JP2003022928A - Laminated metallized film capacitor - Google Patents

Laminated metallized film capacitor

Info

Publication number
JP2003022928A
JP2003022928A JP2001209427A JP2001209427A JP2003022928A JP 2003022928 A JP2003022928 A JP 2003022928A JP 2001209427 A JP2001209427 A JP 2001209427A JP 2001209427 A JP2001209427 A JP 2001209427A JP 2003022928 A JP2003022928 A JP 2003022928A
Authority
JP
Japan
Prior art keywords
film
capacitor
resin
laminated
cut surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001209427A
Other languages
Japanese (ja)
Inventor
Kazuhiro Nakatsubo
和弘 中坪
Toshiharu Saito
俊晴 斎藤
Kazumi Nomura
和美 納村
Hiroki Takeoka
宏樹 竹岡
Kohei Shioda
浩平 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001209427A priority Critical patent/JP2003022928A/en
Publication of JP2003022928A publication Critical patent/JP2003022928A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve safety and reliability without dielectric breakdown involving smoking and firing by obtaining a capacitor element, which is excellent in current resistance and voltage characteristic, readily at a low cost. SOLUTION: The laminated metallized film capacitor has a capacitor element which is obtained by stacking a pair of metallized films wherein a zinc-based deposited electrode metal is formed in one side of a dielectric film, or a both- sided metallized film and a non-metallized film formed in both sides of a dielectric film in superposition and cutting a matrix capacitor wherein an electrode is formed in both edge faces of a laminated film. Armoring resin is filled up with the cut surface of a capacitor element 7 coated for protection with a sheet-like protection film 6. Thereby, it is possible to improve outgassing during self recovery and to prevent electric short circuit caused by rapid inner pressure rise and dielectric breakdown involving smoking and firing by relaxing adhesion between a cut surface and armoring resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、電気機器用コン
デンサ及び電子機器用コンデンサの積層金属化フィルム
コンデンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated metallized film capacitor for capacitors for electric equipment and capacitors for electronic equipment.

【0002】[0002]

【従来の技術】従来より、誘電体フィルムの表面に電極
金属を蒸着させた金属化フィルムを用いた金属化フィル
ムコンデンサは、図4に示すように、コンデンサ素子に
部分的な絶縁破壊を生じても電圧破壊個所41を短絡電
流42により電極周辺部43を溶融、又は飛散させて絶
縁を回復させる自己回復機能に優れているため、様様な
電気・電子機器等に広く用いられている。
2. Description of the Related Art Conventionally, a metallized film capacitor using a metallized film in which an electrode metal is vapor-deposited on the surface of a dielectric film causes a partial dielectric breakdown in a capacitor element as shown in FIG. Also, since it has an excellent self-recovery function of recovering insulation by melting or scattering the electrode peripheral part 43 by the short-circuit current 42 at the voltage breakdown point 41, it is widely used in various electric and electronic devices.

【0003】また従来の技術では、コンデンサ素子形状
を巻回、小判型から効率的に生産できる積層金属化コン
デンサの更なる小型化、高性能化、低価格化の研究・開
発が盛んに行われている。積層金属化コンデンサとは、
従来の巻回フィルムコンデンサが巻取り軸に金属化フィ
ルムを巻回し、巻回物を巻取り軸から抜き取り、巻取り
ボビンに巻きつけたままメタリコンを施して一個の単位
コンデンサとするのに対して、比較的大きなドラムに金
属化フィルムを巻取りし、図5に示すようにメタリコン
51を両端部に施してできた母体コンデンサ52を鋸刃
53によって切断して複数個の単位コンデンサを作りあ
げる製造方法は、例えば特公昭28−1021号によっ
て公知の製造方法である。
Further, in the prior art, research and development for further miniaturization, higher performance and lower cost of a laminated metallized capacitor which can be efficiently produced from an oval type by winding a capacitor element shape is actively conducted. ing. What is a laminated metallized capacitor?
Whereas a conventional wound film capacitor winds a metallized film around a winding shaft, extracts the wound material from the winding shaft, and metallizes it while winding it around a winding bobbin to form one unit capacitor. A manufacturing method in which a metallized film is wound on a relatively large drum and a mother capacitor 52 formed by applying metallikon 51 to both ends as shown in FIG. 5 is cut by a saw blade 53 to form a plurality of unit capacitors. Is a production method known from Japanese Patent Publication No. 28-1021.

