JP2003033632A - Method for producing blood purifying membrane - Google Patents

Method for producing blood purifying membrane

Info

Publication number
JP2003033632A
JP2003033632A JP2001222446A JP2001222446A JP2003033632A JP 2003033632 A JP2003033632 A JP 2003033632A JP 2001222446 A JP2001222446 A JP 2001222446A JP 2001222446 A JP2001222446 A JP 2001222446A JP 2003033632 A JP2003033632 A JP 2003033632A
Authority
JP
Japan
Prior art keywords
membrane
polyvinylpyrrolidone
blood purification
producing
hollow fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001222446A
Other languages
Japanese (ja)
Other versions
JP3281364B1 (en
Inventor
Teruhiko Oishi
輝彦 大石
Tomoji Hanai
智司 花井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP2001222446A priority Critical patent/JP3281364B1/en
Application granted granted Critical
Publication of JP3281364B1 publication Critical patent/JP3281364B1/en
Priority to US10/484,712 priority patent/US7087168B2/en
Priority to KR1020047000964A priority patent/KR100829692B1/en
Priority to PCT/JP2002/007501 priority patent/WO2003009926A1/en
Priority to ES02751665T priority patent/ES2340762T3/en
Priority to AT02751665T priority patent/ATE466649T1/en
Priority to DE60236290T priority patent/DE60236290D1/en
Priority to CNB028161661A priority patent/CN1263534C/en
Priority to EP02751665A priority patent/EP1410839B1/en
Publication of JP2003033632A publication Critical patent/JP2003033632A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high performance blood purifying membrane which is extremely little in elution from the membrane, hardly causes sticking of blood protein and blood platelets thereto and has excellent dialysis performance and a producing method thereof. SOLUTION: This method for producing hollow fiber type blood purifying membrane features that the wet membrane where a pore retaining agent is not incorporated, water permeability of pure water is >=100 mL/m<2> .hr.mmHg, permeability of polyvinyl pyrrolidone of weight average molecular weight 40,000 is >75% and permeability of albumin in bovine blood plasma is >=0.3% is dried at a temperature of <=120 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、膜からの溶出量が
極めて少なく、血液タンパク質や血小板の付着が少ない
優れた透析性能を有する高性能血液浄化膜の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-performance blood purification membrane which has an extremely small amount of elution from the membrane and has a small amount of blood proteins and platelets attached, and has excellent dialysis performance.

【0002】[0002]

【従来の技術】近年、選択的な透過性を有する膜を利用
する技術がめざましく進歩し、これまでに気体や液体の
分離フィルター、医療分野における血液透析器、血液濾
過器、血液成分選択分離フィルター等の広範な分野での
実用化が進んでいる。
2. Description of the Related Art In recent years, the technology of utilizing a membrane having selective permeability has been remarkably advanced, and gas / liquid separation filters, hemodialyzers, blood filters, and blood component selective separation filters in the medical field have been developed so far. Practical application is progressing in a wide range of fields.

【0003】該膜の材料としては、セルロース系(再生
セルロース系、酢酸セルロース系、化学変性セルロース
系等)、ポリアクリロニトリル系、ポリメチルメタクリ
レート系、ポリスルホン系、ポリエチレンビニルアルコ
ール系、ポリアミド系等のポリマーが用いられてきた。
As a material for the membrane, a polymer such as cellulose type (regenerated cellulose type, cellulose acetate type, chemically modified cellulose type), polyacrylonitrile type, polymethylmethacrylate type, polysulfone type, polyethylene vinyl alcohol type, polyamide type, etc. Has been used.

【0004】このうちポリスルホン系ポリマーは、その
熱安定性、耐酸、耐アルカリ性に加え、製膜原液に親水
化剤を添加して製膜することにより、血液適合性が向上
することから、半透膜素材として注目され研究が進めら
れてきた。
Among these, the polysulfone-based polymer is improved in blood compatibility by adding a hydrophilizing agent to the stock solution for film formation, in addition to its thermal stability, acid resistance and alkali resistance, so that it is semipermeable. As a membrane material, attention has been paid to the research.

【0005】一方、膜を接着してモジュールを作製する
ためには膜を乾燥させる必要があるが、有機高分子より
なる多孔膜、なかでもポリスルホン系等の疎水性ポリマ
ーからなる透析膜、限外濾過膜は、製膜後に乾燥させる
と乾燥前に比べ著しく透水量が低下することが知られて
いる。そのため膜は常に湿潤状態か、水に浸漬させた状
態で取り扱う必要があった。
On the other hand, it is necessary to dry the membrane in order to adhere the membrane to form a module, but a porous membrane made of an organic polymer, especially a dialysis membrane made of a hydrophobic polymer such as polysulfone is used. It is known that when the filtration membrane is dried after the membrane formation, the water permeation amount is remarkably reduced as compared with before drying. Therefore, the membrane must always be handled in a wet state or immersed in water.

【0006】この対策として従来よりとられてきた方法
は、製膜後、乾燥前にグリセリン等の低揮発性有機液体
を多孔膜中の空孔部分に詰めておくことであった。しか
しながら、低揮発性有機液体は、一般に高粘度なため、
洗浄除去に時間がかかり、膜をモジュール成型して洗浄
後も微量ではあるが低揮発性有機液体由来の溶出物等
(低揮発性有機液体と化学反応して生成した様々な誘導
体)がモジュール封入液中にみられることに問題があっ
た。
[0006] As a countermeasure against this, a conventional method has been to fill a low volatility organic liquid such as glycerin into the pores in the porous film after film formation and before drying. However, low-volatile organic liquids generally have high viscosity,
It takes a long time to wash and remove, and even after the membrane is molded into a module and washed, a small amount of eluate derived from a low-volatile organic liquid (various derivatives produced by a chemical reaction with the low-volatile organic liquid) is enclosed in the module. There was a problem with what was seen in the liquid.

【0007】低揮発性有機液体を用いずに乾燥させる方
法として、特開平6−277470号公報には、低揮発
性有機液体の代わりに塩化カルシウム等の無機塩を用い
る方法が示されているが、洗浄除去する必要性に変わり
はない。また、微量であるとしても残存した無機塩が透
析患者に与える悪影響が危惧される。
As a method for drying without using a low-volatile organic liquid, JP-A-6-277470 discloses a method using an inorganic salt such as calcium chloride instead of the low-volatile organic liquid. There is no change in the need for cleaning and removal. Moreover, even if the amount is very small, there is concern that the residual inorganic salts may adversely affect the dialysis patient.

【0008】特開平8−52331号公報及び特公平8
−9668号公報には、低揮発性有機液体を用いずに乾
燥処理をしたポリビニルピロリドンを含む親水化膜が開
示されている。血液から血漿成分を分離する性能が記載
されているが、血漿タンパクが透過することから透析性
能は示さないことが分かる。さらに、製膜条件が記載さ
れておらず、膜構造自体不明である。また、ポリビニル
ピロリドンを分解・変性させる温度で乾燥していること
から、膜からの溶出物を低減させるという目的において
は極めて好ましくない製法である。
Japanese Unexamined Patent Publication No. 8-52331 and Japanese Patent Publication No. 8
No. 9668 discloses a hydrophilizing film containing polyvinylpyrrolidone that has been dried without using a low-volatile organic liquid. Although the ability to separate plasma components from blood has been described, it is clear that dialysis performance is not shown because plasma proteins permeate. Furthermore, the film forming conditions are not described, and the film structure itself is unknown. Further, since it is dried at a temperature at which polyvinylpyrrolidone is decomposed / denatured, it is an extremely unfavorable production method for the purpose of reducing the eluate from the membrane.

【0009】また、特開平6−296686号公報には
血液が直接接触する膜内表面でのポリビニルピロリドン
の存在率を20〜50%程度にした中空糸膜が開示され
ている。これは主に血液タンパク、血小板等の付着物を
少なくするための湿潤膜を示すものである。従って、血
液タンパクが付着しにくいことからろ液速度の径時変化
が起こりにくいことが示されているが、アルブミンの透
過性が低い等の透析性能についての記載は一切無い。
Further, Japanese Unexamined Patent Publication (Kokai) No. 6-296686 discloses a hollow fiber membrane in which the abundance of polyvinylpyrrolidone on the inner surface of the membrane, which is in direct contact with blood, is about 20 to 50%. This mainly indicates a wet film for reducing adhered substances such as blood proteins and platelets. Therefore, although it has been shown that blood proteins do not easily adhere to the filtrate, it is difficult for the filtrate velocity to change with time, but there is no description about dialysis performance such as low albumin permeability.

【0010】[0010]

【発明が解決しようとする課題】本発明の課題は、膜か
らの溶出量が極めて少なく、血液タンパク質や血小板の
付着が少ない優れた透析性能を有する高性能血液浄化膜
の製造方法を提供することにある。
An object of the present invention is to provide a method for producing a high-performance blood purification membrane having an extremely small amount of elution from the membrane and having excellent dialysis performance with little adhesion of blood proteins and platelets. It is in.

【0011】[0011]

【課題を解決するための手段】以上の如く、モジュール
からの溶出物の原因となる膜孔保持剤を用いずに、透析
性能を有する乾燥血液浄化膜を製造する方法はこれまで
なかった。その原因は、膜孔保持剤を用いずに乾燥させ
ると、湿潤状態とは全く異なった低性能の膜となること
であった。
As described above, there has hitherto been no method for producing a dry blood purification membrane having dialysis performance without using a membrane pore-holding agent which causes eluate from a module. The cause was that when dried without using a pore-holding agent, a low-performance membrane completely different from the wet state was obtained.

【0012】そこで、本発明者等は、あらかじめ目標と
する性能よりも高透水量で大孔径である特定の性能を有
する湿潤膜を作製しておき、これを乾燥・収縮させて目
標の透析性能を有する膜を製造するというこれまでにな
い、誰も思いつかなかった発想に基づき鋭意研究を進め
た結果、溶出物が極めて少なく、血液タンパクや血小板
の付着が少ない選択透過性に優れた透析性能を有する膜
を得ることができ本発明に至ったものである。
[0012] Therefore, the inventors of the present invention previously prepared a wet membrane having a specific performance of having a higher water permeability and a larger pore diameter than the target performance, and drying and shrinking the wet membrane to obtain the target dialysis performance. As a result of intensive research based on an idea that no one could ever think of producing a membrane having a high dialysis performance with extremely low eluate and low adherence of blood proteins and platelets It is possible to obtain a film having the present invention, and the present invention has been achieved.

