JP2003025075A - Friction press-joining method for cast iron and joined part - Google Patents

Friction press-joining method for cast iron and joined part

Info

Publication number
JP2003025075A
JP2003025075A JP2002064801A JP2002064801A JP2003025075A JP 2003025075 A JP2003025075 A JP 2003025075A JP 2002064801 A JP2002064801 A JP 2002064801A JP 2002064801 A JP2002064801 A JP 2002064801A JP 2003025075 A JP2003025075 A JP 2003025075A
Authority
JP
Japan
Prior art keywords
cast iron
friction
pressure
joined
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002064801A
Other languages
Japanese (ja)
Inventor
Takeshi Uchimura
毅 内村
Koichi Akiyama
耕一 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002064801A priority Critical patent/JP2003025075A/en
Publication of JP2003025075A publication Critical patent/JP2003025075A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Exhaust Silencers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a friction press-joining method for cast iron with which an oxide film is not entrapped in the joined surface and joining strength is not lowered and to provide a joined part which is joined with such the friction press-welding method, provided with a sound joined part and having excellent joining strength. SOLUTION: When the friction press-joining is applied to two members at least one of which is composed of the cast iron, a friction process is started by forming the surface roughness on the pressure-contacting surface to be <=10 Ra and, after raising the joining interface temperature to >=800 deg.C and a temperature lower than the fuse-starting temperature, an upset pressure is applied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鋳鉄からなる部材
同士、あるいは鋳鉄部材と他の金属部材とを接合するの
に用いられる鋳鉄の摩擦圧接方法および当該摩擦圧接方
法によって接合された接合部品に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a friction welding method for cast iron used for joining members made of cast iron or for joining a cast iron member and another metal member, and a joined part joined by the friction welding method. It is a thing.

【0002】[0002]

【発明が解決しようとする課題】摩擦圧接は、接合対象
部材を互いに突き合わせた状態で、当該部材に相対的な
回転運動を与え、突き合せ面に発生する摩擦熱を利用し
て接合面を加熱し、加圧することにより接合する方法で
あって、同種材の接合はもとより、異種材の接合にも適
用できる利点がある。
In friction welding, members to be joined are abutted against each other, and the members are subjected to relative rotational movement, and the frictional heat generated at the abutting faces is used to heat the joined faces. However, it is a method of joining by applying pressure, and has an advantage that it can be applied not only to joining of similar materials but also to joining of different materials.

【0003】このような摩擦圧接を利用した鋳鉄の接合
方法としては、例えば特公昭49−4150号公報に記
載されたものが知られており、図6に示すように、鋳鉄
部材の接合界面の温度を溶融開始温度、例えば球状黒鉛
鋳鉄の場合には約1140℃以上まで昇温させ、溶融相
が安定した状態でアプセット圧を負荷することによっ
て、溶融相を接合界面から排出するようにしている。
As a method of joining cast irons using such friction welding, for example, the one described in Japanese Patent Publication No. 49-4150 is known, and as shown in FIG. The temperature is raised to the melting start temperature, for example, about 1140 ° C. or higher in the case of spheroidal graphite cast iron, and the upset pressure is applied while the molten phase is stable, so that the molten phase is discharged from the joint interface. .

【0004】しかしながら、上記のような従来の摩擦圧
接方法にあっては、摩擦工程において接合界面が溶融し
た状態で被接合部材が高速回転することから、高速回転
中に溶融相が酸化すると共に、酸化膜の接合面への巻き
込みが発生することがあった。そして、アプセット工程
においてこの酸化膜が完全に排出できない場合には、接
合面の金属結合ができず、内部切り欠き欠陥となって、
接合強度が大幅に低下することになるという問題点があ
った。
However, in the conventional friction welding method as described above, since the members to be welded rotate at a high speed in the friction process in the state where the bonding interface is melted, the molten phase is oxidized during the high speed rotation, and Occlusion of the oxide film on the bonding surface sometimes occurred. If this oxide film cannot be completely discharged in the upset process, metal bonding at the joint surface cannot be performed, resulting in an internal notch defect,
There is a problem that the bonding strength is significantly reduced.

