JP2003026442A - Glass substrate for field emission display - Google Patents

Glass substrate for field emission display

Info

Publication number
JP2003026442A
JP2003026442A JP2001213102A JP2001213102A JP2003026442A JP 2003026442 A JP2003026442 A JP 2003026442A JP 2001213102 A JP2001213102 A JP 2001213102A JP 2001213102 A JP2001213102 A JP 2001213102A JP 2003026442 A JP2003026442 A JP 2003026442A
Authority
JP
Japan
Prior art keywords
glass
glass substrate
field emission
emission display
ray absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001213102A
Other languages
Japanese (ja)
Inventor
Ken Choju
研 長壽
Shinkichi Miwa
晋吉 三和
Hiroki Yamazaki
博樹 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2001213102A priority Critical patent/JP2003026442A/en
Publication of JP2003026442A publication Critical patent/JP2003026442A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • C03C3/115Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron
    • C03C3/118Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • C03C3/115Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/087Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for X-rays absorbing glass

Abstract

PROBLEM TO BE SOLVED: To provide a glass substrate for a field emission display less prone to cause coloring of glass by X-rays even when a high voltage is applied and further having high X-ray absorption capacity. SOLUTION: The glass substrate for the field emission display is characterized by practically containing no PbO and having >=125 cm<-1> X-ray absorption coefficient at 1.5 Å wavelength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電界放射型ディスプレ
イ用ガラス基板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass substrate for field emission display.

【0002】[0002]

【従来の技術】電界放射型ディスプレイは、薄型軽量
で、低電力で表示が鮮明であり、画像の微細化が容易で
あるため高品位画像が実現でき、フルカラー化が可能で
あるなど、多くの利点を有するため、今後表示装置とし
て益々普及する傾向にある。
2. Description of the Related Art A field emission display is thin and lightweight, has low power consumption, has a clear display, and can be easily miniaturized to realize a high-quality image. Since it has advantages, it tends to be more and more popular as a display device in the future.

【0003】電界放射型ディスプレイは、透明電極や蛍
光体が形成された前面ガラス基板と、カソード電極、ゲ
ート電極、冷陰極(エミッタ)、絶縁膜等が形成された
背面ガラス基板とを対向させて、周囲をフリットシール
することで作製される。そして、冷陰極から放出される
電子線を蛍光体にあてることで発光させて映像を映し出
す。
In a field emission display, a front glass substrate on which transparent electrodes and phosphors are formed and a rear glass substrate on which cathode electrodes, gate electrodes, cold cathodes (emitters), insulating films, etc. are formed are opposed to each other. It is made by frit sealing the surroundings. Then, an electron beam emitted from the cold cathode is applied to the phosphor to cause it to emit light, thereby displaying an image.

【0004】透明電極、絶縁膜等の様々な膜やエミッタ
は、熱処理やフォトエッチング等によって形成されるた
め、ガラス基板は、種々の熱処理や薬品処理を受ける。
そのため、電界放射型ディスプレイに使用されるガラス
基板には、次の特性が要求される。 (1)フォトエッチング工程において使用される種々の
酸、アルカリ等の薬品によって劣化しないように耐薬品
性が高いこと。 (2)成膜等の熱工程でガラス基板が熱収縮して、パタ
ーンずれを起こさないように、高い歪点を有すること。
Since various films such as transparent electrodes and insulating films and emitters are formed by heat treatment, photoetching, etc., the glass substrate is subjected to various heat treatments and chemical treatments.
Therefore, the glass substrate used for the field emission display is required to have the following characteristics. (1) High chemical resistance so that it is not deteriorated by various acids, alkalis and other chemicals used in the photo-etching process. (2) The glass substrate has a high strain point so that the glass substrate does not shrink due to heat in a thermal process such as film formation to cause a pattern shift.

【0005】従来より、このような特性を満足するフィ
ールドエミッション用の基板ガラスとしては、プラズマ
ディスプレイ用のソーダガラスや高歪点ガラス、また
は、液晶ディスプレイ用の無アルカリガラスが知られて
いる。
Conventionally, as a substrate glass for field emission which satisfies such characteristics, soda glass or high strain point glass for plasma display or alkali-free glass for liquid crystal display is known.

【0006】[0006]

【発明が解決しようとする課題】ところが、電界放射型
ディスプレイは、映像を映し出す際に制動X線がパネル
内部で発生するため、ガラス基板にX線吸収能を有する
必要がある。
However, in the field emission display, since the braking X-rays are generated inside the panel when displaying an image, the glass substrate needs to have an X-ray absorbing ability.

【0007】しかしながら、上記のガラスは何れも電界
放射型ディスプレイ用ガラス基板として開発されたもの
ではないため、X線吸収能についてはそもそも考慮され
ていない。それ故、輝度を上げたり、画面サイズを大き
くする目的で、高電圧を印加した場合、パネル内部で発
生するX線が外に漏れ人体に悪影響を及ぼす虞がある。
また、X線着色を起こす虞もある。
However, since none of the above glasses was developed as a glass substrate for a field emission display, the X-ray absorbing ability is not considered in the first place. Therefore, when a high voltage is applied for the purpose of increasing the brightness and increasing the screen size, X-rays generated inside the panel may leak to the outside and adversely affect the human body.
Further, there is a possibility that X-ray coloring may occur.