【0004】母体コンデンサを鋸刃により切断して得た
単位コンデンサの、従来における切断面構造を図6に示
す。すなわち、誘電体フィルムの両面の少なくとも片側
にヒューズ部64を介した金属蒸着膜62を蒸着した両
面金属化フィルム61と非金属化フィルム65が交互に
積層されており、両端部にメタリコン電極部66が形成
された構造となっている。63は窓マージン部である。
またヒューズ部64を介して保安機構としているため、
コンデンサ全体のある一ヶ所の誘電体フィルムの一部分
で絶縁破壊が生じても、絶縁破壊部分に関与する部分の
蒸着電極金属がコンデンサ全体から電気的に遮断して遊
離し、他のコンデンサ部分が絶縁破壊するのを防ぐこと
が出来た。
FIG. 6 shows a conventional cut surface structure of a unit capacitor obtained by cutting a mother capacitor with a saw blade. That is, a double-sided metallized film 61 and a non-metallized film 65, in which a metal vapor deposition film 62 is deposited via a fuse portion 64, are alternately laminated on at least one side of both surfaces of a dielectric film, and metallikon electrode portions 66 are provided at both ends. Is formed. 63 is a window margin part.
In addition, since a security mechanism is provided through the fuse portion 64,
Even if a dielectric breakdown occurs in one part of the dielectric film of the whole capacitor, the evaporated electrode metal in the part related to the dielectric breakdown part is electrically cut off from the whole capacitor, and the other capacitor part is insulated. I was able to prevent it from being destroyed.

【0005】しかし、切断して得た単位コンデンサの切
断面における絶縁は、切断時の摩擦熱で素子切断面のフ
ィルム・金属を溶融させることにより絶縁を確保してい
るため、不安定である欠点を持っている。そのため、切
断面における自己回復性を高めるために、自己回復性に
優れ良好な絶縁性能を持つアルミニウムが、積層金属化
コンデンサでは主として使われている。
However, the insulation on the cut surface of the unit capacitor obtained by cutting is unstable because the film / metal on the cut surface of the element is melted by the frictional heat at the time of cutting, which is unstable. have. Therefore, in order to enhance the self-healing property at the cut surface, aluminum having excellent self-healing property and good insulation performance is mainly used in the laminated metallized capacitor.

【0006】しかしながら、アルミを主とした金属を電
極金属として用いた場合に、電位傾度アップによるコロ
ナ量の増加、フィルム自身に含まれる水分等により、ア
ルミニウム蒸着金属が電気化学反応、いわゆるコロージ
ョンを引き起こし、酸化アルミニウムとなる。酸化アル
ミニウムは電圧印加時間により生長してゆき、AL2
3 は絶縁物体であるため、長期使用における容量減少、
tanδ上昇などが懸念されるという欠点があり、積層
金属化フィルムコンデンサの寿命特性、大容量化などに
大きな問題を有しいる。そのため、積層金属化コンデン
サにおいても、従来のアルミニウムから耐電流・電圧特
性に優れた性質を持つ亜鉛を主とした電極金属へシフト
する試みがなされている。
However, when a metal mainly composed of aluminum is used as an electrode metal, the aluminum vapor-deposited metal causes an electrochemical reaction, so-called corrosion, due to an increase in the amount of corona due to an increase in the potential gradient and moisture contained in the film itself. , Becomes aluminum oxide. Aluminum oxide grows according to the voltage application time, and AL 2 O
Since 3 is an insulating object, the capacity decrease in long-term use,
There is a drawback that tan δ increase may occur, and there are major problems in the life characteristics and capacity increase of the laminated metallized film capacitor. Therefore, even in a laminated metallized capacitor, an attempt has been made to shift from conventional aluminum to an electrode metal mainly composed of zinc having excellent characteristics of withstanding current and voltage.

