and stainless steel fiber is 2.
Although it was 5% by volume, the electrical resistivity was remarkably improved in Example 9 in which the stainless steel fiber was blended, and the bending strength was superior in Example 8 in which the stainless steel powder was blended.

【0039】これに対し、比較例1は、炭素粉末とフェ
ノール樹脂とを配合したものであったが、フェノール樹
脂の配合割合が極端に低かったため、それに対応して充
填率および曲げ強度が低下した。
On the other hand, in Comparative Example 1, the carbon powder and the phenol resin were blended. However, since the blending ratio of the phenol resin was extremely low, the filling rate and the bending strength decreased correspondingly. .

【0040】また比較例2は、反対にフェノール樹脂の
配合割合が高かったため、それに対応して曲げ強度が格
段に向上したものの、電気比抵抗が増大した。
In Comparative Example 2, on the contrary, since the blending ratio of the phenol resin was high, the flexural strength was correspondingly improved, but the electrical resistivity increased.

【0041】[0041]

【発明の効果】以上のように本発明によると、炭素粉末
と熱硬化性樹脂とを主成分としたため、材料的に安価で
あり、また樹脂成形法を主たる形状形成手段として形成
されているため安価に成形でき、しかも炭素粉末と熱硬
化性樹脂とを主成分として成形されているため、固体高
分子型燃料電池のセパレーターに要求されるガス不透過
性や低電気比抵抗や耐硫酸性や必要強度や軽量性などを
実用的なレベルで備えたものとすることができる。
As described above, according to the present invention, since carbon powder and thermosetting resin are the main components, they are inexpensive in terms of material, and are formed by a resin molding method as a main shape forming means. Since it can be molded at low cost and is molded with carbon powder and thermosetting resin as main components, it is required to have gas impermeability, low electrical resistivity, sulfuric acid resistance, etc. required for polymer electrolyte fuel cell separators. The required strength and lightness can be provided at a practical level.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態のセパレーターを用いた高
分子型燃料電池の基本的な構成例を示す分解斜視図であ
る。
FIG. 1 is an exploded perspective view showing a basic configuration example of a polymer fuel cell using a separator according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

4 セパレーター 5 溝 4 separator 5 groove

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 炭素粉末と熱硬化性樹脂とを成分とする
とともに、樹脂成形法を主たる形状形成手段として形成
されていることを特徴とする固体高分子型燃料電池のセ
パレーター。
1. A separator for a polymer electrolyte fuel cell, comprising carbon powder and a thermosetting resin as components, and formed as a main shape forming means by a resin molding method.
【請求項2】 炭素粉末と熱硬化性樹脂との配合割合
が、(炭素粉末):(熱硬化性樹脂)=80容量%以下
〜40容量%以上:20容量%以上〜60容量%以下で
あることを特徴とする請求項1記載の固体高分子型燃料
電池のセパレーター。
2. The compounding ratio of the carbon powder and the thermosetting resin is (carbon powder) :( thermosetting resin) = 80 vol% or less to 40 vol% or more: 20 vol% to 60 vol%. The separator for a polymer electrolyte fuel cell according to claim 1, wherein:
【請求項3】 電気比抵抗が200000μΩ・cm以
下であることを特徴とする請求項1または2記載の固体
高分子型燃料電池のセパレーター。
3. The separator for a polymer electrolyte fuel cell according to claim 1, wherein the electrical resistivity is not more than 200000 μΩ · cm.
【請求項4】 炭素粉末と熱硬化性樹脂とのほかに耐硫
酸性の金属材料を含むことを特徴とする請求項1から3
までのいずれか1項記載の固体高分子型燃料電池のセパ
レーター。
4. The method according to claim 1, further comprising a sulfuric acid-resistant metal material in addition to the carbon powder and the thermosetting resin.
9. The separator for a polymer electrolyte fuel cell according to claim 1.
【請求項5】 炭素粉末と熱硬化性樹脂とを成分とする
材料を用いて、樹脂成形法を主体として形状形成するこ
とを特徴とする固体高分子型燃料電池のセパレーターの
製造方法。
5. A method for producing a separator for a polymer electrolyte fuel cell, comprising using a material comprising carbon powder and a thermosetting resin to form a shape mainly by a resin molding method.
【請求項6】 炭素粉末と熱硬化性樹脂との配合割合
を、(炭素粉末):(熱硬化性樹脂)=80容量%以下
〜40容量%以上:20容量%以上〜60容量%以下と
することを特徴とする請求項5記載の固体高分子型燃料
電池のセパレーターの製造方法。
6. The mixing ratio of the carbon powder and the thermosetting resin is (carbon powder) :( thermosetting resin) = 80% by volume or less to 40% by volume or more: 20% by volume to 60% by volume or less. 6. The method for producing a separator for a polymer electrolyte fuel cell according to claim 5, wherein:
【請求項7】 炭素粉末と熱硬化性樹脂とのほかに耐硫
酸性の金属材料を含ませることを特徴とする請求項5ま
たは6記載の固体高分子型燃料電池のセパレーターの製
造方法。
7. The method for producing a separator for a polymer electrolyte fuel cell according to claim 5, wherein a sulfuric acid-resistant metal material is contained in addition to the carbon powder and the thermosetting resin.
【請求項8】 請求項1から4までのいずれか1項記載
のセパレーターを備えた固体高分子型燃料電池。
8. A polymer electrolyte fuel cell comprising the separator according to any one of claims 1 to 4.
JP9140729A 1997-05-30 1997-05-30 Separator for solid high polymer fuel cell and its manufacture Pending JPH10334927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9140729A JPH10334927A (en) 1997-05-30 1997-05-30 Separator for solid high polymer fuel cell and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9140729A JPH10334927A (en) 1997-05-30 1997-05-30 Separator for solid high polymer fuel cell and its manufacture