【0005】図7は、球状黒鉛鋳鉄FCD400(JI
S G 5502参照)同士を上記の摩擦圧接方法によ
って接合した場合に、接合面に生じた酸化膜の一例を示
す顕微鏡組織写真であって、鋳鉄の酸化膜がスラグ状に
なって接合面に残留している様子がわかる。そして、こ
のような酸化膜の存在によって、球状黒鉛鋳鉄など、黒
鉛を含む鋳鉄にあっては、冷却過程での黒鉛の再析出が
これらの母材と酸化膜の不連続面に集中し、強度低下の
一因となるという問題点もあり、これら問題点の解消が
鋳鉄の摩擦圧接における従来の課題となっていた。
FIG. 7 shows spheroidal graphite cast iron FCD400 (JI
S G 5502) is a microstructure photograph showing an example of an oxide film produced on the joint surface when the two are joined by the above friction welding method, and the oxide film of cast iron becomes slag-like and remains on the joint surface. You can see how they are doing. Due to the presence of such an oxide film, in cast iron containing graphite such as spheroidal graphite cast iron, reprecipitation of graphite during the cooling process is concentrated on the discontinuous surface of these base metal and oxide film, There is also a problem that it is one of the causes of the decrease, and elimination of these problems has been a conventional problem in friction welding of cast iron.

【0006】[0006]

【発明の目的】本発明は、従来の鋳鉄の摩擦圧接におけ
る上記課題に鑑みてなされたものであって、酸化膜の接
合面への巻き込みが発生せず、接合強度の低下を引き起
こすことのない摩擦圧接方法と、このような摩擦圧接方
法によって接合され、健全な接合部を備え接合強度に優
れた接合部品を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems in conventional friction welding of cast iron, and does not cause the oxide film to be entrained in the joint surface, thereby not lowering the joint strength. It is an object of the present invention to provide a friction welding method and a joining component which is joined by such a friction welding method and has a sound joining portion and is excellent in joining strength.

【0007】[0007]

【課題を解決するための手段】本発明に係わる鋳鉄の摩
擦圧接方法は、少なくとも一方が鋳鉄からなる2つの部
材を摩擦圧接するに際し、圧接面の表面粗さをRa10
以下として摩擦工程を開始し、両部材の接合界面温度を
800℃以上、かつ溶融開始温度よりも低い温度に昇温
させたのち、アプセット圧を加える構成としたことを特
徴としており、鋳鉄の摩擦圧接方法におけるこのような
構成を前述した従来の課題を解決するための手段として
いる。
In the friction welding method for cast iron according to the present invention, when two members, at least one of which is made of cast iron, are friction-welded, the surface roughness of the contact surface is Ra10.
The friction step of the cast iron is characterized in that the friction step is started as follows, the joining interface temperature of both members is raised to 800 ° C. or higher and lower than the melting start temperature, and then the upset pressure is applied. Such a structure in the pressure welding method is used as a means for solving the above-mentioned conventional problems.

【0008】本発明に係わる接合部品は、上記摩擦圧接
方法により接合されているものであり、鋳鉄のCE値
(炭素等量)が3.8〜4.4%である構成としたこと
を特徴としており、その好適形態としては、上記鋳鉄が
さらに0.1〜1.0%のMoを含有しており、さらに
は当該摩擦圧接による接合部品が内燃機関用の排気マニ
ホールドと触媒容器の一体接合体であることを特徴とし
ている。
The joint part according to the present invention is joined by the friction welding method described above, and is characterized in that the CE value (carbon equivalent) of cast iron is 3.8 to 4.4%. As a preferred form thereof, the cast iron further contains 0.1 to 1.0% of Mo, and the joining part by friction welding is integrally joined to the exhaust manifold for an internal combustion engine and the catalyst container. Characterized by being a body.

【0009】なお、本発明における炭素等量、CE値
は、次式によって算出されるものを意味する。また、各
成分の百分率値は、質量比に基づくものである。 CE値(炭素等量)=C%+(1/3)Si%
The carbon equivalent and the CE value in the present invention mean those calculated by the following equations. Moreover, the percentage value of each component is based on the mass ratio. CE value (carbon equivalent) = C% + (1/3) Si%

【0010】[0010]

【発明の実施の形態】図1は、本発明に係わる鋳鉄の摩
擦圧接方法の工程パターンを示すグラフであって、当該
図1に示すように、当該摩擦圧接方法は、少なくともど
ちらか一方が鋳鉄からなる両部材の接合面を互いに突き
合わせた状態で、一方の部材に回転を与え、所定の回転
数に達したのち、部材間に加圧力を加え、摩擦力によっ
て接合界面の温度を800℃以上、かつ前記鋳鉄の溶融
開始温度よりも低い所定の温度まで加熱する摩擦工程
と、両部材の接合界面温度が所定の温度まで上昇した
後、回転速度を減速、あるいは停止して、所定のアプセ
ット圧を負荷して両部材を接合するアプセット工程から
なる。
1 is a graph showing a process pattern of a friction welding method for cast iron according to the present invention. As shown in FIG. 1, at least one of the friction welding methods is cast iron. With the joining surfaces of the two members made of abutting against each other, one member is rotated, and after reaching a predetermined number of rotations, pressure is applied between the members and the temperature of the joining interface is 800 ° C or more due to frictional force. , And a friction step of heating to a predetermined temperature lower than the melting start temperature of the cast iron, and after the joint interface temperature of both members has risen to a predetermined temperature, the rotation speed is reduced or stopped to a predetermined upset pressure. Is applied to join the two members together.