【0007】[0007]

【発明が解決しようとする課題】しかし、切断時、切断
刃の摩擦熱で金属フィルムと蒸着膜電極を引き伸ばし、
フィルム、金属の溶融物でフィルム層間を溶着すること
で切断面の絶縁を確保している従来の積層金属化コンデ
ンサの製造方法では、アルミニウムに比べ亜鉛は融点が
低いため、切断面の溶融度が増し、特にコンデンサ素子
が外装樹脂により密閉された場合、自己回復時に発生す
るフィルム・金属等の可燃性分解ガスが溶融膜を通過で
きずフィルム層間に充満し、保安機構も動作しにくく、
最終的には発火・発煙を伴う絶縁破壊を起こす。また亜
鉛を主とした金属を電極金属とした場合、アルミニウム
に比べ同じ表面抵抗値では電極膜厚が厚くなるため、自
己回復にアルミニウム以上の大きなエネルギーを要する
ため自己回復に失敗しやすい。この結果、切断面で発生
する放電が溶着したフィルム層間の隙間を広げ、素子外
部やフィルム素子内部へ放電が侵入、ついには連続的な
放電、電気的短絡状態を引き起こすといった現象が見ら
れる。
However, at the time of cutting, frictional heat of the cutting blade stretches the metal film and the vapor deposition film electrode,
In the conventional method for manufacturing a laminated metallized capacitor in which insulation between cut surfaces is secured by fusing the film layers with a melt of film and metal, zinc has a lower melting point than aluminum, so the meltability of the cut surface is higher. In particular, when the capacitor element is sealed by the exterior resin, flammable decomposition gas such as film and metal generated at the time of self-recovery cannot pass through the molten film and is filled between the film layers, and the safety mechanism is hard to operate.
Eventually, dielectric breakdown occurs with ignition and smoke. Further, when a metal mainly containing zinc is used as an electrode metal, the electrode film thickness becomes thicker than that of aluminum at the same surface resistance value, and thus self-recovery requires more energy than aluminum, and thus self-recovery easily fails. As a result, there is a phenomenon in which the discharge generated at the cut surface widens the gap between the film layers fused and the discharge enters the outside of the element or the inside of the film element, which eventually causes a continuous discharge or an electrical short circuit.

【0008】また、特開平7−183160公報には、
積層型のコンデンサ素子の外周に熱収縮チューブを被
せ、蒸着フィルムや電極材料の飛散を防ぎ、安全性を高
めることが示されているが、同公報中の実施例には、誘
電体フィルムの種類や厚さ、蒸着金属材料、膜抵抗値、
切断の有無、直流使用か交流使用かなどは詳細について
は、必ずしも明瞭ではなかった。
Further, Japanese Patent Laid-Open No. 7-183160 discloses that
It has been shown that a heat-shrinkable tube is placed on the outer periphery of the multilayer capacitor element to prevent the vapor deposition film and electrode material from scattering and enhance the safety. , Thickness, evaporated metal material, film resistance,
It was not always clear about the details such as the presence or absence of disconnection and whether to use direct current or alternating current.

【0009】したがって、この発明の目的は、上記従来
の問題点を解決するもので、構造的に切断面を有する積
層金属化フィルムコンデンサにおいて、蒸着金属に亜鉛
を主とした金属を用いることにより長期使用における容
量減少が少なく、耐電流・電圧特性に優れたコンデンサ
素子を容易に低コストで得ることができ、かつ高い安全
性、高電位傾度化設計を可能とした積層金属化フィルム
コンデンサを提供することである。
Therefore, an object of the present invention is to solve the above-mentioned conventional problems, and in a laminated metallized film capacitor having a structurally cut surface, by using a metal mainly containing zinc as a metal for vapor deposition, (EN) Provided is a laminated metallized film capacitor which is capable of easily obtaining a capacitor element excellent in withstanding current and voltage characteristics at a low cost with a small capacity reduction in use, and having high safety and high potential gradient design. That is.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
にこの発明の請求項1記載の積層金属化フィルムコンデ
ンサは、亜鉛を主とした蒸着電極金属を誘電体フィルム
の片面に形成した一対の金属化フィルム、または誘電体
フィルムの両面に形成した両面金属化フィルムと非金属
化フィルムとを重ね合わせて積層し、積層したフィルム
の両端面に電極を形成した母体コンデンサを切断して得
られるコンデンサ素子を有する積層金属化フィルムコン
デンサであって、前記コンデンサ素子の切断面をシート
状の保護フィルムにより被覆保護した状態で外装樹脂を
充填した。
In order to achieve the above object, a laminated metallized film capacitor according to claim 1 of the present invention comprises a pair of vapor-deposited electrode metals mainly containing zinc formed on one surface of a dielectric film. Capacitor obtained by stacking a double-sided metallized film and a non-metallized film formed on both sides of a metallized film or a dielectric film, and cutting a mother capacitor having electrodes formed on both end faces of the laminated film. A laminated metallized film capacitor having an element, the cut surface of the capacitor element being covered and protected by a sheet-like protective film, and filled with an exterior resin.