Publications (1)

Publication Number Publication Date
JPH10334927A true JPH10334927A (en) 1998-12-18

Family

ID=15275360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9140729A Pending JPH10334927A (en) 1997-05-30 1997-05-30 Separator for solid high polymer fuel cell and its manufacture

Country Status (1)

Country Link
JP (1) JPH10334927A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000001025A1 (en) * 1998-06-30 2000-01-06 Matsushita Electric Industrial Co., Ltd. Solid polymer electrolyte fuel cell
JP2000348740A (en) * 1999-06-08 2000-12-15 Ibiden Co Ltd Separator of solid high polymer type fuel cell and its manufacture
JP2001325967A (en) * 2000-05-15 2001-11-22 Nisshinbo Ind Inc Manufacturing method of fuel cell separator, fuel cell separator and solid polymer fuel cell
WO2002001660A1 (en) * 2000-06-29 2002-01-03 Osaka Gas Company Limited Conductive composition for solid polymer type fuel cell separator, solid polymer type fuel cell separator, solid polymer type fuel cell and solid polymer type fuel cell system using the separator
WO2002065567A1 (en) * 2001-02-15 2002-08-22 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte type fuel cell
JP2003051318A (en) * 2001-08-08 2003-02-21 Nippon Pillar Packing Co Ltd Separator for fuel cell
EP1189297A3 (en) * 2000-09-13 2004-04-07 Mitsui Takeda Chemicals, Inc. Separator for solid polymer type fuel cell and process for producing the same
KR100454370B1 (en) * 2000-06-19 2004-10-26 니폰 필라고교 가부시키가이샤 Separator for fuel cell and method of fabricating thereof
KR100485285B1 (en) * 2001-04-26 2005-04-27 조통래 The production procedure for separator of fuel cell
JP2006179207A (en) * 2004-12-21 2006-07-06 Izuru Izeki Separator for fuel cell and its manufacturing method
CN100337357C (en) * 2003-05-08 2007-09-12 大日本油墨化学工业株式会社 Manufacturing method of fuel cell separator, and fuel cell
US7604755B2 (en) 2003-02-17 2009-10-20 Japan Composite Co., Ltd. Electroconductive resin composition and separator for fuel cell

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000001025A1 (en) * 1998-06-30 2000-01-06 Matsushita Electric Industrial Co., Ltd. Solid polymer electrolyte fuel cell
US6660419B1 (en) 1998-06-30 2003-12-09 Matsushita Electric Industrial Co., Ltd. Solid polymer electrolyte fuel cell
JP2000348740A (en) * 1999-06-08 2000-12-15 Ibiden Co Ltd Separator of solid high polymer type fuel cell and its manufacture
JP2001325967A (en) * 2000-05-15 2001-11-22 Nisshinbo Ind Inc Manufacturing method of fuel cell separator, fuel cell separator and solid polymer fuel cell
KR100454370B1 (en) * 2000-06-19 2004-10-26 니폰 필라고교 가부시키가이샤 Separator for fuel cell and method of fabricating thereof
WO2002001660A1 (en) * 2000-06-29 2002-01-03 Osaka Gas Company Limited Conductive composition for solid polymer type fuel cell separator, solid polymer type fuel cell separator, solid polymer type fuel cell and solid polymer type fuel cell system using the separator
US7049021B2 (en) 2000-06-29 2006-05-23 Osaka Gas Company Limited Conductive composition for solid polymer type fuel cell separator, solid polymer type fuel cell separator, solid polymer type fuel cell and solid polymer type fuel cell system using the separator
US7125623B2 (en) 2000-09-13 2006-10-24 Japan Composite Co., Ltd. Separator for solid polymer type fuel cell and process for producing the same
EP1189297A3 (en) * 2000-09-13 2004-04-07 Mitsui Takeda Chemicals, Inc. Separator for solid polymer type fuel cell and process for producing the same
WO2002065567A1 (en) * 2001-02-15 2002-08-22 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte type fuel cell
US7452624B2 (en) 2001-02-15 2008-11-18 Panasonic Corporation Polymer electrolyte type fuel cell
KR100485285B1 (en) * 2001-04-26 2005-04-27 조통래 The production procedure for separator of fuel cell
JP2003051318A (en) * 2001-08-08 2003-02-21 Nippon Pillar Packing Co Ltd Separator for fuel cell
US7604755B2 (en) 2003-02-17 2009-10-20 Japan Composite Co., Ltd. Electroconductive resin composition and separator for fuel cell
CN100337357C (en) * 2003-05-08 2007-09-12 大日本油墨化学工业株式会社 Manufacturing method of fuel cell separator, and fuel cell
JP2006179207A (en) * 2004-12-21 2006-07-06 Izuru Izeki Separator for fuel cell and its manufacturing method

Similar Documents

Publication Publication Date Title
KR100597897B1 (en) Molding material for fuel cell separator, manufacturing method thereof, fuel cell separator and fuel cell
JP4962691B2 (en) Fuel cell separator
US7049021B2 (en) Conductive composition for solid polymer type fuel cell separator, solid polymer type fuel cell separator, solid polymer type fuel cell and solid polymer type fuel cell system using the separator
EP1394878B1 (en) Separator for solid state polymer type fuel cell and method for producing the same
JPH10334927A (en) Separator for solid high polymer fuel cell and its manufacture
JP2002025571A (en) Fuel cell separator, its manufacturing method, and solid high polymer molecule fuel cell
EP2065956A1 (en) Conductive resin molding
US6815112B2 (en) Fuel cell separator and polymer electrolyte fuel cell
US7727422B2 (en) Electrically-conductive resin composition for porous fuel cell bipolar plate and method for the production thereof
JPH01311570A (en) Separator for fuel cell
JP4037955B2 (en) Method for producing polymer electrolyte fuel cell separator member
CA2698940C (en) Bipolar plate for fuel cell
JP2001216976A (en) Fuel cell separator and its production method
WO2018070205A1 (en) Resin composition for dense fuel cell separators
JP2004119346A (en) Molding material for solid polymer type fuel cell separator, its manufacturing method and solid polymer type fuel cell separator
JP2002075394A (en) Separator member for fuel cell
JP4989880B2 (en) Fuel cell separator, resin composition therefor and method for producing the same
JP2001216977A (en) Separator material for fuel cell
JP2005108591A (en) Molding material for fuel cell separator
JP2004192981A (en) Separator for fuel cell, and manufacturing method of the same
JP2001250566A (en) Separator for fuel cell and method of manufacturing the same
KR101755499B1 (en) Method for manufacturing of substrate for lead acid battery, powder mixture for manufacturing same and substrate for lead acid battery
JP2005122974A (en) Fuel cell separator and fuel cell
JP2005339899A (en) Resin composite for fuel cell separator
JP2001106831A (en) Thermosetting resin molding material and molded product using the same