【0011】摩擦工程においては、接合面の温度上昇に
伴って、接合界面に存在した不純物は、高温となった接
合面近傍の塑性流動の結果、バリとして接合界面から排
出され清浄な金属面同士が接触するようになる。このと
き、界面温度が金属結合するのに十分に軟化する温度で
あるためには800℃以上の高温になっていることが必
要である。また、酸化物が生成してこれが接合界面に巻
き込まれないようにするためには、界面温度を被接合部
材である鋳鉄の融点(例えば、球状黒鉛鋳鉄FCD40
0の場合には、約1140℃)よりも低くして、酸化物
を生成させなくすることが必要である。
In the friction process, as the temperature of the joint surface rises, impurities existing at the joint interface are discharged as burrs from the joint interface as a result of plastic flow in the vicinity of the joint surface, which has become high temperature, and clean metal surfaces. Come into contact. At this time, it is necessary that the interface temperature is a high temperature of 800 ° C. or higher in order to soften the interface sufficiently to cause metal bonding. Further, in order to prevent oxides from being generated and being caught in the bonding interface, the interface temperature is set to the melting point of the cast iron that is the member to be bonded (for example, spheroidal graphite cast iron FCD40).
In the case of 0, it is necessary to lower the temperature to about 1140 ° C.) so that no oxide is formed.

【0012】この温度状態(800℃以上、鋳鉄の融点
未満)において、両部材間に所定のアプセット圧を負荷
することにより、界面が金属結合に必要な原子間距離ま
で十分に接近すると同時に、さらなる塑性流動によって
接合界面の不純物がバリとして接合面外に完全に排出さ
れることになる。
In this temperature state (800 ° C. or higher, lower than the melting point of cast iron), by applying a predetermined upset pressure between both members, the interface is sufficiently close to the interatomic distance required for metal bonding, and at the same time, further Due to the plastic flow, impurities on the joint interface are completely discharged as burrs to the outside of the joint surface.

【0013】しかし、少なくとも圧接面の一方が黒鉛
や、その他の分散相を含む鋳鉄の場合には、分散相の形
状や分散状態に影響しない程度の圧力(分散相を含まな
い鋼材同士の場合の約1/2以下)で圧接せざるを得な
い。このため、融点以下の温度であっても、圧接面の初
期表面粗さが粗い場合には、昇温過程で圧接面の凹部に
圧接しきれない隙間が残り、そこに空気が入り込むこと
によって、この凹部で高温酸化が進行し、酸化膜が部分
的に残留して接合強度を低下させることがある。したが
って、初期表面粗さ、すなわち摩擦工程開始時における
圧接面の表面粗さは、Ra10以下とすることが必要で
ある。
However, in the case where at least one of the pressure contact surfaces is graphite or cast iron containing other dispersed phase, a pressure not affecting the shape or dispersed state of the dispersed phase (in the case of steel materials containing no dispersed phase, There is no choice but to press it at about 1/2 or less). Therefore, even if the temperature is not higher than the melting point, when the initial surface roughness of the pressure contact surface is rough, a gap that cannot be pressure contacted remains in the concave portion of the pressure contact surface during the temperature rising process, and by the air entering there, High-temperature oxidation may proceed in the recesses, and the oxide film may partially remain to reduce the bonding strength. Therefore, the initial surface roughness, that is, the surface roughness of the pressure contact surface at the start of the rubbing process needs to be Ra10 or less.

【0014】このときのアプセット圧としては、一般に
は、20〜70MPaの範囲とすることが望ましく、接
合面が健全なものとなって、接合強度が向上する。すな
わち、アプセット圧が20MPaに満たない場合は、塑
性流動が十分に行われなくなり、ミクロギャップの存在
によって接合強度が低下する傾向がある。
The upset pressure at this time is generally desired to be in the range of 20 to 70 MPa so that the joint surface becomes sound and the joint strength is improved. That is, when the upset pressure is less than 20 MPa, the plastic flow is not sufficiently performed, and the presence of the micro gap tends to reduce the bonding strength.