【0008】本発明の目的は、高電圧が印加されても、
X線によるガラスの着色が起こりにくく、しかも、X線
吸収能の高い電界放射型ディスプレイ用ガラス基板を提
供する事である。
The object of the present invention is to provide a high voltage,
It is an object of the present invention to provide a glass substrate for a field emission display, which is less likely to be colored by X-rays and has a high X-ray absorption ability.

【0009】[0009]

【課題を解決するための手段】本発明の電界放射型ディ
スプレイ用ガラス基板は、実質的にPbOを含有せず、
1.5Åの波長におけるX線吸収係数が125cm-1
上であることを特徴とする。
The glass substrate for field emission display of the present invention contains substantially no PbO,
The X-ray absorption coefficient at a wavelength of 1.5Å is 125 cm -1 or more.

【0010】[0010]

【作用】本発明の電界放射型ディスプレイ用ガラス基板
は、1.5Åの波長におけるX線吸収係数が125cm
-1以上であるため、高い電圧を使用しても、X線が漏洩
することはない。
The glass substrate for a field emission display of the present invention has an X-ray absorption coefficient of 125 cm at a wavelength of 1.5Å.
Since it is -1 or more, X-rays do not leak even if a high voltage is used.

【0011】ガラスのX線吸収係数を高めるためには、
PbOをガラス中に含有させればよいが、PbO含有ガ
ラスを用いると、映像を映し出す際に発生するX線によ
って、ガラスが着色して、ディスプレイに映し出された
映像が見難くなると言う問題が生じる。本発明のガラス
基板は、PbOを含有しないガラスからなり、X線によ
るガラスの着色を抑制することができる。PbOを含ま
ないガラスにおいて、1.5Åの波長におけるX線吸収
係数が125cm-1以上にするためには、例えば、Sr
O、BaOを合量で5〜50%含有させればよい。5%
以上であれば、125cm-1以上のX線吸収係数を得や
すく、しかも、ガラスの化学的耐久性や耐失透性が向上
する。50%以下であれば、ガラスの溶融性を損なう可
能性がないため好ましい。好ましい範囲は12〜50%
であり、より好ましくは、15〜50%である。
In order to increase the X-ray absorption coefficient of glass,
Although it suffices to contain PbO in the glass, the use of PbO-containing glass causes a problem that the glass is colored by the X-rays generated when the image is displayed and the image displayed on the display becomes difficult to see. . The glass substrate of the present invention is made of glass that does not contain PbO and can suppress coloring of glass by X-rays. In order to obtain an X-ray absorption coefficient of 125 cm −1 or more at a wavelength of 1.5Å in a glass not containing PbO, for example, Sr
O and BaO may be contained in a total amount of 5 to 50%. 5%
If it is above, the X-ray absorption coefficient of 125 cm -1 or more is easily obtained, and further, the chemical durability and the devitrification resistance of the glass are improved. If it is 50% or less, there is no possibility of impairing the meltability of glass, which is preferable. The preferred range is 12-50%
And more preferably 15 to 50%.

【0012】また、本発明のガラス基板は、歪点が50
0℃以上であることが望ましい。歪点が500℃以上で
あれば、電界放射型ディスプレイを製造する熱工程で収
縮は起こらない。
The glass substrate of the present invention has a strain point of 50.
It is preferably 0 ° C or higher. When the strain point is 500 ° C. or higher, shrinkage does not occur in the heat process of manufacturing the field emission display.

【0013】また、X線吸収係数以外にも、先記した要
求特性を満たすガラス組成の具体的範囲を以下に示す。
Besides the X-ray absorption coefficient, the specific range of the glass composition satisfying the above-mentioned required characteristics is shown below.

【0014】その組成範囲は、実質的にPbOを含有せ
ず、質量百分率で、SiO2 40〜80%、Al23
0〜30%、B23 0〜20%、MgO 0〜10
%、CaO 0〜30%、SrO 0〜30%、BaO
0〜30%、Li2O 0〜20%、Na2O 0〜2
0%、K2O 0〜20%、ZnO 0〜10%、Zr
2 0〜10%、CeO2 0〜5%、SrO+BaO
5〜50%である。
The composition range is that PbO is not substantially contained, and the mass percentage is SiO 2 40 to 80%, Al 2 O 3
0~30%, B 2 O 3 0~20 %, MgO 0~10
%, CaO 0-30%, SrO 0-30%, BaO
0~30%, Li 2 O 0~20% , Na 2 O 0~2
0%, K 2 O 0~20% , 0~10% ZnO, Zr
O 2 0-10%, CeO 2 0-5%, SrO + BaO
5 to 50%.