【0013】すなわち本発明は、(1)膜孔保持剤を含
まず、純水の透水量が100mL/(m2・hr・mm
Hg)以上で、重量平均分子量40,000のポリビニ
ルピロリドンの透過率が75%を超え、且つ牛血漿系に
おけるアルブミンの透過率が0.3%以上である湿潤膜
を120℃以下の温度で乾燥することを特徴とする中空
糸状血液浄化膜の製造方法、(2)製膜原液と内部液を
2重環状ノズルから吐出させた後、エアギャップを通過
させてから凝固浴で凝固させる中空糸状膜の製造方法に
おいて、紡速に対するエアギャップの比率が0.01〜
0.1m/(m/分)であることを特徴とする上記
(1)の湿潤膜の製造方法、(3)製膜原液が、ポリス
ルホン系ポリマー、ポリビニルピロリドン、及び溶剤か
らなり、ポリスルホン系ポリマーに対するポリビニルピ
ロリドンの比率が18〜27重量%であることを特徴と
する上記(1)または(2)の製造方法、(4)乾燥後
に放射線照射することを特徴とする上記(1)〜(3)
のいずれかの製造方法、(5)中空糸状血液浄化膜が、
膜孔保持剤を含まない乾燥膜であって、膜の外表面から
内表面緻密層に向かって孔径が連続的に小さくなるスポ
ンジ構造からなり、純水の透水量が10mL/(m2
hr・mmHg)以上、重量平均分子量40,000の
ポリビニルピロリドンの透過率が75%以下で、且つ牛
血漿系におけるアルブミンの透過率が0.3%未満であ
ることを特徴とする上記(1)〜(4)のいずれかの血
液浄化膜の製造方法、(6)中空糸状血液浄化膜が、膜
の溶出物試験液の吸光度が0.04未満であり、且つ該
溶出物試験液中に膜孔保持剤を含まないことを特徴とす
る上記(5)の血液浄化膜の製造方法、(7)中空糸状
血液浄化膜が、ポリスルホン系ポリマーとポリビニルピ
ロリドンからなり、膜内表面におけるポリビニルピロリ
ドンの濃度が30〜45重量%であることを特徴とする
上記(5)又は(6)の血液浄化膜の製造方法、及び
(8)中空糸状血液浄化膜が、水に不溶であるポリビニ
ルピロリドンを含むことを特徴とする上記(5)〜
(7)のいずれかの血液浄化膜の製造方法、に関するも
のである。
That is, the present invention (1) does not contain a membrane pore-holding agent, and has a pure water permeability of 100 mL / (m 2 · hr · mm).
Hg) or more, the permeability of polyvinylpyrrolidone having a weight average molecular weight of 40,000 exceeds 75%, and the permeability of albumin in bovine plasma system is 0.3% or more, and dried at a temperature of 120 ° C or less. A method for producing a hollow fiber blood purification membrane, comprising: (2) a hollow fiber membrane in which a stock solution for membrane formation and an internal solution are discharged from a double annular nozzle and then passed through an air gap and then coagulated in a coagulation bath. In the manufacturing method, the ratio of the air gap to the spinning speed is 0.01 to
The method for producing a wet membrane according to the above (1), characterized in that it is 0.1 m / (m / min), and (3) the membrane-forming stock solution comprises a polysulfone-based polymer, polyvinylpyrrolidone, and a solvent. The ratio of polyvinylpyrrolidone to 18 to 27% by weight is (18) to (27)% by weight, and (4) the method of producing (4) radiation after drying. )
(5) the hollow fiber blood purification membrane,
A dry membrane containing no pore-holding agent, which has a sponge structure in which the pore size continuously decreases from the outer surface of the membrane toward the inner surface dense layer, and has a pure water permeability of 10 mL / (m 2 ·
(hr · mmHg) or more, and the transmittance of polyvinylpyrrolidone having a weight average molecular weight of 40,000 is 75% or less, and the transmittance of albumin in bovine plasma system is less than 0.3%. (6) The method for producing a blood purification membrane according to any one of (4) to (6), wherein the hollow fiber blood purification membrane has a membrane eluate test solution having an absorbance of less than 0.04 and a membrane in the eluate test solution. The method for producing a blood purification membrane according to (5) above, which does not contain a pore-retaining agent, and (7) the hollow fiber blood purification membrane comprises a polysulfone-based polymer and polyvinylpyrrolidone, and the concentration of polyvinylpyrrolidone on the inner surface of the membrane. Is 30 to 45% by weight, and the method for producing a blood purification membrane according to the above (5) or (6), and (8) the hollow fiber blood purification membrane contains polyvinylpyrrolidone that is insoluble in water. Above, characterized in bets (5) -
(7) The method for producing a blood purification membrane according to any one of (7).

【0014】[0014]

【発明の実施の形態】以下に、本発明の中空糸状血液浄
化膜(以下、単に「膜」又は「中空糸状膜」ともいう)
の製造方法について説明する。本発明の製造方法は、高
透水量で大きな孔径の湿潤膜をあらかじめ製造してお
き、脱溶剤後に膜孔保持剤を含浸させずに乾燥させるこ
とに特徴を有する。
BEST MODE FOR CARRYING OUT THE INVENTION The hollow fiber blood purification membrane of the present invention (hereinafter, also simply referred to as “membrane” or “hollow fiber membrane”)
The manufacturing method of will be described. The production method of the present invention is characterized in that a wet membrane having a high water permeability and a large pore size is produced in advance and, after removing the solvent, the wet membrane is dried without impregnating the membrane pore retaining agent.

【0015】通常、中空糸状血液浄化膜を製造する際に
用いられる膜孔保持剤には、粘性を有する有機物と人体
への毒性が懸念される無機物に分類される。粘性を有す
る有機物からなる膜孔保持剤は、粘性が高いために完全
に洗浄除去することが困難であることから、膜中に残存
して膜からの溶出量を増加させ、さらに残存した膜孔保
持剤と化学反応して有害物を生じる原因と成り得る。一
方、無機物からなる膜孔保持剤においても、微量に残存
するため透析患者に与える悪影響が危惧される。
Usually, the membrane pore retaining agent used in the production of the hollow fiber blood purification membrane is classified into a viscous organic substance and an inorganic substance which may be toxic to the human body. Membrane pore retainers made of viscous organic substances are difficult to completely wash and remove due to their high viscosity, so they remain in the membrane and increase the amount of elution from the membrane. It may cause chemical reaction with the retentive agent to produce harmful substances. On the other hand, even a membrane pore-holding agent made of an inorganic substance remains in a very small amount, which may adversely affect dialysis patients.

【0016】本発明でいう膜孔保持剤とは、乾燥時の性
能低下を防ぐために乾燥前までの製造過程で膜中の空孔
部分に詰めておく物質である。膜孔保持剤を含んだ溶液
に湿潤膜を浸漬することによって膜中の空孔部分に該保
持剤を詰めることが可能でる。乾燥後も膜孔保持剤を洗
浄・除去さえすれば、膜孔保持剤の効果により湿潤膜と
同等の透水量、阻止率等の性能を保持することが可能で
ある。
The term "membrane pore-holding agent" as used in the present invention is a substance that is filled in the pores in the membrane during the production process before drying in order to prevent performance deterioration during drying. It is possible to fill the pores in the membrane with the retaining agent by immersing the wet membrane in a solution containing the membrane pore retaining agent. Even after drying, if the membrane pore retaining agent is only washed and removed, it is possible to maintain the same performance as the wet membrane such as water permeability and blocking rate due to the effect of the membrane pore retaining agent.

【0017】膜孔保持剤としては、エチレングリコー
ル、プロピレングリコール、トリメチレングリコール、
1,2−ブチレングリコール、1,3−ブチレングリコ
ール、2−ブチン−1,4−ジオール、2−メチル−
2,4−ペンタジオール、2−エチル−1,3−ヘキサ
ンジオール、グリセリン、テトラエチレングリコール、
ポリエチレングリコール200、ポリエチレングリコー
ル300、ポリエチレングリコール400等のグリコー
ル系又はグリセロール系化合物及び蔗糖脂肪酸エステル
等の有機化合物および塩化カルシウム、炭酸ナトリウ
ム、酢酸ナトリウム、硫酸マグネシウム、硫酸ナトリウ
ム、塩化亜鉛等の無機塩を挙げることができる。
Membrane pore retaining agents include ethylene glycol, propylene glycol, trimethylene glycol,
1,2-butylene glycol, 1,3-butylene glycol, 2-butyne-1,4-diol, 2-methyl-
2,4-pentadiol, 2-ethyl-1,3-hexanediol, glycerin, tetraethylene glycol,
Glycol- or glycerol-based compounds such as polyethylene glycol 200, polyethylene glycol 300, polyethylene glycol 400 and organic compounds such as sucrose fatty acid ester and inorganic salts such as calcium chloride, sodium carbonate, sodium acetate, magnesium sulfate, sodium sulfate and zinc chloride Can be mentioned.

【0018】また、本発明において、高透水量で大きな
孔径の湿潤膜とは、透水量が100mL/(m2・hr
・mmHg)以上であって、重量平均分子量40,00
0のポリビニルピロリドンの透過率が75%を超え、且
つ牛血漿系におけるアルブミンの透過率が0.3%以上
である性能を有する湿潤膜を意味する。
In the present invention, a wet membrane having a high water permeability and a large pore size means a water permeability of 100 mL / (m 2 · hr).
-MmHg) or more and a weight average molecular weight of 40,000
0 means a polyvinylpyrrolidone permeability of more than 75% and an albumin permeability of 0.3% or more in bovine plasma system.