【0015】一方、アプセット圧が70MPaを超えた
場合、Moを含有しない鋳鉄においては、引張強度が低
下する傾向が認められる。これは、球状化黒鉛鋳鉄で
は、接合面の近傍における黒鉛が変形して球状化率が悪
化することによるものと考えられるが、一般の鋳鉄でも
ランダムに分散していた分散相(例えば、フレーク状の
黒鉛など)が接合面方向等の特定な方向に配向し易くな
るため、同様に強度低下が生じるものと考えられる。
On the other hand, when the upset pressure exceeds 70 MPa, the cast iron containing no Mo tends to have a lower tensile strength. This is considered to be because in the spheroidized graphite cast iron, the graphite in the vicinity of the joint surface is deformed and the spheroidization rate is deteriorated, but even in general cast iron, the dispersed phase (for example, flake-like It is considered that the strength is similarly reduced because the graphite) is easily oriented in a specific direction such as the bonding surface direction.

【0016】しかし、鋳鉄中にMoを添加することによ
って、アプセット圧を80MPaまで、さらに高めた場
合でも、引張強度の低下を防止することができる。これ
は、上記のような分散相の形状や分散状態の変化がMo
の添加によって阻止されているものと考えられる。ただ
し、このようなMoの効果は、その添加量が0.1%未
満の場合には認められず、後述するCE値が4.4%以
下のときに、Moを1%を超えて添加した場合には、鋳
鉄の種類に拘わらず炭化物が生成し易くなり、白銑化
(いわゆるチル化傾向)が生じて、加工性と靭性の悪化
を招くことがあるので、Moを添加する場合には、その
範囲を0.1〜1.0%の範囲内とすることが望まし
い。
However, by adding Mo to cast iron, the tensile strength can be prevented from lowering even when the upset pressure is further increased to 80 MPa. This is because the change in the shape and dispersed state of the dispersed phase as described above is Mo.
It is thought that this is prevented by the addition of. However, such an effect of Mo is not recognized when the added amount is less than 0.1%, and when the CE value described later is 4.4% or less, Mo is added in excess of 1%. In this case, regardless of the type of cast iron, carbides are likely to be generated, white pig iron (so-called chilling tendency) may occur, and workability and toughness may be deteriorated. Therefore, when Mo is added, It is desirable that the range is within the range of 0.1 to 1.0%.

【0017】また、アプセット時間については、アプセ
ット工程の冷却過程でオーステナイトからの黒鉛の再析
出が完了し、かつ界面の固相拡散が期待できる温度とし
て、700℃まで加圧保持することが望ましい。
Regarding the upset time, it is desirable to maintain the pressure up to 700 ° C. as the temperature at which the reprecipitation of graphite from austenite is completed in the cooling process of the upset process and the solid phase diffusion of the interface can be expected.

【0018】そして、炭素当量(CE値=C%+1/3
Si%)については、摩擦工程前の圧接面の表面粗さが
Ra10程度の場合でも、安定した引張強度を得る観点
から、CE値を3.8〜4.4%の範囲とすることが好
ましい。すなわち、CE値が4.4%を超えた場合には
安定した引張強度が得難く、逆にCE値が3.8に満た
ない場合には、鋳鉄の鋳造時における湯流れ性が低下す
る傾向がある。
Carbon equivalent (CE value = C% + 1/3
(Si%), the CE value is preferably in the range of 3.8 to 4.4% from the viewpoint of obtaining stable tensile strength even when the surface roughness of the pressure contact surface before the rubbing step is about Ra10. . That is, when the CE value exceeds 4.4%, it is difficult to obtain a stable tensile strength, and conversely, when the CE value is less than 3.8, the molten metal flowability during casting of cast iron tends to decrease. There is.

【0019】図2は、このようにして摩擦圧接された接
合界面(球状黒鉛鋳鉄FCD400同士)の金属組織を
示すものであって、界面には、図7において観察された
ような酸化物の巻き込みの発生は認められない。
FIG. 2 shows the metallographic structure of the joint interfaces (the spheroidal graphite cast iron FCD400s) thus friction-welded together. The oxide inclusions observed in FIG. Is not recognized.

【0020】[0020]

【実施例】以下に、本発明を実施例に基づいて、さらに
具体的に説明する。
EXAMPLES The present invention will be described more specifically below based on examples.