【0011】このように、コンデンサ素子の切断面をシ
ート状の保護フィルムにより被覆保護した状態で外装樹
脂を充填したので、切断面と外装樹脂との密着を緩和す
ることで、かつ自己回復時のガス抜け性の向上、急激な
内圧上昇を緩和することができる。この結果、耐電流・
電圧特性に優れる性質を持つ亜鉛を蒸着電極金属として
用いることができ、長期的な使用における容量減少、t
anδ上昇のない積層金属化コンデンサを得ることがで
きる。
As described above, since the exterior resin is filled in a state where the cut surface of the capacitor element is covered and protected by the sheet-like protective film, the adhesion between the cut surface and the exterior resin is alleviated, and at the time of self-recovery. It is possible to improve the gas releasing property and mitigate a sudden increase in the internal pressure. As a result, withstand current
Zinc, which has excellent voltage characteristics, can be used as a vapor deposition electrode metal, resulting in a decrease in capacity during long-term use.
It is possible to obtain a laminated metallized capacitor that does not increase an δ.

【0012】請求項2記載の積層金属化フィルムコンデ
ンサは、請求項1記載の積層金属化フィルムコンデンサ
において、保護フィルムをコンデンサ素子の外周部に巻
き付けて包装した状態で樹脂充填した。このように、保
護フィルムをコンデンサ素子の外周部に巻き付けて包装
した状態で樹脂充填したので、請求項1の作用に加え、
電極形成のメタリコン部への外装樹脂浸入を防ぎ、メタ
リコンと蒸着電極金属とのコンタクトの低下を回避でき
る。
The laminated metallized film capacitor according to claim 2 is the laminated metallized film capacitor according to claim 1, in which a protective film is wrapped around the outer periphery of the capacitor element and packed with resin. In this way, since the protective film is wrapped around the outer periphery of the capacitor element and filled with the resin, the function of claim 1 can be obtained.
It is possible to prevent the exterior resin from penetrating into the metallikon portion of the electrode formation, and to avoid the deterioration of the contact between the metallikon and the vapor deposition electrode metal.

【0013】請求項3記載の積層金属化フィルムコンデ
ンサは、請求項1または2記載の積層金属化フィルムコ
ンデンサにおいて、保護フィルムはコンデンサ素子の切
断面側をたるませて、切断面と保護フィルム間に0.0
2mm以上0.5mm以下の空間を設けた。このよう
に、保護フィルムはコンデンサ素子の切断面側をたるま
せて、切断面と保護フィルム間に0.02mm以上0.
5mm以下の空間を設けたので、請求項1又は2の作用
に加えて、保護フィルムでコンデンサ素子の切断面を被
覆、またはコンデンサ素子の外周部に巻き付け・包装し
た状態で樹脂充填した際に、切断面で発生する放電エネ
ルギー、放電や自己回復時に発生する可燃性ガスを切断
面両側に形成された空間に逃すことができ、それらのコ
ンデンサ素子内への浸入を防ぎ、内部での連続的な放
電、電気的短絡状態を回避することで、より高い安全性
を得ることができる。
The laminated metallized film capacitor according to claim 3 is the laminated metallized film capacitor according to claim 1 or 2, wherein the protective film sags the cut surface side of the capacitor element, and the protective film is provided between the cut surface and the protective film. 0.0
A space of 2 mm or more and 0.5 mm or less was provided. In this way, the protective film sags the cut surface side of the capacitor element, and the cut film and the protective film have a thickness of 0.02 mm or more.
Since a space of 5 mm or less is provided, in addition to the effect of claim 1 or 2, when the protective film covers the cut surface of the capacitor element, or when the resin element is wound and wrapped around the outer peripheral portion of the capacitor element, The discharge energy generated at the cut surface, and the flammable gas generated at the time of discharge or self-recovery can be released to the space formed on both sides of the cut surface, preventing their infiltration into the capacitor element, and continuous inside. Higher safety can be obtained by avoiding discharge and electrical short circuit.

