JP2003027152A - Method for operating smelting reduction furnace - Google Patents

Method for operating smelting reduction furnace

Info

Publication number
JP2003027152A
JP2003027152A JP2001210015A JP2001210015A JP2003027152A JP 2003027152 A JP2003027152 A JP 2003027152A JP 2001210015 A JP2001210015 A JP 2001210015A JP 2001210015 A JP2001210015 A JP 2001210015A JP 2003027152 A JP2003027152 A JP 2003027152A
Authority
JP
Japan
Prior art keywords
furnace
reducing agent
solid reducing
furnace top
smelting reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001210015A
Other languages
Japanese (ja)
Inventor
Takashi Matsui
貴 松井
Yoshiaki Hara
義明 原
Shinichi Masumoto
慎一 益本
Takuya Takahira
拓也 高平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2001210015A priority Critical patent/JP2003027152A/en
Publication of JP2003027152A publication Critical patent/JP2003027152A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase concentration of high volatility metal recovered from furnace top gas by suppressing exhaust of fine powder of carbonaceous solid reducing agent and ash content from the furnace top. SOLUTION: In a smelting reduction furnace 1 which produces molten metal by injecting powdery and granular metallic oxide containing-raw material into the smelting reduction furnace 1 having tuyeres 3, 4 arranged in at least two steps at the upper and the lower parts for blowing high temperature oxygen- enriched air into a packed layer of the carbonaceous solid reducing agent 2, from at least the upper step tuyere 3 and further, cools the furnace top gas at the outside of the furnace to separate and recover the high volatility metal, the grain diameter of bulky raw material and/or bulky auxiliary material charged from the furnace top part is made smaller than the grain diameter of the carbonaceous solid reducing agent.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、コークス等の炭素
系固体還元剤を充填する固体還元剤充填層型溶融還元炉
の羽口から、鉱石、ダスト、スラッジ等の粉粒状原料を
吹き込み、炉頂部のガスを炉外で冷却して亜鉛等の高揮
発性金属を分離回収する炉の操業方法に関する。 【0002】 【従来の技術】近年、自動車用表面処理鋼板のように亜
鉛を含む鉄スクラップの発生量が増加しており、この鉄
スクラップを主原料とする電気炉等では、亜鉛と鉄とを
主成分とするダストが発生する。このダストは、現在、
回収コストが高いことから、集塵後、無害化処理されて
から埋め立て投棄されている。 【0003】ところで、前記電気炉ダストに含まれる亜
鉛の含有率は10〜30%であり、同量の鉄分も含まれ
ている。亜鉛、鉄分の形態は酸化物であったり、水酸化
物であったりするが、ダストそのものの発生量は製鋼ト
ンあたり15キログラムと多く、低コストで且つ廃棄物
なくそれぞれを完全分離した状態で回収する技術が求め
られている。 【0004】このような分離回収技術として、コークス
等の固体還元剤を充填した竪型炉で実施するための操業
方法として、特開平8−325646号公報に記載され
るものがある。この炉の操業方法では、固体還元剤を充
填する固体還元剤充填層型溶融還元炉に少なくと上下二
段の羽口を設け、上段の羽口から電気炉ダスト等の亜鉛
含有粉粒状原料を吹き込み、そのうちの鉄分は溶融滴下
させて炉床部にため、亜鉛は蒸発させて炉頂部に上昇さ
せ、その炉頂部のガスを炉外で冷却して、亜鉛等の高揮
発性金属を分離回収するというものである。 【0005】しかしながら、前記従来の炉の操業方法で
は、炉頂部のガスにコークス等の固体還元剤の微粉や灰
分が混入しやすく、操業条件の変動によってコークス比
が増大すると、それにともなって 回収される亜鉛等の
高揮発性金属と固体還元剤の微粉や灰分との混合比が変
化し、回収される高揮発性金属の濃度が低下するという
問題が発生しやすい。 【0006】この問題に対応する方法として、特開20
00−192125号公報に記載される方法がある。こ
れは、炉頂部のガス流速を1.5m/s以下とすること
により、炭素系固体還元剤の微粉や灰分が炉頂に飛散す
ることを防止するものである。炉頂ガスの流速を調整す
る方法としては、建設時にあらかじめ炉口径を調整する
方法や、操業時に羽口から吹き込まれるガスの酸素富化
率を変更して、ガス量を調整する方法がある。 【0007】 【発明が解決しようとする課題】しかしながら、炉頂部
のガス流速1.5m/sで操業を行った場合、粒子径と
して300μm以下のものについてはガスとともに炉外
へ排出されてしまう。この結果、炭素系固体還元剤の微
粉や灰分の中でも、特に粒径の細かいものや、吹き込み
原料の一部が炉頂ガスとともに炉外へ排出され、回収さ
れる高揮発性金属と混合してしまうことになる。また、
一度設備を建設した場合、容易に炉口径等を変更するこ
とができないため、ダスト処理量を増加させようと考え
た場合、炉頂ガス流速が限界となるケースが発生するこ
とになる。 【0008】そこで、本発明は前記諸問題を解決すべく
開発されたものであり、炭素系固体還元剤の微粉や灰分
が炉頂から排出されにくくなる環境を整えることによ
り、炉頂部ガスから回収される高揮発性金属の濃度を高
める炉の操業方法を提供することを目的とするものであ
る。 【0009】 【課題を解決するための手段】上記目的を達成するため
に、本発明の溶融還元炉の操業方法は、炭素系固体還元
剤の充填層に高温の酸素富化空気を吹き込む上下少なく
とも二段に設けられた羽口を有する溶融還元炉内に、粉
粒状の金属酸化物含有原料を少なくとも上段羽口から吹
き込むことにより、溶融金属を製造するとともに、炉頂
部のガスを炉外で冷却して高揮発性金属を分離回収する
溶融還元炉の操業方法であって、前記炉頂部から装入す
る塊状原料及び/又は塊状副原料の粒径を炭素系固体還
元剤の粒径よりも小さくしたことを特徴とするものであ
る。 【0010】 【発明の実施の形態】以下、本発明の実施の形態の一例
を図を参照して説明する。図1は本発明の炉の操業方法
を適用した竪型溶融還元炉(以下、単に竪型炉と称す)
である。この竪型炉1内には、コークス等の炭素系固体
還元剤2が充填されており、全体として固体還元剤充填
層型溶融還元炉を構成している。この竪型炉1には、少
なくとも上下2段の羽口3,4が設けられている。この
ように、上下二段に羽口3,4を設ける竪型炉1として
は、例えば、クロム鉱石を効率よく溶融するために開発