【0021】(実施例1)JIS G 5502に球状
黒鉛鋳鉄品として規定されるFCD400(融点:約1
140℃、CE値:4.4%)からなる外径:50m
m、内径:40mmのパイプを用意し、摩擦工程前にお
ける圧接面の表面粗さRaを種々に変化させて、これら
パイプ同士を突き合わせ、周速:4.5m/s、摩擦圧
力:40MPaの条件のもとに、接合界面の最高温度が
1050℃となるまで加熱し、70MPaのアプセット
圧力を加えることによって、上記鋳鉄部材同士を摩擦圧
接した。
(Example 1) FCD400 (melting point: about 1) specified as a spheroidal graphite cast iron product in JIS G 5502.
Outer diameter consisting of 140 ° C, CE value: 4.4%): 50 m
m, inner diameter: 40 mm, a pipe was prepared, the surface roughness Ra of the pressure contact surface before the friction step was variously changed, and these pipes were butted against each other, and the peripheral speed was 4.5 m / s and the friction pressure was 40 MPa. Then, the cast iron members were friction-welded to each other by heating until the maximum temperature of the joint interface reached 1050 ° C. and applying an upset pressure of 70 MPa.

【0022】そして、得られた継ぎ手の引張試験を行
い、引張強度に及ぼす接合面の表面粗さRaの影響を調
査した。この結果を図3に示す。なお、引張試験は、圧
接のままの状態と、圧接後フェライト化焼鈍した状態の
2種類について行い、従来の工法の場合と比較した。
Then, the tensile test of the obtained joint was conducted to investigate the influence of the surface roughness Ra of the joint surface on the tensile strength. The result is shown in FIG. The tensile test was carried out for two types, that is, the as-pressed state and the ferritic-annealed state after the pressure-welding, and compared with the case of the conventional method.

【0023】図3の結果から明らかなように、接合面の
表面粗さがRa10を超える従来工法の場合、圧接のま
までは摩擦圧接時の加熱冷却の影響によって焼入れ組織
となり、基地の強度は向上するが、酸化膜による切り欠
き効果によって引張強度が非常に低い。同様にフェライ
ト化焼鈍状態においても酸化膜によって引張強度が低下
することが判明した。これに対し、接合面の表面粗さを
Ra10以下とした本発明方法によれば、接合面に酸化
膜がなく、高温となった接合面近傍の塑性流動により接
合幅が母材よりも広がることとも相俟って、全て母材破
断となり、接合面から破断したものは認められず、安定
した引張強度が得られることが確認された。
As is clear from the results shown in FIG. 3, in the case of the conventional method in which the surface roughness of the joint surface exceeds Ra10, a quenching structure is formed by the effect of heating and cooling during friction welding when the pressure welding is performed, and the strength of the matrix is improved. However, the tensile strength is very low due to the notch effect of the oxide film. Similarly, it was found that the tensile strength was reduced by the oxide film even in the ferritic annealing state. On the other hand, according to the method of the present invention in which the surface roughness of the joint surface is Ra10 or less, there is no oxide film on the joint surface, and the joint width becomes wider than that of the base metal due to plastic flow in the vicinity of the joint surface at high temperature. Together with this, it was confirmed that all of the base materials fractured and no fractures were observed from the joint surface, and stable tensile strength was obtained.

【0024】(実施例2)炭素当量CE値を5水準に変
化させた球状黒鉛鋳鉄FCD400からなり、上記同様
の寸法(外径:50mm、内径:40mm)を備えたパ
イプを用い、接合面の表面粗さをRa10に加工した
後、同様に突き合わせ、同様の条件(周速:4.5m/
s、摩擦圧力:40MPa、接合界面最高温度:105
0℃、アプセット圧:70MPa)のもとに、上記鋳鉄
部材同士を摩擦圧接し、引張強度に及ぼすCE値の影響
について調査した。なお、この場合、圧接後にフェライ
ト化焼鈍を施したものについてのみ引張試験を実施し
た。
(Example 2) A pipe made of spheroidal graphite cast iron FCD400 having a carbon equivalent CE value changed to 5 levels and having the same dimensions (outer diameter: 50 mm, inner diameter: 40 mm) as described above was used. After processing the surface roughness to Ra10, butting in the same manner, the same condition (peripheral speed: 4.5 m /
s, friction pressure: 40 MPa, maximum joint interface temperature: 105
The above cast iron members were friction-welded together at 0 ° C. and an upset pressure of 70 MPa, and the effect of the CE value on the tensile strength was investigated. In this case, the tensile test was carried out only for those which were subjected to ferritic annealing after pressure welding.