【0015】本発明においてガラスの組成を上記のよう
に限定した理由は、次のとおりである。
The reason why the glass composition is limited as described above in the present invention is as follows.

【0016】SiO2は、ガラスのネットワークフォー
マーとなる成分である。その含有量が40%以上であれ
ば、ガラスの耐熱性や化学的耐久性が向上する。SiO
2が多いとガラスの溶融温度が高くなる傾向にあるが、
含有量が80%以下であれば、ガラスの溶融温度が高く
なりすぎず、溶融しやすい。好ましい範囲は40〜75
%であり、より好ましくは40〜70%である。
SiO 2 is a component that serves as a glass network former. When the content is 40% or more, the heat resistance and chemical durability of the glass are improved. SiO
If the number of 2 is large, the melting temperature of glass tends to increase, but
When the content is 80% or less, the melting temperature of the glass does not become too high and the glass is easily melted. The preferred range is 40-75
%, And more preferably 40 to 70%.

【0017】Al23は、ガラスの歪点を上げ、耐熱性
を高める成分である。Al23が多くなると溶融温度が
高くなる傾向にあるが、その含有量が30%以下であれ
ば、ガラスの溶融が容易である。好ましい範囲は0〜2
0%であり、より好ましくは0〜18%である。
Al 2 O 3 is a component that raises the strain point of glass and enhances heat resistance. If the content of Al 2 O 3 increases, the melting temperature tends to increase, but if the content is 30% or less, the melting of the glass is easy. The preferred range is 0-2
It is 0%, and more preferably 0 to 18%.

【0018】B23は、融剤として作用し、溶融性を改
善する成分である。B23が多くなると歪点が低下して
耐熱性が低下する傾向にあるが、20%以下であれば、
ガラスの歪点を高く保ったまま、溶融温度を低下させる
ことができる。好ましい範囲は0〜18%であり、より
好ましくは0〜15%である。
B 2 O 3 is a component that acts as a flux and improves the meltability. When the content of B 2 O 3 increases, the strain point tends to decrease and the heat resistance tends to decrease, but if it is 20% or less,
The melting temperature can be lowered while keeping the strain point of the glass high. The preferred range is 0 to 18%, more preferably 0 to 15%.

【0019】MgOは、高温粘性を下げ、ガラスの溶融
性を改善する成分である。MgOが多くなるとガラスが
失透したり、化学的耐久性が低下する傾向にあるが、そ
の含有量が10%以下の時、ガラスの失透や化学的耐久
性の低下を起こすことなく、ガラスの溶融性を改善する
ことができる。好ましい範囲は0〜8%であり、より好
ましくは0〜7%である。
MgO is a component that lowers the viscosity at high temperature and improves the meltability of glass. When the content of MgO is large, the glass tends to devitrify or the chemical durability tends to decrease. However, when the content is 10% or less, the glass does not devitrify or the chemical durability decreases and The meltability of the can be improved. The preferred range is 0 to 8%, and more preferred is 0 to 7%.

【0020】CaOは、MgOと同様に、高温粘性を下
げ、ガラスの溶融性を改善する効果がある。CaOが多
くなるとガラスが失透したり、化学的耐久性が低下する
傾向にあるが、その含有量が30%以下の時、ガラスの
失透や化学的耐久性の低下を起こすことなく、ガラスの
溶融性を改善することができる。好ましい範囲は0〜2
5%であり、より好ましくは0〜20%である。
CaO, like MgO, has the effect of lowering the high temperature viscosity and improving the meltability of glass. When the content of CaO is large, the glass tends to devitrify or the chemical durability tends to decrease. However, when the content of CaO is 30% or less, the glass does not devitrify or the chemical durability deteriorates. The meltability of the can be improved. The preferred range is 0-2
It is 5%, more preferably 0 to 20%.

【0021】SrOは、X線吸収係数を高めたり、ガラ
スの化学的耐久性や耐失透性を向上させる成分である。
SrOが多くなると溶融性が悪化しやすくなる傾向にあ
るが、その含有量が30%以下であれば、溶融性を悪化
させることなくX線吸収係数を高めたり、ガラスの化学
的耐久性や耐失透性を向上させることができる。好まし
い範囲は0〜25%であり、より好ましくは2〜25%
である。
SrO is a component that enhances the X-ray absorption coefficient and improves the chemical durability and devitrification resistance of glass.
When the content of SrO increases, the meltability tends to deteriorate, but if the content is 30% or less, the X-ray absorption coefficient can be increased without deteriorating the meltability, and the chemical durability and resistance of glass can be improved. The devitrification can be improved. The preferred range is 0 to 25%, more preferably 2 to 25%.
Is.