【0019】牛血漿アルブミンの透過率は、以下のよう
な方法で測定することが可能である。まず、長さ20c
mの中空糸状膜を100本束ねて小型モジュールを作製
する。このモジュールに37℃に加温したヘパリン添加
牛血漿(ヘパリン5000IU/I、タンパク濃度6.
0g/dL(デシリットル))を膜内表面側に線速1.
0cm/秒で通過させ、モジュールの入り圧と出圧の平
均圧力50mmHgにて60分間限外濾過を行う。得ら
れた濾液と元液の濃度の測定は、紫外分光光度計により
280nmの波長にて測定し、下記の式(4)に代入し
て透過率を算出する。 透過率(%)=(濾液の吸光度)×100/(元液の吸光度) (1)
The permeability of bovine plasma albumin can be measured by the following method. First, length 20c
A small module is manufactured by bundling 100 hollow fiber membranes of m. Heparin-added bovine plasma (heparin 5000 IU / I, protein concentration 6.
0 g / dL (deciliter)) at a linear velocity of 1.
It is passed through at 0 cm / sec, and ultrafiltration is performed for 60 minutes at an average pressure of 50 mmHg of inlet pressure and outlet pressure of the module. The concentrations of the obtained filtrate and the original solution are measured by an ultraviolet spectrophotometer at a wavelength of 280 nm, and the transmittance is calculated by substituting it in the following formula (4). Transmittance (%) = (absorbance of filtrate) × 100 / (absorbance of original solution) (1)

【0020】ポリビニルピロリドンの透過率は、濾過す
る水溶液を3重量%のポリビニルピロリドン(BASF
社製 K30、重量平均分子量40,000)のリン酸
バッファー(0.15mol/リットル、pH7.4)
水溶液にして、モジュールの入り圧と出圧の平均圧力を
200mmHgにした以外は、牛血漿アルブミンの透過
率の測定と同様な操作を行うことにより求められる。
The transmittance of polyvinylpyrrolidone is 3% by weight of the aqueous solution to be filtered.
K30, weight average molecular weight 40,000 phosphate buffer (0.15 mol / liter, pH 7.4)
It can be determined by performing the same operation as the measurement of the transmissivity of bovine plasma albumin, except that the aqueous solution was used and the average pressure of the inlet pressure and the outlet pressure of the module was set to 200 mmHg.

【0021】高透水量で大きな孔径の湿潤膜は、ポリス
ルホン系ポリマー(以下単に「ポリマー」ともいう)、
ポリビニルピロリドン、及び溶剤からなる製膜原液を、
内部液とともに2重環状ノズルから吐出させ、エアギャ
ップを通過させた後、凝固浴で凝固させる製造方法にお
いて、内部液にポリマーの溶剤の水溶液を用いることに
より製造可能である。
A wet membrane having a high water permeability and a large pore size is formed of a polysulfone-based polymer (hereinafter also simply referred to as "polymer"),
Polyvinylpyrrolidone, a film-forming stock solution consisting of a solvent,
It can be produced by using an aqueous solution of a polymer solvent as the internal liquid in a production method in which the internal liquid is discharged from a double annular nozzle, passed through an air gap, and then solidified in a coagulation bath.

【0022】内部液は,膜の中空部と内表面を形成させ
るものであるが、内表面の孔径は、内部液中の溶剤濃度
に比例して大きくなることが判っている。本発明では、
湿潤膜を乾燥収縮させることにより目標の性能の透析膜
が得られることから、内部液中の溶剤濃度を、目標とす
る透析性能を有する湿潤膜を製造する時に比べて、高濃
度にする必要がある。
The internal liquid forms the hollow portion and the inner surface of the membrane, and it has been known that the pore size of the inner surface increases in proportion to the concentration of the solvent in the internal liquid. In the present invention,
Since the dialysis membrane with the target performance can be obtained by drying and shrinking the wet membrane, it is necessary to increase the concentration of the solvent in the internal solution to a higher concentration than when producing the wet membrane with the target dialysis performance. is there.

【0023】本発明で用いられるポリスルホン系ポリマ
ーとしては、下記の式(2)、または式(3)で示され
る繰り返し単位を有するものが挙げられる。なお、式中
のArはパラ位での2置換のフェニル基を示し、重合度
や分子量については特に限定しない。 −O−Ar−C(CH32−Ar−O−Ar−SO2−Ar− (2) −O−Ar−SO2−Ar− (3)
Examples of the polysulfone polymer used in the present invention include those having a repeating unit represented by the following formula (2) or formula (3). In the formula, Ar represents a 2-substituted phenyl group at the para position, and the degree of polymerization and the molecular weight are not particularly limited. -O-Ar-C (CH 3 ) 2 -Ar-O-Ar-SO 2 -Ar- (2) -O-Ar-SO 2 -Ar- (3)

【0024】ポリビニルピロリドンは高分子量のものほ
ど膜への親水化効果が高いため、高分子量のものほど少
量で十分な効果が発揮できることから、本発明において
は重量平均分子量900,000以上のポリビニルピロ
リドンが使用される。900,000より小さい重量平
均分子量を有するポリビニルピロリドンを用いて膜への
親水化効果を付与するためには大量のポリビニルピロリ
ドンを膜中に残存させる必要があるが、このために膜か
らの溶出物が増加することになる。また、逆に溶出物を
下げるために900,000より小さい重量平均分子量
のポリビニルピロリドンの膜中での残存量を少なくする
と親水化効果が不十分となってしまい、その結果血液透
析を行ったとき濾過速度の経時的低下をきたし十分な効
果を発揮できない。
The higher the molecular weight of polyvinylpyrrolidone, the higher the hydrophilic effect on the membrane. Therefore, the higher the molecular weight of polyvinylpyrrolidone, the smaller the amount of polyvinylpyrrolidone. Is used. A large amount of polyvinylpyrrolidone must be left in the membrane in order to impart a hydrophilic effect to the membrane by using polyvinylpyrrolidone having a weight average molecular weight of less than 900,000. Will increase. On the contrary, if the residual amount of polyvinylpyrrolidone having a weight average molecular weight of less than 900,000 in the membrane is reduced in order to reduce the eluate, the hydrophilic effect becomes insufficient, and as a result, when hemodialysis is performed. The filtration rate is lowered with time and the sufficient effect cannot be exhibited.

【0025】また、ポリスルホン系ポリマーとポリビニ
ルピロリドンの溶解に用いられる溶剤は、これら両方を
共に溶解するものであり、N−メチル−2−ピロリド
ン、N,N−ジメチルホルムアミド、N,N−ジメチル
アセトアミド等である。
The solvent used for dissolving the polysulfone-based polymer and polyvinylpyrrolidone dissolves both of them, and includes N-methyl-2-pyrrolidone, N, N-dimethylformamide and N, N-dimethylacetamide. Etc.

【0026】製膜原液中のポリマー濃度は、製膜可能
で、かつ得られた膜が膜としての性能を有するような濃
度の範囲であれば特に制限されず、5〜35重量%、好
ましくは10〜30重量%である。高い透水性能を達成
するためには、ポリマー濃度は低い方がよく、10〜2
5重量%が好ましい。
The concentration of the polymer in the stock solution for film formation is not particularly limited as long as it is within the concentration range in which the film can be formed and the obtained film has the performance as a film, and is preferably 5 to 35% by weight, preferably It is 10 to 30% by weight. In order to achieve high water permeability, the polymer concentration should be low,
5% by weight is preferred.

【0027】さらに重要なことはポリビニルピロリドン
の添加量であり、ポリマーに対するポリビニルピロリド
ンの混和比率が27重量%以下、好ましくは10〜27
重量%、さらに好ましくは20〜27重量%である。ポ
リマーに対するポリビニルピロリドンの混和比率が27
重量%を超えると溶出量が増える傾向にあり、また10
重量%未満では製膜原液の粘性が低いためにスポンジ構
造の膜を得ることが困難である。また、原液粘度、溶解
状態を制御する目的で、水、貧溶剤等の第4成分を添加
することも可能であり、その種類、添加量は組み合わせ
により随時行えばよい。
What is more important is the amount of polyvinylpyrrolidone added, and the mixing ratio of polyvinylpyrrolidone to the polymer is 27% by weight or less, preferably 10 to 27.
%, And more preferably 20 to 27% by weight. The mixing ratio of polyvinylpyrrolidone to polymer is 27.
If the amount exceeds 10% by weight, the amount of elution tends to increase.
If it is less than 10% by weight, it is difficult to obtain a sponge-structured film because the viscosity of the stock solution is low. Further, a fourth component such as water or a poor solvent may be added for the purpose of controlling the viscosity of the stock solution and the dissolved state, and the kind and the addition amount thereof may be optionally changed depending on the combination.

【0028】また、エアギャップとは、ノズルと凝固浴
との間の隙間を意味する。本発明の膜を得るには紡速
(m/分)に対するエアギャップ(m)の比率が極めて
重要である。何故ならば本発明の膜構造は、内部液中の
非溶剤が製膜原液と接触するによって該製膜原液の内表
面部位側から外表面部位側へと経時的に相分離が誘発さ
れ、さらに該製膜原液が凝固浴に入るまでの間に膜内表
面部位から外表面部位までの相分離が完了しなければ、
得られないからである。
The air gap means the gap between the nozzle and the coagulation bath. The ratio of the air gap (m) to the spinning speed (m / min) is extremely important for obtaining the membrane of the present invention. Because the membrane structure of the present invention, the non-solvent in the inner solution is contacted with the membrane-forming stock solution to induce phase separation over time from the inner surface site side to the outer surface site side of the membrane-forming stock solution. If the phase separation from the inner surface portion of the membrane to the outer surface portion is not completed before the stock solution for film formation enters the coagulation bath,
Because you cannot get it.

【0029】紡速に対するエアギャップの比率は、0.
010〜0.1m/(m/分)であることが好ましく、
さらに好ましくは0.010〜0.05m/(m/分)
である。紡速に対するエアギャップの比率が0.010
m/(m/分)未満では、本発明の構造と性能を有する
膜を得ることが難しく、0.1m/(m/分)を超える
比率では、膜へのテンションが高いことからエアギャッ
プ部で膜切れを多発し製造しにくい傾向にあり好ましく
ない。
The ratio of air gap to spinning speed is 0.
010 to 0.1 m / (m / min) is preferable,
More preferably 0.010 to 0.05 m / (m / min)
Is. The ratio of air gap to spinning speed is 0.010
If it is less than m / (m / min), it is difficult to obtain a film having the structure and performance of the present invention, and if it exceeds 0.1 m / (m / min), the tension to the film is high, so the air gap part is high. This is not preferable because it often causes film breakage and tends to be difficult to manufacture.