【0025】この結果は、図4に示すとおりであって、
CE値が4.4%を超えた場合には、安定した引張強度
が得られないのに対し、CE値が4.4%以下の場合に
は、摩擦工程中の最高温度温度範囲を圧接面近傍に集中
させることで塑性流動による接合界面の不純物の排出作
用を強めることができ、摩擦工程前の圧接面の表面粗さ
がRa10程度でも安定した引張強度が得られることが
確認された。
The result is shown in FIG.
When the CE value exceeds 4.4%, stable tensile strength cannot be obtained, whereas when the CE value is 4.4% or less, the maximum temperature during the friction process is within the temperature range of the pressure contact surface. It was confirmed that by concentrating in the vicinity, the action of discharging impurities at the joint interface due to plastic flow can be strengthened, and stable tensile strength can be obtained even if the surface roughness of the pressure contact surface before the friction step is about Ra10.

【0026】(実施例3)実施例1で用いたものと同様
の球状黒鉛鋳鉄FCD400(融点:約1140℃、C
E値:4.4%)と、当該成分の球状黒鉛鋳鉄にさらに
Moを1%添加した球状黒鉛鋳鉄FCD400からな
り、同様の寸法(外径:50mm、内径:40mm)を
備えたパイプを用い、接合面の表面粗さをRa10に加
工した後、同様に突き合わせ、周速:4.5m/s、摩
擦圧力:40MPaの条件のもとに、接合界面の最高温
度が1050℃となるまで加熱し、アプセット圧を10
MPa、20MPa、30MPa、50MPa、70M
Pa、80MPaおよび90MPaの7水準に変化させ
て上記鋳鉄部材同士を摩擦圧接し、引張強度に及ぼすア
プセット圧とMo添加の影響について調査した。なお、
この場合も、圧接後にフェライト化焼鈍を施したものに
ついてのみ引張試験を実施した。
Example 3 Spheroidal graphite cast iron FCD400 (melting point: about 1140 ° C., C similar to that used in Example 1)
E value: 4.4%) and a spheroidal graphite cast iron FCD400 in which 1% of Mo is added to the spheroidal graphite cast iron of the component, and a pipe having similar dimensions (outer diameter: 50 mm, inner diameter: 40 mm) is used. After processing the surface roughness of the joining surface to Ra10, butting them in the same manner and heating under the conditions of peripheral speed: 4.5 m / s and friction pressure: 40 MPa until the maximum temperature of the joining interface reaches 1050 ° C. Upset pressure to 10
MPa, 20 MPa, 30 MPa, 50 MPa, 70M
The cast iron members were friction-welded to each other by changing the pressure to 7 levels of Pa, 80 MPa and 90 MPa, and the influence of upset pressure and addition of Mo on the tensile strength was investigated. In addition,
Also in this case, the tensile test was carried out only for those which were subjected to ferritic annealing after pressure welding.

【0027】この結果は、図5に示すとおりであって、
アプセット圧を20MPa未満とした場合には、酸化膜
はないものの、金属結合に必要な原子間距離まで塑性流
動が行われないため、ミクロギャップが存在して十分な
接合強度が得られないことが確認された。逆に、アプセ
ット圧を80MPa以上とした場合、Moを含有しない
鋳鉄においては、接合面近傍の黒鉛の球状化率が悪化す
ることから引張強度が低下することが判明したが、1%
のMoを添加した場合には、アプセット圧を80MPa
とした場合でも、引張強度の低下は認められなかった。
The result is shown in FIG.
When the upset pressure is less than 20 MPa, although there is no oxide film, plastic flow does not occur up to the interatomic distance required for metal bonding, so that there is a micro gap and sufficient bonding strength cannot be obtained. confirmed. On the other hand, when the upset pressure was set to 80 MPa or more, it was found that in cast iron containing no Mo, the spheroidization rate of graphite in the vicinity of the joint surface deteriorates, resulting in a decrease in tensile strength.
When Mo is added, the upset pressure is 80 MPa.
Even in the case of, no decrease in tensile strength was observed.

【0028】[0028]

【発明の効果】以上説明してきたように、本発明に係わ
る鋳鉄の摩擦圧接方法によれば、一方もしくは両方が鋳
鉄である2つの部材を摩擦圧接するに際して、圧接面の
表面粗さをRa10以下として摩擦工程を開始し、接合
界面温度を800℃以上、かつ溶融開始温度よりも低い
温度に昇温させた後にアプセット圧を負荷するようにし
ていることから、溶融相の酸化を防止して接合界面に酸
化膜が介在するのを防止することができ、接合部の健全
性を確保して十分な接合強度を備えた摩擦接合継手を得
ることができるという極めて優れた効果をもたらすもの
である。
As described above, according to the method for friction welding of cast iron according to the present invention, when two members, one or both of which is cast iron, are friction welded, the surface roughness of the contact surface is Ra10 or less. As a result, the friction step is started, and the upset pressure is applied after the joining interface temperature is raised to 800 ° C. or higher and lower than the melting start temperature. It is possible to prevent an oxide film from intervening at the interface, to secure the soundness of the joint portion, and to obtain a friction-bonded joint having sufficient joint strength, which is an extremely excellent effect.