【0014】なお切断面と保護フィルム間の空間が0.
02mm以下であると、請求項1,2以上の大きなガス
抜け性向上が見られず、0.5mm以上であると、コン
デンサ素子が保護フィルムによって形成される空間部に
残留する湿気により悪影響を受けてしまうため、0.0
2mm〜0.5mm程度が望ましい。
The space between the cut surface and the protective film is 0.
When it is less than 02 mm, the large improvement of gas escape property according to claims 1 and 2 is not seen, and when it is more than 0.5 mm, the capacitor element is adversely affected by moisture remaining in the space formed by the protective film. 0.0
About 2 mm to 0.5 mm is desirable.

【0015】請求項4記載の積層金属化フィルムコンデ
ンサは、請求項1,2または3記載の積層金属化フィル
ムコンデンサにおいて、保護フィルムは、ポリエチレン
系、ポリプロピレン系のフィルムのいずれかである。こ
のように、保護フィルムは、ポリエチレン系、ポリプロ
ピレン系のフィルムのいずれかであるので、一般的にガ
ス透過性、耐熱性の優れたポリエチレン、ポリプロピレ
ンフィルムを保護フィルムに用いることで、切断面を被
覆、包装などしても自己回復時に発生するガスを密閉・
充満させることなく、又発熱を伴う連続使用においても
効果を損なうことなく、高い安全性を確保できる。
The laminated metallized film capacitor according to claim 4 is the laminated metallized film capacitor according to claim 1, 2, or 3, wherein the protective film is either a polyethylene-based film or a polypropylene-based film. As described above, since the protective film is either a polyethylene-based film or a polypropylene-based film, the cut surface is generally covered by using a polyethylene or polypropylene film having excellent gas permeability and heat resistance as the protective film. , Even if wrapped, seals the gas generated during self-recovery
High safety can be ensured without being filled and without impairing the effect even in continuous use with heat generation.

【0016】請求項5記載の積層金属化フィルムコンデ
ンサは、請求項1,2,3または4記載の積層金属化フ
ィルムコンデンサにおいて、外装樹脂は、エポキシ樹
脂、ウレタン樹脂、フェノール樹脂、シリコン樹脂の熱
硬化性樹脂またはUV硬化樹脂である。このように、外
装樹脂は、エポキシ樹脂、ウレタン樹脂、フェノール樹
脂、シリコン樹脂の熱硬化性樹脂またはUV硬化樹脂で
あるので、製造工程、工数に応じての使い分けが可能と
なる。
The laminated metallized film capacitor according to claim 5 is the laminated metallized film capacitor according to any one of claims 1, 2, 3 or 4, wherein the exterior resin is an epoxy resin, a urethane resin, a phenol resin or a silicone resin. It is a curable resin or a UV curable resin. As described above, since the exterior resin is a thermosetting resin such as an epoxy resin, a urethane resin, a phenol resin, or a silicon resin or a UV curing resin, it is possible to use the exterior resin properly according to the manufacturing process and the number of steps.

【0017】[0017]

【発明の実施の形態】この発明の第1の実施の形態を図
1に基づいて説明する。図1はこの発明の第1の実施の
形態の積層金属化フィルムコンデンサの断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a sectional view of a laminated metallized film capacitor according to a first embodiment of the present invention.