【0030】ここで、紡速とはノズルから内部液ととも
に吐出した製膜原液がエアギャップを通過して凝固浴に
て凝固した膜が巻き取られる中空糸状膜の一連の製造工
程において、該工程中に延伸操作が無い時の巻き取り速
度を意味する。また、エアギャップを円筒状の筒などで
囲み、一定の温度と湿度を有する気体を一定の流量でこ
のエアギャップに流すと、より安定した状態で中空糸状
膜を製造することができる。
Here, the spinning speed is a series of manufacturing steps of a hollow fiber membrane in which a membrane-forming raw solution discharged from a nozzle together with an internal solution passes through an air gap and is wound up in a coagulating bath. It means the winding speed when there is no stretching operation inside. Also, by enclosing the air gap with a cylindrical tube or the like and flowing a gas having a constant temperature and humidity at a constant flow rate into the air gap, the hollow fiber membrane can be manufactured in a more stable state.

【0031】凝固浴としては、例えば水;メタノール、
エタノール等のアルコール類;エーテル類;n−ヘキサ
ン、n−ヘプタン等の脂肪族炭化水素類などポリマーを
溶解しない液体が用いられるが、水が好ましい。また、
凝固浴にポリマーを溶解する溶剤を若干添加することに
より凝固速度をコントロールすることも可能である。
As the coagulation bath, for example, water; methanol,
Liquids such as alcohols such as ethanol; ethers; aliphatic hydrocarbons such as n-hexane and n-heptane that do not dissolve the polymer are used, and water is preferable. Also,
It is also possible to control the coagulation rate by adding a small amount of a solvent that dissolves the polymer to the coagulation bath.

【0032】凝固浴の温度は、−30〜90℃、好まし
くは0〜90℃、さらに好ましくは0〜80℃である。
凝固浴の温度が90℃を超えたり、−30℃未満である
と、凝固浴中の中空糸状膜の表面状態が安定しにくい。
The temperature of the coagulation bath is -30 to 90 ° C, preferably 0 to 90 ° C, more preferably 0 to 80 ° C.
When the temperature of the coagulation bath is higher than 90 ° C or lower than -30 ° C, it is difficult to stabilize the surface state of the hollow fiber membrane in the coagulation bath.

【0033】また、脱溶剤洗浄後の乾燥は、ポリビニル
ピロリドンを変性又は分解しない方法であれば良く、特
に限定されない。但し、乾燥温度は、120℃以下であ
ることが好ましく、さらに好ましくは100℃以下であ
る。120℃を超えるとポリビニルピロリドンが変性お
よび分解するために、膜孔保持剤を用いなくても得られ
た乾燥膜からの溶出量が増えることから好ましくない。
Further, the drying after washing with a solvent is not particularly limited as long as it is a method which does not modify or decompose polyvinylpyrrolidone. However, the drying temperature is preferably 120 ° C. or lower, and more preferably 100 ° C. or lower. If it exceeds 120 ° C., polyvinylpyrrolidone is denatured and decomposed, and the amount eluted from the dried film obtained without using a pore-holding agent increases, which is not preferable.

【0034】さらに、乾燥後の膜に電子線及びγ線等の
放射線を照射することにより、膜中のPVPの一部を水
に不溶化できることから、膜からの溶出量をより低減す
ることが可能である。放射線の照射は、モジュール化前
又はモジュール化後のどちらでも良い。また、膜中の全
PVPを不溶化してしまうと、溶出量を低減できる一方
で、透析時にロイコペニア症状が観察されることから好
ましくない。
Further, by irradiating the dried film with radiation such as electron beam and γ-ray, a part of PVP in the film can be insolubilized in water, so that the elution amount from the film can be further reduced. Is. Irradiation may be performed before or after modularization. Further, if all the PVP in the membrane is insolubilized, the elution amount can be reduced, but leukopenia symptoms are observed during dialysis, which is not preferable.

【0035】本発明でいう水に不溶であるPVPとは、
膜中の全PVP量から水に可溶であるPVP量を差し引
いたものである。膜中の全PVP量は、窒素及びイオウ
の元素分析により容易に算出することができる。また、
水に可溶であるPVP量は、以下の方法により求めるこ
とができる。膜をN−メチル−2−ピロリドンで完全に
溶解した後、得られたポリマー溶液に水を添加してポリ
スルホン系ポリマーを完全に沈殿させる。さらに該ポリ
マー溶液を静置した後、上澄み液中のPVP量を液体ク
ロマトグラフィーで定量することにより水に可溶である
PVPを定量することができる。
The water-insoluble PVP referred to in the present invention is
It is obtained by subtracting the amount of PVP soluble in water from the total amount of PVP in the membrane. The total amount of PVP in the film can be easily calculated by elemental analysis of nitrogen and sulfur. Also,
The amount of PVP soluble in water can be determined by the following method. After completely dissolving the membrane with N-methyl-2-pyrrolidone, water is added to the obtained polymer solution to completely precipitate the polysulfone-based polymer. After allowing the polymer solution to stand still, the amount of PVP in the supernatant can be quantified by liquid chromatography to quantify the PVP soluble in water.

【0036】本発明の製造方法は、膜孔保持剤を含まな
い湿潤膜を120℃以下の温度で乾燥することを特徴と
し、本製造方法を用いて得られた膜は、膜孔保持剤を含
まない乾燥膜であって、膜の外表面から内表面緻密層に
向かって孔径が連続的に小さくなるスポンジ構造からな
り、純水の透水量が10mL/(m2・hr・mmH
g)以上、重量平均分子量40,000のポリビニルピ
ロリドンの透過率が75%以下で、且つ牛血漿系におけ
るアルブミンの透過率が0.3%未満であることを特徴
とする中空糸状血液浄化膜である。
The manufacturing method of the present invention is characterized in that a wet membrane containing no pore-holding agent is dried at a temperature of 120 ° C. or lower, and the membrane obtained by this manufacturing method contains the pore-holding agent. It is a dry film that does not contain a sponge structure in which the pore size continuously decreases from the outer surface of the film to the inner surface dense layer, and the pure water permeability is 10 mL / (m 2 · hr · mmH
A hollow fiber blood purification membrane, characterized in that the transmittance of polyvinylpyrrolidone having a weight average molecular weight of 40,000 is 75% or less and the transmittance of albumin in bovine plasma system is less than 0.3%. is there.

【0037】最近の血液透析療法では、透析アミロイド
病状の改善のために原因物質とされているβ2−ミクロ
グロブリン(分子量:11,800)を十分に透過させ
るが、アルブミン(分子量:67,000)はほとんど
透過させない分画性を有する膜が求められており、本発
明の膜は、牛血漿系におけるアルブミンの透過率が0.
3%以下である。アルブミンの透過率が0.3%を超え
ることは体内に有効なアルブミンを大きく損失すること
を意味することから血液透析膜としては好ましくない。
In the recent hemodialysis therapy, β2-microglobulin (molecular weight: 11,800), which is a causative substance for improving dialysis amyloid pathology, is sufficiently permeated, but albumin (molecular weight: 67,000) is used. There is a demand for a membrane having a fractional property that almost does not allow permeation, and the membrane of the present invention has an albumin permeability of 0.
It is 3% or less. An albumin permeability of more than 0.3% means a large loss of effective albumin in the body, and is not preferable as a hemodialysis membrane.

【0038】また、純水の透水量が10mL/(m2
hr・mmHg)以上の膜においては、ポリビニルピロ
リドンの透過率(A(%))とβ2−ミクログロブリン
のクリアランス(B(mL/分))とには下記の式
(4)に示す一次関数的な相関関係が存在する。クリア
ランス評価には1.5m2の有効膜面積を有する透析仕
様のモジュールに成形・加工することが必要であるが、
本評価方法では簡易的に測定可能であり、クリアランス
を容易に推測することが可能である。 B(mL/分)=0.636A+29.99 (4)
Further, the amount of pure water permeated is 10 mL / (m 2 ·
In the case of a membrane having a thickness of hr · mmHg) or more, the permeability (A (%)) of polyvinylpyrrolidone and the clearance (B (mL / min)) of β2-microglobulin are expressed by the following linear function (4). There is a strong correlation. For clearance evaluation, it is necessary to mold and process into a dialysis-specification module with an effective membrane area of 1.5 m 2 .
With this evaluation method, it is possible to easily measure, and it is possible to easily estimate the clearance. B (mL / min) = 0.636A + 29.99 (4)

【0039】ここで、β2−ミクログロブリンのクリア
ランスは、1.5m2の有効膜面積のモジュールに、血
液流量200mL/分(膜内表面側)、透析液流量50
0mL/分(膜外表面側)の条件下で日本人工臓器学会
の性能評価基準に従い透析測定したものである。
Here, the clearance of β2-microglobulin is such that a module having an effective membrane area of 1.5 m 2 has a blood flow rate of 200 mL / min (inner membrane surface side) and a dialysate flow rate of 50.
It is measured by dialysis according to the performance evaluation standard of the Japanese Society for Artificial Organs under the condition of 0 mL / min (outer membrane surface side).

【0040】β2−ミクログロブリンのクリアランス
は、透析患者の体力や病状及び病状の進行度に合わせて
様々なものが要求されているが、ポリビニルピロリドン
の透過率が75%を超えるとアルブミンの透過率が0.
3%を超えてしまうことから、ポリビニルピロリドンの
透過率は75%以下であることが必要である。
Various β2-microglobulin clearances are required depending on the physical strength of the dialysis patient, the medical condition, and the progress of the medical condition. When the polyvinylpyrrolidone permeability exceeds 75%, the albumin permeability is higher than 75%. Is 0.
Since it exceeds 3%, it is necessary that the transmittance of polyvinylpyrrolidone is 75% or less.