【0029】また、本発明に係わる接合部品は、上記鋳
鉄の摩擦圧接方法によって、CE値が3.8〜4.4%
の鋳鉄、さらにはCE値が3.8〜4.4%、かつMo
含有量が0.1〜1.0%の鋳鉄を接合したものである
から、健全な接合部を備え、さらに高い接合強度を安定
して得ることがができるという極めて優れた効果がもた
らされる。
The joined part according to the present invention has a CE value of 3.8 to 4.4% by the friction welding method for cast iron.
Cast iron, CE value of 3.8 to 4.4%, and Mo
Since the cast iron having a content of 0.1 to 1.0% is joined, a very excellent effect that a sound joining portion is provided and higher joining strength can be stably obtained is brought about.

【0030】さらに、これらの低CE値の鋳鉄を用いた
場合には、圧接面における発熱量の増大と低熱伝導性か
ら、圧接面が摩擦工程において所定温度(800℃以
上、溶融開始温度未満)に到達するまでの時間短縮が可
能となる効果も得られる。特に、母材鋳鉄にMoを添加
した場合には、摩擦圧力とアプセット圧をさらに高める
ことができ、この効果がさらに大きなものとなる。
Furthermore, when these cast irons having a low CE value are used, the pressure contact surface has a predetermined temperature (800 ° C. or higher and lower than the melting start temperature) in the friction process due to an increase in the amount of heat generated at the pressure contact surface and low thermal conductivity. There is also an effect that it is possible to shorten the time until reaching. In particular, when Mo is added to the base material cast iron, the friction pressure and the upset pressure can be further increased, and this effect becomes even greater.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる鋳鉄の摩擦圧接方法の工程パタ
ーンを示すグラフである。
FIG. 1 is a graph showing a process pattern of a friction welding method for cast iron according to the present invention.

【図2】本発明に係わる摩擦圧接方法によって接合され
た鋳鉄の接合界面の状態を示す顕微鏡組織である。
FIG. 2 is a microstructure showing a state of a joint interface of cast iron joined by a friction welding method according to the present invention.

【図3】摩擦圧接により接合された鋳鉄の引張強度に及
ぼす接合界面の表面粗さの影響を示すグラフである。
FIG. 3 is a graph showing the influence of the surface roughness of the joining interface on the tensile strength of cast iron joined by friction welding.

【図4】摩擦圧接により接合された鋳鉄の引張強度に及
ぼすCE値の影響を示すグラフである。
FIG. 4 is a graph showing the influence of CE value on the tensile strength of cast iron joined by friction welding.

【図5】摩擦圧接により接合された鋳鉄の引張強度に及
ぼすアプセット圧およびMo添加の影響を示すグラフで
ある。
FIG. 5 is a graph showing the effects of upset pressure and addition of Mo on the tensile strength of cast iron joined by friction welding.

【図6】従来の鋳鉄の摩擦圧接方法における工程パター
ンを示すグラフである。
FIG. 6 is a graph showing a process pattern in a conventional friction welding method for cast iron.

【図7】従来の摩擦圧接方法によって接合された鋳鉄の
接合界面の状態を示す顕微鏡組織である。
FIG. 7 is a microstructure showing a state of a joint interface of cast iron joined by a conventional friction welding method.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G004 FA04 GA03 GA06 3G091 AB01 BA39 HB01 4E067 AA04 BG00 DA09 DC02 DC06 DD01 EA07 EB00 EC06    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 3G004 FA04 GA03 GA06                 3G091 AB01 BA39 HB01                 4E067 AA04 BG00 DA09 DC02 DC06                       DD01 EA07 EB00 EC06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一方が鋳鉄からなる2つの部
材を摩擦圧接するに際し、圧接面の表面粗さをRa10
以下として摩擦工程を開始し、両部材の接合界面温度を
800℃以上、かつ溶融開始温度よりも低い温度に昇温
させたのち、アプセット圧を加えることを特徴とする鋳
鉄の摩擦圧接方法。
1. When friction-welding two members, at least one of which is made of cast iron, the surface roughness of the pressure-contact surface is Ra10.
A friction welding method for cast iron, comprising the step of starting the friction step as described below, raising the joining interface temperature of both members to 800 ° C. or higher and lower than the melting start temperature, and then applying an upset pressure.
【請求項2】 請求項1記載の摩擦圧接方法により接合
され、鋳鉄のCE値(炭素等量)が3.8〜4.4%で
あることを特徴とする接合部品。
2. A joined part joined by the friction welding method according to claim 1, wherein the CE value (carbon equivalent) of cast iron is 3.8 to 4.4%.
【請求項3】 請求項1記載の摩擦圧接方法により接合
され、鋳鉄のCE値(炭素等量)が3.8〜4.4%、
Mo含有量が0.1〜1.0%であることを特徴とする
接合部品。
3. The friction welding method according to claim 1, wherein the cast iron has a CE value (carbon equivalent) of 3.8 to 4.4%,
A joined component having a Mo content of 0.1 to 1.0%.
【請求項4】 内燃機関用の排気マニホールドと触媒容
器の一体接合体であることを特徴とする請求項2又は3
記載の接合部品。
4. The integrated body of an exhaust manifold for an internal combustion engine and a catalyst container as claimed in claim 2, wherein
Joined parts as described.
JP2002064801A 2001-05-11 2002-03-11 Friction press-joining method for cast iron and joined part Pending JP2003025075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002064801A JP2003025075A (en) 2001-05-11 2002-03-11 Friction press-joining method for cast iron and joined part

