JP2003245529A - Method for manufacturing hollow fiber membrane - Google Patents

Method for manufacturing hollow fiber membrane

Info

Publication number
JP2003245529A
JP2003245529A JP2002050130A JP2002050130A JP2003245529A JP 2003245529 A JP2003245529 A JP 2003245529A JP 2002050130 A JP2002050130 A JP 2002050130A JP 2002050130 A JP2002050130 A JP 2002050130A JP 2003245529 A JP2003245529 A JP 2003245529A
Authority
JP
Japan
Prior art keywords
membrane
yarn bundle
film
performance
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002050130A
Other languages
Japanese (ja)
Inventor
Teruhiko Oishi
輝彦 大石
Tetsuyoshi Yano
哲義 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP2002050130A priority Critical patent/JP2003245529A/en
Publication of JP2003245529A publication Critical patent/JP2003245529A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a hollow fiber membrane reducing the fluctuation of performance not only in a fiber bundle but also between fiber bundles in drying a plurality of fiber bundles and irradiating wet membranes bundled into a fiber bundle state with microwaves. <P>SOLUTION: In the method for manufacturing the hollow fiber membrane, the angle of radiation of microwaves emitted from a wave guide pipe is set to 30-120° and the distance from the wave guide pipe to the wet membranes is 50-500 mm in drying a plurality of the fiber bundles and in irradiating the wet membranes bundled into the fiber bundle state with microwaves. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、糸束状に製束され
た湿潤膜をマイクロ波照射により複数束同時に乾燥する
方法において、糸束内の性能のばらつきを解消すると同
時に糸束間の性能のばらつきを解消する中空糸膜の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for simultaneously drying a plurality of bundles of wet films bundled in a yarn bundle by microwave irradiation to eliminate variations in performance within the yarn bundles and at the same time to improve performance between yarn bundles. The present invention relates to a method for manufacturing a hollow fiber membrane that eliminates the variation of

【0002】[0002]

【従来の技術】近年、選択的な透過性を有する膜を利用
する技術がめざましく進歩し、これまでに気体や液体の
分離フィルター、医療分野における血液透析器、血液濾
過器、血液成分選択分離フィルター等の広範な分野での
実用化が進んでいる。該膜の材料としては、セルロース
系(再生セルロース系、酢酸セルロース系、化学変性セ
ルロース系等)、ポリアクリロニトリル系、ポリメチル
メタクリレート系、ポリスルホン系、ポリエチレンビニ
ルアルコール系、ポリアミド系等のポリマーが用いられ
てきた。このうちポリスルホン系ポリマーは、その熱安
定性、耐酸、耐アルカリ性に加え、製膜原液に親水化剤
を添加して製膜することにより、血液適合性が向上する
ことから、半透膜素材として注目され研究が進められて
きた。
2. Description of the Related Art In recent years, the technology of utilizing a membrane having selective permeability has been remarkably advanced, and gas / liquid separation filters, hemodialyzers, blood filters, and blood component selective separation filters in the medical field have been developed so far. Practical application is progressing in a wide range of fields. As the material of the membrane, a polymer such as cellulose type (regenerated cellulose type, cellulose acetate type, chemically modified cellulose type), polyacrylonitrile type, polymethylmethacrylate type, polysulfone type, polyethylene vinyl alcohol type, polyamide type or the like is used. Came. Of these, polysulfone-based polymers are heat-stable, acid-resistant, and alkali-resistant, and by adding a hydrophilizing agent to the membrane-forming stock solution to form a membrane, the blood compatibility is improved. Attention has been paid to research.

【0003】一方、膜を接着してモジュールを作製する
ためには膜を乾燥させる必要があるが、有機高分子より
なる多孔膜、なかでもポリスルホン系等の疎水性ポリマ
ーからなる透析膜、限外濾過膜は、製膜後に乾燥させる
と乾燥前に比べ著しく透水量が低下することが知られて
いる。そのため膜は常に湿潤状態か、水に浸漬させた状
態で取り扱う必要があった。
On the other hand, it is necessary to dry the membrane in order to manufacture the module by adhering the membrane, but a porous membrane made of an organic polymer, especially a dialysis membrane made of a hydrophobic polymer such as polysulfone is used. It is known that when the filtration membrane is dried after the membrane formation, the water permeation amount is remarkably reduced as compared with before drying. Therefore, the membrane must always be handled in a wet state or immersed in water.

【0004】この対策として従来よりとられてきた方法
は、製膜後、乾燥前にグリセリン等の低揮発性有機液体
を多孔膜中の空孔部分に詰めておくことであった。しか
しながら、低揮発性有機液体は、一般に高粘度なため、
洗浄除去に時間がかかり、膜をモジュール成型して洗浄
後も微量ではあるが低揮発性有機液体由来の溶出物等
(低揮発性有機液体と化学反応して生成した様々な誘導
体)がモジュール封入液中にみられることに問題があっ
た。
As a conventional measure against this, a low volatility organic liquid such as glycerin is filled in the pores in the porous film after film formation and before drying. However, low-volatile organic liquids generally have high viscosity,
It takes a long time to wash and remove, and even after the membrane is molded into a module and washed, a small amount of eluate derived from a low-volatile organic liquid (various derivatives produced by a chemical reaction with the low-volatile organic liquid) is enclosed in the module. There was a problem with what was seen in the liquid.

【0005】低揮発性有機液体を用いずに乾燥させる方
法として、特開平6−277470号公報には、低揮発
性有機液体の代わりに塩化カルシウム等の無機塩を用い
る方法が示されているが、洗浄除去する必要性に変わり
はない。また、微量であるとしても残存した無機塩が透
析患者に与える悪影響が危惧される。
As a method of drying without using a low-volatile organic liquid, Japanese Patent Laid-Open No. 277470/1994 discloses a method of using an inorganic salt such as calcium chloride instead of the low-volatile organic liquid. There is no change in the need for cleaning and removal. Moreover, even if the amount is very small, there is concern that the residual inorganic salts may adversely affect the dialysis patient.

【0006】また、膜の乾燥方法として、特開平11−
332980号公報には、中空糸膜に対し水蒸気による
湿熱処理を行いながらマイクロ波を照射する中空糸膜の
製造方法が示されている。しかし、乾燥でありながら膜
の変形を防ぐために水蒸気処理していることから乾燥時
間を長くする欠点があり、さらに、グリセリン等の低揮
発性有機液体を付着させてからの乾燥であることから、
膜からの溶出物を低減させるという目的は達成されな
い。
Further, as a method for drying a film, Japanese Patent Laid-Open No. 11-
Japanese Patent No. 332980 discloses a method for producing a hollow fiber membrane in which the hollow fiber membrane is irradiated with microwaves while being subjected to wet heat treatment with steam. However, there is a drawback that the drying time is lengthened because it is subjected to steam treatment to prevent deformation of the film even though it is dried, and further, since it is the drying after the low volatile organic liquid such as glycerin is attached,
The goal of reducing elution from the membrane is not achieved.

【0007】特開平8−52331号公報及び特公平8
−9668号公報には、低揮発性有機液体を用いずに乾
燥処理をしたポリビニルピロリドンを含む親水化膜が開
示されている。これらには、血液から血漿成分を分離す
る性能が記載されているが、血漿タンパクが透過するこ
とから透析膜としては有効でないことが分かる。また、
ポリビニルピロリドンを分解・変性させる温度で乾燥し
ていることから、膜からの溶出物を低減させるという目
的においては極めて好ましくない製法である。
Japanese Unexamined Patent Publication No. 8-52331 and Japanese Patent Publication No. 8
No. 9668 discloses a hydrophilizing film containing polyvinylpyrrolidone that has been dried without using a low-volatile organic liquid. These documents describe the ability to separate plasma components from blood, but it is clear that they are not effective as dialysis membranes because they permeate plasma proteins. Also,
Since it is dried at a temperature at which polyvinylpyrrolidone is decomposed / denatured, it is an extremely unfavorable production method for the purpose of reducing the eluate from the membrane.

【0008】また、特開平6−296686号公報には
血液が直接接触する膜内表面でのポリビニルピロリドン
の存在率を20〜50%程度にした中空糸膜が開示され
ている。これは主に血液タンパク、血小板等の付着物を
少なくするための湿潤膜を示すものである。従って、血
液タンパクが付着しにくいことから濾液速度の経時変化
が起こりにくいことが示されているが、アルブミンの透
過性が低い等の透析性能についての記載は一切無い。
Further, Japanese Unexamined Patent Publication (Kokai) No. 6-296686 discloses a hollow fiber membrane in which the abundance of polyvinylpyrrolidone on the inner surface of the membrane, which is in direct contact with blood, is about 20 to 50%. This mainly indicates a wet film for reducing adhered substances such as blood proteins and platelets. Therefore, it has been shown that blood proteins do not easily adhere to the filtrate, so that the change in the filtrate rate with time does not easily occur, but there is no description about dialysis performance such as low albumin permeability.

【0009】本発明者は、特定の性能を有する湿潤膜を
グリセリン等の低揮発性有機液体を含浸せずに乾燥して
高性能な血液浄化膜を製造する方法を提案して特許出願
した(特願2001−22246号)。しかし、その後
の検討の結果、糸束状にして乾燥した場合、糸束の中心
部と外周部の膜とでは若干の性能差が生じることが明ら
かとなった。そこで本発明者は、糸束内の性能差を改善
した血液浄化膜を製造する方法を提案して特許出願した
(特願2001−309673号、特願2001−30
9674号、特願2001−309675号)。しか
し、本発明者らのその後のさらなる検討の結果、複数の
糸束を同時に乾燥した場合には、これらの方法によって
も、糸束間で若干の性能差が生じるという問題が起きる
ことが分かった。
The present inventor proposed and patented a method for producing a high-performance blood purification membrane by drying a wet membrane having a specific performance without impregnating a low-volatile organic liquid such as glycerin ( Japanese Patent Application No. 2001-22246). However, as a result of subsequent studies, it became clear that when the yarn bundle was dried and then dried, a slight difference in performance occurred between the film in the central portion of the yarn bundle and the film in the outer peripheral portion. Therefore, the present inventor proposed a method for producing a blood purification membrane with improved performance difference in the yarn bundle and applied for a patent (Japanese Patent Application Nos. 2001-309673 and 2001-30).
9674, Japanese Patent Application No. 2001-309675). However, as a result of further studies conducted by the present inventors, it was found that when a plurality of yarn bundles were dried at the same time, a slight difference in performance occurred between the yarn bundles even with these methods. .

【0010】[0010]

【発明が解決しようとする課題】本発明の課題は、糸束
状に製束された湿潤膜をマイクロ波照射により複数同時
に乾燥する方法において、糸束内の性能のばらつきを解
消すると同時に糸束間の性能のばらつきをも解消する中
空糸膜の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate a variation in performance within a yarn bundle in a method for simultaneously drying a plurality of wet films bundled into a yarn bundle by microwave irradiation. It is an object of the present invention to provide a method for manufacturing a hollow fiber membrane, which eliminates variations in performance between the two.

【0011】[0011]

【課題を解決するための手段】以上の如くモジュールか
らの溶出物の原因となる膜孔保持剤を用いずに乾燥した
透析性能を有する血液浄化用乾燥膜は本発明者等の出願
発明(特願2001−22246号)までなかった。そ
の原因は、膜孔保持剤を用いずに乾燥させると、湿潤状
態とは全く異なった低性能の膜となることであった。そ
こで、本発明者等は、前記出願により、あらかじめ目標
とする性能よりも高透水量で大孔径である湿潤膜を作製
しておき、これを乾燥・収縮させて目標の透析性能を有
する膜を製造するというこれまでにない、誰も思いつか
なかった発想に基づき鋭意研究を進めた結果、溶出物が
極めて少なく、血液タンパクや血小板の付着が少ない選
択透過性に優れた透析性能を有する膜を得る方法を提供
した。ところが、その後、さらに研究を進めたところ、
本発明者らは、特願2001−22246号の方法によ
って血液浄化膜を製造する際、湿潤膜を糸束状にして乾
燥すると、糸束の中心部と外周部の膜とでは、透水量や
透過性能にばらつきが生じることを発見した。そこで、
ばらつきをなくすために鋭意研究した結果、乾燥工程を
工夫することで、ばらつきが抑えられることを見出し新
たに特許出願した(特願2001−309673号、特
願2001−309674号、特願2001−3096
75号)。ところが、これらの出願発明に従って血液浄
化膜を製造する際、糸束状に製束された湿潤膜をある特
定の量(50束)以上で複数同時に乾燥するためにマイ
クロ波照射装置をスケールアップした結果、糸束間で透
水量や透過性能にばらつきが生じることを新たに発見し
た。そこで、ばらつきをなくすために鋭意研究した結
果、乾燥工程を更に工夫することで、ばらつきが抑えら
れることを見出し本発明に至ったものである。
As described above, a dry membrane for blood purification having a dialysis performance, which is dried without using a membrane pore-holding agent that causes eluate from a module, is a patented invention of the present inventors. No. 2001-22246). The cause was that when dried without using a pore-holding agent, a low-performance membrane completely different from the wet state was obtained. Therefore, the inventors of the present invention previously prepared a wet membrane having a higher water permeation rate and a larger pore size than the target performance and drying and shrinking the wet membrane to obtain a membrane having a target dialysis performance. As a result of intensive research based on the idea that no one has ever thought of manufacturing it, as a result, there is very little eluate, little adhesion of blood proteins and platelets, and a membrane with excellent dialysis performance with selective permeability is obtained. Provided a way. However, after further research,
When manufacturing a blood purification membrane by the method of Japanese Patent Application No. 2001-22246, the inventors of the present invention dry the wet membrane in the form of a bundle of yarns, and if the membrane of the central portion of the bundle of yarns and the membrane of the outer peripheral portion have a water permeability or It was discovered that the transmission performance varies. Therefore,
As a result of diligent research to eliminate the variation, it was found that the variation can be suppressed by devising the drying process, and new patent applications were filed (Japanese Patent Application Nos. 2001-309673, 2001-309674, and 2001-3096).
75). However, when manufacturing a blood purification membrane according to these inventions, the microwave irradiation device is scaled up in order to simultaneously dry a plurality of wet membranes bundled in a yarn bundle in a specific amount (50 bundles) or more. As a result, we have newly discovered that the amount of water permeation and the permeation performance vary among yarn bundles. Then, as a result of earnest research for eliminating the variation, the inventors have found that the variation can be suppressed by further devising the drying process, and the present invention has been completed.

【0012】すなわち本発明は、(1)糸束状に製束さ
れた湿潤膜をマイクロ波照射して複数束同時に乾燥する
中空糸膜の製造方法であって、導波管から照射されるマ
イクロ波の放射角度が30〜120度であり、且つ導波
管から湿潤膜までの距離が50〜500mmであること
を特徴とする中空糸膜の製造方法、(2)糸束状に製束
された膜孔保持剤を含まない湿潤膜をマイクロ波照射し
て複数束同時に乾燥する中空糸状血液浄化膜の製造方法
であって、導波管から照射されるマイクロ波の放射角度
が30〜120度であり、且つ導波管から湿潤膜までの
距離が50〜500mmであることを特徴とする中空糸
状血液浄化膜の製造方法、(3)糸束状に製束された膜
孔保持剤を含まない湿潤膜を40℃以上120℃以下の
温度で加熱乾燥すると共にマイクロ波照射して複数束同
時に乾燥する中空糸状血液浄化膜の製造方法であって、
導波管から照射されるマイクロ波の放射角度が30〜1
20度であり、且つ導波管から湿潤膜までの距離が50
〜500mmであることを特徴とする中空糸状血液浄化
膜の製造方法、(4)複数の導波管を用いることを特徴
とする(1)〜(3)のいずれかに記載の製造方法、
(5)糸束内に除湿気体を通風することを特徴とする
(1)〜(4)のいずれかに記載の製造方法、(6)乾
燥開始時の糸束の中心部と外周部における膜の含水率の
差が10%以内であることを特徴とする(1)〜(5)
のいずれかに記載の製造方法、(7)乾燥開始後の糸束
の平均含水率が20〜70%になる時点でマイクロ波の
照射出力を低下させることを特徴とする(1)〜(6)
のいずれかに記載の製造方法、(8)乾燥開始後の糸束
の平均含水率が20〜70%になる時点での該糸束の中
心部と外周部における膜の含水率の差が5%以内である
ことを特徴とする(1)〜(7)のいずれかに記載の製
造方法、(9)膜が、ポリスルホン系ポリマーとポリビ
ニルピロリドンからなることを特徴とする(1)〜
(8)のいずれかに記載の製造方法、。(10)製膜原
液が、ポリスルホン系ポリマー、ポリビニルピロリド
ン、及び溶剤からなり、ポリスルホン系ポリマーに対す
るポリビニルピロリドンの比率が18〜27重量%であ
ることを特徴とする(1)〜(9)のいずれかに記載の
製造方法、及び(11)乾燥後さらに膜中のポリビニル
ピロリドンの一部を水に不溶化することを特徴とする
(1)〜(10)のいずれかに記載の製造方法、に関す
るものである。
That is, the present invention is (1) a method for producing a hollow fiber membrane in which a wet membrane bundled into a yarn bundle is irradiated with microwaves and a plurality of bundles are simultaneously dried. A method for producing a hollow fiber membrane, characterized in that the radiation angle of the wave is 30 to 120 degrees, and the distance from the waveguide to the wet membrane is 50 to 500 mm. A method for producing a hollow fiber blood purification membrane in which a wet membrane containing no membrane pore-holding agent is microwave-irradiated to dry a plurality of bundles at the same time, and the microwave irradiation angle of the microwave is 30 to 120 degrees. And a distance from the waveguide to the wet membrane is 50 to 500 mm, a method for producing a hollow fiber blood purification membrane, comprising: (3) a membrane pore-holding agent bundled in a yarn bundle. Heat and dry the wet film at a temperature of 40 ℃ to 120 ℃. A method of manufacturing a hollow fiber blood purification membrane to dry more beams simultaneously irradiated microwave with,
The microwave radiation angle from the waveguide is 30 to 1
20 ° and the distance from the waveguide to the wet film is 50
To 500 mm, a method for producing a hollow fiber blood purification membrane, (4) A method according to any one of (1) to (3), characterized in that a plurality of waveguides are used.
(5) A method of manufacturing according to any one of (1) to (4), characterized in that a dehumidifying body is ventilated in the yarn bundle, (6) a film in the central portion and the outer peripheral portion of the yarn bundle at the start of drying. The difference in the water content of is within 10% (1) to (5)
(7) The irradiation output of microwaves is reduced when the average water content of the yarn bundle after the start of drying reaches 20 to 70% (1) to (6). )
(8) The difference in the water content of the membrane between the central portion and the outer peripheral portion of the yarn bundle at the time when the average water content of the yarn bundle after the start of drying is 8 to 70% is (8). % Or less, the production method according to any one of (1) to (7), (9) the membrane is composed of a polysulfone-based polymer and polyvinylpyrrolidone (1) to
The manufacturing method according to any one of (8). (10) The film-forming stock solution comprises a polysulfone-based polymer, polyvinylpyrrolidone, and a solvent, and the ratio of polyvinylpyrrolidone to the polysulfone-based polymer is 18 to 27% by weight. (1) to (9) And (11) the production method according to any one of (1) to (10), characterized in that after drying, a part of the polyvinylpyrrolidone in the film is further insolubilized in water. Is.

【0013】本発明では、照射するマイクロ波の放射角
度を30〜120度、且つ導波管から湿潤膜までの距離
を50〜500mmにすることによって、複数束同時に
乾燥する場合においても、糸束内の性能のばらつきだけ
でなく、糸束間の性能のばらつきも改善することがで
き、且つ生産効率も向上させることができる。
According to the present invention, the irradiation angle of microwave is 30 to 120 degrees, and the distance from the waveguide to the wet film is 50 to 500 mm. It is possible to improve not only the variation in the internal performance but also the variation in the performance between the yarn bundles, and it is possible to improve the production efficiency.

【0014】[0014]

【発明の実施の形態】本発明は血液浄化膜に限るわけで
はないが、以下には、中空糸状血液浄化膜(以下単に
「膜」又は「中空糸状膜」ということがある)の製造方
法について詳細に説明する。本発明の中空糸状血液浄化
膜の製造方法は、高透水量で大きな孔径の湿潤膜をあら
かじめ製造しておき、脱溶剤後に膜孔保持剤を含浸させ
ずに乾燥させることに特徴を有する。
BEST MODE FOR CARRYING OUT THE INVENTION Although the present invention is not limited to blood purification membranes, the method for producing hollow fiber blood purification membranes (hereinafter sometimes simply referred to as "membranes" or "hollow fiber membranes") is described below. The details will be described. The method for producing a hollow fiber blood purification membrane of the present invention is characterized in that a wet membrane having a high water permeability and a large pore diameter is produced in advance and dried after solvent removal without impregnation with a membrane pore retaining agent.

【0015】通常、中空糸状血液浄化膜を製造する際に
用いられる膜孔保持剤には、粘性を有する有機物と人体
への毒性が懸念される無機物に分類される。粘性を有す
る有機物からなる膜孔保持剤は、粘性が高いために完全
に洗浄除去することが困難であることから、膜中に残存
して膜からの溶出量を増加させ、さらに残存した膜孔保
持剤と化学反応して有害物を生じる原因と成り得る。一
方、無機物からなる膜孔保持剤においても、微量に残存
するため透析患者に与える悪影響が危惧される。
Usually, the membrane pore retaining agent used in the production of the hollow fiber blood purification membrane is classified into a viscous organic substance and an inorganic substance which may be toxic to the human body. Membrane pore retainers made of viscous organic substances are difficult to completely wash and remove due to their high viscosity, so they remain in the membrane and increase the amount of elution from the membrane. It may cause chemical reaction with the retentive agent to produce harmful substances. On the other hand, even a membrane pore-holding agent made of an inorganic substance remains in a very small amount, which may adversely affect dialysis patients.

【0016】本発明でいう膜孔保持剤とは、乾燥時の性
能低下を防ぐために乾燥前までの製造過程で膜中の空孔
部分に詰めておく物質である。膜孔保持剤を含んだ溶液
に湿潤膜を浸漬することによって膜中の空孔部分に該保
持剤を詰めることが可能である。乾燥後も膜孔保持剤を
洗浄・除去さえすれば、膜孔保持剤の効果により湿潤膜
と同等の透水量、阻止率等の性能を保持することが可能
である。
The term "membrane pore-holding agent" as used in the present invention is a substance that is filled in the pores in the membrane during the production process before drying in order to prevent performance deterioration during drying. It is possible to fill the pores in the membrane with the retaining agent by immersing the wet membrane in a solution containing the membrane pore retaining agent. Even after drying, if the membrane pore retaining agent is only washed and removed, it is possible to maintain the same performance as the wet membrane such as water permeability and blocking rate due to the effect of the membrane pore retaining agent.

【0017】膜孔保持剤としては、エチレングリコー
ル、プロピレングリコール、トリメチレングリコール、
1,2−ブチレングリコール、1,3−ブチレングリコ
ール、2−ブチン−1,4−ジオール、2−メチル−
2,4−ペンタジオール、2−エチル−1,3−ヘキサ
ンジオール、グリセリン、テトラエチレングリコール、
ポリエチレングリコール200、ポリエチレングリコー
ル300、ポリエチレングリコール400等のグリコー
ル系又はグリセロール系化合物及び蔗糖脂肪酸エステル
等の有機化合物、および塩化カルシウム、炭酸ナトリウ
ム、酢酸ナトリウム、硫酸マグネシウム、硫酸ナトリウ
ム、塩化亜鉛等の無機塩を挙げることができる。
Membrane pore retaining agents include ethylene glycol, propylene glycol, trimethylene glycol,
1,2-butylene glycol, 1,3-butylene glycol, 2-butyne-1,4-diol, 2-methyl-
2,4-pentadiol, 2-ethyl-1,3-hexanediol, glycerin, tetraethylene glycol,
Glycol- or glycerol-based compounds such as polyethylene glycol 200, polyethylene glycol 300, polyethylene glycol 400 and organic compounds such as sucrose fatty acid ester, and inorganic salts such as calcium chloride, sodium carbonate, sodium acetate, magnesium sulfate, sodium sulfate and zinc chloride Can be mentioned.

【0018】また、本発明において、高透水量で大きな
孔径の湿潤膜とは、透水量が100mL/(m2・hr
・mmHg)以上であって、重量平均分子量40,00
0のポリビニルピロリドンの透過率が75%を超え、且
つ牛血漿系におけるアルブミンの透過率が0.3%以上
である性能を有する湿潤膜を意味する。
In the present invention, a wet membrane having a high water permeability and a large pore size means a water permeability of 100 mL / (m 2 · hr).
-MmHg) or more and a weight average molecular weight of 40,000
0 means a polyvinylpyrrolidone permeability of more than 75% and an albumin permeability of 0.3% or more in bovine plasma system.

【0019】牛血漿アルブミンの透過率は、以下のよう
な方法で測定することが可能である。まず、長さ20c
mの中空糸状膜を100本束ねて小型モジュールを作製
する。このモジュールに37℃に加温したヘパリン添加
牛血漿(ヘパリン5000IU/I、タンパク濃度6.
0g/dL(デシリットル))を膜内表面側に線速1.
0cm/秒で通過させ、モジュールの入り圧と出圧の平
均圧力50mmHgにて30分間限外濾過を行なう。得
られた濾液と元液の濃度の測定は、紫外分光光度計によ
り280nmの波長にて測定し、下記の式(1)に代入
して透過率を算出する。 透過率(%)=(濾液の吸光度)×100/(元液の吸光度) (1)
The permeability of bovine plasma albumin can be measured by the following method. First, length 20c
A small module is manufactured by bundling 100 hollow fiber membranes of m. Heparin-added bovine plasma (heparin 5000 IU / I, protein concentration 6.
0 g / dL (deciliter)) at a linear velocity of 1.
The mixture is passed through at 0 cm / sec, and ultrafiltration is performed for 30 minutes at an average pressure of 50 mmHg of inlet pressure and outlet pressure of the module. The concentrations of the obtained filtrate and the original solution are measured with an ultraviolet spectrophotometer at a wavelength of 280 nm, and the transmittance is calculated by substituting it in the following formula (1). Transmittance (%) = (absorbance of filtrate) × 100 / (absorbance of original solution) (1)

【0020】ポリビニルピロリドンの透過率は、濾過す
る水溶液を3重量%のポリビニルピロリドン(BASF
社製 K30、重量平均分子量40,000)のリン酸
バッファー(0.15mol/リットル、pH7.4)
水溶液にして、モジュールの入り圧と出圧の平均圧力を
200mmHgにした以外は、牛血漿アルブミンの透過
率の測定と同様な操作を行うことにより求められる。
The transmittance of polyvinylpyrrolidone is 3% by weight of the aqueous solution to be filtered.
K30, weight average molecular weight 40,000 phosphate buffer (0.15 mol / liter, pH 7.4)
It can be determined by performing the same operation as the measurement of the transmissivity of bovine plasma albumin, except that the aqueous solution was used and the average pressure of the inlet pressure and the outlet pressure of the module was set to 200 mmHg.

【0021】高透水量で大きな孔径の湿潤膜は、ポリス
ルホン系ポリマー(以下単に「ポリマー」ともいう)、
ポリビニルピロリドン、及び溶剤からなる製膜原液を、
内部液とともに2重環状ノズルから吐出させ、エアギャ
ップを通過させた後、凝固浴で凝固させる製造方法にお
いて、内部液にポリマーの溶剤の水溶液を用いることに
より製造可能である。内部液は,膜の中空部と内表面を
形成させるものであるが、内表面の孔径は、内部液中の
溶剤濃度に比例して大きくなることが判っている。本発
明では、湿潤膜を乾燥収縮させることにより目標の性能
の透析膜が得られることから、内部液中の溶剤濃度を、
目標とする透析性能を有する湿潤膜を製造する時に比べ
て、高濃度にする必要がある。
A wet membrane having a high water permeability and a large pore size is formed of a polysulfone-based polymer (hereinafter also simply referred to as "polymer"),
Polyvinylpyrrolidone, a film-forming stock solution consisting of a solvent,
It can be produced by using an aqueous solution of a polymer solvent as the internal liquid in a production method in which the internal liquid is discharged from a double annular nozzle, passed through an air gap, and then solidified in a coagulation bath. The internal liquid forms the hollow part and the inner surface of the membrane, and it has been known that the pore size of the inner surface increases in proportion to the concentration of the solvent in the internal liquid. In the present invention, since the dialysis membrane having the target performance is obtained by drying and shrinking the wet membrane, the solvent concentration in the internal liquid is
It is necessary to make the concentration higher than when producing a wet membrane having a target dialysis performance.

【0022】本発明で用いられるポリスルホン系ポリマ
ーとしては、下記の式(2)、または式(3)で示され
る繰り返し単位を有するものが挙げられる。なお、式中
のArはパラ位での2置換のフェニル基を示し、重合度
や分子量については特に限定しない。 −O−Ar−C(CH32−Ar−O−Ar−SO2−Ar− (2) −O−Ar−SO2−Ar− (3)
Examples of the polysulfone polymer used in the present invention include those having a repeating unit represented by the following formula (2) or formula (3). In the formula, Ar represents a 2-substituted phenyl group at the para position, and the degree of polymerization and the molecular weight are not particularly limited. -O-Ar-C (CH 3 ) 2 -Ar-O-Ar-SO 2 -Ar- (2) -O-Ar-SO 2 -Ar- (3)

【0023】ポリビニルピロリドンは高分子量のものほ
ど膜への親水化効果が高いため、高分子量のものほど少
量で十分な効果が発揮できることから、本発明において
は重量平均分子量900,000以上のポリビニルピロ
リドンが使用される。900,000より小さい重量平
均分子量を有するポリビニルピロリドンを用いて膜への
親水化効果を付与するためには大量のポリビニルピロリ
ドンを膜中に残存させる必要があるが、このために膜か
らの溶出物が増加することになる。また、逆に溶出物を
下げるために900,000より小さい重量平均分子量
のポリビニルピロリドンの膜中での残存量を少なくする
と親水化効果が不十分となってしまい、その結果血液透
析を行ったとき濾過速度の経時的低下をきたし十分な効
果を発揮できない。
Since the higher the molecular weight of polyvinylpyrrolidone is, the higher the hydrophilicity of the membrane is, the smaller the molecular weight of polyvinylpyrrolidone is, the smaller the amount of polyvinylpyrrolidone is. Is used. A large amount of polyvinylpyrrolidone must be left in the membrane in order to impart a hydrophilic effect to the membrane by using polyvinylpyrrolidone having a weight average molecular weight of less than 900,000. Will increase. On the contrary, if the residual amount of polyvinylpyrrolidone having a weight average molecular weight of less than 900,000 in the membrane is reduced in order to reduce the eluate, the hydrophilic effect becomes insufficient, and as a result, when hemodialysis is performed. The filtration rate is lowered with time and the sufficient effect cannot be exhibited.

【0024】また、ポリスルホン系ポリマーとポリビニ
ルピロリドンの溶解に用いられる溶剤は、これら両方を
共に溶解するものであり、N−メチル−2−ピロリド
ン、N,N−ジメチルホルムアミド、N,N−ジメチル
アセトアミド等である。
The solvent used for dissolving the polysulfone-based polymer and polyvinylpyrrolidone dissolves both of them, and includes N-methyl-2-pyrrolidone, N, N-dimethylformamide and N, N-dimethylacetamide. Etc.

【0025】製膜原液中のポリマー濃度は、製膜可能
で、かつ得られた膜が膜としての性能を有するような濃
度の範囲であれば特に制限されず、5〜35重量%、好
ましくは10〜30重量%である。高い透水性能を達成
するためには、ポリマー濃度は低い方がよく、10〜2
5重量%が好ましい。
The concentration of the polymer in the stock solution for film formation is not particularly limited as long as it is within the concentration range in which the film can be formed and the obtained film has the performance as a film, and is preferably 5 to 35% by weight, preferably It is 10 to 30% by weight. In order to achieve high water permeability, the polymer concentration should be low,
5% by weight is preferred.

【0026】さらに重要なことはポリビニルピロリドン
の添加量であり、ポリマーに対するポリビニルピロリド
ンの混和比率が27重量%以下、好ましくは10〜27
重量%、さらに好ましくは20〜27重量%である。ポ
リマーに対するポリビニルピロリドンの混和比率が27
重量%を超えると溶出量が増える傾向にあり、また10
重量%未満では製膜原液の粘性が低いためにスポンジ構
造の膜を得ることが困難である。また、原液粘度、溶解
状態を制御する目的で、水、貧溶剤等の第4成分を添加
することも可能であり、その種類、添加量は組み合わせ
により随時行なえばよい。
What is more important is the amount of polyvinylpyrrolidone added, and the mixing ratio of polyvinylpyrrolidone to the polymer is 27% by weight or less, preferably 10 to 27.
%, And more preferably 20 to 27% by weight. The mixing ratio of polyvinylpyrrolidone to polymer is 27.
If the amount exceeds 10% by weight, the amount of elution tends to increase.
If it is less than 10% by weight, it is difficult to obtain a sponge-structured film because the viscosity of the stock solution is low. Further, a fourth component such as water or a poor solvent may be added for the purpose of controlling the viscosity of the stock solution and the dissolved state, and the kind and the addition amount thereof may be arbitrarily selected depending on the combination.

【0027】凝固浴としては、例えば水;メタノール、
エタノール等のアルコール類;エーテル類;n−ヘキサ
ン、n−ヘプタン等の脂肪族炭化水素類などポリマーを
溶解しない液体が用いられるが、水が好ましい。また、
凝固浴にポリマーを溶解する溶剤を若干添加することに
より凝固速度をコントロールすることも可能である。凝
固浴の温度は、−30〜90℃、好ましくは0〜90
℃、さらに好ましくは0〜80℃である。凝固浴の温度
が90℃を超えたり、−30℃未満であると、凝固浴中
の中空糸状膜の表面状態が安定しにくい。
As the coagulation bath, for example, water; methanol,
Liquids such as alcohols such as ethanol; ethers; aliphatic hydrocarbons such as n-hexane and n-heptane that do not dissolve the polymer are used, and water is preferable. Also,
It is also possible to control the coagulation rate by adding a small amount of a solvent that dissolves the polymer to the coagulation bath. The temperature of the coagulation bath is −30 to 90 ° C., preferably 0 to 90.
C., more preferably 0 to 80.degree. When the temperature of the coagulation bath is higher than 90 ° C or lower than -30 ° C, it is difficult to stabilize the surface state of the hollow fiber membrane in the coagulation bath.

【0028】脱溶剤洗浄後の乾燥は、中空糸状膜を多数
本束ねた糸束の形態(以後、単に『糸束』と呼ぶ)に
て、十分に湿潤している糸束をマイクロ波照射すること
により行われるが、40℃以上120℃以下の温度で加
熱乾燥すると同時にマイクロ波照射することがより好ま
しい。加熱乾燥とマイクロ波照射を同時に行なうことに
より糸束内の性能のばらつきを抑えるのみでなく、マイ
クロ波照射単独よりも乾燥時間を短くすることが可能で
ある。
For drying after washing with a solvent, a sufficiently wet yarn bundle is irradiated with microwaves in the form of a yarn bundle in which a large number of hollow fiber membranes are bundled (hereinafter, simply referred to as "thread bundle"). However, it is more preferable to perform microwave irradiation at the same time as heating and drying at a temperature of 40 ° C. or higher and 120 ° C. or lower. By performing the heat drying and the microwave irradiation at the same time, it is possible not only to suppress the variation in the performance within the yarn bundle, but also to shorten the drying time as compared with the microwave irradiation alone.

【0029】さらに、糸束の中心部と外周部の乾燥速度
の差をなくすために、40℃未満の温度の除湿気体を通
風することが好ましい。糸束内に通風するとは中空糸状
膜間に風を流すことを意味する。本発明において、40
℃以上120℃以下の温度の除湿気体を糸束内に通風す
ることは、糸束内に通風すると同時に糸束に対し加熱乾
燥を行なっていることを意味する。
Further, in order to eliminate the difference in drying speed between the central portion and the outer peripheral portion of the yarn bundle, it is preferable to ventilate the dehumidifying body having a temperature of less than 40 ° C. Ventilation in the yarn bundle means flowing air between the hollow fiber membranes. In the present invention, 40
Ventilation of the dehumidifying body having a temperature of not less than 120 ° C and not more than 120 ° C into the yarn bundle means that the yarn bundle is heated and dried at the same time as being ventilated into the yarn bundle.

【0030】マイクロ波照射は低含水率の糸束をより均
一に乾燥するのに適していることから、過加熱による膜
の変形・溶融を防ぐために、糸束の平均含水率が20〜
70%、好ましくは50〜70%になる時点でマイクロ
波照射の出力を低下させることが好ましい。
Since the microwave irradiation is suitable for drying the yarn bundle having a low moisture content more uniformly, the average moisture content of the yarn bundle is 20 to 20 in order to prevent the deformation and melting of the film due to overheating.
It is preferable to reduce the output of microwave irradiation at the time of 70%, preferably 50 to 70%.

【0031】さらに、糸束の平均含水率が20〜70
%、好ましくは50〜70%になる時点での該糸束の中
心部と外周部における膜の含水率の差が5%以内である
ことが性能のばらつきを抑えるために好ましい。乾燥の
時、糸束内に通風を行なうことによって、糸束の平均含
水率が20〜70%、好ましくは50〜70%になる時
点での該糸束の中心部と外周部における膜の含水率の差
を5%以内にすることが可能である。ここで、糸束の中
心部とは、糸束の円形状断面において中心点から直径の
1/6の範囲をいう。また、糸束の外周部とは、糸束の
円形状断面において外周から直径の1/6の範囲をい
う。
Further, the average water content of the yarn bundle is 20 to 70.
%, Preferably 50 to 70%, it is preferable that the difference in water content of the membrane between the central portion and the outer peripheral portion of the yarn bundle is within 5% in order to suppress variations in performance. When the yarn bundle is dried, air is blown into the yarn bundle so that the average water content of the yarn bundle becomes 20 to 70%, preferably 50 to 70%. It is possible to keep the difference in rate within 5%. Here, the central portion of the yarn bundle refers to a range of 1/6 of the diameter from the center point in the circular cross section of the yarn bundle. Further, the outer peripheral portion of the yarn bundle refers to a range of 1/6 of the diameter from the outer periphery in the circular cross section of the yarn bundle.

【0032】また、同様な理由から、乾燥開始時におけ
る糸束についても、糸束の中心部と外周部における膜の
含水率の差が10%以内であることが好ましい。脱溶剤
後糸束を放置しておくと、糸束の中心部と外周部の含水
率には差が生じるために、乾燥工程に入る直前に糸束を
再度水中に浸漬することにより糸束中心部と外周部の含
水率の差を10%以内にすることが可能である。ここ
で、含水率とは、乾燥前の糸束(又は膜)の重量(A
(g))と乾燥糸束(又は膜)の重量(B(g))から
(4)式により計算で求められるものをいう。 含水率(%)=(A−B)×100/B (4)
Also for the same reason, it is preferable that the difference in water content of the membrane between the central portion and the outer peripheral portion of the yarn bundle at the start of drying is within 10%. If the yarn bundle is left unsolved after solvent removal, there will be a difference in water content between the central portion and the outer peripheral portion of the yarn bundle.Therefore, immersing the yarn bundle in water immediately before entering the drying process It is possible to keep the difference in water content between the outer part and the outer part within 10%. Here, the water content means the weight (A) of the yarn bundle (or film) before drying.
(G)) and the weight (B (g)) of the dried yarn bundle (or film), which is calculated by the equation (4). Moisture content (%) = (A−B) × 100 / B (4)

【0033】本発明において、糸束へのマイクロ波照射
は、密閉された照射炉内で複数束同時に行なわれる。糸
束間の性能のばらつきを抑えるためには、導波管から照
射されるマイクロ波の照射角度と導波管から湿潤膜(糸
束)までの距離が極めて重要である。本発明において導
波管とはマイクロ波の照射源を意味する。導波管は糸束
の数に比例して複数用いることが好ましい。
In the present invention, the microwave irradiation to the yarn bundle is performed simultaneously in a plurality of bundles in a closed irradiation furnace. In order to suppress variations in performance among yarn bundles, the irradiation angle of microwaves emitted from the waveguide and the distance from the waveguide to the wet film (yarn bundle) are extremely important. In the present invention, the waveguide means a microwave irradiation source. It is preferable to use a plurality of waveguides in proportion to the number of yarn bundles.

【0034】本発明において放射角度(放射半値角)は
30〜120度が好ましく、50〜110度がより好ま
しい。放射角度が30度未満であると照射炉内で内側に
位置する糸束が早く乾燥してしまい、糸束間のばらつき
が大きくなることから好ましくない。また、放射角度が
120度を超えると照射炉の内壁で反射したマイクロ波
が多くなり、それが照射炉内で外側に位置する糸束に照
射されることから該糸束を早く乾燥してしまい、同様に
糸束間の性能のばらつきが大きくなり好ましくない。こ
こで放射角度とは、導波管の照射面の中心点(O)から
等距離の曲線上において(図1参照)、放射エネルギー
が最も強い点(A)に対して該放射エネルギーが半分に
なる点(BとC)がなす角BOC(角AOB=角AO
C)の大きさを意味する。
In the present invention, the radiation angle (radiation half-value angle) is preferably 30 to 120 degrees, more preferably 50 to 110 degrees. If the radiation angle is less than 30 degrees, the yarn bundles located inside the irradiation furnace will dry quickly, and the variation among the yarn bundles will increase, which is not preferable. Further, when the radiation angle exceeds 120 degrees, a large amount of microwaves are reflected on the inner wall of the irradiation furnace, and the yarn bundles located outside in the irradiation furnace are irradiated with the microwaves, so that the yarn bundle is dried quickly. Similarly, the variation in performance between yarn bundles becomes large, which is not preferable. Here, the radiation angle means that the radiation energy is halved with respect to the point (A) having the strongest radiation energy on a curve equidistant from the center point (O) of the irradiation surface of the waveguide (see FIG. 1). Angle BOC (angle AOB = angle AO) formed by the point (B and C)
It means the size of C).

【0035】本発明のマイクロ波照射条件においては、
放射角度の他に導波管から湿潤膜(糸束)までの距離が
極めて重要である。距離の範囲としては、50〜500
mmが好ましく、より好ましくは100〜400mmで
ある。距離が50mm未満であると糸束の上部のみが早
く乾いてしまうことから好ましくなく、500mmを超
えると生産効率が悪い傾向にある。ここで導波管から湿
潤膜までの距離とは、導波管の照射面の中心点から最も
近い糸束までの最短距離を意味する。マイクロ波の出力
は高いことが好ましいが、乾燥させる膜の量により最適
値は異なる。
Under the microwave irradiation conditions of the present invention,
Besides the radiation angle, the distance from the waveguide to the wetting film (thread bundle) is very important. The range of distance is 50 to 500
mm is preferable, and more preferably 100 to 400 mm. If the distance is less than 50 mm, only the upper part of the yarn bundle will dry quickly, which is not preferable, and if it exceeds 500 mm, the production efficiency tends to be poor. Here, the distance from the waveguide to the wet film means the shortest distance from the center point of the irradiation surface of the waveguide to the closest yarn bundle. The microwave output is preferably high, but the optimum value varies depending on the amount of the film to be dried.

【0036】乾燥後の膜に電子線及びγ線等の放射線を
照射することにより、膜中のPVPの一部を水に不溶化
できることから、膜からの溶出量をより低減することが
可能である。放射線の照射は、モジュール化前又はモジ
ュール化後のどちらでも良い。また、膜中の全PVPを
不溶化してしまうと、溶出量を低減できる一方で、透析
時にロイコペニア症状が観察されることから好ましくな
い。
By irradiating the dried film with radiation such as electron rays and γ rays, a part of PVP in the film can be insolubilized in water, so that the amount eluted from the film can be further reduced. . Irradiation may be performed before or after modularization. Further, if all the PVP in the membrane is insolubilized, the elution amount can be reduced, but leukopenia symptoms are observed during dialysis, which is not preferable.

【0037】本発明でいう水に不溶であるPVPとは、
膜中の全PVP量から水に可溶であるPVP量を差し引
いたものである。膜中の全PVP量は、窒素及びイオウ
の元素分析により容易に算出することができる。また、
水に可溶であるPVP量は、以下の方法により求めるこ
とができる。膜をN−メチル−2−ピロリドンで完全に
溶解した後、得られたポリマー溶液に水を添加してポリ
スルホン系ポリマーを完全に沈殿させる。さらに該ポリ
マー溶液を静置した後、上澄み液中のPVP量を液体ク
ロマトグラフィーで定量することにより水に可溶である
PVPを定量することができる。
The water-insoluble PVP referred to in the present invention is
It is obtained by subtracting the amount of PVP soluble in water from the total amount of PVP in the membrane. The total amount of PVP in the film can be easily calculated by elemental analysis of nitrogen and sulfur. Also,
The amount of PVP soluble in water can be determined by the following method. After completely dissolving the membrane with N-methyl-2-pyrrolidone, water is added to the obtained polymer solution to completely precipitate the polysulfone-based polymer. After allowing the polymer solution to stand still, the amount of PVP in the supernatant can be quantified by liquid chromatography to quantify the PVP soluble in water.

【0038】本発明の製造方法は、糸束状に製束された
膜孔保持剤を含まない湿潤膜を複数束同時に乾燥する方
法において、湿潤膜をマイクロ波照射して乾燥するか、
あるいは湿潤膜を40℃以上120℃以下の温度で加熱
乾燥すると共にマイクロ波照射して乾燥する方法であっ
て、導波管から照射されるマイクロ波の放射角度が30
〜120度であり、且つ導波管から湿潤膜までの距離が
50〜500mmであることを特徴とし、本製造方法を
用いて得られた膜は、膜孔保持剤を含まない乾燥膜であ
って、純水の透水量が10〜1,000mL/(m2
hr・mmHg)、重量平均分子量40,000のポリ
ビニルピロリドンの透過率が75%以下で、且つ牛血漿
系におけるアルブミンの透過率が0.3%未満であり、
さらにそれぞれの性能のバラツキが小さいことを特徴と
する中空糸状血液浄化膜である。
The production method of the present invention is a method of simultaneously drying a plurality of wet films bundled in a yarn bundle and containing no membrane pore-holding agent, wherein the wet film is dried by microwave irradiation or is dried.
Alternatively, it is a method in which the wet film is dried by heating at a temperature of 40 ° C. or higher and 120 ° C. or lower and is irradiated with microwaves to be dried.
˜120 degrees, and the distance from the waveguide to the wet film is 50 to 500 mm, and the film obtained by using the present manufacturing method is a dry film containing no pore-holding agent. The pure water permeation rate is 10 to 1,000 mL / (m 2 ·
hr · mmHg), the transmittance of polyvinylpyrrolidone having a weight average molecular weight of 40,000 is 75% or less, and the transmittance of albumin in the bovine plasma system is less than 0.3%,
Further, the hollow fiber blood purification membrane is characterized in that the variations in the respective performances are small.

【0039】最近の血液透析療法では、透析アミロイド
病状の改善のために原因物質とされているβ2−ミクロ
グロブリン(分子量:11,800)を十分に透過させ
るが、アルブミン(分子量:67,000)はほとんど
透過させない分画性を有する膜が求められており、本発
明の膜は、牛血漿系におけるアルブミンの透過率が0.
3%以下である。アルブミンの透過率が0.3%を超え
ることは体内に有効なアルブミンを大きく損失すること
を意味することから血液透析膜としては好ましくない。
In the recent hemodialysis therapy, β2-microglobulin (molecular weight: 11,800), which is a causative substance for improving dialysis amyloid pathology, is sufficiently permeated, but albumin (molecular weight: 67,000) is used. There is a demand for a membrane having a fractional property that almost does not allow permeation, and the membrane of the present invention has an albumin permeability of 0.
It is 3% or less. An albumin permeability of more than 0.3% means a large loss of effective albumin in the body, and is not preferable as a hemodialysis membrane.

【0040】また、純水の透水量が10mL/(m2
hr・mmHg)以上の膜においては、ポリビニルピロ
リドンの透過率(A(%))とβ2−ミクログロブリン
のクリアランス(B(mL/分))とには下記の式
(5)に示す一次関数的な相関関係が存在する。クリア
ランス評価には1.5m2の有効膜面積を有する透析仕
様のモジュールに成形・加工することが必要であるが、
本評価方法では簡易的に測定可能であり、クリアランス
を容易に推測することが可能である。 B(mL/分)=0.636A+29.99 (5) ここで、β2−ミクログロブリンのクリアランスは、
1.5m2の有効膜面積のモジュールに、血液流量20
0mL/分(膜内表面側)、透析液流量500mL/分
(膜外表面側)の条件下で日本人工臓器学会の性能評価
基準に従い透析測定したものである。β2−ミクログロ
ブリンのクリアランスは、透析患者の体力や病状及び病
状の進行度に合わせて様々なものが要求されているが、
ポリビニルピロリドンの透過率が75%を超えるとアル
ブミンの透過率が0.3%を超えてしまうことから、ポ
リビニルピロリドンの透過率は75%以下であることが
必要である。
Further, the permeation amount of pure water is 10 mL / (m 2 ·
In the case of a membrane having a thickness of at least hr · mmHg), the permeability (A (%)) of polyvinylpyrrolidone and the clearance (B (mL / min)) of β2-microglobulin are expressed by the following linear function (5). There is a strong correlation. For clearance evaluation, it is necessary to mold and process into a dialysis-specification module with an effective membrane area of 1.5 m 2 .
With this evaluation method, it is possible to easily measure, and it is possible to easily estimate the clearance. B (mL / min) = 0.636A + 29.99 (5) Here, the clearance of β2-microglobulin is
A module with an effective membrane area of 1.5 m 2 has a blood flow rate of 20
Dialysis measurement was carried out under the conditions of 0 mL / min (inner side of the membrane) and a flow rate of dialysate of 500 mL / min (outer side of the membrane) according to the performance evaluation standard of the Japan Society for Artificial Organs. The clearance of β2-microglobulin is required to be various according to the physical strength of the dialysis patient and the medical condition and the progress of the medical condition.
When the transmittance of polyvinylpyrrolidone exceeds 75%, the transmittance of albumin exceeds 0.3%. Therefore, the transmittance of polyvinylpyrrolidone needs to be 75% or less.

【0041】また、本発明の製造方法により作られた膜
は、膜孔保持剤を製造工程で使用してないことから、膜
孔保持剤由来の溶出物は存在しない。従って、本発明の
膜の溶出物試験液の吸光度は0.04未満であり、且つ
該試験液中に膜孔保持剤を含まない。ここで、溶出物試
験液とは、人工腎臓装置承認基準に基づき調整したもの
であり、2cmに切断した乾燥中空糸状膜1.5gと注
射用蒸留水150mLを日本薬局方の注射用ガラス容器
試験のアルカリ溶出試験に適合するガラス容器に入れ、
70±5℃で1時間加温し、冷却後膜を取り除いた後蒸
留水を加えて150mLとしたものを意味する。吸光度
は220〜350nmでの最大吸収波長を示す波長にて
紫外吸収スペクトルで測定する。人工腎臓装置承認基準
では吸光度を0.1以下にすることが定められている
が、本発明の膜は膜孔保持剤を保持しないことから0.
04未満を達成することが可能である。また、膜孔保持
剤の有無については、該試験液を濃縮又は水分除去した
ものをガスクロマトグラフィー、液体クロマトグラフィ
ー、示差屈折系、紫外分光光度計、赤外線吸光光度法、
核磁気共鳴分光法、及び元素分析等の公知の方法により
測定することにより検知可能である。また、膜中に膜孔
保持剤を含むか否かについてもこれらの測定方法により
検知可能である。
Further, since the membrane prepared by the production method of the present invention does not use the membrane pore retaining agent in the production process, there is no eluate derived from the membrane pore retaining agent. Therefore, the absorbance of the eluate test solution for the membrane of the present invention is less than 0.04, and the test solution does not contain a membrane pore retaining agent. Here, the eluate test liquid was prepared based on the approval criteria of the artificial kidney device, and 1.5 g of the dry hollow fiber membrane cut into 2 cm and 150 mL of distilled water for injection were tested in a glass container for injection in the Japanese Pharmacopoeia. Put it in a glass container compatible with the alkaline elution test of
It means that the mixture was heated at 70 ± 5 ° C. for 1 hour, and after cooling, the membrane was removed and distilled water was added to make 150 mL. The absorbance is measured by an ultraviolet absorption spectrum at a wavelength showing a maximum absorption wavelength at 220 to 350 nm. The artificial kidney device approval standard stipulates that the absorbance should be 0.1 or less, but since the membrane of the present invention does not retain the membrane pore retaining agent, it is 0.
It is possible to achieve less than 04. Further, with respect to the presence or absence of a membrane pore-holding agent, gas chromatographic, liquid chromatography, differential refraction system, ultraviolet spectrophotometer, infrared absorption spectrophotometric method in which the test solution is concentrated or water is removed,
It can be detected by measuring by a known method such as nuclear magnetic resonance spectroscopy and elemental analysis. Further, it is possible to detect whether or not the membrane pore retaining agent is contained in the membrane by these measuring methods.

【0042】本発明の製造方法により作られた膜は、ポ
リスルホン系ポリマーとポリビニルピロリドンからな
り、膜内表面におけるポリビニルピロリドンの濃度が3
0〜45重量%である。膜の血液適合性に重要な因子
は、血液が接する膜内表面の親水性であり、ポリビニル
ピロリドン(以下単に「PVP」ともいう)を含有する
ポリスルホン系膜では、膜内表面のPVP濃度が重要で
ある。膜内表面のPVP濃度が低すぎると膜内表面が疎
水性を示し、血漿タンパク質が吸着しやすく、血液の凝
固も起こりやすい。すなわち、膜の血液適合性不良とな
る。逆に膜内表面のPVP濃度が高すぎると、PVPの
血液系への溶出量が増加し本発明の目的や用途にとって
は好ましくない結果を与える。従って、本発明での膜内
表面のPVPの濃度は、30〜40%の範囲であり、好
ましくは33〜40%である。
The membrane produced by the production method of the present invention comprises a polysulfone-based polymer and polyvinylpyrrolidone, and the concentration of polyvinylpyrrolidone on the inner surface of the membrane is 3
It is 0 to 45% by weight. An important factor for the blood compatibility of the membrane is the hydrophilicity of the inner surface of the membrane that is in contact with blood. In a polysulfone-based membrane containing polyvinylpyrrolidone (hereinafter also simply referred to as “PVP”), the PVP concentration on the inner surface of the membrane is important. Is. When the PVP concentration on the inner surface of the membrane is too low, the inner surface of the membrane exhibits hydrophobicity, plasma proteins are easily adsorbed, and blood coagulation easily occurs. That is, the blood compatibility of the membrane is poor. On the other hand, if the PVP concentration on the inner surface of the membrane is too high, the amount of PVP eluted into the blood system increases, which is not desirable for the purpose and application of the present invention. Therefore, the concentration of PVP on the inner surface of the membrane in the present invention is in the range of 30-40%, preferably 33-40%.

【0043】膜内表面のPVP濃度は、エックス線光量
子スペクトル(X−ray Photoelectro
n spectroscopy、以下XPS)によって
決定される。すなわち、膜内表面のXPSの測定は、試
料を両面テープ上に並べた後、カッターで繊維軸方向に
切開し、膜の内側が表になるように押し広げた後、通常
の方法で測定する。すなわち、C1s、O1s、N1
s、S2pスペクトルの面積強度から、装置付属の相対
感度係数を用いて窒素の表面濃度(窒素原子濃度)とイ
オウの表面濃度(イオウ原子濃度)から求めた濃度をい
うものであり、ポリスルホン系ポリマーが(2)式の構
造であるときには(6)式により計算で求めることがで
きる。 PVP濃度(重量%)=C11×100/(C11+C22) (6) ここで、C1:窒素原子濃度(%) C2:イオウ原子濃度(%) M1:PVPの繰り返しユニットの分子量(111) M2:ポリスルホン系ポリマーの繰り返しユニットの分
子量(442)
The PVP concentration on the inner surface of the film was determined by X-ray photoelectron spectroscopy (X-ray Photoelectron spectroscopy).
n spectroscopy, hereinafter XPS). That is, the XPS of the inner surface of the film is measured by arranging the samples on the double-sided tape, incising in the fiber axis direction with a cutter, expanding the inside of the film so that it is on the front side, and then measuring by an ordinary method. . That is, C1s, O1s, N1
It means the concentration obtained from the surface intensity of s, S2p spectrum and the surface concentration of nitrogen (nitrogen atom concentration) and the surface concentration of sulfur (sulfur atom concentration) using the relative sensitivity coefficient attached to the device. When is the structure of equation (2), it can be calculated by equation (6). PVP concentration (% by weight) = C 1 M 1 × 100 / (C 1 M 1 + C 2 M 2 ) (6) where C 1 : nitrogen atom concentration (%) C 2 : sulfur atom concentration (%) M 1 : Molecular weight of repeating unit of PVP (111) M 2 : Molecular weight of repeating unit of polysulfone polymer (442)

【0044】[0044]

【実施例】以下にこの発明の実施例を示すが、本発明
は、これに限定されるものではない。 (血小板粘着量の測定)膜への血小板粘着量の測定は、
以下の操作手順で行った。長さ15cmの中空糸状膜を
10本束ねて小型モジュールを作製し、該モジュールに
ヘパリン添加ヒト新鮮血を線速1.0cm/秒にて15
分間通過させ、続いて生理食塩水を1分間通過させた。
次に中空糸状膜を5mm間隔程度に細断し、0.5%ポ
リエチレングリコールアルキルフェニルエーテル(和光
純薬社製商品名トリトンX−100)を含む生理食塩水
中で超音波照射して膜表面に粘着した血小板から放出さ
れる乳酸脱水素酵素(以下、「LDH」という)を定量
することにより膜面積(内表面換算)当たりのLDH活
性として算出した。酵素活性の測定はLDHモノテスト
キット(ベーリンガー・マンハイム・山之内社製)を使
用した。なお、陽性対照としてPVPを含有しない膜
(γ線照射前の実施例1の膜を有効塩素濃度1,500
ppmの次亜塩素酸ナトリウムに2日間浸漬した後、エ
タノールに1日間浸漬することにより得られたもの)を
用い、試験品と同時に比較した。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited thereto. (Measurement of Platelet Adhesion Amount)
The procedure was as follows. A small module was prepared by bundling 10 hollow fiber membranes having a length of 15 cm, and heparin-added human fresh blood was added to the module at a linear velocity of 1.0 cm / sec.
It was passed for 1 minute, followed by saline for 1 minute.
Next, the hollow fiber membrane was shredded at intervals of about 5 mm, and the membrane surface was irradiated with ultrasonic waves in physiological saline containing 0.5% polyethylene glycol alkylphenyl ether (trade name Triton X-100 manufactured by Wako Pure Chemical Industries, Ltd.). The lactate dehydrogenase (hereinafter referred to as “LDH”) released from the adhered platelets was quantified to calculate the LDH activity per membrane area (inner surface conversion). The LDH monotest kit (Boehringer Mannheim, Yamanouchi) was used to measure the enzyme activity. As a positive control, a film containing no PVP (the film of Example 1 before γ-ray irradiation was used, the effective chlorine concentration was 1,500
It was soaked in ppm sodium hypochlorite for 2 days, and then soaked in ethanol for 1 day).

【0045】(血漿タンパク質吸着量)膜への血漿タン
パク質吸着量は、限外濾過時間を240分にした以外は
アルブミンの透過率測定と同様な操作を行った後、生理
食塩水で1分間洗浄した。次に中空糸状膜を5mm間隔
程度に細断し、1.0%ラウリル酸ナトリウムを含む生
理食塩水中で攪拌して抽出した血漿タンパク質を定量す
ることにより膜重量当たりのタンパク質吸着量として算
出した。タンパク質濃度はBCAプロテインアッセイ
(ピアース社製)を使用した。なお、陽性対照としてP
VPを含有しない膜(γ線照射前の実施例1の膜を有効
塩素濃度1,500ppmの次亜塩素酸ナトリウムに2
日間浸漬した後、エタノールに1日間浸漬することによ
り得られたもの)を用い、試験品と同時に比較した。
(Amount of adsorbed plasma protein) The amount of adsorbed plasma protein on the membrane was the same as that for measuring the transmittance of albumin except that the ultrafiltration time was 240 minutes, followed by washing with physiological saline for 1 minute. did. Next, the hollow fiber membrane was shredded at intervals of about 5 mm, and the plasma protein extracted by stirring in physiological saline containing 1.0% sodium laurate was quantified to calculate the protein adsorption amount per membrane weight. For the protein concentration, BCA protein assay (Pierce) was used. As a positive control, P
A film containing no VP (the film of Example 1 before γ-irradiation was added to sodium hypochlorite having an effective chlorine concentration of 1,500 ppm to 2%).
After being dipped for one day, it was dipped in ethanol for one day), and compared with the test product at the same time.

【0046】[0046]

【実施例1】(製膜及び残溶剤の除去)ポリスルホン
(Amoco Engineering Polyme
rs社製P−1700)18.0重量%、ポリビニルピ
ロリドン(BASF社製 K90、重量平均分子量1,
200,000)4.3重量%を、N,N−ジメチルア
セトアミド77.7重量%に溶解して均一な溶液とし
た。ここで、製膜原液中のポリスルホンに対するポリビ
ニルピロリドンの混和比率は23.9重量%であった。
この製膜原液を60℃に保ち、N,N−ジメチルアセト
アミド30重量%と水70重量%の混合溶液からなる内
部液とともに、紡口(2重環状ノズル 0.1mm−
0.2mm−0.3mm)から吐出させ、0.96mの
エアギャップを通過させて75℃の水からなる凝固浴へ
浸漬した。この時、紡口から凝固浴までを円筒状の筒で
囲み、筒の中に水蒸気を含んだ窒素ガスを流しながら、
筒の中の湿度を54.5%、温度を51℃にコントロー
ルした。紡速は、80m/分に固定した。ここで、紡速
に対するエアギャップの比率は、0.012m/(m/
分)であった。巻き取った糸束を切断後、糸束(長さ3
0cm、膜本数9400本)の切断面上方から80℃の
熱水シャワーを2時間かけて洗浄することにより膜中の
残溶剤を除去した。
[Example 1] (Film formation and removal of residual solvent) Polysulfone (Amoco Engineering Polymer)
rs P-1700) 18.0 wt%, polyvinylpyrrolidone (BASF K90, weight average molecular weight 1,
(200,000) 4.3% by weight was dissolved in 77.7% by weight of N, N-dimethylacetamide to obtain a uniform solution. Here, the mixing ratio of polyvinylpyrrolidone to polysulfone in the film-forming stock solution was 23.9% by weight.
This film-forming stock solution was kept at 60 ° C., and an inner solution composed of a mixed solution of 30% by weight of N, N-dimethylacetamide and 70% by weight of water was used together with a spinneret (double annular nozzle 0.1 mm-
0.2 mm-0.3 mm), the mixture was passed through an air gap of 0.96 m and immersed in a coagulation bath made of water at 75 ° C. At this time, from the spinneret to the coagulation bath is surrounded by a cylindrical tube, while flowing nitrogen gas containing water vapor into the tube,
The humidity inside the cylinder was controlled at 54.5% and the temperature was controlled at 51 ° C. The spinning speed was fixed at 80 m / min. Here, the ratio of the air gap to the spinning speed is 0.012 m / (m /
Minutes). After cutting the wound yarn bundle, the yarn bundle (length 3
The residual solvent in the film was removed by washing with a hot water shower at 80 ° C. for 2 hours from above the cut surface (0 cm, number of films 9400).

【0047】(湿潤膜の乾燥及びPVPの不溶化処理)
上記の残溶剤除去後の糸束(含水率が300%、糸束中
心部の膜の含水率が300%、糸束外周部の膜の含水率
が300%、糸束の中心部と外周部における膜の含水率
の差が0%)90束を90℃に温度設定したマイクロ波
照射炉(照射炉内の風速3m/秒)内にそれぞれを等間
隔で均等に配置した。この時糸束の切断面が必ず上又は
下になるように治具で固定した。さらに、照射炉内でそ
れぞれの糸束に均一にマイクロ波が照射されるように6
本の導波管をそれぞれ等間隔で均等に固定した。該糸束
に対してマイクロ波の放射角度52度、導波管から糸束
(湿潤膜)までの距離280±5mm、マイクロ波出力
30kW(キロワット)で13分間マイクロ波照射し
た。この時点で照射炉内の中心部に位置する糸束の含水
率は50%(糸束中心部の膜の含水率が52%、糸束外
周部の膜の含水率が48%)であった。また照射炉内で
最外部に位置する糸束の含水率は54%(糸束中心部の
膜の含水率が55%、糸束外周部の膜の含水率が53
%)であった。引き続いてマイクロ波の出力のみを21
kWに低下させてさらに5分間マイクロ波照射すること
により含水率が1%未満の乾燥膜(糸束)を得た。ま
た、乾燥開始時から乾燥終了時までの間、各糸束の下部
から4m/秒の風速にて除湿空気(湿度10%以下)を
糸束の下部から上部へと通風した。この時、糸束の上部
からは乾燥開始時において糸束平均で0.4m/秒の風
速が測定された。さらに、得られた乾燥膜(糸束)に
2.5Mradのγ線を照射することにより膜中のPV
Pの一部を不溶化した。
(Drying of wet film and insolubilization treatment of PVP)
Yarn bundle after removing the residual solvent (water content is 300%, water content of the membrane at the center of the yarn bundle is 300%, water content of the membrane at the outer periphery of the yarn bundle is 300%, center portion and outer periphery of the yarn bundle 90 bundles having a water content difference of 0% in Example 2) were uniformly arranged at equal intervals in a microwave irradiation furnace (wind speed in the irradiation furnace was 3 m / sec) in which the temperature was set to 90 ° C. At this time, the yarn bundle was fixed with a jig so that the cut surface of the yarn bundle was always above or below. Furthermore, in order to uniformly irradiate each yarn bundle with microwaves in the irradiation furnace,
The respective waveguides were evenly fixed at equal intervals. Microwave irradiation was performed for 13 minutes at a microwave radiation angle of 52 degrees, a distance from the waveguide to the yarn bundle (wet film) of 280 ± 5 mm, and a microwave output of 30 kW (kilowatt). At this point, the water content of the yarn bundle located in the center of the irradiation furnace was 50% (the water content of the membrane at the center of the yarn bundle was 52%, and the water content of the membrane at the outer periphery of the yarn bundle was 48%). . The moisture content of the yarn bundle located at the outermost position in the irradiation furnace is 54% (the moisture content of the membrane at the center of the yarn bundle is 55%, and the moisture content of the membrane at the outer periphery of the yarn bundle is 53%).
%)Met. Then only the microwave output is 21
The dried film (yarn bundle) having a water content of less than 1% was obtained by lowering the power to kW and then performing microwave irradiation for 5 minutes. From the start of drying to the end of drying, dehumidified air (humidity of 10% or less) was blown from the lower part of each yarn bundle to the upper part at a wind speed of 4 m / sec. At this time, an average wind speed of 0.4 m / sec was measured from the top of the yarn bundle at the start of drying. Furthermore, by irradiating the obtained dry film (yarn bundle) with 2.5 Mrad γ-rays, PV in the film
Part of P was insolubilized.

【0048】(性能評価結果)この膜の性能を表1に示
す。性能は照射炉内中心部に位置する糸束と照射炉内最
外部に位置する糸束それぞれを10回測定した結果の平
均値を示す。この膜を有効濾過面積1.5m2のモジュ
ールにしてβ2−ミクログロブリンのクリアランスを実
測したところ、32mL/分であることが分かり、PV
Pの透過率を式(5)に代入して算出したクリアランス
32.5mL/分と同等であることが明らかとなった。
さらに、該モジュールにて尿素、ビタミンB12の透過
測定を行ったところ、尿素のクリアランスと透過率はそ
れぞれ185mL/分、83%であった。また、ビタミ
ンB12については同様に95mL/分、48%であっ
た。測定は、
(Results of Performance Evaluation) The performance of this film is shown in Table 1. The performance shows the average value of the results of measuring 10 times each of the yarn bundle located in the central part of the irradiation furnace and the yarn bundle located in the outermost part of the irradiation furnace. When this membrane was used as a module with an effective filtration area of 1.5 m 2 and the clearance of β2-microglobulin was measured, it was found to be 32 mL / min.
It became clear that it was equivalent to the clearance of 32.5 mL / min calculated by substituting the transmittance of P into the equation (5).
Further, when permeation of urea and vitamin B12 was measured in the module, the clearance and permeation rate of urea were 185 mL / min and 83%, respectively. Similarly, for vitamin B12, it was 95 mL / min and 48%. The measurement is

【0040】と同様な方法で行った。また、膜中の全P
VP量の62%が、水に不溶であった。膜の溶出物試験
をした結果、溶出物試験液の吸光度は0.04以下であ
った。また、膜孔保持剤を用いていないことから溶出物
試験液中に膜孔保持剤は含まれて無かった。さらに、こ
の膜は陽性対照膜に比べて、血小板粘着量が低く(陽性
対照膜43.4Unit/m2)、且つ血漿タンパク質
の粘着量も低いことが明らかとなった(陽性対照膜6
2.5mg/g)。以上に挙げた性能から、この膜は、
膜からの溶出量が極めて少なく、血液タンパク質や血小
板の付着が少ないことが明らかとなった。また、アルブ
ミンの透過率が少なくβ2−ミクログロブリンのクリア
ランスにも優れることから透析性能にも優れた膜である
ことが分かった。さらに、糸束の中心部と外周部におけ
る膜の性能の差がこれまでの乾燥方法(比較例1)に比
べて少ないことから性能のばらつきが少ないことが明ら
かとなった。また、照射炉内中心部に位置する糸束と照
射炉内最外部に位置する糸束との性能差も比較例8〜1
1に比べて少ないことが明らかとなった。
The same procedure as in the above was carried out. In addition, the total P in the film
62% of the VP amount was insoluble in water. As a result of the eluate test of the membrane, the absorbance of the eluate test solution was 0.04 or less. Further, since the membrane pore retaining agent was not used, the eluate test solution did not contain the membrane pore retaining agent. Further, it was revealed that this membrane had a lower platelet adhesion amount (positive control membrane 43.4 Unit / m 2 ) and a lower plasma protein adhesion amount (positive control membrane 6) than the positive control membrane.
2.5 mg / g). From the performance mentioned above, this membrane
It was revealed that the amount of elution from the membrane was extremely small and the adhesion of blood proteins and platelets was small. In addition, it was found that the membrane has a low albumin permeability and an excellent β2-microglobulin clearance, and thus has excellent dialysis performance. Furthermore, since the difference in the performance of the film between the central portion and the outer peripheral portion of the yarn bundle is smaller than that of the conventional drying method (Comparative Example 1), it is clear that there is little variation in performance. In addition, the performance difference between the yarn bundle located at the center of the irradiation furnace and the yarn bundle located at the outermost portion of the irradiation furnace is also comparative examples 8 to 1.
It became clear that it was less than 1.

【0049】[0049]

【実施例2】製膜原液中のポリビニルピロリドンを4重
量%、N,N−ジメチルアセトアミドを78重量%とし
た以外は、実施例1と同様な操作を行った。この時の製
膜原液中のポリスルホンに対するポリビニルピロリドン
の混和比率は22.2重量%であった。この膜の性能を
表1に示す。この膜は、膜からの溶出量が極めて少な
く、血液タンパク質や血小板の付着が少ないことが明ら
かとなった。また、アルブミンの透過率が少なく、且つ
β2−ミクログロブリンのクリアランスにも優れること
が示唆されたことから透析性能にも優れた膜であること
が分かった。さらに、糸束の中心部と外周部における膜
の性能の差がこれまでの乾燥方法(比較例1)に比べて
少ないことから性能のばらつきが少ないことが明らかと
なった。また、照射炉内中心部に位置する糸束と照射炉
内最外部に位置する糸束との性能差も比較例8〜11に
比べて少ないことが明らかとなった。
Example 2 The same operation as in Example 1 was performed except that polyvinylpyrrolidone was 4% by weight and N, N-dimethylacetamide was 78% by weight in the stock solution for film formation. At this time, the mixing ratio of polyvinylpyrrolidone to polysulfone in the film-forming stock solution was 22.2% by weight. The performance of this membrane is shown in Table 1. It was revealed that the amount of elution from the membrane was extremely small and that blood proteins and platelets were not attached to this membrane. Further, it was suggested that the membrane has a low albumin permeability and an excellent β2-microglobulin clearance, and thus it was found that the membrane has excellent dialysis performance. Furthermore, since the difference in the performance of the film between the central portion and the outer peripheral portion of the yarn bundle is smaller than that of the conventional drying method (Comparative Example 1), it is clear that there is little variation in performance. Further, it was revealed that the difference in performance between the yarn bundle located in the central part of the irradiation furnace and the yarn bundle located at the outermost part in the irradiation furnace was smaller than in Comparative Examples 8 to 11.

【0050】[0050]

【実施例3】製膜原液中のポリビニルピロリドンを4.
8重量%、N,N−ジメチルアセトアミドを77.2重
量%とした以外は、実施例1と同様な操作を行った。こ
の時の製膜原液中のポリスルホンに対するポリビニルピ
ロリドンの混和比率は26.7重量%であった。この膜
の性能を表2に示す。この膜は、膜からの溶出量が極め
て少なく、血液タンパク質や血小板の付着が少ないこと
が明らかとなった。また、アルブミンの透過率が少な
く、且つβ2−ミクログロブリンのクリアランスにも優
れることが示唆されたことから透析性能にも優れた膜で
あることが分かった。さらに、糸束の中心部と外周部に
おける膜の性能の差がこれまでの乾燥方法(比較例1)
に比べて少ないことから性能のばらつきが少ないことが
明らかとなった。また、照射炉内中心部に位置する糸束
と照射炉内最外部に位置する糸束との性能差も比較例8
〜11に比べて少ないことが明らかとなった。
[Example 3] The polyvinylpyrrolidone in the stock solution for film formation was changed to 4.
The same operation as in Example 1 was performed except that 8% by weight and 77.2% by weight of N, N-dimethylacetamide were used. At this time, the mixing ratio of polyvinylpyrrolidone to polysulfone in the film-forming stock solution was 26.7% by weight. The performance of this membrane is shown in Table 2. It was revealed that the amount of elution from the membrane was extremely small and that blood proteins and platelets were not attached to this membrane. Further, it was suggested that the membrane has a low albumin permeability and an excellent β2-microglobulin clearance, and thus it was found that the membrane has excellent dialysis performance. Furthermore, the difference in the film performance between the central portion and the outer peripheral portion of the yarn bundle is due to the conventional drying method (Comparative Example 1).
It is clear that there is less variation in performance because it is smaller than In addition, the performance difference between the yarn bundle located at the center of the irradiation furnace and the yarn bundle located at the outermost portion of the irradiation furnace is also shown in Comparative Example 8.
It became clear that it was less than that of ~ 11.

【0051】[0051]

【実施例4】内部液にN,N−ジメチルアセトアミド5
2重量%と水48重量%からなる混和溶液を用いた以外
は、実施例3と同様な操作を行った。この膜の性能を表
2に示す。この膜は、膜からの溶出量が極めて少なく、
血液タンパク質や血小板の付着が少ないことが明らかと
なった。また、アルブミンの透過率が少なく、且つβ2
−ミクログロブリンのクリアランスにも優れることが示
唆されたことから透析性能にも優れた膜であることが分
かった。さらに、糸束の中心部と外周部における膜の性
能の差がこれまでの乾燥方法(比較例1)に比べて少な
いことから性能のばらつきが少ないことが明らかとなっ
た。また、照射炉内中心部に位置する糸束と照射炉内最
外部に位置する糸束との性能差も比較例8〜11に比べ
て少ないことが明らかとなった。
[Example 4] N, N-dimethylacetamide 5 was added to the internal liquid.
The same operation as in Example 3 was performed except that a mixed solution containing 2% by weight and 48% by weight of water was used. The performance of this membrane is shown in Table 2. The amount of elution from this membrane is extremely small,
It became clear that blood proteins and platelets were less attached. In addition, albumin has low permeability and β2
-Since it was suggested that the clearance of microglobulin was also excellent, it was found that the membrane had excellent dialysis performance. Furthermore, since the difference in the performance of the film between the central portion and the outer peripheral portion of the yarn bundle is smaller than that of the conventional drying method (Comparative Example 1), it is clear that there is little variation in performance. Further, it was revealed that the difference in performance between the yarn bundle located in the central part of the irradiation furnace and the yarn bundle located at the outermost part in the irradiation furnace was smaller than in Comparative Examples 8 to 11.

【0052】[0052]

【実施例5】導波管からのマイクロ波の放射角度を35
度にした以外は実施例1と同様な操作を行った。この膜
の性能を表3に示す。この膜は、膜からの溶出量が極め
て少なく、血液タンパク質や血小板の付着が少ないこと
が明らかとなった。また、アルブミンの透過率が少な
く、且つβ2−ミクログロブリンのクリアランスにも優
れることが示唆されたことから透析性能にも優れた膜で
あることが分かった。さらに、糸束の中心部と外周部に
おける膜の性能の差がこれまでの乾燥方法(比較例1)
に比べて少ないことから性能のばらつきが少ないことが
明らかとなった。また、照射炉内中心部に位置する糸束
と照射炉内最外部に位置する糸束との性能差も比較例8
〜11に比べて少ないことが明らかとなった。
Fifth Embodiment A microwave radiation angle from the waveguide is set to 35.
The same operation as in Example 1 was performed except that the time was changed. The performance of this membrane is shown in Table 3. It was revealed that the amount of elution from the membrane was extremely small and that blood proteins and platelets were not attached to this membrane. Further, it was suggested that the membrane has a low albumin permeability and an excellent β2-microglobulin clearance, and thus it was found that the membrane has excellent dialysis performance. Furthermore, the difference in the film performance between the central portion and the outer peripheral portion of the yarn bundle is due to the conventional drying method (Comparative Example 1).
It is clear that there is less variation in performance because it is smaller than In addition, the performance difference between the yarn bundle located at the center of the irradiation furnace and the yarn bundle located at the outermost portion of the irradiation furnace is also shown in Comparative Example 8.
It became clear that it was less than that of ~ 11.