【0041】また、本発明の製造方法により作られた膜
は,膜孔保持剤を製造工程で使用してないことから、膜
孔保持剤由来の溶出物は存在しない。従って、本発明の
膜の溶出物試験液の吸光度は0.04未満であり、且つ
該試験液中に膜孔保持剤を含まない。ここで、溶出物試
験液とは、人工腎臓装置承認基準に基づき調整したもの
であり、2cmに切断した乾燥中空糸状膜1.5gと注
射用蒸留水150mLを日本薬局方の注射用ガラス容器
試験のアルカリ溶出試験に適合するガラス容器に入れ、
70±5℃で1時間加温し、冷却後膜を取り除いた後蒸
留水を加えて150mLとしたものを意味する。吸光度
は220〜350nmでの最大吸収波長を示す波長にて
紫外吸収スペクトルで測定する。人工腎臓装置承認基準
では吸光度を0.1以下にすることが定められている
が、本発明の膜は膜孔保持剤を保持しないことから0.
04未満を達成することが可能である。また、膜孔保持
剤の有無については、該試験液を濃縮又は水分除去した
ものをガスクロマトグラフィー、液体クロマトグラフィ
ー、示差屈折系、紫外分光光度計、赤外線吸光光度法、
核磁気共鳴分光法、及び元素分析等の公知の方法により
測定することにより検知可能である。また、膜中に膜孔
保持剤を含むか否かについてもこれらの測定方法により
検知可能である。
In addition, since the membrane produced by the production method of the present invention does not use the membrane pore retaining agent in the production process, there is no eluate derived from the membrane pore retaining agent. Therefore, the absorbance of the eluate test solution for the membrane of the present invention is less than 0.04, and the test solution does not contain a membrane pore retaining agent. Here, the eluate test liquid was prepared based on the approval criteria of the artificial kidney device, and 1.5 g of the dry hollow fiber membrane cut into 2 cm and 150 mL of distilled water for injection were tested in a glass container for injection in the Japanese Pharmacopoeia. Put it in a glass container compatible with the alkaline elution test of
It means that the mixture was heated at 70 ± 5 ° C. for 1 hour, and after cooling, the membrane was removed and distilled water was added to make 150 mL. The absorbance is measured by an ultraviolet absorption spectrum at a wavelength showing a maximum absorption wavelength at 220 to 350 nm. The artificial kidney device approval standard stipulates that the absorbance should be 0.1 or less, but since the membrane of the present invention does not retain the membrane pore retaining agent, it is 0.
It is possible to achieve less than 04. Further, with respect to the presence or absence of a membrane pore-holding agent, gas chromatographic, liquid chromatography, differential refraction system, ultraviolet spectrophotometer, infrared absorption spectrophotometric method in which the test solution is concentrated or water is removed,
It can be detected by measuring by a known method such as nuclear magnetic resonance spectroscopy and elemental analysis. Further, it is possible to detect whether or not the membrane pore retaining agent is contained in the membrane by these measuring methods.

【0042】本発明の製造方法により作られた膜は、ポ
リスルホン系ポリマーとポリビニルピロリドンからな
り、膜内表面におけるポリビニルピロリドンの濃度が3
0〜45重量%である。膜の血液適合性に重要な因子
は、血液が接する膜内表面の親水性であり、ポリビニル
ピロリドン(以下単に「PVP」ともいう)を含有する
ポリスルホン系膜では、膜内表面のPVP濃度が重要で
ある。膜内表面のPVP濃度が低すぎると膜内表面が疎
水性を示し、血漿タンパク質が吸着しやすく、血液の凝
固も起こりやすい。すなわち、膜の血液適合性不良とな
る。逆に膜内表面のPVP濃度が高すぎると、PVPの
血液系への溶出量が増加し本発明の目的や用途にとって
は好ましくない結果を与える。従って、本発明での膜内
表面のPVPの濃度は、30〜40%の範囲であり、好
ましくは33〜40%である。
The membrane produced by the production method of the present invention comprises a polysulfone-based polymer and polyvinylpyrrolidone, and the concentration of polyvinylpyrrolidone on the inner surface of the membrane is 3
It is 0 to 45% by weight. An important factor for the blood compatibility of the membrane is the hydrophilicity of the inner surface of the membrane that is in contact with blood. In a polysulfone-based membrane containing polyvinylpyrrolidone (hereinafter also simply referred to as “PVP”), the PVP concentration on the inner surface of the membrane is important. Is. When the PVP concentration on the inner surface of the membrane is too low, the inner surface of the membrane exhibits hydrophobicity, plasma proteins are easily adsorbed, and blood coagulation easily occurs. That is, the blood compatibility of the membrane is poor. On the other hand, if the PVP concentration on the inner surface of the membrane is too high, the amount of PVP eluted into the blood system increases, which is not desirable for the purpose and application of the present invention. Therefore, the concentration of PVP on the inner surface of the membrane in the present invention is in the range of 30-40%, preferably 33-40%.

【0043】膜内表面のPVP濃度は、エックス線光量
子スペクトル(X−ray Photoelectro
n spectroscopy、以下XPS)によって
決定される。すなわち、膜内表面のXPSの測定は、試
料を両面テープ上に並べた後、カッターで繊維軸方向に
切開し、膜の内側が表になるように押し広げた後、通常
の方法で測定する。すなわち、C1s、O1s、N1
s、S2pスペクトルの面積強度から、装置付属の相対
感度係数を用いて窒素の表面濃度(窒素原子濃度)とイ
オウの表面濃度(イオウ原子濃度)から求めた濃度をい
うものであり、ポリスルホン系ポリマーが(2)式の構
造であるときには(5)式により計算で求めることがで
きる。 PVP濃度(重量%)=C11×100/(C11+C22) (5) ここで、C1:窒素原子濃度(%) C2:イオウ原子濃度(%) M1:PVPの繰り返しユニットの分子量(111) M2:ポリスルホン系ポリマーの繰り返しユニットの分
子量(442)
The PVP concentration on the inner surface of the film was determined by X-ray photoelectron spectroscopy (X-ray Photoelectron spectroscopy).
n spectroscopy, hereinafter XPS). That is, the XPS of the inner surface of the film is measured by arranging the samples on the double-sided tape, incising in the fiber axis direction with a cutter, expanding the inside of the film so that it is on the front side, and then measuring by an ordinary method. . That is, C1s, O1s, N1
It means the concentration obtained from the surface intensity of s, S2p spectrum and the surface concentration of nitrogen (nitrogen atom concentration) and the surface concentration of sulfur (sulfur atom concentration) using the relative sensitivity coefficient attached to the device. When is the structure of equation (2), it can be calculated by equation (5). PVP concentration (% by weight) = C 1 M 1 × 100 / (C 1 M 1 + C 2 M 2 ) (5) where C 1 : nitrogen atom concentration (%) C 2 : sulfur atom concentration (%) M 1 : Molecular weight of repeating unit of PVP (111) M 2 : Molecular weight of repeating unit of polysulfone polymer (442)

【0044】以下にこの発明の実施例を示すが、本発明
は、これに限定されるものではない。 (血小板粘着量の測定)膜への血小板粘着量の測定は、
以下の操作手順で行った。長さ15cmの中空糸状膜を
10本束ねて小型モジュールを作製し、該モジュールに
ヘパリン添加ヒト新鮮血を線速1.0cm/秒にて15
分間通過させ、続いて生理食塩水を1分間通過させた。
次に中空糸状膜を5mm間隔程度に細断し、0.5%ポ
リエチレングリコールアルキルフェニルエーテル(和光
純薬社製商品名トリトンX−100)を含む生理食塩水
中で超音波照射して膜表面に粘着した血小板から放出さ
れる乳酸脱水素酵素(以下、「LDH」という)を定量
することにより膜面積(内表面換算)当たりのLDH活
性として算出した。酵素活性の測定はLDHモノテスト
キット(ベーリンガー・マンハイム・山之内社製)を使
用した。なお、陽性対照としてPVPを含有しない膜
(γ線照射前の実施例1の膜を有効塩素濃度1500p
pmの次亜塩素酸ナトリウムに2日間浸漬した後、エタ
ノールに1日間浸漬することにより得られたもの)を用
い、試験品と同時に比較した。
Examples of the present invention will be shown below, but the present invention is not limited thereto. (Measurement of Platelet Adhesion Amount)
The procedure was as follows. A small module was prepared by bundling 10 hollow fiber membranes having a length of 15 cm, and heparin-added human fresh blood was added to the module at a linear velocity of 1.0 cm / sec.
It was passed for 1 minute, followed by saline for 1 minute.
Next, the hollow fiber membrane was shredded at intervals of about 5 mm, and the membrane surface was irradiated with ultrasonic waves in physiological saline containing 0.5% polyethylene glycol alkylphenyl ether (trade name Triton X-100 manufactured by Wako Pure Chemical Industries, Ltd.). The lactate dehydrogenase (hereinafter referred to as “LDH”) released from the adhered platelets was quantified to calculate the LDH activity per membrane area (inner surface conversion). The LDH monotest kit (Boehringer Mannheim, Yamanouchi) was used to measure the enzyme activity. As a positive control, a film containing no PVP (the film of Example 1 before γ-ray irradiation was used, the effective chlorine concentration was 1500 p
(A sample obtained by immersing in pm of sodium hypochlorite for 2 days and then in ethanol for 1 day) was used and compared with the test product.

【0045】(血漿タンパク質吸着量)膜への血漿タン
パク質吸着量は、限外濾過時間を240分にした以外は
アルブミンの透過率測定と同様な操作を行った後、生理
食塩水で1分間洗浄した。次に中空糸状膜を5mm間隔
程度に細断し、1.0%ラウリル酸ナトリウムを含む生
理食塩水中で攪拌して抽出した血漿タンパク質を定量す
ることにより膜重量当たりのタンパク質吸着量として算
出した。タンパク質濃度はBCAプロテインアッセイ
(ピアース社製)を使用した。なお、陽性対照としてP
VPを含有しない膜(γ線照射前の実施例1の膜を有効
塩素濃度1500ppmの次亜塩素酸ナトリウムに2日
間浸漬した後、エタノールに1日間浸漬することにより
得られたもの)を用い、試験品と同時に比較した。
(Amount of adsorbed plasma protein) The amount of adsorbed plasma protein on the membrane was the same as that for measuring the transmittance of albumin except that the ultrafiltration time was 240 minutes, followed by washing with physiological saline for 1 minute. did. Next, the hollow fiber membrane was shredded at intervals of about 5 mm, and the plasma protein extracted by stirring in physiological saline containing 1.0% sodium laurate was quantified to calculate the protein adsorption amount per membrane weight. For the protein concentration, BCA protein assay (Pierce) was used. As a positive control, P
A film containing no VP (obtained by immersing the film of Example 1 before γ-ray irradiation in sodium hypochlorite having an effective chlorine concentration of 1500 ppm for 2 days and then in ethanol for 1 day) was used. A comparison was made at the same time as the test product.

