JP2000192125A - Operation of furnace - Google Patents

Operation of furnace

Info

Publication number
JP2000192125A
JP2000192125A JP36796798A JP36796798A JP2000192125A JP 2000192125 A JP2000192125 A JP 2000192125A JP 36796798 A JP36796798 A JP 36796798A JP 36796798 A JP36796798 A JP 36796798A JP 2000192125 A JP2000192125 A JP 2000192125A
Authority
JP
Japan
Prior art keywords
furnace
zinc
gas
furnace top
tuyere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36796798A
Other languages
Japanese (ja)
Inventor
Takashi Matsui
貴 松井
Natsuo Ishiwatari
夏生 石渡
Takeshi Uchiyama
武 内山
Yoshiaki Hara
義明 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP36796798A priority Critical patent/JP2000192125A/en
Publication of JP2000192125A publication Critical patent/JP2000192125A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve and stabilize the concentration of zinc recovered from furnace top gas when the zinc and iron are separated and recovered from an electric furnace dust. SOLUTION: In the case of recovering the zinc, by using two stages of tuyeres at the upper and the lower stages, filling coke, charging raw material of the electric furnace dust through the upper stage of the tuyere and cooling the gas in the furnace top part at the outside of the furnace, e.g. the blasting quantity into the tuyere and the diameter of the furnace opening part are controlled to regulate the gas flowing speed at the furnace top part to <=1.5 m/sec and solid reducing material of the coke, etc., having >=300 μm size is automatically dropped into the furnace to improve and stabilize the concentration of the recovered zinc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コークス等の固体
還元材を充填する固体還元材充填層型溶融還元炉の羽口
から、鉱石、ダスト、スラッジ等の粉粒状の装入原料を
吹込み、炉頂部のガスを炉外で冷却して、亜鉛等の高揮
発性金属を分離回収する炉の操業方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method in which powdery or granular materials such as ore, dust, sludge and the like are blown from tuyeres of a solid-reduction-material-packed smelting reduction furnace for filling a solid reduction material such as coke. The present invention relates to a method of operating a furnace in which a gas at the furnace top is cooled outside the furnace to separate and recover highly volatile metals such as zinc.

【0002】[0002]

【従来の技術】近年、自動車用表面処理鋼板等のように
亜鉛を含む鉄スクラップの発生量が増加している。この
鉄スクラップを主原料とする電炉等では、亜鉛と鉄とを
主成分とするダストが発生する。このダストは、現在、
回収コストが高いことから、集塵後、無害化処理されて
から埋め立て投棄されている。
2. Description of the Related Art In recent years, the amount of generated iron scrap containing zinc, such as surface-treated steel sheets for automobiles, has been increasing. In an electric furnace or the like using this iron scrap as a main raw material, dust containing zinc and iron as main components is generated. This dust is currently
Due to the high cost of collection, after collection, they are detoxified and then landfilled.

【0003】しかしながら、前記電炉ダストに含まれる
亜鉛の含有率は20〜30%であり、同量の鉄分も含ま
れている。それらの形態は、酸化物であったり、水酸化
物であったりするが、ダストそのものの発生量は製鋼ト
ンあたり15キログラムと多く、低コストで且つ廃棄物
なく、夫々を完全分離した状態で回収する技術が求めら
れている。
[0003] However, the content of zinc contained in the electric furnace dust is 20 to 30%, and the same amount of iron is also contained. These forms may be oxides or hydroxides, but the amount of dust generated is as large as 15 kilograms per ton of steel, low cost and no waste, and each is collected in a completely separated state. There is a need for technology to do this.

【0004】このような分離回収技術を、コークス等の
固体還元材を充填した竪型炉で実施するための炉の操業
方法として、例えば本出願人が先に提案した特開平8−
325646号公報に記載されるものがある。この炉の
操業方法では、固体還元材を充填する固体還元材充填層
型溶融還元炉に少なくとも上下二段の羽口を設け、上段
の羽口から、電炉ダスト等の亜鉛含有粉粒状原料を装入
し、そのうち鉄分は溶融滴下させて炉床部に溜め、亜鉛
は蒸発させて炉頂部に上昇させ、その炉頂部のガスを炉
外で冷却して、亜鉛等の高揮発性金属を分離回収すると
いうものである。
As a furnace operating method for implementing such a separation and recovery technique in a vertical furnace filled with a solid reducing agent such as coke, for example, Japanese Patent Application Laid-Open No.
There is one described in JP-A-325646. In this furnace operation method, at least two upper and lower tuyeres are provided in a solid reducing agent packed bed smelting reduction furnace for filling a solid reducing agent, and zinc-containing powdery raw materials such as electric furnace dust are loaded from the upper tuyeres. Iron is melted and dropped in the furnace floor, and zinc is evaporated and raised to the furnace top.The gas at the furnace top is cooled outside the furnace, and highly volatile metals such as zinc are separated and recovered. It is to do.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記従
来の炉の操業方法では、炉頂部のガスにコークス等の固
体還元材の微粉や灰分が混入し易く、操業条件の変動に
よってコークス比が変化すると、それに伴って回収され
る亜鉛等の高揮発性金属と固体還元材の微粉や灰分との
混合比が変化し、回収される高揮発性金属の濃度が変化
するという問題が発生し易い。
However, in the above-described conventional furnace operating method, fine powder or ash of a solid reducing material such as coke is apt to be mixed into the gas at the furnace top, and if the coke ratio changes due to fluctuations in the operating conditions. Accordingly, the mixing ratio of the recovered highly volatile metal such as zinc and the fine powder or ash of the solid reducing agent changes, and the problem that the concentration of the recovered highly volatile metal changes easily occurs.

【0006】本発明は前記諸問題を解決すべく開発され
たものであり、固体還元材の微粉や灰分が自動的に落下
し易い環境を整えることにより、炉頂部ガスから回収さ
れる高揮発性金属の濃度を安定化させる炉の操業方法を
提供することを目的とするものである。
The present invention has been developed in order to solve the above-mentioned problems. By providing an environment in which the fine powder and ash of the solid reducing material are easily dropped, the high volatility recovered from the furnace top gas is improved. It is an object of the present invention to provide a method of operating a furnace for stabilizing the concentration of metal.

【0007】[0007]

【課題を解決するための手段】上記諸問題を解決するた
め、本発明のうち請求項1に係る炉の操業方法は、固体
還元材充填層型溶融還元炉に、少なくとも上下段に二段
の羽口を設け、上段の羽口から粉粒状の装入原料を装入
し、炉頂部のガスを炉外で冷却して高揮発性金属を分離
回収する炉の操業方法であって、前記炉頂部のガス流速
を1.5m/sec.以下とすることを特徴とするものであ
る。
In order to solve the above-mentioned problems, a method for operating a furnace according to claim 1 of the present invention is characterized in that a solid reduction material packed bed type smelting reduction furnace has at least two upper and lower stages. A method for operating a furnace, wherein a tuyere is provided, a powdery and granular material is charged from an upper tuyere, and a gas at a furnace top is cooled outside the furnace to separate and recover a highly volatile metal. The gas flow velocity at the top is set to 1.5 m / sec or less.

【0008】また、本発明のうち請求項2に係る炉の操
業方法は、前記炉頂部のガス流速を制御するために、羽
口からの吹込みガス流量、炉口径の少なくとも何れか一
方を操作することを特徴とするものである。
According to a second aspect of the present invention, in the furnace operating method, at least one of a flow rate of gas blown from a tuyere and a furnace diameter is controlled to control a gas flow rate at the furnace top. It is characterized by doing.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。図1は、本発明の炉の操業方法を適用した
竪型溶融還元炉(以下、単に竪型炉と記す)である。こ
の竪型炉1内には、コークス等の固体還元材2が充填さ
れており、全体として固体還元材充填層型溶融還元炉を
構成する。この竪型炉1には、少なくとも上下二段の羽
口3,4が設けられている。このように上下二段に羽口
3,4を設ける竪型炉1としては、例えばクロム鉱石を
効率よく溶融するために開発された炉等を適用すること
ができる。つまり、上段の羽口3だけでは溶融還元に十
分な熱量が得られないときに、下段の羽口4から熱量を
補い、その間に十分に溶融還元させるように構成された
ものである。なお、羽口3,4の数は必要な還元能力及
び溶融能力から設定される。
Embodiments of the present invention will be described below. FIG. 1 shows a vertical smelting reduction furnace (hereinafter simply referred to as a vertical furnace) to which the furnace operating method of the present invention is applied. This vertical furnace 1 is filled with a solid reducing material 2 such as coke, and constitutes a solid reducing material packed bed type smelting reduction furnace as a whole. The vertical furnace 1 is provided with at least two upper and lower tuyeres. As the vertical furnace 1 provided with the tuyeres 3 and 4 in the upper and lower stages in this manner, for example, a furnace developed for efficiently melting chromium ore can be applied. That is, when sufficient heat amount for smelting reduction cannot be obtained with only the tuyere 3 in the upper stage, the heat amount is supplemented from the tuyere 4 in the lower stage and the smelting reduction is sufficiently performed during that time. The number of tuyeres 3 and 4 is set based on the required reducing ability and melting ability.

【0010】これらの羽口3,4には、送風機5から熱
風発生炉6を通して、熱風や、それに酸素を富化したも
のや、或いは必要に応じて純酸素が吹込みガスとして用
いられる。一方、上段の羽口3には、原料吹込み装置7
から原料が吹込まれる。この上段の羽口3から吹込まれ
る原料は、原則的に粉粒状のものに限定され、吹込み直
後に溶融、燃焼、還元、蒸発する。この原料のうち、溶
融した鉄等の低揮発性金属の酸化物や水酸化物は、固体
還元材の充填層を滴下する過程で還元され、炉床部に溜
まる。また、蒸発する亜鉛等の高揮発性金属の蒸気は、
固体還元材2の隙間を通って炉頂部に上昇し、後述のよ
うに炉内ガスと共に排出される。
[0010] In these tuyeres 3, 4, hot air and oxygen-enriched hot air or pure oxygen as needed are used as blowing gas from a blower 5 through a hot air generating furnace 6. On the other hand, the upper tuyere 3 is provided with a raw material blowing device 7.
Raw material is blown from. The raw material blown from the tuyere 3 at the upper stage is basically limited to a granular material, and melts, burns, reduces and evaporates immediately after blowing. Among these raw materials, the oxides and hydroxides of the low-volatility metal such as molten iron are reduced in the process of dropping the packed bed of the solid reducing material, and accumulate in the hearth. In addition, vapor of highly volatile metal such as zinc which evaporates,
It rises to the furnace top through the gap between the solid reducing materials 2 and is discharged together with the furnace gas as described later.

【0011】亜鉛含有ダストである電炉ダスト等の粉粒
状原料は、原則的に上段の羽口3から吹込まれる。粉粒
状の原料は軽いので、それを炉頂部から装入すると、炉
内の上昇気流によって、例えば前述のように低揮発性金
属が十分に溶融して固体還元材2の充填層内を滴下する
以前に吹き飛ばされ、そのまま炉頂部から排出されてし
まうため、それを抑制防止するために上段の羽口3から
粉粒状原料を吹込むのである。つまり、粉粒状原料は、
吹込まれる上段の羽口3前のレースウエイ内で即座に溶
融、燃焼、蒸発しなければならない。
Powdery and granular raw materials such as electric furnace dust, which is zinc-containing dust, are in principle blown from the upper tuyere 3. Since the powdery and granular material is light, when it is charged from the furnace top, the low volatile metal is sufficiently melted and dropped into the packed bed of the solid reducing material 2 by the ascending airflow in the furnace, for example, as described above. Since the material is blown off before and is discharged from the furnace top as it is, the granular material is blown from the tuyere 3 in the upper stage in order to prevent the discharge. In other words, the powdery and granular material is
It must melt, burn and evaporate immediately in the raceway in front of the upper tuyere 3 to be blown.

【0012】これに対して、塊状原料は重量が大きいの
で、炉内の上昇気流を受けても吹き飛ばない。また、こ
の種の塊状原料は、前述のように羽口前で瞬時に溶融す
る必要がないので、炉頂装入装置8により原則として炉
頂から装入する。また、塊状原料を粉砕して粉粒状にし
たときにも、上段の羽口3から吹込む。これに対して、
塊状装入原料は重量が大きいので、炉内の上昇気流を受
けても吹き飛ばない。また、この種の塊状装入原料は、
前述のように羽口前で瞬時に溶融する必要がないので、
炉頂装入装置8により原則として炉頂から装入する。ま
た、後述のように、本実施形態では、炉頂部の温度を高
温に維持する必要があるのに対して、塊状装入原料を一
度に多量に装入すると、炉頂部の温度が下がり過ぎてし
まう恐れがあるため、塊状装入原料は原則として連続的
に装入し、炉頂部の温度が下がらないようにする。具体
的には、炉頂からの装入管方式で連続的に装入するのが
よい。勿論、塊状装入原料を一度に多量に装入しても、
十分な熱量が得られ、炉頂部温度を高く維持できればよ
いが、そのようにすると燃料の原単位が増加するので回
避したい。また、塊状装入原料を粉砕して粉粒状にした
ときには、上段の羽口3から装入すべきである。
On the other hand, since the massive raw material has a large weight, it does not blow off even if it receives a rising airflow in the furnace. In addition, since this kind of bulk raw material does not need to be instantaneously melted in front of the tuyere as described above, the raw material is charged from the furnace top by the furnace top charging device 8 in principle. Also, when the bulk material is pulverized into powder and granules, the material is blown from the tuyere 3 in the upper stage. On the contrary,
Since the bulk charge is heavy, it does not blow off even when it receives the rising air current in the furnace. Also, this kind of bulk charge is
As mentioned above, there is no need to melt instantly in front of the tuyere,
As a rule, the furnace top charging device 8 is charged from the furnace top. In addition, as described later, in the present embodiment, it is necessary to maintain the temperature of the furnace top at a high temperature, but when a large amount of the bulk charge is charged at once, the temperature of the furnace top decreases too much. As a rule, the bulk charge is charged continuously in principle, so that the temperature at the furnace top does not drop. More specifically, it is preferable to charge continuously by a charging pipe system from the furnace top. Of course, even if a large amount of bulk charge is charged at once,
It suffices if a sufficient amount of heat can be obtained and the furnace top temperature can be maintained high, but such an increase in the unit fuel consumption would be avoided. In addition, when the bulk charge is pulverized into powder and granules, it should be charged from the tuyere 3 in the upper stage.

【0013】また、本実施形態では、炉頂部の温度を高
く維持するために、当該炉頂部の空間に二次燃焼ガスを
供給し、意図的に炉頂部内で燃焼させている。また、こ
の炉頂部から排ガスを排出するダクト内にも二次燃焼ガ
スを供給してダクト内でも燃焼させている。このように
して炉頂部から排出された排ガスは排ガス冷却・清浄装
置9内に送り込まれる。この排ガス冷却・清浄装置9
は、具体的に湿式冷却装置、つまり排ガス中に液体を散
布して、排ガス温度を低下させると共に、蒸気の状態に
ある物質を冷却固化し、液体と一緒に滴下・沈殿させ、
それをスラリーとして分離回収できるようにすると共
に、液化或いは固化しない気体は気体のまま採取するた
めのものである。本実施形態では、後述のように排ガス
中から亜鉛等の高揮発性金属を固化して分離回収すると
共に、排出される排ガスを、一酸化炭素ガスを含む高カ
ロリーの燃料ガスとして得る。また、このように高温の
排ガスを急速に冷却することにより、原料中に含まれる
有害物質であるダイオキシンの再合成を防止することも
できるのである。
Further, in the present embodiment, in order to keep the temperature of the furnace top high, the secondary combustion gas is supplied to the space of the furnace top and is intentionally burned in the furnace top. The secondary combustion gas is also supplied to the inside of the duct for discharging the exhaust gas from the furnace top and burned in the duct. The exhaust gas discharged from the furnace top in this way is sent into the exhaust gas cooling / cleaning device 9. This exhaust gas cooling / cleaning device 9
Specifically, a wet cooling device, that is, spraying the liquid in the exhaust gas, lowering the exhaust gas temperature, cooling and solidifying the substance in a vapor state, dripping and settling with the liquid,
It is intended to separate and recover it as a slurry, and to collect gas that does not liquefy or solidify as a gas. In this embodiment, as described later, a highly volatile metal such as zinc is solidified and separated and recovered from the exhaust gas, and the exhaust gas to be discharged is obtained as a high-calorie fuel gas containing a carbon monoxide gas. In addition, by rapidly cooling such high-temperature exhaust gas, re-synthesis of dioxin which is a harmful substance contained in the raw material can be prevented.

【0014】次に、前述のような固体還元材充填層型溶
融還元炉で、主として低揮発性金属である鉄の酸化物や
水酸化物と高揮発性金属である亜鉛の酸化物や水酸化物
とを含む電炉ダスト等の粉粒物を装入原料とし、それを
鉄分と亜鉛とに分離回収し、同時に高カロリー燃料ガス
を採取する。ここでは、炉径が1.2m、高さ8.0
m、上下段の羽口を備えた竪型炉を用いる。また、送風
条件及び原料の吹込み条件は下記表1のように調整し
た。ここでは、酸素富化した熱風を羽口から吹込むもの
とし、粉粒状装入原料も羽口から吹込むものとした。
Next, in the solid-reduction-material packed-bed smelting reduction furnace described above, iron oxides and hydroxides, which are low-volatile metals, and zinc oxides and hydroxides, which are high-volatile metals, are mainly used. The powdered material such as electric furnace dust containing the material is used as a charging material, which is separated and recovered into iron and zinc, and at the same time, a high calorie fuel gas is collected. Here, the furnace diameter is 1.2 m and the height is 8.0.
m, using a vertical furnace with upper and lower tuyeres. The blowing conditions and the blowing conditions of the raw materials were adjusted as shown in Table 1 below. Here, it is assumed that hot air enriched with oxygen is blown from the tuyere, and the powdery raw material is also blown from the tuyere.

【0015】[0015]

【表1】 [Table 1]

【0016】次に、前記排ガス冷却・清浄装置で回収さ
れるスラリー(製品)中の亜鉛濃度安定化のための条件
を説明する。まず、回収される製品の粒度分布を図2
に、各粒度における成分分析結果を表2に示す。これら
から明らかなように、回収製品中の亜鉛は粒径が小さ
く、粒径の大きいものはカーボン,即ち固体還元材の微
粉や灰分であると考えられる。また、回収製品中の亜鉛
は、固体還元材の微粉や灰分はに比べて、極めて粒径が
小さいので、比重差を考慮しても、単体の固体還元材の
微粉や灰分の方が亜鉛の粒子よりも重いと考えられる。
このように粒径も重量も大きい固体還元材の微粉や灰分
を回収製品中から減じるためには、前記排ガス冷却・清
浄装置の前に、例えばサイクロン等のような粉粒体除去
装置を介装することも考えられるが、コストや設備等の
制約もある。
Next, conditions for stabilizing the zinc concentration in the slurry (product) recovered by the exhaust gas cooling / cleaning apparatus will be described. First, the particle size distribution of the recovered product is shown in Fig. 2.
Table 2 shows the results of component analysis at each particle size. As apparent from these, it is considered that zinc in the recovered product has a small particle size, and that having a large particle size is carbon, that is, fine powder or ash of a solid reducing material. In addition, zinc in the recovered product has an extremely small particle size compared to the fine powder and ash of the solid reductant, so the fine powder and ash of the single solid reductant are more zinc It is considered heavier than the particles.
In order to reduce the fine powder and ash of the solid reducing material having a large particle diameter and a large weight from the recovered product as described above, a powder particle removing device such as a cyclone is interposed before the exhaust gas cooling / cleaning device. However, there are restrictions on cost and equipment.

【0017】[0017]

【表2】 [Table 2]

【0018】一方、回収製品中の固体還元材の微粉や灰
分は粒径も重量も大きいのであるから、例えば炉頂部の
ガス流速が遅ければ、自動的に炉内に落下するはずであ
る。そこで、各粒径における終末速度Ut を下記1式に
示す。 Ut =((2m・(ρp −ρg )・g)/(C・ρp ・ρg A))0.5 …… (1) 但し、 m :粒子重量(kg/個) ρg :ガス密度(kg/m3 ) ρp :粒子密度(kg/m3 ) g :重力加速度(m/s2 ) A :粒子断面積(m2 ) C :抵抗係数 であり、抵抗係数Cは下記のように設定した。
On the other hand, the fine powder and ash of the solid reducing material in the recovered product have a large particle diameter and a large weight. For example, if the gas flow rate at the furnace top is slow, the solid reducing material should automatically fall into the furnace. Therefore, indicating the terminal velocity U t in each particle size to 1 expression below. U t = ((2 m · (ρ p− ρ g ) · g) / (C · ρ p · ρ g A)) 0.5 (1) where m: particle weight (kg / piece) ρ g : gas Density (kg / m 3 ) ρ p : Particle density (kg / m 3 ) g: Gravitational acceleration (m / s 2 ) A: Particle cross-sectional area (m 2 ) C: Resistance coefficient Was set as follows.

【0019】Re≦5.76のとき、C=24/Re 5.76<Re≦517のとき、C=10/Re0.5 517<Reのとき、C=0.44 但し、 Re:レイノルズ数 である。When Re ≦ 5.76, C = 24 / Re 5.76 <Re ≦ 517, C = 10 / Re 0.5 517 <Re, C = 0.44 where Re: Reynolds number is there.

【0020】このようにして得られる各粒径と終末速度
との関係は図3のように表れる。一方、前記図2及び表
2から、亜鉛と固体還元材の微粉や灰分との粒径の閾値
を300μmとすると、図3から当該300μmの粒子
の炉頂部における最終流速U t は約1.5m/sec.であ
る。つまり、炉頂部におけるガス流速が1.5m/sec.
以下であれば、300μmより大きい固体還元材の微粉
や灰分は自動的に炉内に落下すると考えられる。
Each particle size and terminal velocity thus obtained
Is shown in FIG. On the other hand, FIG.
From 2, the threshold value of the particle size of zinc and fine powder and ash of the solid reducing agent
Is assumed to be 300 μm, from FIG.
Flow velocity U at the furnace top tIs about 1.5 m / sec.
You. That is, the gas flow rate at the furnace top is 1.5 m / sec.
If less than, fine powder of solid reducing agent larger than 300 μm
It is considered that the ash automatically falls into the furnace.

【0021】そこで、表3に示すように、従来1200
Nm3 /h(比較例)であった送風量を750Nm3
h(実施例1)とし、合わせて送風酸素量を160Nm
3 /h(比較例)から250Nm3 /h(実施例1)と
し、最終的に炉頂部のガス流速が1.85m/s(比較
例)から1.47(m/s)(実施例1)となるように
して、炉径が1.2m、高さが8.0m、羽口が上下段
に各3本備えられた竪型炉で、電炉ダストから亜鉛と鉄
分との分離回収操業を行った。その結果、得られた回収
製品中の亜鉛の割合を図4に示す。
Therefore, as shown in Table 3, the conventional 1200
Nm 3 / h (Comparative Example) a was the blast volume 750 Nm 3 /
h (Example 1), and the total amount of blast oxygen is 160 Nm
From 3 / h (Comparative Example) to 250 Nm 3 / h (Example 1), finally, the gas flow rate at the furnace top was 1.85 m / s (Comparative Example) to 1.47 (m / s) (Example 1). ), A vertical furnace with a furnace diameter of 1.2 m, a height of 8.0 m, and three tuyeres in the upper and lower stages is used to separate and collect zinc and iron from electric furnace dust. went. As a result, the ratio of zinc in the obtained recovered product is shown in FIG.

【0022】[0022]

【表3】 [Table 3]

【0023】図4から明らかなように、炉頂部のガス流
速を1.5m/sec.とする実施例1では、回収製品中の
亜鉛濃度が向上し、更に安定していることが分かる。こ
れに対して、従来法である比較例では、亜鉛濃度が低
く、また不安定であることが分かる。続いて、前記実施
例1では、炉口径を変更していなかったが、炉口径を変
更することによっても炉頂部のガス流速を操作できるこ
とに着目した。表4に、実施例2、実施例3の炉口径と
炉頂部ガス流速との関係を示す。なお、この実施例2、
実施例3では、共に送風量を前記比較例と同じ1200
Nm3 /hとし、送風酸素量も250Nm3 /hとし
た。実施例2では、炉口径を1.5mとすることにより
炉頂部ガス流速が1.15m/sとなり、実施例3で
は、炉口径を1.8mとすることにより炉頂部ガス流速
が0.82m/sとなった。
As is clear from FIG. 4, in Example 1 in which the gas flow rate at the furnace top was 1.5 m / sec., The zinc concentration in the recovered product was improved and was more stable. On the other hand, in the comparative example which is the conventional method, it is found that the zinc concentration is low and unstable. Subsequently, in Example 1, the furnace diameter was not changed, but it was noted that the gas flow rate at the furnace top can be controlled by changing the furnace diameter. Table 4 shows the relationship between the furnace diameter and the gas flow rate at the furnace top in Examples 2 and 3. In addition, in Example 2,
In the third embodiment, the air blowing amount is set to 1200 which is the same as that of the comparative example.
And Nm 3 / h, was blown oxygen amount 250Nm 3 / h. In Example 2, the furnace top gas flow rate was 1.15 m / s by setting the furnace diameter to 1.5 m, and in Example 3, the furnace top gas flow rate was 0.82 m by setting the furnace diameter to 1.8 m. / S.

【0024】[0024]

【表4】 [Table 4]

【0025】そして、実施例2における回収製品中の亜
鉛濃度は57.4%、実施例3では61%まで向上し
た。これら実施例1〜3と比較例との炉頂部ガス流速と
回収製品中の亜鉛濃度との関係を図5に示す。同図から
明らかなように、炉頂部のガス流速を1.5m/sec.以
下とする各実施形態では、亜鉛濃度が高く、また安定し
ていることから、炉頂部のガス流速は1.5m/sec.以
下とすることが好適であることが分かる。
The zinc concentration in the recovered product in Example 2 was improved to 57.4%, and in Example 3, it was improved to 61%. FIG. 5 shows the relationship between the gas flow rate at the furnace top and the zinc concentration in the recovered product in Examples 1 to 3 and Comparative Example. As is clear from the figure, in each embodiment in which the gas flow rate at the furnace top is 1.5 m / sec or less, the gas flow rate at the furnace top is 1.5 m since the zinc concentration is high and stable. / Sec. Or less.

【0026】[0026]

【発明の効果】以上説明したように、本発明のうち請求
項1に係る炉の操業方法によれば、炉頂部のガス流速を
1.5m/sec.以下とすることにより、当該炉頂部は、
比較的粒径や重量の大きいコークス等の固体還元材が自
動的に落下し易い環境となり、その分だけ、炉頂部のガ
スから回収される高揮発性金属との混合比が少なくなる
ので、その回収濃度を安定化させることができる。
As described above, according to the method of operating a furnace according to the first aspect of the present invention, by controlling the gas flow rate at the furnace top to 1.5 m / sec or less, the furnace top can be ,
An environment in which solid reductant such as coke with a relatively large particle size and weight is easily dropped automatically is used, and the mixing ratio with the highly volatile metal recovered from the gas at the top of the furnace is reduced by that much. The recovery concentration can be stabilized.

【0027】また、本発明のうち請求項2に係る炉の操
業方法によれば、羽口からの吹込みガス流量、炉口径の
少なくとも何れか一方を操作することで、炉頂部のガス
流速を制御することとしたため、請求項1の発明を実施
化し易い。
According to the method of operating a furnace according to claim 2 of the present invention, the gas flow rate at the furnace top is controlled by operating at least one of the flow rate of the gas blown from the tuyere and the diameter of the furnace. Since control is performed, the invention of claim 1 can be easily implemented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の炉の操業方法を適用した炉の概略構成
図である。
FIG. 1 is a schematic configuration diagram of a furnace to which a method for operating a furnace according to the present invention is applied.

【図2】炉頂部ガスから回収される製品の粒子径とその
割合との関係を示す説明図である。
FIG. 2 is an explanatory diagram showing a relationship between a particle diameter of a product recovered from a furnace top gas and a ratio thereof.

【図3】各粒子径の終末速度の説明図である。FIG. 3 is an explanatory diagram of a terminal velocity of each particle diameter.

【図4】従来法による比較例と本発明の実施例1との亜
鉛含有割合の説明図である。
FIG. 4 is an explanatory diagram of a zinc content ratio of a comparative example according to a conventional method and Example 1 of the present invention.

【図5】本発明の炉頂部ガス流速と回収製品中の亜鉛濃
度との関係を示す説明図である。
FIG. 5 is an explanatory diagram showing a relationship between a furnace top gas flow rate and a zinc concentration in a recovered product according to the present invention.

【符号の説明】[Explanation of symbols]

1は竪型炉 2は固体還元材 3は上段の羽口 4は下段の羽口 5は送風機 6は熱風発生炉 7は原料吹込み装置 8は炉頂装入装置 9は排ガス冷却・清浄装置 1 is a vertical furnace 2 is a solid reducing agent 3 is an upper tuyere 4 is a lower tuyere 5 is a blower 6 is a hot air generator 7 is a raw material injection device 8 is a furnace top charging device 9 is an exhaust gas cooling / cleaning device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内山 武 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 原 義明 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 Fターム(参考) 4K001 AA10 BA02 BA14 BA15 GA01 GB03 GB09 HA01 4K012 CB02 CB04 CB07  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Takeshi Uchiyama 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Pref. Kawasaki Steel Research Institute (72) Inventor Yoshiaki Hara 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba 4K001 AA10 BA02 BA14 BA15 GA01 GB03 GB09 HA01 4K012 CB02 CB04 CB07

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 固体還元材充填層型溶融還元炉に、少な
くとも上下段に二段の羽口を設け、上段の羽口から粉粒
状の装入原料を吹込み、炉頂部のガスを炉外で冷却して
高揮発性金属を分離回収する炉の操業方法であって、前
記炉頂部のガス流速を1.5m/sec.以下とすることを
特徴とする炉の操業方法。
1. A solid reduction material packed bed type smelting reduction furnace having at least two upper and lower tuyeres, wherein a powdery and granular charge material is blown from the upper tuyeres, and the gas at the furnace top is discharged outside the furnace. A method for operating a furnace for separating and recovering highly volatile metals by cooling at a temperature of 1.5 m / sec or less at the furnace top.
【請求項2】 前記炉頂部のガス流速を制御するため
に、羽口からの吹込みガス流量、炉口径の少なくとも何
れか一方を操作することを特徴とする請求項1に記載の
炉の操業方法。
2. The furnace operation according to claim 1, wherein at least one of a flow rate of gas blown from a tuyere and a furnace diameter is operated to control a gas flow rate at the furnace top. Method.
JP36796798A 1998-12-24 1998-12-24 Operation of furnace Pending JP2000192125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36796798A JP2000192125A (en) 1998-12-24 1998-12-24 Operation of furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36796798A JP2000192125A (en) 1998-12-24 1998-12-24 Operation of furnace

Publications (1)

Publication Number Publication Date
JP2000192125A true JP2000192125A (en) 2000-07-11

Family

ID=18490646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36796798A Pending JP2000192125A (en) 1998-12-24 1998-12-24 Operation of furnace

Country Status (1)

Country Link
JP (1) JP2000192125A (en)

Similar Documents

Publication Publication Date Title
JP5541736B2 (en) Method and apparatus for recovering metal from furnace dust
RU2077595C1 (en) Method and apparatus (alternatives) for producing iron and/or alloys thereof from iron oxide materials
US4606760A (en) Method and apparatus for simultaneously separating volatile and non-volatile metals
US5728193A (en) Process for recovering metals from iron oxide bearing masses
JPH08311570A (en) Method of reprocessing dross containing zinc and iron oxide
JP4811812B2 (en) Method for reducing non-ferrous metal components of slag produced during production of non-ferrous metals in a floating blast furnace
SU1225495A3 (en) Method of producing ferromanganese
JP2000192125A (en) Operation of furnace
JP3799872B2 (en) How to set the tuyere
JP2000192128A (en) Operation of furnace
JP2004076090A (en) Apparatus and method for recovering low-melting point valuable sources
JP3510472B2 (en) Melting furnace
JPH01149912A (en) Method for charging exhaust gas dust in smelting reduction furnace
JP3336167B2 (en) Electric furnace dust treatment method
JP2003027152A (en) Method for operating smelting reduction furnace
JP4323570B2 (en) Process for recirculating fine solids discharged from a reaction vessel by carrier gas
JP3336131B2 (en) Method for recovering zinc from zinc-containing dust
JP2000199007A (en) Operation of furnace
KR850001505B1 (en) System for recycling char in iron oxide reducing kilns
JP4006863B2 (en) How to operate the furnace
JP3627768B2 (en) Incineration ash treatment method
JP2001262211A (en) Method for operating furnace
JP2000192126A (en) Operation of furnace
JP2001221418A (en) Furnace for processing waste battery cell
JPH06212298A (en) Treatment of fine raw material in copper smelting