された炉等を挙げることができる。つまり、上段の羽口
3だけでは溶融還元に十分な熱量が得られないときに、
下段の羽口4から熱量を補い、その間に十分溶融還元さ
れるようにしたものである。なお、羽口3,4の数は必
要な還元能力、および溶融能力から設定される。 【0011】これらの羽口3,4には、送風機5から熱
風発生炉6を通して、熱風や、それに酸素を富化したも
のが吹込みガスとして吹き込まれる。また、上段の羽口
3には、吹込みガスのほかに原料吹込み装置7から原料
が吹き込まれる。上段の羽口3から炉内に吹き込まれる
原料は、原則的には粉粒状のものに限定され、吹込み直
後に溶融、燃焼、還元、蒸発する。この原料のうち、溶
融した鉄等の低揮発性金属の酸化物や水酸化物は、固体
還元剤2の充填層を滴下する過程で還元され、炉床部に
溜まる。また、蒸発する亜鉛等の高揮発性金属の蒸気
は、固体還元剤2の隙間を通って炉頂部に上昇し、炉内
ガスとともに排出される。 【0012】亜鉛含有ダストである電気炉ダスト等の粉
粒状原料は、原則的に上段羽口3から吹き込まれる。粉
粒状の原料は軽いので、それを炉頂部から装入すると、
炉内の上昇気流によって、例えば、前述のように低揮発
性金属が十分に溶融して固体還元剤2の充填層内を滴下
する以前に吹き飛ばされ、そのまま炉頂部から排出され
てしまうため、それを抑制するために上段の羽口3から
原料を吹き込む。つまり、粉粒状の原料は、吹き込まれ
る上段の羽口3前の空間(以下レスウェイと称す)内で
即座に溶融、燃焼、蒸発する。 【0013】これに対して、鉄屑等の塊状の原料は重量
が大きいので、炉内の上昇気流を受けても吹き飛ばな
い。また、この種の塊状原料は、前述のように羽口前で
瞬時に溶融する必要がないので、炉頂装入装置8によ
り、原則として炉頂から装入する。また、後述のよう
に、本実施形態では、炉頂部の温度を高温に維持する必
要があるのに対して、塊状装入原料を一度に多量に装入
すると、炉頂部の温度が下がりすぎてしまう恐れがある
ため、塊状装入原料は原則として小量ずつ連続的に装入
し、炉頂部の温度が下がらないようにする。具体的に
は、炉頂からの装入管方式で少量ずつ連続的に装入する
のがよい。なお、塊状装入原料を一度に多量に装入して
も十分な熱量が得られ、炉頂部温度を高く維持できれば
よいが、そのようにすると燃料の原単位が増加するので
回避したい。 【0014】また、本実施形態では、炉頂部の温度を高
く維持するため、当該炉頂部の空間に二次燃焼ガスを供
給し、意図的に炉頂部内で燃焼させている。また、炉頂
部から排ガスを排出するダクト内にも二次燃焼ガスを供
給してダクト内でも燃焼させている。このようにして炉
頂部から排出された排ガスは、排ガス冷却・清浄装置9
内に送り込まれる。この排ガス冷却・清浄装置9は、具
体的に湿式冷却装置、つまり排ガス中に液体を散布し
て、排ガス温度を低下させるとともに、蒸気の状態にあ
る物質を冷却固化し、液体と一緒に滴下・沈殿させ、そ
れをスラリーとして分離回収できるようにするととも
に、液化あるいは固化しない気体は気体のまま採取する
ためのものである。 【0015】本実施形態では、排ガス中から亜鉛等の高
揮発性金属を固化して分離回収するとともに、排出され
る排ガスを、一酸化炭素ガスを含む高カロリーの燃料ガ
スとして得る。また、このように高温の排ガスを急速に
冷却することにより、原料中に含まれる有害物質である
ダイオキシンの再合成を防止することもできる。次に、
前記排ガス冷却・清浄装置で回収されるスラリー(製
品)中の亜鉛濃度安定化のための条件について説明す
る。まず、図2に回収される製品の粒度分布を、表1に
各粒度における成分分析結果を示す。 【0016】 【表1】 【0017】これらから明らかなように、回収製品中の
亜鉛は羽口前で気化した物が急冷塔で再固化した物であ
るため、粒径が細かいダスト中の亜鉛濃度が高くなって
いる。これに対して粒径が0.4mm以上の大きなもの
はC、脈石成分の比率が80%以上と高く、カーボン、
すなわち固体還元剤の微粉や灰分が主成分となってい
る。したがって、回収製品中の亜鉛濃度を上昇するため
には、固体還元剤の微粉や灰分由来の高粒子径のダスト
の炉外排出を抑制することが必要となる。 【0018】これらのダストは、亜鉛蒸気と異なり、固
体のままで羽口前から充填層の間隙を抜けて炉外へ排出
されている。したがって、充填粒子の径が小さければ小
さいほど、充填層を通過するダストの量は少なくなる。
図3を参照して、固体還元剤2の充填層の中を通過でき
る粒子径xは、粒子が球形であると仮定して幾何学的に
考えると、(r+x):r=2:√3から、充填粒子径
rの0.15倍であるが、実際には充填された粒子の間
をガスに乗って通過していくことになるため、充填粒子
の0.1倍程度の粒子径であれば通過できることがわか
っている。 【0019】したがって、固体還元剤2の粒子径rを4
mmまで小さくすれば、問題となる0.4mm程度の粒
子径のダストの排出を防止できるが、この場合、羽口前
で生成した融体の通液性をも悪化し、フラッディングが
発生したり、また炉内の圧力損失が増加し、操業不調を
引き起こす危険性が考えられる。ここで、本発明者ら
は、炉頂から装入する固体還元剤以外の装入物、すなわ
ちフラックス(塊状副原料)及び/又は塊状原料の粒子
径を小さくすることを考えついた。フラックス、および
塊状原料は羽口前で溶融し充填層を滴下するので、これ
らの粒子径を小さくしても上段羽口より下部での通液性
を悪化することはない。また、粒子径が小さくなること
で羽口前での溶融性も向上することができる。そこで、
固体還元剤の粒子径は一定のままで、それ以外の炉頂装
入物の粒子径を小さくしたところ、炉外から排出される
ダストの量を減少させることができ、回収製品中の亜鉛
濃度を大幅に向上させることができた。また、この際に
炉下部での通液性の悪化や羽口上のシャフト部での圧力
損失の大幅な増加等はなく、安定な操業を継続すること
ができた。 【0020】 【実施例】以下、実施例に基づいて本発明の内容を詳細
に説明する。金属系酸化物の処理量が30t/日規模の
溶融還元炉を用いた操業実験を行った。使用した酸化物
原料は電気炉工場から発生する電気炉ダストであり、
鉄、亜鉛等の金属酸化物を含む。表2に使用原料の組成
を示した。 【0021】 【表2】 【0022】溶融還元炉の操業条件は、総送風量(上段
羽口と下段羽口の合計)1900Nm 3/hr、上段羽
口への酸素富化量を260Nm 3/hr、下段羽口への
富化酸素量40Nm 3/hr、送風温度700°C、原
料吹き込み速度1040kg/hr(25t/d)をべ
ースとした。炉頂からの装入物としては、炭素系固体還
元剤としてのコークスの他、フラックスとして珪石、お
よび石灰石を使用している。各々の粒子径を表3に示
す。 【0023】 【表3】 【0024】従来、シャフトでの固体流れ等を考慮しコ
ークスとフラックスの粒径をほぼ同じにしていた。この
結果、回収製品中の亜鉛濃度は50%程度であった。そ
こで、石灰石、珪石ともに粒子径を徐々に小さくして操
業を実施した。この結果、表3に示すように石灰石、珪
石の粒子径の低下にともない、回収製品中の亜鉛濃度が
増加していくことが確認された。 【0025】図3には、粒子径を5mm程度まで低下さ
せた実施例3における回収製品の粒度分布を示すが0.
4mm以上の粒子径ものがなくなっており、本発明の効
果が確認された。また、この条件下において、炉内の圧
力損失、出銑滓状況にも大きな変動はなかったことか
ら、本発明により炉況を悪化することなしに回収製品中
の亜鉛濃度を向上できることが確認された。 【0026】 【発明の効果】上記の説明から明らかなように、本発明
によれば、炭素系固体還元剤の微粉や灰分が炉頂から排
出されにくくすることができるので、炉頂部ガスから回
収される高揮発性金属の濃度を高めることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ore, dust, or the like from a tuyere of a solid reducing agent packed bed type smelting reduction furnace filled with a carbon-based solid reducing agent such as coke. The present invention relates to a method of operating a furnace in which a granular material such as sludge is blown, a gas at a furnace top is cooled outside the furnace, and a highly volatile metal such as zinc is separated and recovered. [0002] In recent years, the amount of generated iron scrap containing zinc, such as surface-treated steel sheets for automobiles, has been increasing. In an electric furnace and the like using this iron scrap as a main raw material, zinc and iron are used. Dust as a main component is generated. This dust is currently