【0046】[0046]

【実施例1】ポリスルホン(Amoco Engine
ering Polymers社製P−1700)1
8.0重量%、ポリビニルピロリドン(BASF社製
K90、重量平均分子量1,200,000)4.3重
量%を、N,N−ジメチルアセトアミド77.7重量%
に溶解して均一な溶液とした。ここで、製膜原液中のポ
リスルホンに対するポリビニルピロリドンの混和比率は
23.9重量%であった。この製膜原液を60℃に保
ち、N,N−ジメチルアセトアミド30重量%と水70
重量%の混合溶液からなる内部液とともに、紡口(2重
環状ノズル 0.1mm−0.2mm−0.3mm)か
ら吐出させ、0.96mのエアギャップを通過させて7
5℃の水からなる凝固浴へ浸漬した。この時、紡口から
凝固浴までを円筒状の筒で囲み、筒の中に水蒸気を含ん
だ窒素ガスを流しながら、筒の中の湿度を54.5%、
温度を51℃にコントロールした。紡速は、80m/分
に固定した。ここで、紡速に対するエアギャップの比率
は、0.012m/(m/分)であった。ここで得られ
た湿潤膜の透水量、アルブミン透過率、PVP透過率は
表1に示すとおりであった。
Example 1 Polysulfone (Amoco Engine)
ering Polymers P-1700) 1
8.0% by weight, polyvinylpyrrolidone (manufactured by BASF)
K90, weight average molecular weight 1,200,000) 4.3% by weight, N, N-dimethylacetamide 77.7% by weight
To form a uniform solution. Here, the mixing ratio of polyvinylpyrrolidone to polysulfone in the film-forming stock solution was 23.9% by weight. The film-forming stock solution was kept at 60 ° C., and 30% by weight of N, N-dimethylacetamide and 70% of water were added.
Along with an internal liquid consisting of a mixed solution of wt%, it was discharged from a spinneret (double annular nozzle 0.1 mm-0.2 mm-0.3 mm) and passed through an air gap of 0.96 m to obtain 7
It was immersed in a coagulation bath consisting of water at 5 ° C. At this time, the cylinder from the spinneret to the coagulation bath was surrounded by a cylindrical tube, and while the nitrogen gas containing water vapor was flown into the tube, the humidity in the tube was 54.5%,
The temperature was controlled at 51 ° C. The spinning speed was fixed at 80 m / min. Here, the ratio of the air gap to the spinning speed was 0.012 m / (m / min). The water permeability, albumin permeability, and PVP permeability of the wet membrane obtained here are as shown in Table 1.

【0047】巻き取った糸束を切断後、束の切断面上方
から80℃の熱水シャワーを2時間かけて洗浄すること
により膜中の残溶剤を除去した。この膜をさらに87℃
の熱風で7時間乾燥することにより含水量が1%未満の
乾燥膜を得た。さらに、得られた乾燥膜に2.5Mra
dのγ線を照射することにより膜中のPVPの一部を不
溶化した。この膜は、膜内部に大きさが10μmを超え
るポリマーの欠損部位を含まず、膜の外表面から内表面
緻密層に向かって孔径が連続的に小さくなるスポンジ構
造であった。また、内表面緻密層の厚さは10μm程度
であった。この乾燥膜の性能を表1に示す。
After cutting the wound yarn bundle, the residual solvent in the film was removed by washing from above the cut surface of the bundle with a hot water shower at 80 ° C. for 2 hours. This film is added to 87 ℃
By drying with hot air for 7 hours, a dry film having a water content of less than 1% was obtained. Furthermore, 2.5 Mra was added to the obtained dry film.
A part of PVP in the film was insolubilized by irradiating with γ ray of d. This membrane had a sponge structure which did not include a polymer defect site having a size of more than 10 μm inside the membrane and in which the pore diameter continuously decreased from the outer surface of the membrane toward the inner surface dense layer. The thickness of the inner surface dense layer was about 10 μm. The performance of this dry film is shown in Table 1.

【0048】この膜を有効濾過面積1.5m2のモジュ
ールにしてβ2−ミクログロブリンのクリアランスを実
測したところ、32mL/分で有ることが分かり、PV
Pの透過率を式(5)に代入して算出したクリアランス
32.5mL/分と同等であることが明らかとなった。
さらに、該モジュールにて尿素、ビタミンB12の透過
測定を行ったところ、尿素のクリアランスと透過率はそ
れぞれ185mL/分、83%であった。また、ビタミ
ンB12については同様に95mL/分、48%であっ
た。測定は、
When this membrane was used as a module having an effective filtration area of 1.5 m 2 and the clearance of β2-microglobulin was measured, it was found that it was 32 mL / min.
It became clear that it was equivalent to the clearance of 32.5 mL / min calculated by substituting the transmittance of P into the equation (5).
Further, when permeation of urea and vitamin B12 was measured in the module, the clearance and permeation rate of urea were 185 mL / min and 83%, respectively. Similarly, for vitamin B12, it was 95 mL / min and 48%. The measurement is

【0039】と同様な方法で行った。また、膜中の全P
VP量の62%が、水に不溶であった。
The same procedure as described in the above was carried out. In addition, the total P in the film
62% of the VP amount was insoluble in water.

【0049】膜の溶出物試験をした結果、溶出物試験液
の吸光度は0.04以下であった。また、膜孔保持剤を
用いていないことから溶出物試験液中に膜孔保持剤は含
まれて無かった。さらに、この膜は陽性対照膜に比べ
て、血小板粘着量が低く(陽性対照膜43.4Unit
/m2)、且つ血漿タンパク質の粘着量も低いことが明
らかとなった(陽性対照膜62.5mg/g)。以上に
挙げた性能から、この膜は、膜からの溶出量が極めて少
なく、血液タンパク質や血小板の付着が少ないことが明
らかとなった。また、アルブミンの透過率が少なくβ2
−ミクログロブリンのクリアランスにも優れることから
透析性能にも優れた膜であることが分かった。
As a result of the eluate test of the membrane, the absorbance of the eluate test solution was 0.04 or less. Further, since the membrane pore retaining agent was not used, the eluate test solution did not contain the membrane pore retaining agent. In addition, this membrane had lower platelet adhesion than the positive control membrane (43.4 Unit positive control membrane).
/ M 2 ), and the amount of plasma protein adhered was also low (positive control membrane 62.5 mg / g). From the performance mentioned above, it was revealed that this membrane has an extremely small amount of elution from the membrane and little adhesion of blood proteins and platelets. In addition, albumin has a low permeability and β2
-It was found that the membrane was also excellent in dialysis performance because it was also excellent in clearance of microglobulin.

【0050】[0050]

【実施例2】製膜原液中のポリビニルピロリドンを4重
量%、N,N−ジメチルアセトアミドを78重量%とし
た以外は、実施例1と同様な操作を行った。この時の製
膜原液中のポリスルホンに対するポリビニルピロリドン
の混和比率は22.2重量%であった。この膜の性能を
乾燥前の湿潤膜の性能とともに表1に示す。この膜は、
膜からの溶出量が極めて少なく、血液タンパク質や血小
板の付着が少ないことが明らかとなった。また、アルブ
ミンの透過率が少なく、且つβ2−ミクログロブリンの
クリアランスにも優れることが示唆されたことから透析
性能にも優れた膜であることが分かった。
Example 2 The same operation as in Example 1 was performed except that polyvinylpyrrolidone was 4% by weight and N, N-dimethylacetamide was 78% by weight in the stock solution for film formation. At this time, the mixing ratio of polyvinylpyrrolidone to polysulfone in the film-forming stock solution was 22.2% by weight. The performance of this membrane is shown in Table 1 along with the performance of the wet membrane before drying. This membrane is
It was revealed that the amount of elution from the membrane was extremely small and the adhesion of blood proteins and platelets was small. Further, it was suggested that the membrane has a low albumin permeability and an excellent β2-microglobulin clearance, and thus it was found that the membrane has excellent dialysis performance.

【0051】[0051]

【実施例3】製膜原液中のポリビニルピロリドンを4.
8重量%、N,N−ジメチルアセトアミドを77.2重
量%とした以外は、実施例1と同様な操作を行った。こ
の時の製膜原液中のポリスルホンに対するポリビニルピ
ロリドンの混和比率は26.7重量%であった。この膜
の性能を乾燥前の湿潤膜の性能とともに表1に示す。こ
の膜は、膜からの溶出量が極めて少なく、血液タンパク
質や血小板の付着が少ないことが明らかとなった。ま
た、アルブミンの透過率が少なく、且つβ2−ミクログ
ロブリンのクリアランスにも優れることが示唆されたこ
とから透析性能にも優れた膜であることが分かった。
[Example 3] The polyvinylpyrrolidone in the stock solution for film formation was changed to 4.
The same operation as in Example 1 was performed except that 8% by weight and 77.2% by weight of N, N-dimethylacetamide were used. At this time, the mixing ratio of polyvinylpyrrolidone to polysulfone in the film-forming stock solution was 26.7% by weight. The performance of this membrane is shown in Table 1 along with the performance of the wet membrane before drying. It was revealed that the amount of elution from the membrane was extremely small and that blood proteins and platelets were not attached to this membrane. Further, it was suggested that the membrane has a low albumin permeability and an excellent β2-microglobulin clearance, and thus it was found that the membrane has excellent dialysis performance.

【0052】[0052]

【実施例4】内部液にN,N−ジメチルアセトアミド5
2重量%と水48重量%からなる混和溶液を用いた以外
は、実施例3と同様な操作を行った。この膜の性能を乾
燥前の湿潤膜の性能とともに表1に示す。この膜は、膜
からの溶出量が極めて少なく、血液タンパク質や血小板
の付着が少ないことが明らかとなった。また、アルブミ
ンの透過率が少なく、且つβ2−ミクログロブリンのク
リアランスにも優れることが示唆されたことから透析性
能にも優れた膜であることが分かった。
[Example 4] N, N-dimethylacetamide 5 was added to the internal liquid.
The same operation as in Example 3 was performed except that a mixed solution containing 2% by weight and 48% by weight of water was used. The performance of this membrane is shown in Table 1 along with the performance of the wet membrane before drying. It was revealed that the amount of elution from the membrane was extremely small and that blood proteins and platelets were not attached to this membrane. Further, it was suggested that the membrane has a low albumin permeability and an excellent β2-microglobulin clearance, and thus it was found that the membrane has excellent dialysis performance.