【0053】[0053]

【実施例6】導波管からのマイクロ波の放射角度を11
5度にした以外は実施例1と同様な操作を行った。この
膜の性能を表3に示す。この膜は、膜からの溶出量が極
めて少なく、血液タンパク質や血小板の付着が少ないこ
とが明らかとなった。また、アルブミンの透過率が少な
く、且つβ2−ミクログロブリンのクリアランスにも優
れることが示唆されたことから透析性能にも優れた膜で
あることが分かった。さらに、糸束の中心部と外周部に
おける膜の性能の差がこれまでの乾燥方法(比較例1)
に比べて少ないことから性能のばらつきが少ないことが
明らかとなった。また、照射炉内中心部に位置する糸束
と照射炉内最外部に位置する糸束との性能差も比較例8
〜11に比べて少ないことが明らかとなった。
[Sixth Embodiment] The microwave radiation angle from the waveguide is set to 11
The same operation as in Example 1 was performed except that the temperature was set to 5 degrees. The performance of this membrane is shown in Table 3. It was revealed that the amount of elution from the membrane was extremely small and that blood proteins and platelets were not attached to this membrane. Further, it was suggested that the membrane has a low albumin permeability and an excellent β2-microglobulin clearance, and thus it was found that the membrane has excellent dialysis performance. Furthermore, the difference in the film performance between the central portion and the outer peripheral portion of the yarn bundle is due to the conventional drying method (Comparative Example 1).
It is clear that there is less variation in performance because it is smaller than In addition, the performance difference between the yarn bundle located at the center of the irradiation furnace and the yarn bundle located at the outermost portion of the irradiation furnace is also shown in Comparative Example 8.
It became clear that it was less than that of ~ 11.

【0054】[0054]

【実施例7】導波管からの湿潤膜(糸束)までの距離を
60±5mmにした以外は実施例1と同様な操作を行っ
た。この膜の性能を表4に示す。この膜は、膜からの溶
出量が極めて少なく、血液タンパク質や血小板の付着が
少ないことが明らかとなった。また、アルブミンの透過
率が少なく、且つβ2−ミクログロブリンのクリアラン
スにも優れることが示唆されたことから透析性能にも優
れた膜であることが分かった。さらに、糸束の中心部と
外周部における膜の性能の差がこれまでの乾燥方法(比
較例1)に比べて少ないことから性能のばらつきが少な
いことが明らかとなった。また、照射炉内中心部に位置
する糸束と照射炉内最外部に位置する糸束との性能差も
比較例8〜11に比べて少ないことが明らかとなった。
Example 7 The same operation as in Example 1 was performed except that the distance from the waveguide to the wet film (yarn bundle) was set to 60 ± 5 mm. The performance of this membrane is shown in Table 4. It was revealed that the amount of elution from the membrane was extremely small and that blood proteins and platelets were not attached to this membrane. Further, it was suggested that the membrane has a low albumin permeability and an excellent β2-microglobulin clearance, and thus it was found that the membrane has excellent dialysis performance. Furthermore, since the difference in the performance of the film between the central portion and the outer peripheral portion of the yarn bundle is smaller than that of the conventional drying method (Comparative Example 1), it is clear that there is little variation in performance. Further, it was revealed that the difference in performance between the yarn bundle located in the central part of the irradiation furnace and the yarn bundle located at the outermost part in the irradiation furnace was smaller than in Comparative Examples 8 to 11.

【0055】[0055]

【実施例8】導波管からの湿潤膜(糸束)までの距離を
480±5mmにした以外は実施例1と同様な操作を行
った。この膜の性能を表4に示す。この膜は、膜からの
溶出量が極めて少なく、血液タンパク質や血小板の付着
が少ないことが明らかとなった。また、アルブミンの透
過率が少なく、且つβ2−ミクログロブリンのクリアラ
ンスにも優れることが示唆されたことから透析性能にも
優れた膜であることが分かった。さらに、糸束の中心部
と外周部における膜の性能の差がこれまでの乾燥方法
(比較例1)に比べて少ないことから性能のばらつきが
少ないことが明らかとなった。また、照射炉内中心部に
位置する糸束と照射炉内最外部に位置する糸束との性能
差も比較例8〜11に比べて少ないことが明らかとなっ
た。
Example 8 The same operation as in Example 1 was performed except that the distance from the waveguide to the wet film (yarn bundle) was 480 ± 5 mm. The performance of this membrane is shown in Table 4. It was revealed that the amount of elution from the membrane was extremely small and that blood proteins and platelets were not attached to this membrane. Further, it was suggested that the membrane has a low albumin permeability and an excellent β2-microglobulin clearance, and thus it was found that the membrane has excellent dialysis performance. Furthermore, since the difference in the performance of the film between the central portion and the outer peripheral portion of the yarn bundle is smaller than that of the conventional drying method (Comparative Example 1), it is clear that there is little variation in performance. Further, it was revealed that the difference in performance between the yarn bundle located in the central part of the irradiation furnace and the yarn bundle located at the outermost part in the irradiation furnace was smaller than in Comparative Examples 8 to 11.

【0056】[0056]

【比較例1】残溶剤除去後の糸束(含水率が300%、
糸束中心部の膜の含水率が300%、糸束外周部の膜の
含水率が300%、糸束の中心部と外周部における膜の
含水率の差が0%)90本を実施例1と同じ照射炉内で
同じ糸束の配置で、乾燥のみを87℃の温度で7時間送
風乾燥(風速10m/秒)して含水率が1%未満の糸束
を得た以外は実施例1と同様な操作を行った。この結果
を表5に示す。透水量及びPVPの透過率において糸束
の中心部と外周部における膜の性能に差があり、結果と
して糸束内で性能のばらつきがあることが明らかとなっ
た。
[Comparative Example 1] Yarn bundle after removal of residual solvent (water content is 300%,
Example: 90 yarns having a water content of 300% in the central part of the yarn bundle, a water content of 300% in the outer peripheral part of the yarn bundle, and a water content difference of 0% between the central part and the outer peripheral part of the yarn bundle. Example 1 except that a yarn bundle having a water content of less than 1% was obtained by blasting and drying at a temperature of 87 ° C. for 7 hours (wind speed 10 m / sec) in the same arrangement of yarn bundles in the same irradiation furnace as in Example 1. The same operation as in 1 was performed. The results are shown in Table 5. It was clarified that there is a difference in the performance of the membrane between the central portion and the outer peripheral portion of the yarn bundle in the amount of water permeation and the transmittance of PVP, and as a result, there is variation in the performance within the yarn bundle.

【0057】[0057]

【比較例2】γ線照射しない以外は、実施例1と同様な
操作を行った。この結果を表6に示す。PVPの溶出の
ため溶出試験液の吸光度が0.04を超えることが明ら
かとなった。性能評価は、照射炉内中心部に位置する糸
束の外周部のみを行なった。
[Comparative Example 2] The same operation as in Example 1 was carried out except that no γ-ray irradiation was performed. The results are shown in Table 6. It was revealed that the absorbance of the dissolution test liquid exceeded 0.04 due to the dissolution of PVP. The performance evaluation was performed only on the outer peripheral portion of the yarn bundle located in the center of the irradiation furnace.

【0058】[0058]

【比較例3】製膜原液中のポリビニルピロリドンを5.
0重量%、N,N−ジメチルアセトアミドを77.0重
量%とした以外は、実施例1と同様な操作を行った。こ
の時の製膜原液中のポリスルホンに対するポリビニルピ
ロリドンの混和比率は27.8重量%であった。この膜
の性能を表6に示す。製膜原液中のポリスルホンに対す
るポリビニルピロリドンの混和比率が27重量%を超え
ているので、溶出量、膜内表面PVP濃度が増加してい
る。性能評価は、照射炉内中心部に位置する糸束の外周
部のみを行なった。
[Comparative Example 3] The polyvinylpyrrolidone in the stock solution for film formation was compared with 5.
The same operation as in Example 1 was performed except that 0% by weight and 77.0% by weight of N, N-dimethylacetamide were used. At this time, the mixing ratio of polyvinylpyrrolidone to polysulfone in the film-forming stock solution was 27.8% by weight. The performance of this membrane is shown in Table 6. Since the mixing ratio of polyvinylpyrrolidone to polysulfone in the stock solution for film formation exceeds 27% by weight, the amount of elution and the concentration of PVP on the inner surface of the film are increased. The performance evaluation was performed only on the outer peripheral portion of the yarn bundle located in the center of the irradiation furnace.

【0059】[0059]

【比較例4】製膜原液中のポリビニルピロリドンを3.
6重量%、N,N−ジメチルアセトアミドを78.4重
量%とした以外は、実施例1と同様な操作を行った。こ
の時の製膜原液中のポリスルホンに対するポリビニルピ
ロリドンの混和比率は20.0重量%であった。この膜
の性能を表6に示す。膜内表面のPVP量が30%を下
回っていることが明らかとなった。性能評価は、照射炉
内中心部に位置する糸束の外周部のみを行なった。
[Comparative Example 4] The polyvinylpyrrolidone in the stock solution for film formation was compared with 3.
The same operation as in Example 1 was performed, except that 6% by weight and 78.4% by weight of N, N-dimethylacetamide were used. At this time, the mixing ratio of polyvinylpyrrolidone to polysulfone in the film-forming stock solution was 20.0% by weight. The performance of this membrane is shown in Table 6. It was revealed that the PVP amount on the inner surface of the film was less than 30%. The performance evaluation was performed only on the outer peripheral portion of the yarn bundle located in the center of the irradiation furnace.

【0060】[0060]

【比較例5】内部液にN,N−ジメチルアセトアミド6
0重量%と水40重量%からなる混和溶液を用いた以外
は、実施例3と同様な操作を行った。この膜の性能を表
6に示す。この膜は、アルブミンの透過率が0.3%を
超えており、またPVPの透過率も75%を超える性能
であった。性能評価は、照射炉内中心部に位置する糸束
の外周部のみを行なった。
[Comparative Example 5] N, N-dimethylacetamide 6 was added to the inner liquid.
The same operation as in Example 3 was performed except that a mixed solution of 0% by weight and 40% by weight of water was used. The performance of this membrane is shown in Table 6. This membrane had an albumin transmittance of more than 0.3% and a PVP transmittance of more than 75%. The performance evaluation was performed only on the outer peripheral portion of the yarn bundle located in the center of the irradiation furnace.

【0061】[0061]

【比較例6】内部液にN,N−ジメチルアセトアミド1
0重量%と水90重量%からなる混和溶液を用いた以外
は、実施例1と同様な操作を行った。この膜の性能を表
6に示す。純水の透水量が10mL/(m2・hr・m
mHg)を下回る性能であった。性能評価は、照射炉内
中心部に位置する糸束の外周部のみを行なった。
[Comparative Example 6] N, N-dimethylacetamide 1 was added to the inner liquid.
The same operation as in Example 1 was performed except that a mixed solution of 0% by weight and 90% by weight of water was used. The performance of this membrane is shown in Table 6. Pure water permeability is 10mL / (m 2 · hr · m
The performance was lower than mHg). The performance evaluation was performed only on the outer peripheral portion of the yarn bundle located in the center of the irradiation furnace.

【0062】[0062]

【比較例7】乾燥温度を170℃にした以外は、実施例
1と同様な操作を行った。この膜の性能を表6に示す。
この膜は、膜中の全てのPVPが水に不溶であった。こ
の膜を有効濾過面積1.5m2のモジュールにして血液
流量500mL/分(膜外表面側)の条件下で日本人工臓
器学界の性能評価基準に従い臨床血液評価したところ、
透析患者の白血球数が一時的に低下するロイコペニア症
状が観察された。性能評価は、照射炉内中心部に位置す
る糸束の外周部のみを行なった。
Comparative Example 7 The same operation as in Example 1 was performed except that the drying temperature was 170 ° C. The performance of this membrane is shown in Table 6.
In this membrane, all PVP in the membrane was insoluble in water. Using this membrane as a module with an effective filtration area of 1.5 m 2 and performing clinical blood evaluation according to the performance evaluation criteria of the Japanese Society for Artificial Organs under the condition of a blood flow rate of 500 mL / min (outer side of the membrane),
Leukopenia symptoms were observed in which the white blood cell count in dialysis patients was temporarily reduced. The performance evaluation was performed only on the outer peripheral portion of the yarn bundle located in the center of the irradiation furnace.

【0063】[0063]

【比較例8】導波管から照射されるマイクロ波の放射角
度を20度にした以外は実施例1と同様な操作を行っ
た。この膜の性能を表7に示す。照射炉内中心部に位置
する糸束と照射炉内最外部に位置する糸束とに性能差が
あり、結果として糸束間にばらつきがあることが明らか
となった。
[Comparative Example 8] The same operation as in Example 1 was performed except that the radiation angle of the microwave radiated from the waveguide was 20 degrees. The performance of this membrane is shown in Table 7. It was clarified that there was a difference in performance between the yarn bundle located in the center of the irradiation furnace and the yarn bundle located in the outermost portion of the irradiation furnace, and as a result there was variation among the yarn bundles.