【0022】BaOは、SrOと同様に、X線吸収係数
を高めたり、ガラスの化学的耐久性や耐失透性を向上さ
せる成分である。BaOが多くなると溶融性が悪化しや
すくなる傾向にあるが、その含有量が30%以下であれ
ば、溶融性を悪化させることなくX線吸収係数を高めた
り、ガラスの化学的耐久性や耐失透性を向上させること
ができる。好ましい範囲は0〜25%であり、より好ま
しくは2.1〜25%である。
Similar to SrO, BaO is a component that enhances the X-ray absorption coefficient and improves the chemical durability and devitrification resistance of glass. When BaO increases, the meltability tends to deteriorate, but if the content is 30% or less, the X-ray absorption coefficient is increased without deteriorating the meltability, and the chemical durability and resistance of glass are improved. The devitrification can be improved. The preferred range is 0 to 25%, and more preferred is 2.1 to 25%.

【0023】Li2O、Na2O及びK2Oは、ガラスの
粘度を低下させて、溶融性を改善する成分である。これ
らのアルカリ成分が多くなると、X線による着色が生じ
たり、ガラスの歪点が低下して耐熱性が低下する傾向に
あるが、その含有量が各々20%以下であれば、ガラス
の歪点が低下して耐熱性が低下することなく溶融性を改
善することができる。好ましい範囲は各々0〜10%で
ある。また、ガラス中にアルカリ成分を含まなければ、
X線による着色を著しく抑えることができるため、より
好ましくは含有しない方がよい。
Li 2 O, Na 2 O and K 2 O are components that lower the viscosity of the glass and improve the meltability. When the amount of these alkali components is large, coloring due to X-rays tends to occur, or the strain point of the glass tends to decrease, resulting in a decrease in heat resistance. Can be improved and the meltability can be improved without lowering the heat resistance. The preferred range is 0 to 10%. Also, if the glass does not contain an alkaline component,
Since it is possible to remarkably suppress coloring due to X-rays, it is more preferable not to contain it.

【0024】ZnOは、歪点を低下させることなく、高
温粘性を下げ、ガラスの溶融性を改善する成分である。
ZnOが多くなるとガラスが失透しやすくなる傾向にあ
るが、その含有量が10%以下であれば、ガラスが失透
せず、溶融性を改善することができる。好ましい範囲は
0〜8%であり、より好ましくは0〜5%である。
ZnO is a component that lowers the high temperature viscosity and improves the meltability of glass without lowering the strain point.
When ZnO increases, the glass tends to devitrify, but if the content is 10% or less, the glass does not devitrify and the meltability can be improved. The preferable range is 0 to 8%, and more preferably 0 to 5%.

【0025】ZrO2は、ガラスの化学的耐久性を向上
させる成分である。ZrO2が多くなるとガラス中にジ
ルコン等のブツが析出する傾向にあるが、その含有量が
10%以下であれば、ブツを析出させずにガラスの化学
的耐久性を向上させることができる。好ましい範囲は0
〜8%であり、より好ましくは0〜6%である。
ZrO 2 is a component that improves the chemical durability of glass. When the content of ZrO 2 is large, particles such as zircon tend to be deposited in the glass, but if the content is 10% or less, the chemical durability of the glass can be improved without depositing the particles. The preferred range is 0
-8%, more preferably 0-6%.

【0026】CeO2は、X線によるガラスの着色を抑
制する成分である。CeO2が多くなると、透過率が低
下しやすくなるが、5%までの添加であれば問題はな
い。好ましい範囲は0.01〜5%であり、より好まし
くは0.1〜5%である。
CeO 2 is a component that suppresses coloring of glass by X-rays. If the CeO 2 content is large, the transmittance tends to decrease, but there is no problem if it is added up to 5%. The preferable range is 0.01 to 5%, and more preferably 0.1 to 5%.

【0027】PbOがガラス中に含まれていると、パネ
ル内部で発生するX線によってガラスが著しく着色する
ため、導入すべきではない。
If PbO is contained in the glass, it should not be incorporated because the glass is markedly colored by X-rays generated inside the panel.

【0028】また、本発明においては、上記の成分以外
にも、特性を損なわない範囲で他の成分を添加させるこ
とも可能であり、例えば清澄剤として、As23、Sb
23、SnO2、F2、Cl2、SO3等を各々3%まで、
ガラスの化学的耐久性を向上させるために、Nb23
23、La23を各々5%まで、ガラスの耐失透性を
高めるために、P25を5%まで添加することが可能で
ある。
Further, in the present invention, in addition to the above-mentioned components, other components may be added within a range not impairing the characteristics. For example, As 2 O 3 and Sb may be used as a fining agent.
2 O 3 , SnO 2 , F 2 , Cl 2 , SO 3 etc. up to 3% each,
In order to improve the chemical durability of glass, Nb 2 O 3 ,
It is possible to add Y 2 O 3 and La 2 O 3 up to 5% and P 2 O 5 up to 5% in order to enhance the devitrification resistance of the glass.

【0029】尚、本発明のガラス基板は、板ガラスの成
形方法として知られているフロート法、オーバーフロー
法、ロールアウト法等の方法を用いることで、安く大量
に製造することができる。
The glass substrate of the present invention can be mass-produced inexpensively by using a method such as a float method, an overflow method, or a roll-out method, which is known as a method for forming sheet glass.

【0030】[0030]

【実施例】以下、本発明を実施例に基づいて説明する。EXAMPLES The present invention will be described below based on examples.

【0031】本発明の実施例(試料No.1〜16)と
比較例(試料No.17〜19)を表1〜5に示す。
Tables 1 to 5 show examples (Sample Nos. 1 to 16) of the present invention and comparative examples (Samples No. 17 to 19).

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】[0036]

【表5】 [Table 5]

【0037】表中の各試料は、次のようにして作製し
た。
Each sample in the table was prepared as follows.

【0038】まず、表の組成となるようにガラス原料を
調合し、白金ポットを用いて1450〜1600℃で4
〜24時間溶融した。その後、溶融ガラスをカーボン板
の上に流し出して板状に成形し、徐冷後、板厚が2mm
になるように両面研磨して、得られた板ガラスを200
mm角の大きさに切断加工することでガラス試料を作製
した。
First, glass raw materials were prepared so as to have the composition shown in the table, and the mixture was heated at 1450 to 1600 ° C. for 4 hours using a platinum pot.
Melted ~ 24 hours. After that, the molten glass is poured onto a carbon plate to form a plate, and after gradually cooling, the plate thickness is 2 mm.
Both sides are polished so that
A glass sample was prepared by cutting into a size of mm square.

【0039】このようにして作製した各試料について、
X線吸収係数、X線着色量、耐HCl性、耐バッファー
ドフッ酸性、熱膨張係数、密度及び歪点について評価し
た。結果を表に示す。
For each of the samples thus produced,
The X-ray absorption coefficient, X-ray coloring amount, HCl resistance, buffered hydrofluoric acid resistance, thermal expansion coefficient, density and strain point were evaluated. The results are shown in the table.

【0040】X線吸収係数は、ガラス組成と密度に基づ
いて、1.5Åの波長に対する吸収係数を計算して求め
たものである。
The X-ray absorption coefficient is obtained by calculating the absorption coefficient for a wavelength of 1.5Å based on the glass composition and the density.

【0041】X線着色量については、各試料を肉厚が2
mmとなるように両面を光学研磨した後、波長400n
mにおける可視光透過率を測定した。次いで、この試料
に30kv、15mAのRh管から発生させたX線を1
5分間照射した。その後、再度400nmにおける可視
光透過率を測定し、X線照射前後の透過率差(ΔT%)
を求め、これをX線着色量とした。このX線着色量が大
きい程、電界放射型ディスプレイの輝度が劣化しやすく
なる。
Regarding the amount of X-ray coloring, the thickness of each sample was 2
After optically polishing both sides to a wavelength of 400 mm
The visible light transmittance at m was measured. Then, 1 X-ray generated from a Rh tube of 30 kv and 15 mA was applied to this sample.
Irradiate for 5 minutes. After that, the visible light transmittance at 400 nm was measured again, and the transmittance difference (ΔT%) before and after the X-ray irradiation was measured.
Was determined as the X-ray coloring amount. The larger the X-ray coloring amount, the more easily the brightness of the field emission display deteriorates.

【0042】耐HCl性は、各試料を80℃に保持され
た10質量%塩酸水溶液に3時間浸漬した後、それらの
表面状態を目視で観察することによって評価した。ま
た、耐バッファードフッ酸性は、各試料を20℃に保持
された38.7質量%弗化アンモニウム、1.6質量%
フッ酸からなるバッファードフッ酸に10分間浸漬した
後、それらの表面状態を目視で観察することによって評
価した。ガラス基板の表面に全く変化のないものは○、
変色したものは×で示した。
The HCl resistance was evaluated by immersing each sample in a 10% by mass aqueous hydrochloric acid solution kept at 80 ° C. for 3 hours and then visually observing the surface conditions of the samples. The buffered hydrofluoric acid resistance was 38.7% by mass of ammonium fluoride, 1.6% by mass of which each sample was kept at 20 ° C.
After immersing in buffered hydrofluoric acid consisting of hydrofluoric acid for 10 minutes, the surface condition of these was visually observed and evaluated. ○ If the surface of the glass substrate does not change at all
The discolored one is indicated by x.

【0043】熱膨張係数は、ディラトメーターを用い
て、30〜380℃における平均熱膨張係数を測定した
ものである。
The coefficient of thermal expansion is a value obtained by measuring the average coefficient of thermal expansion at 30 to 380 ° C. using a dilatometer.

【0044】密度については、周知のアルキメデス法に
よって測定した。
The density was measured by the well-known Archimedes method.

【0045】歪点は、ASTM C336−71の方法
に基づいて測定し、この値が高いほど、耐熱性が良いこ
とを示す。
The strain point is measured according to the method of ASTM C336-71. The higher the value, the better the heat resistance.

【0046】表から明らかなように、実施例である試料
No.1〜No.16の各試料は、SrOとBaOの含
有量が5%以上であるため、X線吸収係数は125cm
-1以上と高く、また、PbOを含有していないため、X
線着色量も29%以下であった。特に、CeO2を含有
しているか、アルカリ成分を含有していないNo.1〜
12、15及び16の試料はX線着色量が27%以下と
低かった。更に、耐HCl性、耐バッファードフッ酸性
も良く、歪点も650℃以上と高く、耐熱性も問題なか
った。
As is apparent from the table, the sample No. 1-No. In each of the 16 samples, the content of SrO and BaO is 5% or more, so the X-ray absorption coefficient is 125 cm.
-1 or higher, and because it does not contain PbO, X
The amount of line coloring was also 29% or less. In particular, No. 1 containing no CeO 2 or containing no alkaline component. 1 to
The samples of Nos. 12, 15 and 16 had a low X-ray coloring amount of 27% or less. Furthermore, the HCl resistance and the buffered hydrofluoric acid resistance were good, the strain point was as high as 650 ° C. or higher, and there was no problem in heat resistance.

【0047】これに対し、比較例である試料No.17
及び18は、SrOとBaOの合量が5%より低いた
め、X線吸収係数が57cm-1以下と低かった。また、
試料No.19は、PbOを含有しているため、X線の
照射によりガラスが著しく着色した。
On the other hand, the sample No. which is a comparative example. 17
In Nos. 18 and 18, since the total amount of SrO and BaO was lower than 5%, the X-ray absorption coefficient was low at 57 cm -1 or less. Also,
Sample No. Since No. 19 contained PbO, the glass was markedly colored by X-ray irradiation.

【0048】[0048]

【発明の効果】以上のように、本発明の電界放射型ディ
スプレイ用ガラス基板は、X線吸収係数が高く、X線に
よる着色も小さいため、電解放射型ディスプレイに使用
されるガラス基板として好適である。
INDUSTRIAL APPLICABILITY As described above, the glass substrate for field emission display of the present invention has a high X-ray absorption coefficient and is less colored by X-rays, and is therefore suitable as a glass substrate used in the field emission display. is there.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C03C 3/089 C03C 3/089 3/091 3/091 3/093 3/093 3/095 3/095 H01J 29/86 H01J 29/86 Z 31/12 31/12 C Fターム(参考) 4G062 AA01 BB01 DA05 DA06 DB01 DB02 DB03 DB04 DC01 DC02 DC03 DC04 DD01 DD02 DD03 DE01 DE02 DE03 DF01 EA01 EA02 EA03 EA04 EA10 EB01 EB02 EB03 EB04 EC01 EC02 EC03 EC04 ED01 ED02 ED03 EE01 EE02 EE03 EE04 EF01 EF02 EF03 EF04 EG01 EG02 EG03 EG04 FA01 FA10 FB01 FC01 FC02 FC03 FD01 FE01 FE02 FE03 FF01 FG01 FG02 FG03 FH01 FJ01 FJ02 FJ03 FK01 FK02 FK03 FL01 FL02 FL03 GA01 GA10 GB01 GB02 GB03 GC01 GD01 GE01 GE02 GE03 HH01 HH03 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ04 JJ05 JJ06 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM27 NN14 5C032 AA01 BB20 5C036 EE19 EF01 EF06 EF09 EG02 EH11 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) C03C 3/089 C03C 3/089 3/091 3/091 3/093 3/093 3/095 3/095 H01J 29/86 H01J 29/86 Z 31/12 31/12 CF term (reference) 4G062 AA01 BB01 DA05 DA06 DB01 DB02 DB03 DB04 DC01 DC02 DC03 DC04 DD01 DD02 DD03 DE01 DE02 DE03 DF01 EA01 EA02 EA03 EA04 EA10 EB01 EB02 EB03 EB04 EC01 EC02 EC02 EC01 EC02 ED01 ED02 ED03 EE01 EE02 EE03 EE04 EF01 EF02 EF03 EF04 EG01 EG02 EG03 EG04 FA01 FA10 FB01 FC01 FC02 FC03 FD01 FE01 FE02 FE03 FF01 FG01 GB01 FR01 FF01 F01 F01 F01 F01 F01 F01 F02 F01 F02 F01 F02 F01 F02 F01 F01 F02 F01 F01 F02 F01 F01 F02 F01 F02 F01 F01 F01 F02 F01 F02 F01 F01 F01 F02 F01 F01 F01 F02 F01 F01 F01 F02 F01 F01 F01 F02 F01 F01 F02 F01 F02 F01 F01 F01 F01 F01 F01 F02 F01 F01 F01 F01 F01 F01 F01 F02 F01 F01 F01 F01 F01 F02 F01 F01 F01 F01 F01 F02 F01 F01 F01 F01 F01 F01 F01 F01 F02 F01 F01 F01 F02 F01 F01 F01 F02 F01 F01 F01 HH03 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ04 JJ05 JJ06 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM27 NN14 5C032 AA01 BB20 5C036 EE19 EF01 EF06 EF09 EG02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 実質的にPbOを含有せず、1.5Åの
波長におけるX線吸収係数が125cm-1以上であるこ
とを特徴とする電界放射型ディスプレイ用ガラス基板。
1. A glass substrate for a field emission display, which is substantially free of PbO and has an X-ray absorption coefficient at a wavelength of 1.5 liters of 125 cm −1 or more.
【請求項2】 歪点が500℃以上であることを特徴と
する請求項1記載の電界放射型ディスプレイ用ガラス基
板。
2. The glass substrate for a field emission display according to claim 1, wherein the strain point is 500 ° C. or higher.
【請求項3】 SrO+BaO 5〜50%であること
を特徴とする請求項1記載の電界放射型ディスプレイ用
ガラス基板。
3. The glass substrate for a field emission display according to claim 1, wherein SrO + BaO is 5 to 50%.
【請求項4】 実質的にPbOを含有せず、質量百分率
で、SiO2 40〜80%、Al23 0〜30%、
23 0〜20%、MgO 0〜10%、CaO 0
〜30%、SrO 0〜30%、BaO 0〜30%、
Li2O 0〜20%、Na2O 0〜20%、K2
0〜20%、ZnO 0〜10%、ZrO2 0〜10
%、CeO2 0〜5%、SrO+BaO 5〜50%
であることを特徴とする請求項1〜3のいずれかに記載
の電界放射型ディスプレイ用ガラス基板。
4. PbO is not substantially contained, and by mass percentage, SiO 2 40 to 80%, Al 2 O 3 0 to 30%,
B 2 O 3 0-20%, MgO 0-10%, CaO 0
-30%, SrO 0-30%, BaO 0-30%,
Li 2 O 0-20%, Na 2 O 0-20%, K 2 O
0-20%, ZnO 0-10%, ZrO 2 0-10
%, CeO 2 0-5%, SrO + BaO 5-50%
The glass substrate for a field emission display according to any one of claims 1 to 3, wherein
【請求項5】 実質的にアルカリ成分を含有しないこと
を特徴とする請求項1〜4のいずれかに記載の電界放射
型ディスプレイ用ガラス基板。
5. The glass substrate for a field emission display according to claim 1, which does not substantially contain an alkali component.
【請求項6】 質量百分率で、CeO2を0.01〜5
%含有することを特徴とする請求項1〜5のいずれかに
記載の電界放射型ディスプレイ用ガラス基板。
6. A CeO 2 content of 0.01 to 5 in terms of mass percentage.
% Of the glass substrate for a field emission display according to any one of claims 1 to 5.
JP2001213102A 2001-07-13 2001-07-13 Glass substrate for field emission display Withdrawn JP2003026442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001213102A JP2003026442A (en) 2001-07-13 2001-07-13 Glass substrate for field emission display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001213102A JP2003026442A (en) 2001-07-13 2001-07-13 Glass substrate for field emission display

Publications (1)

Publication Number Publication Date
JP2003026442A true JP2003026442A (en) 2003-01-29

Family

ID=19048143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001213102A Withdrawn JP2003026442A (en) 2001-07-13 2001-07-13 Glass substrate for field emission display

Country Status (1)

Country Link
JP (1) JP2003026442A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003112942A (en) * 2001-10-03 2003-04-18 Nippon Electric Glass Co Ltd Glass substrate for field emission type display
JP2005089259A (en) * 2003-09-18 2005-04-07 Nippon Electric Glass Co Ltd Glass substrate
WO2007020824A1 (en) * 2005-08-15 2007-02-22 Nippon Sheet Glass Company, Limited Glass composition and process for producing glass composition
WO2007020825A1 (en) * 2005-08-15 2007-02-22 Nippon Sheet Glass Company, Limited Glass composition
JPWO2006064878A1 (en) * 2004-12-16 2008-06-12 日本板硝子株式会社 Glass composition and method for producing the same
JP2011162379A (en) * 2010-02-08 2011-08-25 Asahi Glass Co Ltd High transmission glass plate and method for producing the same
JP2012254933A (en) * 2012-09-18 2012-12-27 Nippon Electric Glass Co Ltd Glass substrate for thin film compound solar cell, and method for manufacturing the same
JP2013032280A (en) * 2003-02-19 2013-02-14 Nippon Electric Glass Co Ltd Cover glass for semiconductor package
WO2017057446A1 (en) * 2015-10-02 2017-04-06 旭硝子株式会社 Glass substrate, laminated substrate, and laminate
JP2019131457A (en) * 2018-02-01 2019-08-08 ショット アクチエンゲゼルシャフトSchott AG Radiopaque glass and use thereof
US11136260B2 (en) 2016-07-29 2021-10-05 Schott Ag Radiopaque glass and use thereof
CN114380496A (en) * 2021-12-31 2022-04-22 河北光兴半导体技术有限公司 Glass composition, alkaline lithium aluminosilicate glass and application thereof