【0053】[0053]

【比較例1】γ線照射しない以外は、実施例1と同様な
操作を行った。この結果を表2に示す。PVPの溶出の
ため溶出試験液の吸光度が0.04を超えることが明ら
かとなった。
[Comparative Example 1] The same operation as in Example 1 was carried out except that no γ-ray irradiation was performed. The results are shown in Table 2. It was revealed that the absorbance of the dissolution test liquid exceeded 0.04 due to the dissolution of PVP.

【0054】[0054]

【比較例2】製膜原液中のポリビニルピロリドンを5.
0重量%、N,N−ジメチルアセトアミドを77.0重
量%とした以外は、実施例1と同様な操作を行った。こ
の時の製膜原液中のポリスルホンに対するポリビニルピ
ロリドンの混和比率は27.8重量%であった。この膜
の性能を表2に示す。製膜原液中のポリスルホンに対す
るポリビニルピロリドンの混和比率が27重量%を超え
ているので、溶出量、膜内表面PVP濃度が増加してい
る。
[Comparative Example 2] The polyvinylpyrrolidone in the stock solution for film formation was changed to 5.
The same operation as in Example 1 was performed except that 0% by weight and 77.0% by weight of N, N-dimethylacetamide were used. At this time, the mixing ratio of polyvinylpyrrolidone to polysulfone in the film-forming stock solution was 27.8% by weight. The performance of this membrane is shown in Table 2. Since the mixing ratio of polyvinylpyrrolidone to polysulfone in the stock solution for film formation exceeds 27% by weight, the amount of elution and the concentration of PVP on the inner surface of the film are increased.

【0055】[0055]

【比較例3】製膜原液中のポリビニルピロリドンを3.
6重量%、N,N−ジメチルアセトアミドを78.4重
量%とした以外は、実施例1と同様な操作を行った。こ
の時の製膜原液中のポリスルホンに対するポリビニルピ
ロリドンの混和比率は20.0重量%であった。この膜
の性能を表2に示す。膜内表面のPVP量が30%を下
回っていることが明らかとなった。
[Comparative Example 3] Polyvinylpyrrolidone in the stock solution for film formation was compared with 3.
The same operation as in Example 1 was performed, except that 6% by weight and 78.4% by weight of N, N-dimethylacetamide were used. At this time, the mixing ratio of polyvinylpyrrolidone to polysulfone in the film-forming stock solution was 20.0% by weight. The performance of this membrane is shown in Table 2. It was revealed that the PVP amount on the inner surface of the film was less than 30%.

【0056】[0056]

【比較例4】内部液にN,N−ジメチルアセトアミド6
0重量%と水40重量%からなる混和溶液を用いた以外
は、実施例3と同様な操作を行った。この膜の性能を表
2に示す。この膜は、アルブミンの透過率が0.3%を
超えており、またPVPの透過率も75%を超える性能
であった。
[Comparative Example 4] N, N-dimethylacetamide 6 was added to the inner liquid.
The same operation as in Example 3 was performed except that a mixed solution of 0% by weight and 40% by weight of water was used. The performance of this membrane is shown in Table 2. This membrane had an albumin transmittance of more than 0.3% and a PVP transmittance of more than 75%.

【0057】[0057]

【比較例5】内部液にN,N−ジメチルアセトアミド1
0重量%と水90重量%からなる混和溶液を用いた以外
は、実施例1と同様な操作を行った。この膜の性能を表
2に示す。純水の透水量が10mL/(m2・hr・m
mHg)を下回る性能であった。
[Comparative Example 5] N, N-dimethylacetamide 1 was used as the internal liquid.
The same operation as in Example 1 was performed except that a mixed solution of 0% by weight and 90% by weight of water was used. The performance of this membrane is shown in Table 2. Pure water permeability is 10mL / (m 2 · hr · m
The performance was lower than mHg).

【0058】[0058]

【比較例6】乾燥温度を170℃にした以外は、実施例
1と同様な操作を行った。この膜の性能を表2に示す。
この膜は、膜中の全てのPVPが水に不溶であった。こ
の膜を有効ろ過面積1.5m2のモジュールにして
Comparative Example 6 The same operation as in Example 1 was performed except that the drying temperature was 170 ° C. The performance of this membrane is shown in Table 2.
In this membrane, all PVP in the membrane was insoluble in water. This membrane is made into a module with an effective filtration area of 1.5 m 2.

【0039】に示した方法で臨床血液評価したところ、
透析患者の白血球数が一時的に低下するロイコペニア症
状が観察された。
When clinical blood was evaluated by the method shown in
Leukopenia symptoms were observed in which the white blood cell count in dialysis patients was temporarily reduced.

【0059】[0059]

【表1】 [Table 1]

【0060】[0060]

【表2】 [Table 2]

【0061】[0061]

【発明の効果】本発明の製造方法によって得られた膜
は、膜からの溶出量が極めて少なく、血液タンパク質や
血小板の付着が少ない優れた透析性能を有することから
医薬用途、医療用途、及び一般工業用途に用いることが
できる。
The membrane obtained by the production method of the present invention has an extremely small amount of elution from the membrane and has excellent dialysis performance with little adhesion of blood proteins and platelets. It can be used for industrial purposes.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成14年1月10日(2002.1.1
0)
[Submission date] January 10, 2002 (2002.1.1
0)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】すなわち本発明は、(1)膜孔保持剤を含
まず、純水の透水量が100mL/(m2・hr・mm
Hg)以上で、重量平均分子量40,000のポリビニ
ルピロリドンの透過率が75%を超え、且つ牛血漿系に
おけるアルブミンの透過率が0.3%以上である、ポリ
スルホン系ポリマーとポリビニルピロリドンからなる湿
潤膜を120℃以下の温度で乾燥することを特徴とす
る、(a)膜の外表面から内表面緻密層に向かって孔径
が連続的に小さくなるスポンジ構造からなり、(b)純
水の透水量が10mL/(m2・hr・mmHg)以
上、(c)重量平均分子量40,000のポリビニルピ
ロリドンの透過率が75%以下で、(d)牛血漿系にお
けるアルブミンの透過率が0.3%未満であり、(e)
膜の溶出物試験液の吸光度が0.04未満であり、溶出
物試験液中に膜孔保持剤を含まず、且つ(f)ポリスル
ホン系ポリマーとポリビニルピロリドンからなり、膜内
表面におけるポリビニルピロリドンの濃度が30〜45
重量%である中空糸状血液浄化膜の製造方法、(2)製
膜原液と内部液を2重環状ノズルから吐出させた後、エ
アギャップを通過させてから凝固浴で凝固させる中空糸
状膜の製造方法において、紡速に対するエアギャップの
比率が0.01〜0.1m/(m/分)であることを特
徴とする上記(1)の湿潤膜の製造方法、(3)製膜原
液が、ポリスルホン系ポリマー、ポリビニルピロリド
ン、及び溶剤からなり、ポリスルホン系ポリマーに対す
るポリビニルピロリドンの比率が18〜27重量%であ
ることを特徴とする上記(1)または(2)の製造方
法、(4)乾燥後に放射線照射することを特徴とする上
記(1)〜(3)のいずれかの製造方法、及び(5)中
空糸状血液浄化膜が、水に不溶であるポリビニルピロリ
ドンを含むことを特徴とする上記(1)〜(4)のいず
れかの血液浄化膜の製造方法、に関するものである。
That is, the present invention (1) does not contain a membrane pore-holding agent, and has a pure water permeability of 100 mL / (m 2 · hr · mm).
In Hg) or higher, a weight average polyvinylpyrrolidone transmittance of molecular weight 40,000 is more than 75%, and the transmittance of albumin in bovine blood plasma system is 0.3% or more, poly
A pore size from the outer surface of the membrane (a) to the inner surface dense layer, which is characterized in that a wet membrane composed of a sulfone polymer and polyvinylpyrrolidone is dried at a temperature of 120 ° C. or lower.
Has a sponge structure in which
Water permeability of 10mL / (m 2 · hr · mmHg) or less
Above, (c) Polyvinylpyrrole having a weight average molecular weight of 40,000.
The transmittance of loridone is 75% or less, and (d) bovine plasma system
The albumin has a transmittance of less than 0.3%, (e)
The absorbance of the membrane eluate test solution is less than 0.04, and the elution
(F) Polysulfone containing no pore-holding agent in the test liquid
Made of phon polymer and polyvinylpyrrolidone
The concentration of polyvinylpyrrolidone on the surface is 30 to 45
A method for producing a hollow fiber blood purification membrane in which the weight percentage is (2) A hollow fiber membrane which is produced by discharging a membrane-forming stock solution and an internal solution from a double annular nozzle, passing through an air gap, and then coagulating in a coagulation bath. In the method, the ratio of the air gap to the spinning speed is 0.01 to 0.1 m / (m / min), the method for producing a wet membrane according to (1) above, and (3) a membrane-forming stock solution, The production method according to (1) or (2) above, which comprises a polysulfone-based polymer, polyvinylpyrrolidone, and a solvent, and the ratio of polyvinylpyrrolidone to the polysulfone-based polymer is 18 to 27% by weight. (4) After drying Irradiation is performed, and the production method according to any one of (1) to (3) above, and (5) the hollow fiber blood purification membrane contains polyvinylpyrrolidone that is insoluble in water. Method for producing any of the blood purification membrane of (1) to (4) which relates.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08J 7/00 CEZ C08J 7/00 CEZ C08L 81/06 C08L 81/06 D01F 6/76 D01F 6/76 D //(C08L 81/06 C08L 39:06 39:06) Fターム(参考) 4C077 AA05 BB01 KK11 KK23 LL05 LL17 LL22 LL23 NN05 PP09 PP15 4D006 GA06 GA07 GA13 MA01 MA25 MA28 MB02 MB06 MB09 MB20 MC40X MC62X NA05 NA16 NA40 NA42 NA54 NA63 NA64 NA75 PA01 PB09 PB52 PC47 4F073 AA05 BA32 BA34 BB01 BB03 CA41 4J002 BJ002 CN031 GB00 GB01 4L035 BB04 DD03 EE20 GG08 MF01─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 identification code FI theme code (reference) C08J 7/00 CEZ C08J 7/00 CEZ C08L 81/06 C08L 81/06 D01F 6/76 D01F 6/76 D // (C08L 81/06 C08L 39:06 39:06) F term (reference) 4C077 AA05 BB01 KK11 KK23 LL05 LL17 LL22 LL23 NN05 PP09 PP15 4D006 GA06 GA07 GA13 MA01 MA25 MA28 MB02 MB06 MB09 MB20 MC40X MC62X NA05 NA54 NA40 NA40 NA40 NA40 NA40 NA40 NA40 NA63 NA64 NA75 PA01 PB09 PB52 PC47 4F073 AA05 BA32 BA34 BB01 BB03 CA41 4J002 BJ002 CN031 GB00 GB01 4L035 BB04 DD03 EE20 GG08 MF01