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001141434 2001-05-11
JP2001-141434 2001-05-11
JP2002064801A JP2003025075A (en) 2001-05-11 2002-03-11 Friction press-joining method for cast iron and joined part

Publications (1)

Publication Number Publication Date
JP2003025075A true JP2003025075A (en) 2003-01-28

Family

ID=26614963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002064801A Pending JP2003025075A (en) 2001-05-11 2002-03-11 Friction press-joining method for cast iron and joined part

Country Status (1)

Country Link
JP (1) JP2003025075A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7025690B2 (en) * 2004-04-02 2006-04-11 Sang-Ki Nam Golf club with transparent grip
US7086960B2 (en) * 2003-12-08 2006-08-08 Nelson Precision Casting Co., Ltd. Golf club head with a structure for friction welding and manufacturing method therefor
US7721403B2 (en) 2003-12-03 2010-05-25 Nelson Precision Casting Co., Ltd. Manufacturing method for a golf club head

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7721403B2 (en) 2003-12-03 2010-05-25 Nelson Precision Casting Co., Ltd. Manufacturing method for a golf club head
US7086960B2 (en) * 2003-12-08 2006-08-08 Nelson Precision Casting Co., Ltd. Golf club head with a structure for friction welding and manufacturing method therefor
US7025690B2 (en) * 2004-04-02 2006-04-11 Sang-Ki Nam Golf club with transparent grip

Similar Documents

Publication Publication Date Title
Watanabe et al. Joining of aluminum alloy to steel by friction stir welding
US7156282B1 (en) Titanium-aluminide turbine wheel and shaft assembly, and method for making same
JP2003039183A (en) Friction stir welding method and welded body
JPH11285842A (en) Joined metal member and joining method of its member
JP3380081B2 (en) Valve seat
EP0816007A2 (en) Method of friction-welding a shaft to a titanium aluminide turbine rotor
JP6819958B2 (en) Linear friction stir welding method
JP2003025075A (en) Friction press-joining method for cast iron and joined part
JP3445579B2 (en) Bonding structure between dissimilar metal hollow members and bonding method thereof
JP2003019574A (en) Tubular member
CA2299936C (en) Bent pipe for passing therethrough a material containing solids
JPH05269583A (en) Manufacture of friction welded valve
JP2002336975A (en) Method for friction-welding pipe members made of dissimilar materials
JPH02160188A (en) Method for joining intermetallic compound of ti-al system and ti-based alloy
JP2003088964A (en) Joint structure of ceramics dispersed iron group alloy and its manufacturing method
JP3779180B2 (en) Bonding method of carbon steel and dissimilar materials with suppressed cracking
JP2004001087A (en) Method for friction pressure welding of wheel carriage member and wheel carriage member using the same
JP2005271015A (en) Friction welding method of steel tube and aluminum alloy hollow member
JP2001025885A (en) Friction welding member and its manufacture
JP5432866B2 (en) Liquid phase diffusion bonding method and bonded product
JP4393118B2 (en) Manufacturing method of aluminum alloy rim in vehicle wheel
JP3132603B2 (en) Method for manufacturing friction-welded hollow valve
JP4540268B2 (en) Friction welding method between aluminum alloy member and steel member
JP2005271016A (en) Friction welding method of steel tube and aluminum alloy hollow member
JP2007296564A (en) Friction welding method for steel tube and aluminum alloy hollow member