Due to the high cost of collection, after dust collection, it is treated to make it harmless and then landfilled. [0003] Incidentally, the content of zinc contained in the electric furnace dust is 10 to 30%, and the same amount of iron is also contained. The form of zinc and iron is oxide or hydroxide, but the amount of dust generated is as large as 15 kg per ton of steel, and it is low-cost and completely separated without waste. There is a need for technology to do this. [0004] As an example of such a separation and recovery technique, there is a method described in Japanese Patent Application Laid-Open No. 8-325646 as an operation method for performing the operation in a vertical furnace filled with a solid reducing agent such as coke. In this furnace operation method, at least two upper and lower tuyeres are provided in a solid reducing agent packed bed type smelting reduction furnace that fills a solid reducing agent, and zinc-containing powdery raw materials such as electric furnace dust are supplied from the upper tuyeres. The molten iron is melted and dropped on the hearth, zinc evaporates and rises to the furnace top, and the gas at the furnace top is cooled outside the furnace to separate and recover highly volatile metals such as zinc. It is to do. However, in the above-mentioned conventional furnace operating method, fine powder or ash of a solid reducing agent such as coke is apt to be mixed into the gas at the furnace top, and if the coke ratio increases due to fluctuations in operating conditions, the coke is recovered accordingly. The problem is that the mixing ratio of the highly volatile metal such as zinc and the fine powder or ash of the solid reducing agent changes, and the concentration of the recovered highly volatile metal decreases. As a method for addressing this problem, Japanese Patent Laid-Open No.
There is a method described in 00-192125. This prevents the fine powder and ash of the carbon-based solid reducing agent from scattering at the furnace top by setting the gas flow rate at the furnace top to 1.5 m / s or less. As a method of adjusting the flow rate of the furnace top gas, there are a method of adjusting the furnace diameter in advance at the time of construction, and a method of adjusting the gas amount by changing the oxygen enrichment rate of the gas blown from the tuyere during operation. However, when the operation is performed at a gas flow rate of 1.5 m / s at the furnace top, particles having a particle diameter of 300 μm or less are discharged out of the furnace together with gas. As a result, among the fine powder and ash of the carbon-based solid reducing agent, particularly those having a fine particle size and a part of the blowing material are discharged out of the furnace together with the furnace top gas and mixed with the recovered highly volatile metal. Will be lost. Also,
Once the equipment is constructed, the furnace diameter and the like cannot be easily changed. Therefore, when the amount of dust treatment is to be increased, a case in which the furnace top gas flow rate is limited may occur. Accordingly, the present invention has been developed to solve the above-mentioned problems. The present invention provides an environment in which fine powder and ash of a carbon-based solid reducing agent are difficult to be discharged from a furnace top, thereby recovering from a furnace top gas. It is an object of the present invention to provide a method of operating a furnace for increasing the concentration of a highly volatile metal. In order to achieve the above object, a method for operating a smelting reduction furnace according to the present invention comprises at least a step of blowing high-temperature oxygen-enriched air into a packed bed of a carbon-based solid reducing agent. A molten metal is produced by blowing a powdered metal oxide-containing material from at least the upper tuyere into a smelting reduction furnace having tuyeres provided in two stages, and cooling the gas at the furnace top outside the furnace. A method for operating a smelting reduction furnace for separating and recovering highly volatile metals, wherein the particle size of the bulk material and / or bulk auxiliary material charged from the furnace top is smaller than the particle size of the carbon-based solid reducing agent. It is characterized by having done. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a vertical smelting reduction furnace to which the furnace operating method of the present invention is applied (hereinafter, simply referred to as a vertical furnace).
It is. This vertical furnace 1 is filled with a carbon-based solid reducing agent 2 such as coke, and constitutes a solid reducing agent packed bed smelting reduction furnace as a whole. The vertical furnace 1 is provided with at least two upper and lower tuyeres. As described above, examples of the vertical furnace 1 in which the tuyeres 3 and 4 are provided in upper and lower two stages include, for example, a furnace developed for efficiently melting chromium ore. In other words, when the upper tuyere 3 alone does not provide sufficient heat for smelting reduction,
The calorific value is supplemented from the tuyere 4 in the lower stage, and the molten metal is sufficiently melted and reduced during that time. The number of tuyeres 3 and 4 is set based on the required reducing capacity and melting capacity. Hot air and oxygen-enriched air are blown into these tuyeres 3 and 4 from blower 5 through hot air generating furnace 6 as blowing gas. In addition to the blowing gas, a raw material is blown into the upper tuyere 3 from a raw material blowing device 7. The raw material blown into the furnace from the upper tuyere 3 is, in principle, limited to a granular material, and melts, burns, reduces, and evaporates immediately after blowing. Of these raw materials, the oxides and hydroxides of the low-volatile metals such as molten iron are reduced in the process of dropping the packed bed of the solid reducing agent 2 and accumulate in the hearth. The vapor of the highly volatile metal such as zinc that evaporates rises to the furnace top through the gap of the solid reducing agent 2 and is discharged together with the furnace gas. Powdery and granular raw materials such as electric furnace dust, which is zinc-containing dust, is blown from the upper tuyere 3 in principle. The powdery material is light, so when it is charged from the furnace top,
Due to the ascending current in the furnace, for example, as described above, the low-volatile metal is sufficiently melted and blown off before dripping in the packed bed of the solid reducing agent 2, and is discharged from the furnace top as it is. The raw material is blown from the tuyere 3 in the upper stage in order to suppress the generation of the gas. In other words, the powdery raw material immediately melts, burns, and evaporates in a space (hereinafter referred to as a “resway”) in front of the upper tuyere 3 to be blown. On the other hand, since a lump of raw material such as iron scrap is heavy, it does not blow off even if it receives a rising air current in the furnace. In addition, since this kind of massive raw material does not need to be instantaneously melted in front of the tuyere as described above, the raw material is charged from the furnace top by the furnace top charging device 8 in principle. In addition, as described later, in the present embodiment, the temperature of the furnace top needs to be maintained at a high temperature, whereas when a large amount of the bulk charge is charged at once, the temperature of the furnace top decreases too much. As a rule, the bulk charge is charged continuously in small quantities in principle so that the temperature at the furnace top does not drop. Specifically, it is preferable to continuously charge a small amount at a time by a charging pipe system from the furnace top. It should be noted that a sufficient amount of heat can be obtained even if a large amount of bulk charging material is charged at a time, and that the furnace top temperature be maintained high. However, such a unit increases the fuel consumption rate and should be avoided. In this embodiment, in order to keep the temperature of the furnace top high, a secondary combustion gas is supplied to the space of the furnace top and intentionally burned in the furnace top. The secondary combustion gas is also supplied to the duct for discharging the exhaust gas from the furnace top and burned in the duct. The exhaust gas discharged from the furnace top in this way is supplied to an exhaust gas cooling / cleaning device 9.
Sent inside. The exhaust gas cooling / cleaning device 9 is specifically a wet cooling device, that is, a liquid is sprayed in the exhaust gas to lower the temperature of the exhaust gas, and a substance in a vapor state is cooled and solidified, and is dripped together with the liquid. Precipitation is performed so that it can be separated and recovered as a slurry, and gas that does not liquefy or solidify is collected as a gas. In this embodiment, a highly volatile metal such as zinc is solidified and separated and recovered from the exhaust gas, and the discharged exhaust gas is obtained as a high-calorie fuel gas containing carbon monoxide gas. Further, by rapidly cooling the high-temperature exhaust gas in this way, it is possible to prevent re-synthesis of dioxin which is a harmful substance contained in the raw material. next,
The conditions for stabilizing the zinc concentration in the slurry (product) recovered by the exhaust gas cooling / cleaning device will be described. First, FIG. 2 shows the particle size distribution of the recovered product, and Table 1 shows the results of component analysis at each particle size. [Table 1] As is apparent from the above, the zinc in the recovered product is a substance vaporized in front of the tuyere and re-solidified in the quenching tower, so that the zinc concentration in dust having a small particle diameter is high. On the other hand, those having a large particle diameter of 0.4 mm or more have a high ratio of C and gangue components of 80% or more, and carbon,
That is, the main component is fine powder or ash of the solid reducing agent. Therefore, in order to increase the zinc concentration in the recovered product, it is necessary to suppress the emission of fine powder of the solid reducing agent and dust having a large particle diameter derived from ash outside the furnace. These dusts, unlike zinc vapor, are discharged outside the furnace through the gap between the packed beds from the tuyere in a solid state, unlike zinc vapor. Therefore, the smaller the diameter of the packing particles, the smaller the amount of dust passing through the packing layer.
Referring to FIG. 3, the particle diameter x that can pass through the packed bed of solid reducing agent 2 is (r + x): r = 2: √3, assuming that the particles are spherical. Is 0.15 times the packed particle diameter r. However, since the gas actually passes between the filled particles on a gas, the particle diameter is about 0.1 times the filled particle. I know I can get through. Therefore, the particle diameter r of the solid reducing agent 2 is set to 4
If the particle size is reduced to about mm, the emission of dust having a particle diameter of about 0.4 mm, which is a problem, can be prevented, but in this case, the liquid permeability of the melt generated in front of the tuyere deteriorates, and In addition, there is a danger that the pressure loss in the furnace may increase and cause a malfunction. Here, the present inventors have conceived to reduce the particle size of the charge other than the solid reducing agent charged from the furnace top, that is, the flux (bulk auxiliary material) and / or the bulk material. Since the flux and the bulk raw material are melted in front of the tuyere and dropped into the packed bed, the liquid permeability at the lower part of the upper tuyere is not deteriorated even if the particle diameter is reduced. Further, the melting property in front of the tuyere can be improved by reducing the particle diameter. Therefore,
When the particle size of the solid reducing agent was kept constant and the particle size of the other furnace top charge was reduced, the amount of dust discharged from the outside of the furnace could be reduced, and the zinc concentration in the recovered product Could be greatly improved. At this time, there was no deterioration in liquid permeability at the lower part of the furnace or a large increase in pressure loss at the shaft part on the tuyere, and stable operation could be continued. Hereinafter, the present invention will be described in detail with reference to examples. An operation experiment was performed using a smelting reduction furnace having a processing amount of a metal oxide of 30 t / day. The used oxide raw material is electric furnace dust generated from electric furnace factory,
Includes metal oxides such as iron and zinc. Table 2 shows the composition of the raw materials used. [Table 2] The operating conditions of the smelting reduction furnace are as follows: total air flow (total of upper and lower tuyeres) of 1900 Nm 3 / hr, oxygen enrichment to upper tuyeres of 260 Nm 3 / hr, lower tuyeres Based on an enriched oxygen amount of 40 Nm 3 / hr, a blowing temperature of 700 ° C., and a raw material blowing rate of 1040 kg / hr (25 t / d). As the charge from the furnace top, in addition to coke as a carbon-based solid reducing agent, quartzite and limestone are used as fluxes. Table 3 shows the particle size of each. [Table 3] Conventionally, the particle diameters of coke and flux have been made substantially the same in consideration of the solid flow in the shaft and the like. As a result, the zinc concentration in the recovered product was about 50%. Therefore, both limestone and silica stone were gradually reduced in particle size before the operation. As a result, as shown in Table 3, it was confirmed that the zinc concentration in the recovered product increased as the particle diameter of limestone and silica stone decreased. FIG. 3 shows the particle size distribution of the recovered product in Example 3 in which the particle diameter was reduced to about 5 mm.
Particles having a particle diameter of 4 mm or more disappeared, confirming the effect of the present invention. In addition, under these conditions, there was no significant change in the pressure loss in the furnace and the tapping residue, so it was confirmed that the present invention can improve the zinc concentration in the recovered product without deteriorating the furnace condition. Was. As is apparent from the above description, according to the present invention, the fine powder and ash of the carbon-based solid reducing agent can be made difficult to be discharged from the furnace top, so that they can be recovered from the gas at the furnace top. The concentration of the highly volatile metal that is obtained can be increased.

【図面の簡単な説明】 【図1】溶融還元炉の概略を示す図である。 【図2】従来における回収製品の粒度分布を示すグラフ
図である。 【図3】充填粒子とその空隙を通過できる球形粒子の大
きさを模式的に示した図である。 【図4】本発明実施時の回収製品の粒度分布を示したグ
ラフ図である。 【符号の説明】 1…竪型炉(溶融還元炉) 2…炭素系固体還元剤の充填層 3…上段羽口 4…下段羽口
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram schematically showing a smelting reduction furnace. FIG. 2 is a graph showing the particle size distribution of a conventional recovered product. FIG. 3 is a diagram schematically showing the size of a spherical particle that can pass through a gap between the filler particle and the filler particle. FIG. 4 is a graph showing a particle size distribution of a recovered product when the present invention is carried out. [Description of Signs] 1 ... vertical furnace (melting reduction furnace) 2 ... packed bed of carbon-based solid reducing agent 3 ... upper tuyere 4 ... lower tuyere

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22B 5/10 C22B 19/04 7/00 19/32 19/04 B09B 3/00 303L 19/32 ZAB 304G (72)発明者 益本 慎一 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 高平 拓也 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4D004 AA02 AA37 BA05 CA29 CA37 CC11 4D059 AA00 BB04 CC07 DA58 4K001 AA10 AA30 BA05 BA14 DA05 EA01 GA01 GB01 GB03 GB09 HA01 JA01 4K012 CB02 CB06 CB07 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22B 5/10 C22B 19/04 7/00 19/32 19/04 B09B 3/00 303L 19/32 ZAB 304G (72) Inventor Shinichi Masumoto 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. 4D004 AA02 AA37 BA05 CA29 CA37 CC11 4D059 AA00 BB04 CC07 DA58 4K001 AA10 AA30 BA05 BA14 DA05 EA01 GA01 GB01 GB03 GB09 HA01 JA01 4K012 CB02 CB06 CB07

Claims (1)

【特許請求の範囲】 【請求項1】 炭素系固体還元剤の充填層に高温の酸素
富化空気を吹き込む上下少なくとも二段に設けられた羽
口を有する溶融還元炉内に、粉粒状の金属酸化物含有原
料を少なくとも上段羽□から吹き込むことにより、溶融
金属を製造するとともに、炉頂部のガスを炉外で冷却し
て高揮発性金属を分離回収する溶融還元炉の操業方法に
おいて、 炉頂部から装入する塊状原料及び/又は塊状副原料の粒
径を炭素系固体還元剤の粒径よりも小さくしたことを特
徴とする溶融還元炉の操業方法。
Claims: 1. A powdery and granular metal is placed in a smelting reduction furnace having at least two upper and lower tuyeres that blow high-temperature oxygen-enriched air into a packed bed of a carbon-based solid reducing agent. A method for operating a smelting reduction furnace for producing molten metal by injecting an oxide-containing raw material from at least the upper blade □ and cooling the gas at the top of the furnace outside the furnace to separate and recover highly volatile metals, comprising: A method for operating a smelting reduction furnace, wherein the particle size of the bulk material and / or the bulk auxiliary material charged from above is made smaller than the particle size of the carbon-based solid reducing agent.
JP2001210015A 2001-07-10 2001-07-10 Method for operating smelting reduction furnace Pending JP2003027152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001210015A JP2003027152A (en) 2001-07-10 2001-07-10 Method for operating smelting reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001210015A JP2003027152A (en) 2001-07-10 2001-07-10 Method for operating smelting reduction furnace

Publications (1)

Publication Number Publication Date
JP2003027152A true JP2003027152A (en) 2003-01-29

Family

ID=19045571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001210015A Pending JP2003027152A (en) 2001-07-10 2001-07-10 Method for operating smelting reduction furnace

Country Status (1)

Country Link
JP (1) JP2003027152A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107363072A (en) * 2017-06-30 2017-11-21 中国恩菲工程技术有限公司 The fused bath smelting method of waste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107363072A (en) * 2017-06-30 2017-11-21 中国恩菲工程技术有限公司 The fused bath smelting method of waste

Similar Documents

Publication Publication Date Title
US5728193A (en) Process for recovering metals from iron oxide bearing masses
SU1225495A3 (en) Method of producing ferromanganese
JP4130629B2 (en) High temperature metal recovery process
JPH11152511A (en) Treatment of steelmaking furnace dust and dust pellet
JP2003027152A (en) Method for operating smelting reduction furnace
JP2009256741A (en) Method of recovering valuable metal from waste battery
JP5532823B2 (en) Method for recovering valuable metals from waste batteries
JP5271477B2 (en) How to reuse converter dust
JPH06330198A (en) Method for recovering zinc in dust
JP3799872B2 (en) How to set the tuyere
JP3735016B2 (en) Molten iron manufacturing method and molten iron manufacturing apparatus
JP2004076090A (en) Apparatus and method for recovering low-melting point valuable sources
JP3336131B2 (en) Method for recovering zinc from zinc-containing dust
JP2000192128A (en) Operation of furnace
JP3627768B2 (en) Incineration ash treatment method
JP2013076149A (en) Recycling system
JP2011074438A (en) Method for producing reduced iron with moving type hearth furnace
JP2004011011A (en) Method of recovering cooper from cooper converter slag
JP4006863B2 (en) How to operate the furnace
JP2000192125A (en) Operation of furnace
JP2002249811A (en) Method for treating waste brick containing magnesium and chromium
JP2000199007A (en) Operation of furnace
JPH11189832A (en) Treatment of zinc-containing powdery material
JP2000192126A (en) Operation of furnace
JPH11302750A (en) Treatment of iron making dust