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 膜孔保持剤を含まず、純水の透水量が1
00mL/(m2・hr・mmHg)以上で、重量平均
分子量40,000のポリビニルピロリドンの透過率が
75%を超え、且つ牛血漿系におけるアルブミンの透過
率が0.3%以上である湿潤膜を120℃以下の温度で
乾燥することを特徴とする中空糸状血液浄化膜の製造方
法。
1. A pure water permeation amount of 1 which does not include a membrane pore holding agent.
A wet membrane having a permeability of polyvinylpyrrolidone having a weight average molecular weight of 40,000 of more than 75% and an albumin permeability of bovine plasma system of 0.3% or more at 00 mL / (m 2 · hr · mmHg) or more. Is dried at a temperature of 120 ° C. or lower, and a method for producing a hollow fiber blood purification membrane.
【請求項2】 製膜原液と内部液を2重環状ノズルから
吐出させた後、エアギャップを通過させてから凝固浴で
凝固させる中空糸状膜の製造方法において、紡速に対す
るエアギャップの比率が0.01〜0.1m/(m/
分)であることを特徴とする請求項1に記載の湿潤膜の
製造方法。
2. A method for producing a hollow fiber membrane in which a membrane-forming raw solution and an internal solution are discharged from a double annular nozzle and then passed through an air gap and then coagulated in a coagulation bath. 0.01-0.1 m / (m /
The method for producing a wet film according to claim 1, wherein
【請求項3】 製膜原液が、ポリスルホン系ポリマー、
ポリビニルピロリドン、及び溶剤からなり、ポリスルホ
ン系ポリマーに対するポリビニルピロリドンの比率が1
8〜27重量%であることを特徴とする請求項1または
2に記載の製造方法。
3. The membrane-forming stock solution is a polysulfone-based polymer,
Consisting of polyvinylpyrrolidone and solvent, the ratio of polyvinylpyrrolidone to polysulfone-based polymer is 1
It is 8 to 27% by weight, and the manufacturing method according to claim 1 or 2.
【請求項4】 乾燥後に放射線照射することを特徴とす
る請求項1〜3のいずれかに記載の製造方法。
4. The method according to any one of claims 1 to 3, which comprises irradiating with radiation after drying.
【請求項5】 中空糸状血液浄化膜が、膜孔保持剤を含
まない乾燥膜であって、膜の外表面から内表面緻密層に
向かって孔径が連続的に小さくなるスポンジ構造からな
り、純水の透水量が10mL/(m2・hr・mmH
g)以上、重量平均分子量40,000のポリビニルピ
ロリドンの透過率が75%以下で、且つ牛血漿系におけ
るアルブミンの透過率が0.3%未満であることを特徴
とする請求項1〜4のいずれかに記載の血液浄化膜の製
造方法。
5. The hollow fiber blood purification membrane is a dry membrane that does not contain a membrane pore retaining agent, and has a sponge structure in which the pore size continuously decreases from the outer surface of the membrane toward the inner surface dense layer. Water permeability is 10mL / (m 2 · hr · mmH
g) or more, the transmittance of polyvinylpyrrolidone having a weight average molecular weight of 40,000 is 75% or less, and the transmittance of albumin in the bovine plasma system is less than 0.3%. The method for producing a blood purification membrane according to any one of claims.
【請求項6】 中空糸状血液浄化膜が、膜の溶出物試験
液の吸光度が0.04未満であり、且つ該溶出物試験液
中に膜孔保持剤を含まないことを特徴とする請求項5に
記載の血液浄化膜の製造方法。
6. The hollow fiber blood purification membrane is characterized in that the absorbance of the eluate test solution of the membrane is less than 0.04, and the eluate test solution does not contain a membrane pore retaining agent. 5. The method for producing the blood purification membrane according to 5.
【請求項7】 中空糸状血液浄化膜が、ポリスルホン系
ポリマーとポリビニルピロリドンからなり、膜内表面に
おけるポリビニルピロリドンの濃度が30〜45重量%
であることを特徴とする請求項5又は6に記載の血液浄
化膜の製造方法。
7. The hollow fiber blood purification membrane is composed of a polysulfone-based polymer and polyvinylpyrrolidone, and the concentration of polyvinylpyrrolidone on the inner surface of the membrane is 30 to 45% by weight.
The method for producing a blood purification membrane according to claim 5 or 6, wherein
【請求項8】 中空糸状血液浄化膜が、水に不溶である
ポリビニルピロリドンを含むことを特徴とする請求項5
〜7のいずれかに記載の血液浄化膜の製造方法。
8. The hollow fiber blood purification membrane contains polyvinylpyrrolidone which is insoluble in water.
8. The method for producing a blood purification membrane according to any one of 7 to 7.
JP2001222446A 2001-07-24 2001-07-24 Method for producing blood purification membrane Expired - Fee Related JP3281364B1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2001222446A JP3281364B1 (en) 2001-07-24 2001-07-24 Method for producing blood purification membrane
EP02751665A EP1410839B1 (en) 2001-07-24 2002-07-24 Hollow fiber membrane for purifying blood
PCT/JP2002/007501 WO2003009926A1 (en) 2001-07-24 2002-07-24 Hollow fiber membrane for purifying blood
KR1020047000964A KR100829692B1 (en) 2001-07-24 2002-07-24 Hollow Fiber Membrane for Purifying Blood
US10/484,712 US7087168B2 (en) 2001-07-24 2002-07-24 Hollow fiber membrane for purifying blood
ES02751665T ES2340762T3 (en) 2001-07-24 2002-07-24 FIBER HOLLOW MEMBRANE TO PURIFY BLOOD.
AT02751665T ATE466649T1 (en) 2001-07-24 2002-07-24 HOLLOW FIBER MEMBRANE FOR CLEANING BLOOD
DE60236290T DE60236290D1 (en) 2001-07-24 2002-07-24 HOLLOW FIBER MEMBRANE FOR CLEANSING BLOOD
CNB028161661A CN1263534C (en) 2001-07-24 2002-07-24 Hollow fiber membrane for purifying blood and method for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001222446A JP3281364B1 (en) 2001-07-24 2001-07-24 Method for producing blood purification membrane

Publications (2)

Publication Number Publication Date
JP3281364B1 JP3281364B1 (en) 2002-05-13
JP2003033632A true JP2003033632A (en) 2003-02-04

Family

ID=19055924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001222446A Expired - Fee Related JP3281364B1 (en) 2001-07-24 2001-07-24 Method for producing blood purification membrane

Country Status (1)

Country Link
JP (1) JP3281364B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006288413A (en) * 2005-04-05 2006-10-26 Toyobo Co Ltd Hollow fiber membrane type hemocatharsis apparatus
WO2010090174A1 (en) * 2009-02-04 2010-08-12 東洋紡績株式会社 Hollow-fiber membrane, process for producing same, and blood purification module
JP2013009962A (en) * 2012-07-30 2013-01-17 Toyobo Co Ltd Hollow fiber membrane type hemocatharsis apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004024216A1 (en) * 2002-09-12 2004-03-25 Asahi Medical Co., Ltd. Plasma purification membrane and plasma purification system
CN114177778B (en) * 2021-09-03 2023-04-11 中南大学湘雅医院 Modified blood purification membrane and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006288413A (en) * 2005-04-05 2006-10-26 Toyobo Co Ltd Hollow fiber membrane type hemocatharsis apparatus
WO2010090174A1 (en) * 2009-02-04 2010-08-12 東洋紡績株式会社 Hollow-fiber membrane, process for producing same, and blood purification module
US8840788B2 (en) 2009-02-04 2014-09-23 Toyo Boseki Kabushiki Kaisha Hollow fiber membrane, method for manufacturing the same, and blood purification module
JP5720249B2 (en) * 2009-02-04 2015-05-20 東洋紡株式会社 Hollow fiber membrane, method for producing the same, and blood purification module
JP2013009962A (en) * 2012-07-30 2013-01-17 Toyobo Co Ltd Hollow fiber membrane type hemocatharsis apparatus

Also Published As

Publication number Publication date
JP3281364B1 (en) 2002-05-13

Similar Documents

Publication Publication Date Title
JP4211168B2 (en) Dialyzer manufacturing method and sterilization method
US5496637A (en) High efficiency removal of low density lipoprotein-cholesterol from whole blood
JP4453248B2 (en) Method for producing hollow fiber membrane and hollow fiber membrane module
KR100829692B1 (en) Hollow Fiber Membrane for Purifying Blood
JP2007215569A (en) Plasma component separator and blood purifying apparatus by double filtration
JP3714686B2 (en) Polysulfone-based hollow fiber membrane and method for producing the same
JP3934340B2 (en) Blood purifier
JPH06296686A (en) Polysulfone hollow yarn membrane for medical purpose
JP3281363B1 (en) Blood purification membrane
JP3992185B2 (en) Method for producing hollow fiber membrane
JP4325904B2 (en) Hollow fiber membrane drying equipment
JP3281364B1 (en) Method for producing blood purification membrane
JP2010233980A (en) Hollow fiber membrane for blood purification
JP3992186B2 (en) Method for producing hollow fiber membrane
JPH0970431A (en) Production of polysulfone hollow fiber type artificial kidney and artificial kidney
JP3424810B2 (en) High performance blood purification membrane
JPH09308685A (en) Hollow fiber membrane for blood purification and blood purifying device
JP3334705B2 (en) Polysulfone-based selectively permeable hollow fiber membrane
JP4325903B2 (en) Method for producing hollow fiber membrane
JP3992187B2 (en) Method for producing hollow fiber membrane
JP4381073B2 (en) Blood purification membrane with excellent blood compatibility
JPH07289866A (en) Polysulfone-based selective permeable membrane
JP4003982B2 (en) Polysulfone-based selectively permeable separation membrane
JP4678063B2 (en) Hollow fiber membrane module
JP2003245529A (en) Method for manufacturing hollow fiber membrane

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees