JP2003028839A - Eddy current flaw detection probe - Google Patents

Eddy current flaw detection probe

Info

Publication number
JP2003028839A
JP2003028839A JP2001217841A JP2001217841A JP2003028839A JP 2003028839 A JP2003028839 A JP 2003028839A JP 2001217841 A JP2001217841 A JP 2001217841A JP 2001217841 A JP2001217841 A JP 2001217841A JP 2003028839 A JP2003028839 A JP 2003028839A
Authority
JP
Japan
Prior art keywords
eddy current
flaw detection
detection probe
exciting coil
current flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001217841A
Other languages
Japanese (ja)
Inventor
Masaaki Kurokawa
政秋 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001217841A priority Critical patent/JP2003028839A/en
Publication of JP2003028839A publication Critical patent/JP2003028839A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an eddy current flaw detection probe capable of uniformizing the cross-sectional shape of an exciting coil. SOLUTION: A thin film is wound to form the exciting coil 6 of the eddy current flaw detection probe to easily manufacture the exciting coil 6 having a uniform cross-sectional shape. The cross-sectional shape of the exciting coil 6 is set to a uniform rectangular shape to stabilize the shape of the outer surface of the exciting coil 6. The eddy current flaw detection probe extremely reduced in the characteristics difference between the exciting coils is constituted to enhance the uniformity of a signal level to hold detection accuracy to a high dimension.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は渦電流探傷プローブ
に関し、特に、各種プラントにおける伝熱管等管路の非
破壊検査に適用して有用なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eddy current flaw detection probe, and is particularly useful when applied to nondestructive inspection of conduits such as heat transfer tubes in various plants.

【0002】[0002]

【従来の技術】伝熱管等の磁性体である金属の管路の非
破壊検査には、渦電流探傷法が汎用されており、これに
適用するための種々の渦電流探傷プローブが提案されて
いる。渦電流探傷プローブとしては、樹脂製等の筒状本
体に励磁コイルを設け、筒状本体の外周にフィルム状の
検出コイルを設けた構成のものが知られている。励磁コ
イルは、例えば、銅製の細線を軸方向に多数並べて巻く
と共に径方向に重ねて多数回巻き、接着剤等により細線
同士を接着して筒状になるように固定されることで形成
されている。
2. Description of the Related Art The eddy current flaw detection method is widely used for nondestructive inspection of metal conduits, which are magnetic materials such as heat transfer tubes, and various eddy current flaw detection probes have been proposed for application thereto. There is. As an eddy current flaw detection probe, there is known a structure in which an exciting coil is provided on a tubular body made of resin or the like, and a film-shaped detection coil is provided on the outer periphery of the tubular body. The exciting coil is formed, for example, by winding a number of thin copper wires arranged in the axial direction and winding them in a radial direction so as to be wound many times, and by adhering the thin wires with an adhesive or the like so as to form a tubular shape. There is.

【0003】筒状本体の周方向に励磁コイルが1個乃至
4個程度設けられた渦電流探傷プローブの場合、伝熱管
等の管路を周方向に所定角度で回転させながら軸方向に
移動させ、各部の探傷を行うようになっている。また、
筒状本体の全周にわたり励磁コイルが設けられたマルチ
コイル式の渦電流探傷プローブの場合、回転させること
なく管路を軸方向に移動させ、各部の探傷を行うように
なっている。
In the case of an eddy current flaw detection probe in which one to four exciting coils are provided in the circumferential direction of a cylindrical body, a pipe line such as a heat transfer tube is moved in the axial direction while rotating at a predetermined angle in the circumferential direction. , It is designed to inspect each part. Also,
In the case of a multi-coil type eddy current flaw detection probe in which an exciting coil is provided over the entire circumference of a tubular body, the pipe line is moved in the axial direction without being rotated to perform flaw detection in each part.

【0004】[0004]

【発明が解決しようとする課題】従来の渦電流探傷プロ
ーブは、励磁コイルが、細線を多数回巻いて筒状になっ
ているため、各線の接触状態や重ね巻き・巻き戻し状態
により、励磁コイルの断面形状が変化してしまうことが
考えられる。励磁コイルの断面形状が矩形にならずに変
化すると、外表面の形状が安定せず、発生磁場が不均一
な分布を持ち、被探傷部に誘起される渦電流も不均一と
なってしまう。特に、マルチコイル式の渦電流探傷プロ
ーブに適用した場合、励磁コイル間での信号レベルの一
様性が低下し検出精度が低下する虞があった。細線の径
を小さくすることで、励磁コイルの断面形状の変化を抑
制することができるが、細線の径を小さくするには限度
があり、根本的な解決とはならない。
In the conventional eddy current flaw detection probe, the exciting coil is formed by winding a number of thin wires into a tubular shape, and therefore, depending on the contact state of each wire and the overlapping / unwinding state, the exciting coil It is conceivable that the cross-sectional shape of will change. If the cross-sectional shape of the exciting coil changes instead of being rectangular, the shape of the outer surface is not stable, the generated magnetic field has a non-uniform distribution, and the eddy current induced in the flaw-detected portion also becomes non-uniform. In particular, when applied to a multi-coil type eddy current flaw detection probe, there is a possibility that the uniformity of the signal level among the exciting coils is lowered and the detection accuracy is lowered. By reducing the diameter of the thin wire, it is possible to suppress changes in the cross-sectional shape of the exciting coil, but there is a limit to reducing the diameter of the thin wire, and this is not a fundamental solution.

【0005】本願発明は、上記状況に鑑みてなされたも
ので、励磁コイルの断面形状を均一にすることができる
渦電流探傷プローブを提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an eddy current flaw detection probe which can make the cross-sectional shape of an exciting coil uniform.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明の渦電流探傷プローブの構成は、励磁電流を供
給する励磁コイルにより被測定部材に渦電流を発生さ
せ、この渦電流に起因する磁束が被測定部材に発生して
いる傷により変化することを利用して磁束の変化を検出
するための渦電流探傷プローブにおいて、薄膜を巻いて
励磁コイルを形成したことを特徴とする。
The structure of the eddy current flaw detection probe of the present invention for achieving the above object is to generate an eddy current in a member to be measured by an exciting coil for supplying an exciting current, and to cause the eddy current. In the eddy current flaw detection probe for detecting the change in the magnetic flux by utilizing the change in the generated magnetic flux due to the scratch generated in the member to be measured, a thin film is wound to form an exciting coil.

【0007】そして、励磁コイルは筒状本体に固定され
ていることを特徴とする。また、励磁コイルは筒状本体
にの周方向に多数固定されていることを特徴とする。ま
た、励磁コイルは筒状本体の軸に交差する面において筒
状本体の全周にわたり存在する状態で多数固定されてい
ることを特徴とする。また、励磁コイルは非円形である
ことを特徴とする。
The exciting coil is fixed to the cylindrical body. In addition, a large number of exciting coils are fixed to the cylindrical body in the circumferential direction. In addition, a large number of exciting coils are fixed in a state in which they are present over the entire circumference of the tubular body on a surface intersecting the axis of the tubular body. Moreover, the exciting coil is non-circular.

【0008】[0008]

【発明の実施の形態】DETAILED DESCRIPTION OF THE INVENTION

【0009】図1には本発明の一実施形態例に係る渦電
流探傷プローブを備えた配管検査装置の外観、図2には
渦電流探傷プローブの分解斜視、図3には渦電流探傷プ
ローブの軸方向に交差する方向の断面、図4には図3中
のIV-IV 線方向断面、図5には励磁コイルの詳細外観、
図6には励磁コイルの側面、図7には図6中のVII-VII
線断面を示してある。
FIG. 1 is an external view of a pipe inspection apparatus equipped with an eddy current flaw detection probe according to an embodiment of the present invention, FIG. 2 is an exploded perspective view of the eddy current flaw detection probe, and FIG. A cross section in the direction crossing the axial direction, a cross section along the line IV-IV in FIG. 3 in FIG. 4, and a detailed external view of the exciting coil in FIG.
FIG. 6 is a side view of the exciting coil, and FIG. 7 is VII-VII in FIG.
A line cross section is shown.

【0010】図1に示すように、配管検査装置1は、渦
電流探傷プローブ2や信号電送ユニット3等がそれぞれ
フレキシブル部材4を介して直線状に連結されている。
配管検査装置1は、図示しない配管内を軸方向に移動
し、配管の曲げ部ではフレキシブル部材が曲げられて配
管検査装置1の全体が曲げ管に沿って挿入されるように
なっている。
As shown in FIG. 1, in a pipe inspection device 1, an eddy current flaw detection probe 2, a signal transmission unit 3 and the like are linearly connected via a flexible member 4.
The pipe inspection device 1 moves axially in a pipe (not shown), the flexible member is bent at the bent portion of the pipe, and the entire pipe inspection device 1 is inserted along the bent pipe.

【0011】図1及び図2に示すように、渦電流探傷プ
ローブ2は、樹脂製の筒状本体5の周方向に励磁コイル
6が多数設けられて構成されている。そして、筒状本体
5の筒面にはフィルム状に検出コイル9が焼き付けられ
た検出コイル部材7が巻き付けられている。
As shown in FIGS. 1 and 2, the eddy current flaw detection probe 2 is constructed by providing a large number of exciting coils 6 in the circumferential direction of a cylindrical body 5 made of resin. The detection coil member 7 having the detection coil 9 baked in a film shape is wound around the cylindrical surface of the cylindrical main body 5.

【0012】図3、図4に示すように、筒状本体5には
軸方向に励磁コイル6が2列傾斜して平行に並設され
(図4参照)、励磁コイル6は表面が筒状本体5の軸に
交差する面において周方向の全周にわたり存在する状態
になるように、多数固定されている(図3参照)。筒状
本体5は液体状の樹脂から光造形により形成され、励磁
コイル6の配置溝も同時に形成される。
As shown in FIGS. 3 and 4, the cylindrical main body 5 is provided with exciting coils 6 arranged in parallel in parallel with two rows inclined in the axial direction (see FIG. 4). The exciting coil 6 has a cylindrical surface. A large number are fixed so that they exist over the entire circumference in the plane intersecting the axis of the main body 5 (see FIG. 3). The cylindrical main body 5 is formed from a liquid resin by stereolithography, and a groove for disposing the exciting coil 6 is also formed at the same time.

【0013】配管検査装置1を配管内を軸方向に移動さ
せる際に、励磁コイル6に励磁電流を供給し、配管に渦
電流を発生させる。この渦電流に起因する磁束を検出コ
イル部材7の検出コイル9で検出することで、渦電流に
起因する磁束が配管に発生している傷により変化するこ
とを利用してこの磁束の変化を検出して配管の探傷を行
う。
When the pipe inspection device 1 is moved in the pipe in the axial direction, an exciting current is supplied to the exciting coil 6 to generate an eddy current in the pipe. By detecting the magnetic flux caused by the eddy current by the detection coil 9 of the detection coil member 7, the change in the magnetic flux caused by the eddy current is detected by utilizing the fact that the magnetic flux caused by the eddy current changes due to the scratches generated in the pipe. Then, the pipe is inspected.

【0014】多数の励磁コイル6は、外表面の形状を安
定させ、発生磁場が均一な分布を持ち、被探傷部に誘起
される渦電流も均一とすることが好ましい。そして、図
に示したマルチコイル式の渦電流探傷プローブ2に適用
した場合、検出精度の維持のために、励磁コイル6間で
の信号レベルの一様性が求められる。
It is preferable that the large number of exciting coils 6 stabilize the shape of the outer surface, have a uniform distribution of the generated magnetic field, and make the eddy current induced in the portion to be flawed uniform. When applied to the multi-coil type eddy current flaw detection probe 2 shown in the figure, signal level uniformity among the excitation coils 6 is required to maintain detection accuracy.

【0015】このような要求を満足するため、本実施形
態例の励磁コイル6は、銅製の帯状の薄膜が多層に巻か
れて形成されている。即ち、図5乃至図7に示すよう
に、銅製の薄膜11が、複数層巻かれて励磁コイル6が
形成され、励磁コイル6は側面視で真円状(図6参照)
になっている。
In order to satisfy such requirements, the exciting coil 6 of the present embodiment is formed by winding copper strip-shaped thin films in multiple layers. That is, as shown in FIGS. 5 to 7, a plurality of copper thin films 11 are wound to form the exciting coil 6, and the exciting coil 6 has a perfect circular shape in a side view (see FIG. 6).
It has become.

【0016】従来の励磁コイルでは、細線が軸方向に並
んでいる状態となっているので、外表面の形状を安定さ
せるには限度があった。これに対し、薄膜11が巻かれ
て励磁コイル6が形成されていることで、図7に示すよ
うに、軸方向には一枚の薄膜11が存在することにな
り、断面形状が均一な矩形となって、外表面の形状を安
定させて均一な分布の発生磁場となり被探傷部に誘起さ
れる渦電流を均一とすることが可能になる。
In the conventional exciting coil, since the fine wires are arranged in the axial direction, there is a limit in stabilizing the shape of the outer surface. On the other hand, since the thin film 11 is wound to form the exciting coil 6, as shown in FIG. 7, one thin film 11 exists in the axial direction, and a rectangular cross section is formed. As a result, it becomes possible to stabilize the shape of the outer surface, generate a magnetic field having a uniform distribution, and make the eddy current induced in the flaw-detected portion uniform.

【0017】また、薄膜11が巻かれて励磁コイル6が
形成されていることで、従来のように細線を数十回にわ
たり巻回する必要がなくなり、容易に断面形状を均一な
矩形にして外表面の形状を安定させることができる。こ
のため、多数の励磁コイル6の固体差を減少させ、マル
チコイル式の渦電流探傷プローブ2に適用した場合、励
磁コイル6の間の特性差が極めて小さい渦電流探傷プロ
ーブ2となり、励磁コイル6間での信号レベルの一様性
が高くなり検出精度を高い次元で維持することが可能に
なる。
Further, since the thin film 11 is wound to form the exciting coil 6, it is not necessary to wind a thin wire several tens of times as in the conventional case, and it is easy to form a uniform rectangular cross section. The shape of the surface can be stabilized. For this reason, when the individual differences of a large number of exciting coils 6 are reduced and applied to the multi-coil type eddy current flaw detection probe 2, the eddy current flaw detection probe 2 having an extremely small characteristic difference between the exciting coils 6 becomes the excitation coil 6 The uniformity of the signal level between them becomes high, and the detection accuracy can be maintained at a high level.

【0018】また、励磁コイル6は側面視で真円状にな
っているので、筒状本体5への組み込みの際に円周方向
の位置制約がなく、位置決め性能に優れ容易に組み込み
を行うことができる。
Further, since the exciting coil 6 has a perfect circular shape in a side view, there is no positional restriction in the circumferential direction when the magnetizing coil 6 is assembled into the tubular body 5, and the magnetizing coil 6 has excellent positioning performance and can be easily assembled. You can

【0019】図8に基づいて信号レベルの状況を説明す
る。図8(a) には励磁コイル6を備えた渦電流探傷プロ
ーブ2の信号レベルの状況、図8(b) には従来の細線に
より作製された励磁コイルを備えた渦電流探傷プローブ
の信号レベルの状況を示してある。図中横軸が筒状本体
を展開した状態の渦電流探傷プローブの周方向における
励磁コイルの位置であり、縦軸が信号レベルである。そ
して、図中A位置に傷が存在している状態を示してあ
る。
The situation of the signal level will be described with reference to FIG. Fig. 8 (a) shows the signal level of the eddy current flaw detection probe 2 having the exciting coil 6, and Fig. 8 (b) shows the signal level of the eddy current flaw detection probe having the exciting coil made by the conventional thin wire. The situation is shown. In the figure, the horizontal axis represents the position of the exciting coil in the circumferential direction of the eddy current flaw detection probe with the tubular body expanded, and the vertical axis represents the signal level. Then, a state in which a scratch is present at the position A in the figure is shown.

【0020】図8(a) に示すように、励磁コイル6を備
えた渦電流探傷プローブ2では、多数の励磁コイル6の
特性差が小さく励磁コイル6間での信号レベルの一様性
が高いため、傷が存在しているA位置だけの信号レベル
が高くなっている。従って、A位置を特定することが容
易になり、検出精度が向上する結果になる。
As shown in FIG. 8 (a), in the eddy current flaw detection probe 2 provided with the exciting coils 6, the characteristic differences among the large number of exciting coils 6 are small and the signal levels among the exciting coils 6 are highly uniform. Therefore, the signal level is high only at the position A where the scratch is present. Therefore, it becomes easy to specify the position A, and the detection accuracy is improved.

【0021】これに対し、図8(b) に示すように、細線
により作製された励磁コイルを備えた渦電流探傷プロー
ブでは、励磁コイルの断面形状が矩形にならずに変化し
て外表面の形状が安定していないため、発生磁場が不均
一な分布を持ち、誘起される渦電流が不均一となる。こ
のため、励磁コイル間での信号レベルの一様性が低下
し、傷が存在しているA位置以外も信号レベルが高くな
る。従って、A位置を特定することが困難になり、検出
精度が低下する結果になっていた。
On the other hand, as shown in FIG. 8 (b), in the eddy current flaw detection probe provided with the exciting coil made of a thin wire, the cross-sectional shape of the exciting coil is not rectangular but changes on the outer surface. Since the shape is not stable, the generated magnetic field has a non-uniform distribution and the induced eddy current is non-uniform. For this reason, the uniformity of the signal level between the exciting coils is reduced, and the signal level becomes high even at positions other than the A position where the flaw exists. Therefore, it becomes difficult to specify the position A, resulting in a decrease in detection accuracy.

【0022】従って、上述した渦電流探傷プローブ2
は、断面形状が均一な励磁コイル6を容易に作製するこ
とができるため、特性の揃った励磁コイル6を備えた渦
電流探傷プローブ2となり、優れた検出性を実現するこ
とが可能になる。
Therefore, the eddy current flaw detection probe 2 described above is used.
Since the exciting coil 6 having a uniform cross-sectional shape can be easily manufactured, the eddy current flaw detection probe 2 is provided with the exciting coil 6 having uniform characteristics, and excellent detectability can be realized.

【0023】図9に基づいて励磁コイルの他の実施形態
例を説明する。図9には本発明の他の実施形態例に係る
励磁コイルの側面視を示してある。
Another embodiment of the exciting coil will be described with reference to FIG. FIG. 9 shows a side view of an exciting coil according to another embodiment of the present invention.

【0024】一般に、コイルは大きいほど励磁電流が大
きくなるため、渦電流探傷プローブに用いる励磁コイル
としては大きい方が好ましいが、渦電流探傷プローブ
は、配管内を走査するため、外径には制約があり、励磁
コイルの径を大きくするには限度がある。そこで、図9
に示した励磁コイル15は、薄膜11を非円形である楕
円形に巻いて構成したものである。励磁コイル15を楕
円形にして短径方向を筒状本体の径方向に合わせること
により、渦電流探傷プローブの径を大きくすることなく
励磁コイル15を大きくすることができる。このため、
励磁電流が大きくなり、コイル性能を向上させることが
できる。
In general, the larger the coil, the larger the exciting current. Therefore, it is preferable that the exciting coil used in the eddy current flaw detection probe is large. There is a limit to increasing the diameter of the exciting coil. Therefore, FIG.
The exciting coil 15 shown in (1) is configured by winding the thin film 11 in a non-circular elliptical shape. The exciting coil 15 can be made large without increasing the diameter of the eddy current flaw detection probe by making the exciting coil 15 elliptical and aligning the minor axis direction with the radial direction of the cylindrical body. For this reason,
The exciting current is increased and the coil performance can be improved.

【0025】従来の細線により作製された励磁コイルの
場合、細線が軸方向に並んでいる状態となって接着剤等
で固定されているので、楕円にすると互いの接合が取れ
て外表面に影響を及ぼす要因となる。図9に示した励磁
コイル15の場合、薄膜11が巻かれて形成されている
ことで、楕円にしても外表面に影響を及ぼす要因がない
ため非円形にし易い。従って、薄膜11を巻いたことに
より、従来の細線により作製された励磁コイルに比べて
コイル形状の自由度が増した構造となる。
In the case of the conventional exciting coil made of thin wires, since the thin wires are aligned in the axial direction and fixed with an adhesive or the like, if they are made elliptical, they can be joined to each other and affect the outer surface. Will be a factor that affects. In the case of the exciting coil 15 shown in FIG. 9, since the thin film 11 is formed by being wound, there is no factor that affects the outer surface even if it is an ellipse, and thus it is easy to make it non-circular. Therefore, by winding the thin film 11, a structure in which the degree of freedom of the coil shape is increased as compared with the excitation coil manufactured by the conventional thin wire.

【0026】尚、薄膜11を巻いてコイル形状の自由度
が増した構造となっているため、励磁コイル15の形状
は、楕円の他に、円周方向の位置決めを行うための直線
部が一部に形成された非円形とする等、任意の形状にす
ることが可能である。
Since the thin film 11 is wound to have a structure in which the degree of freedom of the coil shape is increased, the shape of the exciting coil 15 is not limited to an ellipse, and has a linear portion for positioning in the circumferential direction. It is possible to have an arbitrary shape such as a non-circular shape formed on the portion.

【0027】上述した実施形態例では、励磁コイルが筒
状本体の周方向にわたり多数設けられたマルチコイル式
の渦電流探傷プローブを例に挙げて説明したが、励磁コ
イルを周方向に1個乃至4個程度設けて、渦電流探傷プ
ローブを所定角度で回転できる構成にすることも可能で
ある。この場合、発生磁場が均一な分布を持つ励磁コイ
ルとすることができ、傷部に誘起される渦電流も均一と
なり、優れた検出性を実現することが可能になる。
In the above-mentioned embodiment, the multi-coil type eddy current flaw detection probe in which a large number of exciting coils are provided in the circumferential direction of the cylindrical main body has been described as an example. It is also possible to provide about four pieces so that the eddy current flaw detection probe can rotate at a predetermined angle. In this case, it is possible to use an exciting coil in which the generated magnetic field has a uniform distribution, the eddy currents induced in the scratches are also uniform, and excellent detectability can be realized.

【0028】[0028]

【発明の効果】本発明の渦電流探傷プローブは、励磁電
流を供給する励磁コイルにより被測定部材に渦電流を発
生させ、この渦電流に起因する磁束が被測定部材に発生
している傷により変化することを利用して磁束の変化を
検出するための渦電流探傷プローブにおいて、薄膜を巻
いて励磁コイルを形成したので、励磁コイルの断面形状
が均一な矩形となって、外表面の形状を安定させて均一
な分布の発生磁場となり被探傷部に誘起される渦電流を
均一とすることが可能になる。この結果、断面形状が均
一な励磁コイルを容易に作製することができ、優れた検
出性を実現することが可能になる。
The eddy current flaw detection probe of the present invention generates an eddy current in a member to be measured by an exciting coil that supplies an exciting current, and a magnetic flux resulting from this eddy current is generated in the member to be measured by a flaw. In the eddy current flaw detection probe for detecting the change in magnetic flux by utilizing the change, the thin film is wound to form the exciting coil, so the exciting coil has a uniform rectangular cross-sectional shape, and the shape of the outer surface is It is possible to stabilize the generated magnetic field with a uniform distribution and make the eddy current induced in the flaw-detected portion uniform. As a result, an exciting coil having a uniform cross-sectional shape can be easily manufactured, and excellent detectability can be realized.

【0029】特に、励磁コイルを筒状本体の周方向にわ
たり多数設けたマルチコイル式の渦電流探傷プローブと
することで、励磁コイルの間の特性差が極めて小さい渦
電流探傷プローブとすることができ、励磁コイル間での
信号レベルの一様性が高くなり検出精度を高い次元で維
持することが可能になる。
In particular, by using a multi-coil type eddy current flaw detection probe in which a large number of exciting coils are provided in the circumferential direction of the cylindrical body, it is possible to obtain an eddy current flaw detection probe with a very small characteristic difference between the exciting coils. As a result, the uniformity of the signal level among the exciting coils becomes high, and the detection accuracy can be maintained at a high level.

【0030】また、薄膜を巻いて励磁コイルを形成した
ので、非円形に形成し易くなり、励磁コイルを非円形
(例えば楕円形)にすることで、渦電流探傷プローブの
径を大きくすることなく励磁コイルを大きくすることが
でき、励磁電流を大きくしてコイル性能を向上させるこ
とができる。
Further, since the exciting coil is formed by winding the thin film, it is easy to form the exciting coil in a non-circular shape. By making the exciting coil non-circular (for example, elliptical), the diameter of the eddy current flaw detection probe can be increased. The exciting coil can be made large, and the exciting current can be made large to improve the coil performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態例に係る渦電流探傷プロー
ブを備えた配管検査装置の外観図。
FIG. 1 is an external view of a pipe inspection apparatus including an eddy current flaw detection probe according to an embodiment of the present invention.

【図2】渦電流探傷プローブの分解斜視図。FIG. 2 is an exploded perspective view of an eddy current flaw detection probe.

【図3】渦電流探傷プローブの軸方向に交差する方向の
断面図。
FIG. 3 is a sectional view of the eddy current flaw detection probe in a direction intersecting the axial direction.

【図4】図3中のIV-IV 線方向断面図。FIG. 4 is a sectional view taken along line IV-IV in FIG.

【図5】励磁コイルの詳細外観図。FIG. 5 is a detailed external view of an exciting coil.

【図6】励磁コイルの側面図。FIG. 6 is a side view of an exciting coil.

【図7】図6中のVII-VII 線断面図。FIG. 7 is a sectional view taken along line VII-VII in FIG.

【図8】信号レベルの状況を説明するグラフ。FIG. 8 is a graph illustrating a signal level situation.

【図9】本発明の他の実施形態例に係る励磁コイルの側
面図。
FIG. 9 is a side view of an exciting coil according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 配管検査装置 2 渦電流探傷プローブ 3 信号電送ユニット 4 フレキシブル部材 5 筒状本体 6,15 励磁コイル 7 検出コイル部材 9 検出コイル 11 薄膜 1 Piping inspection device 2 Eddy current flaw detection probe 3 Signal transmission unit 4 Flexible member 5 tubular body 6,15 Excitation coil 7 Detection coil member 9 Detection coil 11 thin film

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 励磁電流を供給する励磁コイルにより被
測定部材に渦電流を発生させ、この渦電流に起因する磁
束が被測定部材に発生している傷により変化することを
利用して磁束の変化を検出するための渦電流探傷プロー
ブにおいて、薄膜を巻いて励磁コイルを形成したことを
特徴とする渦電流探傷プローブ。
1. An eddy current is generated in a member to be measured by an exciting coil which supplies an exciting current, and the magnetic flux resulting from this eddy current is changed by a scratch generated in the member to be measured. An eddy current flaw detection probe for detecting a change, wherein an exciting coil is formed by winding a thin film.
【請求項2】 請求項1において、励磁コイルは筒状本
体に固定されていることを特徴とする渦電流探傷プロー
ブ。
2. The eddy current flaw detection probe according to claim 1, wherein the exciting coil is fixed to the cylindrical main body.
【請求項3】 請求項2において、励磁コイルは筒状本
体にの周方向に多数固定されていることを特徴とする渦
電流探傷プローブ。
3. The eddy current flaw detection probe according to claim 2, wherein a large number of exciting coils are circumferentially fixed to the cylindrical body.
【請求項4】 請求項3において、励磁コイルは筒状本
体の軸に交差する面において筒状本体の全周にわたり存
在する状態で多数固定されていることを特徴とする渦電
流探傷プローブ。
4. The eddy current flaw detection probe according to claim 3, wherein a large number of exciting coils are fixed in a state where they are present over the entire circumference of the tubular main body on a plane intersecting the axis of the tubular main body.
【請求項5】 請求項1乃至請求項4のいずれか一項に
おいて、励磁コイルは非円形であることを特徴とする渦
電流探傷プローブ。
5. The eddy current flaw detection probe according to claim 1, wherein the exciting coil has a non-circular shape.
JP2001217841A 2001-07-18 2001-07-18 Eddy current flaw detection probe Withdrawn JP2003028839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001217841A JP2003028839A (en) 2001-07-18 2001-07-18 Eddy current flaw detection probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001217841A JP2003028839A (en) 2001-07-18 2001-07-18 Eddy current flaw detection probe

Publications (1)

Publication Number Publication Date
JP2003028839A true JP2003028839A (en) 2003-01-29

Family

ID=19052105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001217841A Withdrawn JP2003028839A (en) 2001-07-18 2001-07-18 Eddy current flaw detection probe

Country Status (1)

Country Link
JP (1) JP2003028839A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050536A (en) * 2007-08-28 2009-03-12 Samii Kk Game machine
JP2010230350A (en) * 2009-03-26 2010-10-14 Honda Motor Co Ltd Work hardness measuring instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050536A (en) * 2007-08-28 2009-03-12 Samii Kk Game machine
JP2010230350A (en) * 2009-03-26 2010-10-14 Honda Motor Co Ltd Work hardness measuring instrument

Similar Documents

Publication Publication Date Title
US6791319B2 (en) Eddy current probe with transverse polygonal detecting coil
JP4917899B2 (en) Eddy current flaw detection sensor and eddy current flaw detection method
US20060232263A1 (en) Current sensor arrangement
US10473730B2 (en) Defect detection device enabling easy removal of magnetic impurities
JP2009069090A (en) Method and device for detecting flaw of inspecting object, and probe for eddy current flaw detection
JP2008286798A (en) Flexible array probe for inspecting contour surface having various sectional shapes
KR102055034B1 (en) Eddy current flaw detection probe and eddy current flaw inspection apparatus
JP6514592B2 (en) Defect measurement method, defect measurement apparatus and inspection probe
JP2005164531A (en) Magnetostrictive torque sensor
JP4234761B2 (en) Eddy current flaw detection method and apparatus
Nara et al. Non-destructive inspection of ferromagnetic pipes based on the discrete Fourier coefficients of magnetic flux leakage
JP2007218665A (en) Solenoid coil for nuclear magnetic resonance signal, and device for acquiring the nuclear magnetic resonance signal
JP2003028839A (en) Eddy current flaw detection probe
JP2010505093A (en) Leakage magnetic flux inspection device for tube-shaped object
US20100327859A1 (en) Pipeline Inspection Tool with Oblique Magnetizer
CN109115870B (en) Annular eccentric eddy current probe and method for detecting defects of small-diameter pipe
JPH10274664A (en) Improved ac sensor coil
JP2002214202A (en) Eddy current flaw detection probe
US11821870B2 (en) Defect measurement device, defect measurement method, and inspection probe
US20190128854A1 (en) Scanner magnetic wheel system for close traction on pipes and pipe elbows
JP6597081B2 (en) Flaw detection probe and flaw detection method
KR101835650B1 (en) Compensation apparatus of circumferentially arrayed magnetic sensors
JP2002055083A (en) Eddy current flaw detection probe
US11460442B2 (en) Pipeline tool with composite magnetic field for inline inspection
JP2020159984A (en) Eddy current flaw detection probe and eddy current flaw detector

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007