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003112942A (en) * 2001-10-03 2003-04-18 Nippon Electric Glass Co Ltd Glass substrate for field emission type display
JP2013032280A (en) * 2003-02-19 2013-02-14 Nippon Electric Glass Co Ltd Cover glass for semiconductor package
JP2005089259A (en) * 2003-09-18 2005-04-07 Nippon Electric Glass Co Ltd Glass substrate
JPWO2006064878A1 (en) * 2004-12-16 2008-06-12 日本板硝子株式会社 Glass composition and method for producing the same
US8399370B2 (en) 2005-08-15 2013-03-19 Avanstrate Inc. Glass composition
DE112006002185B9 (en) * 2005-08-15 2017-06-29 Avanstrate Inc. Glass composition and method of making a glass composition
US7786035B2 (en) 2005-08-15 2010-08-31 Avanstrate Inc. Glass composition and process for producing glass composition
US7960301B2 (en) 2005-08-15 2011-06-14 Avanstrate Inc. Glass composition
US8129299B2 (en) 2005-08-15 2012-03-06 Avanstrate Inc. Glass composition and process for producing glass composition
JPWO2007020824A1 (en) * 2005-08-15 2009-02-26 Nhテクノグラス株式会社 Glass composition and method for producing glass composition
WO2007020825A1 (en) * 2005-08-15 2007-02-22 Nippon Sheet Glass Company, Limited Glass composition
WO2007020824A1 (en) * 2005-08-15 2007-02-22 Nippon Sheet Glass Company, Limited Glass composition and process for producing glass composition
TWI400209B (en) * 2005-08-15 2013-07-01 Avanstrate Inc Glass composition
DE112006002184B4 (en) * 2005-08-15 2017-02-23 Avanstrate Inc. glass composition
DE112006002185B4 (en) * 2005-08-15 2017-03-23 Avanstrate Inc. Glass composition and method of making a glass composition
DE112006004277B4 (en) * 2005-08-15 2019-05-23 Avanstrate Inc. glass composition
JP2011162379A (en) * 2010-02-08 2011-08-25 Asahi Glass Co Ltd High transmission glass plate and method for producing the same
JP2012254933A (en) * 2012-09-18 2012-12-27 Nippon Electric Glass Co Ltd Glass substrate for thin film compound solar cell, and method for manufacturing the same
JPWO2017057446A1 (en) * 2015-10-02 2018-07-19 旭硝子株式会社 Glass substrate, laminated substrate, and laminated body
WO2017057446A1 (en) * 2015-10-02 2017-04-06 旭硝子株式会社 Glass substrate, laminated substrate, and laminate
US11180407B2 (en) 2015-10-02 2021-11-23 AGC Inc. Glass substrate, laminated substrate, and laminate
US11753330B2 (en) 2015-10-02 2023-09-12 AGC Inc. Glass substrate, laminated substrate, and laminate
US11136260B2 (en) 2016-07-29 2021-10-05 Schott Ag Radiopaque glass and use thereof
JP2019131457A (en) * 2018-02-01 2019-08-08 ショット アクチエンゲゼルシャフトSchott AG Radiopaque glass and use thereof
CN114380496A (en) * 2021-12-31 2022-04-22 河北光兴半导体技术有限公司 Glass composition, alkaline lithium aluminosilicate glass and application thereof
CN114380496B (en) * 2021-12-31 2023-10-24 河北光兴半导体技术有限公司 Glass composition, alkaline lithium aluminosilicate glass and application thereof

Similar Documents

Publication Publication Date Title
US6162750A (en) Substrate glass and plasma display made by using the same
US5854153A (en) Glasses for display panels
US5459109A (en) Substrate glasses for plasma displays
JPH1129339A (en) Aluminosilicate glass for instrument having flat display
JP2008515758A (en) Glass substrate for display panel
JP2002293571A (en) Glass for illumination
JP2008542189A (en) Low infrared transmittance glass substrate for display panels
JP2003026442A (en) Glass substrate for field emission display
JP2002137935A (en) Glass for fluorescent lamp, glass tube for fluorescent lamp and fluorescent lamp
JP2004002062A (en) Glass substrate for flat panel display unit
JP4045662B2 (en) Heat resistant glass composition and plasma display panel using the same
JP2002053340A (en) Glass substrate of inorganic el display
EP0853070A1 (en) Substrate glass and plasma display made by using the same
JP2001139342A (en) Plasma display device and front glass substrate for the same
JPH08290939A (en) Glass for substrate
JP2002343276A (en) Glass substrate for field emission display
JP2003054985A (en) Glass substrate for field emission display
JPH11310432A (en) Glass composition for substrate board
JPH07101748A (en) Substrate for glass-made panel
JP2003112942A (en) Glass substrate for field emission type display
JPH11310431A (en) Glass composition for substrate board
EP0850891B1 (en) Substrate glass and plasma display made by using the same
JPH11310429A (en) Glass composition for substrate board
JP2012012291A (en) Glass plate for field emission device
JP2003137596A (en) Panel glass for cathode-ray tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080701

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Effective date: 20100107

Free format text: JAPANESE INTERMEDIATE CODE: A761