【0064】[0064]

【比較例9】導波管から照射されるマイクロ波の放射角
度を130度にした以外は実施例1と同様な操作を行っ
た。この膜の性能を表7に示す。照射炉内中心部に位置
する糸束と照射炉内最外部に位置する糸束とに性能差が
あり、結果として糸束間にばらつきがあることが明らか
となった。
[Comparative Example 9] The same operation as in Example 1 was performed except that the radiation angle of the microwave radiated from the waveguide was set to 130 degrees. The performance of this membrane is shown in Table 7. It was clarified that there was a difference in performance between the yarn bundle located in the center of the irradiation furnace and the yarn bundle located in the outermost portion of the irradiation furnace, and as a result there was variation among the yarn bundles.

【0065】[0065]

【比較例10】導波管からの湿潤膜(糸束)までの距離
を30±5mmにした以外は実施例1と同様な操作を行
った。糸束の上側のみが乾燥し、下側は未乾燥であっ
た。
Comparative Example 10 The same operation as in Example 1 was performed except that the distance from the waveguide to the wet film (yarn bundle) was set to 30 ± 5 mm. Only the upper side of the yarn bundle was dry and the lower side was undried.

【0066】[0066]

【比較例11】導波管からの湿潤膜(糸束)までの距離
を520±5mmにした以外は実施例1と同様な操作を
行った。糸束全体が未乾燥であった。
Comparative Example 11 The same operation as in Example 1 was performed except that the distance from the waveguide to the wet film (yarn bundle) was 520 ± 5 mm. The entire yarn bundle was undried.

【0067】[0067]

【表1】 [Table 1]

【0068】[0068]

【表2】 [Table 2]

【0069】[0069]

【表3】 [Table 3]

【0070】[0070]

【表4】 [Table 4]

【0071】[0071]

【表5】 [Table 5]

【0072】[0072]

【表6】 [Table 6]

【0073】[0073]

【表7】 [Table 7]

【0074】[0074]

【発明の効果】本発明の中空糸膜の製造方法によると、
糸束状に製束された湿潤膜を複数束同時に乾燥する場合
においても、糸束内の性能のばらつきを解消できると同
時に糸束間の性能のばらつきも解消することができる。
本発明によって製造された膜は、膜からの溶出量が極め
て少なく、血液タンパク質や血小板の付着が少ない優れ
た透析性能を有することから医薬用途、医療用途、及び
一般工業用途に用いることができる。
According to the method for producing a hollow fiber membrane of the present invention,
Even when a plurality of wet films bundled in a yarn bundle are dried at the same time, it is possible to eliminate variations in performance within the yarn bundle and at the same time eliminate variations in performance between yarn bundles.
The membrane produced according to the present invention has an extremely small amount of elution from the membrane and has excellent dialysis performance with little adhesion of blood proteins and platelets, and thus can be used for pharmaceutical applications, medical applications, and general industrial applications.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の製造方法において、導波管と放射角
度との関係を説明するための図である。
FIG. 1 is a diagram for explaining the relationship between a waveguide and a radiation angle in the manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1 導波管 O 導波管の照射面の中心点 A 導波管の照射面の中心点から等距離の曲線上におい
て放射エネルギーが最も強い点 B 導波管の照射面の中心点から等距離の曲線上におい
て放射エネルギーが最も強い点に対して該放射エネルギ
ーが半分になる点 C 導波管の照射面の中心点から等距離の曲線上におい
て放射エネルギーが最も強い点に対して該放射エネルギ
ーが半分になる点
1 Waveguide O Center point of the irradiation surface of the waveguide A Point where the radiant energy is strongest on the curve equidistant from the center point of the irradiation surface of the waveguide B Equal distance from the center point of the irradiation surface of the waveguide Point at which the radiant energy is half of the strongest radiant energy on the curve of C. The radiant energy at the strongest radiant energy on the curve equidistant from the center point of the irradiation surface of the waveguide. The point at which

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) D01F 6/94 D01F 6/94 Z D06M 10/00 D06M 10/00 E J Fターム(参考) 4C077 AA05 BB01 LL05 LL30 PP09 PP15 4D006 GA13 HA15 HA18 MA01 MA22 MB01 MC40 MC62 NA05 NA18 NA19 NA42 NA64 PA01 PB09 PC47 4L031 AA12 AA14 AB06 CA08 CB03 CB08 4L035 AA04 BB04 BB11 BB16 CC05 DD03 MF01 Front page continuation (51) Int.Cl. 7 Identification symbol FI theme code (reference) D01F 6/94 D01F 6/94 Z D06M 10/00 D06M 10/00 EJ F term (reference) 4C077 AA05 BB01 LL05 LL30 PP09 PP15 4D006 GA13 HA15 HA18 MA01 MA22 MB01 MC40 MC62 NA05 NA18 NA19 NA42 NA64 PA01 PB09 PC47 4L031 AA12 AA14 AB06 CA08 CB03 CB08 4L035 AA04 BB04 BB11 BB16 CC05 DD03 MF01

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 糸束状に製束された湿潤膜をマイクロ波
照射して複数束同時に乾燥する中空糸膜の製造方法であ
って、導波管から照射されるマイクロ波の放射角度が3
0〜120度であり、且つ導波管から湿潤膜までの距離
が50〜500mmであることを特徴とする中空糸膜の
製造方法。
1. A method for producing a hollow fiber membrane, wherein a wet film bundled into a bundle of yarns is irradiated with microwaves to dry a plurality of bundles at the same time, and the radiation angle of the microwaves irradiated from the waveguide is 3.
A method for producing a hollow fiber membrane, which is 0 to 120 degrees and the distance from the waveguide to the wet membrane is 50 to 500 mm.
【請求項2】 糸束状に製束された膜孔保持剤を含まな
い湿潤膜をマイクロ波照射して複数束同時に乾燥する中
空糸状血液浄化膜の製造方法であって、導波管から照射
されるマイクロ波の放射角度が30〜120度であり、
且つ導波管から湿潤膜までの距離が50〜500mmで
あることを特徴とする中空糸状血液浄化膜の製造方法。
2. A method for producing a hollow fiber blood purification membrane, which comprises microwave-irradiating a wet membrane, which does not contain a membrane pore-holding agent, bundled into a bundle of fibers to dry a plurality of bundles at the same time. The microwave radiation angle is 30 to 120 degrees,
A method for producing a hollow fiber blood purification membrane, characterized in that the distance from the waveguide to the wet membrane is 50 to 500 mm.
【請求項3】 糸束状に製束された膜孔保持剤を含まな
い湿潤膜を40℃以上120℃以下の温度で加熱乾燥す
ると共にマイクロ波照射して複数束同時に乾燥する中空
糸状血液浄化膜の製造方法であって、導波管から照射さ
れるマイクロ波の放射角度が30〜120度であり、且
つ導波管から湿潤膜までの距離が50〜500mmであ
ることを特徴とする中空糸状血液浄化膜の製造方法。
3. A hollow fiber blood purification wherein a wet membrane containing no membrane pore-holding agent bundled into a bundle of fibers is heated and dried at a temperature of 40 ° C. or higher and 120 ° C. or lower, and a plurality of bundles are simultaneously dried by microwave irradiation. A method of manufacturing a film, characterized in that the microwave emitted from the waveguide has an emission angle of 30 to 120 degrees, and the distance from the waveguide to the wet film is 50 to 500 mm. Method for producing filamentous blood purification membrane.
【請求項4】 複数の導波管を用いることを特徴とする
請求項1〜3のいずれかに記載の製造方法。
4. The manufacturing method according to claim 1, wherein a plurality of waveguides are used.
【請求項5】 糸束内に除湿気体を通風することを特徴
とする請求項1〜4のいずれかに記載の製造方法。
5. The manufacturing method according to claim 1, wherein a dehumidifying body is ventilated in the yarn bundle.
【請求項6】 乾燥開始時の糸束の中心部と外周部にお
ける膜の含水率の差が10%以内であることを特徴とす
る請求項1〜5のいずれかに記載の製造方法。
6. The method according to claim 1, wherein the difference in water content of the membrane between the central portion and the outer peripheral portion of the yarn bundle at the start of drying is within 10%.
【請求項7】 乾燥開始後の糸束の平均含水率が20〜
70%になる時点でマイクロ波の照射出力を低下させる
ことを特徴とする請求項1〜6のいずれかに記載の製造
方法。
7. The average water content of the yarn bundle after the start of drying is 20 to
The manufacturing method according to any one of claims 1 to 6, wherein the irradiation output of the microwave is reduced at the time of reaching 70%.
【請求項8】 乾燥開始後の糸束の平均含水率が20〜
70%になる時点での該糸束の中心部と外周部における
膜の含水率の差が5%以内であることを特徴とする請求
項1〜7のいずれかに記載の製造方法。
8. The average water content of the yarn bundle after the start of drying is 20 to
The manufacturing method according to any one of claims 1 to 7, wherein a difference in water content of the membrane between the central portion and the outer peripheral portion of the yarn bundle at the time of reaching 70% is within 5%.
【請求項9】 膜が、ポリスルホン系ポリマーとポリビ
ニルピロリドンからなることを特徴とする請求項1〜8
のいずれかに記載の製造方法。
9. The membrane comprises a polysulfone-based polymer and polyvinylpyrrolidone.
The manufacturing method according to any one of 1.
【請求項10】 製膜原液が、ポリスルホン系ポリマ
ー、ポリビニルピロリドン、及び溶剤からなり、ポリス
ルホン系ポリマーに対するポリビニルピロリドンの比率
が18〜27重量%であることを特徴とする請求項1〜
9のいずれかに記載の製造方法。
10. The film-forming stock solution comprises a polysulfone-based polymer, polyvinylpyrrolidone, and a solvent, and the ratio of polyvinylpyrrolidone to the polysulfone-based polymer is 18 to 27% by weight.
9. The manufacturing method according to any one of 9.
【請求項11】 乾燥後さらに膜中のポリビニルピロリ
ドンの一部を水に不溶化することを特徴とする請求項1
〜10のいずれかに記載の製造方法。
11. The method according to claim 1, wherein after drying, a part of polyvinylpyrrolidone in the film is further insolubilized in water.
10. The manufacturing method according to any one of 10 to 10.
JP2002050130A 2002-02-26 2002-02-26 Method for manufacturing hollow fiber membrane Pending JP2003245529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002050130A JP2003245529A (en) 2002-02-26 2002-02-26 Method for manufacturing hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002050130A JP2003245529A (en) 2002-02-26 2002-02-26 Method for manufacturing hollow fiber membrane

Publications (1)

Publication Number Publication Date
JP2003245529A true JP2003245529A (en) 2003-09-02

Family

ID=28662466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002050130A Pending JP2003245529A (en) 2002-02-26 2002-02-26 Method for manufacturing hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP2003245529A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056081A1 (en) 2003-12-09 2005-06-23 Toyo Boseki Kabushiki Kaisha Polysulfone-based selectively permeative hollow fiber membrane bundle and method for manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056081A1 (en) 2003-12-09 2005-06-23 Toyo Boseki Kabushiki Kaisha Polysulfone-based selectively permeative hollow fiber membrane bundle and method for manufacture thereof
EP1693076A1 (en) * 2003-12-09 2006-08-23 Toyo Boseki Kabushiki Kaisha Bundle of selectively permeable polysulfone-based hollow fiber membranes and process for manufacturing the same
EP1693076A4 (en) * 2003-12-09 2008-11-05 Toyo Boseki Bundle of selectively permeable polysulfone-based hollow fiber membranes and process for manufacturing the same

Similar Documents

Publication Publication Date Title
KR102144703B1 (en) Hollow-fiber membrane module, process for producing hollow-fiber membrane, and process for producing hollow-fiber membrane module
JP4453248B2 (en) Method for producing hollow fiber membrane and hollow fiber membrane module
JPWO2006016575A1 (en) Highly permeable hollow fiber membrane blood purifier and method for producing the same
KR100829692B1 (en) Hollow Fiber Membrane for Purifying Blood
JP2003320229A (en) Modified hollow fiber membrane
JP5633277B2 (en) Separation membrane module
JP4325904B2 (en) Hollow fiber membrane drying equipment
JP3992185B2 (en) Method for producing hollow fiber membrane
JP3934340B2 (en) Blood purifier
JP3992186B2 (en) Method for producing hollow fiber membrane
JP3281363B1 (en) Blood purification membrane
JP2006263600A (en) Method for manufacturing hollow fiber membrane
JP2000135421A (en) Polysulfone-base blood purifying membrane
JP3281364B1 (en) Method for producing blood purification membrane
JP6558063B2 (en) Hollow fiber membrane module and manufacturing method thereof
JP4325903B2 (en) Method for producing hollow fiber membrane
JP2003245529A (en) Method for manufacturing hollow fiber membrane
JP2005137996A (en) Permselective separation membrane
JP6190714B2 (en) Hollow fiber membrane blood purification device
JP3948736B2 (en) Hemodialyzer
JP3992187B2 (en) Method for producing hollow fiber membrane
JP4843993B2 (en) Blood purifier
JP2006304826A (en) Blood purification device
JPH11309356A (en) Polysulfone selective separation membrane
JP2006068689A (en) Drying method for bundle of hollow fiber membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050113

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060922

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080526

A02 Decision of refusal

Effective date: 20080926

Free format text: JAPANESE INTERMEDIATE CODE: A02