【0018】図1に示すように、この積層金属化フィル
ムコンデンサは、亜鉛を主とした蒸着電極金属を誘電体
フィルムの片面に形成した一対の金属化フィルム、また
は誘電体フィルムの両面に形成した両面金属化フィルム
と非金属化フィルムとを重ね合わせて積層し、積層した
フィルムの両端面に電極を形成した母体コンデンサを切
断して得られるコンデンサ素子7を有する。また、母体
コンデンサを切断して得たコンデンサ素子7の外周をシ
ート状の保護フィルム6にて切断面4を被覆した後に、
電極引き出しメタリコン3に電極端子5を溶接、樹脂ケ
ース1へ挿入後に外装樹脂2を充填する。これにより、
切断面近傍のフィルム・金属溶融物と充填樹脂との密着
を緩和することで、放電によるエネルギーや自己回復時
に発生するフィルム・金属分解ガスの抜け性の向上、コ
ンデンサ素子内の極度の内圧上昇を防ぎ、コンデンサの
発煙・発火などに致る絶縁破壊を防ぐことができる。
As shown in FIG. 1, in this laminated metallized film capacitor, a vapor-deposited electrode metal mainly containing zinc was formed on one surface of a dielectric film, or on both surfaces of the dielectric film. A capacitor element 7 is obtained by stacking a double-sided metallized film and a non-metallized film on each other, and cutting a mother capacitor having electrodes formed on both end surfaces of the laminated film. Further, after covering the cut surface 4 with the sheet-like protective film 6 on the outer periphery of the capacitor element 7 obtained by cutting the mother capacitor,
The electrode terminal 5 is welded to the electrode extraction metallikon 3 and is inserted into the resin case 1, and then the exterior resin 2 is filled. This allows
By relaxing the adhesion between the film / metal melt near the cut surface and the filling resin, it is possible to improve the escape of energy from discharge and the film / metal decomposition gas generated during self-recovery, and to raise the extreme internal pressure in the capacitor element. It is possible to prevent insulation breakdown that may cause smoke and fire in the capacitor.

【0019】図2はこの発明の第2の実施の形態の積層
金属化フィルムコンデンサの断面図である。図2に示す
ように、保護フィルム6をコンデンサ素子7の外周部に
巻き付けて包装した状態で樹脂充填した。
FIG. 2 is a sectional view of a laminated metallized film capacitor according to a second embodiment of the present invention. As shown in FIG. 2, the protective film 6 was wrapped around the outer periphery of the capacitor element 7 and was packed with resin.

【0020】この実施の形態では、電極形成のメタリコ
ン部3への外装樹脂2の浸入を防ぎ、メタリコン3と蒸
着電極金属とのコンタクトの低下を回避できる。その他
の構成効果は、第1の実施の形態と同様である。
In this embodiment, it is possible to prevent the exterior resin 2 from penetrating into the metallikon portion 3 for forming an electrode and to prevent the contact between the metallikon 3 and the vapor deposition electrode metal from being lowered. Other configuration effects are similar to those of the first embodiment.

【0021】図3はこの発明の第3の実施の形態の積層
金属化フィルムコンデンサの断面図である。図3に示す
ように、第2の実施の形態と同様に保護フィルム6をコ
ンデンサ素子7の外周部に巻き付けて包装した状態で樹
脂充填しているが、保護フィルム6はコンデンサ素子7
の切断面側をたるませて、切断面4と保護フィルム6間
に0.02mm以上0.5mm以下の空間・隙間8を設
けた。この空間8が0.02mm以下であると、大きな
ガス抜け性向上が見られず、0.5mm以上であると、
コンデンサ素子7が保護フィルム6によって形成される
空間部に残留する湿気により悪影響を受けてしまうた
め、0.02mm〜0.5mm程度が望ましい。
FIG. 3 is a sectional view of a laminated metallized film capacitor according to a third embodiment of the present invention. As shown in FIG. 3, as in the second embodiment, the protective film 6 is wrapped around the outer periphery of the capacitor element 7 and is packed with resin.
The cut surface side was slackened, and a space / gap 8 of 0.02 mm or more and 0.5 mm or less was provided between the cut surface 4 and the protective film 6. When the space 8 is 0.02 mm or less, no significant improvement in gas release property is observed, and when the space 8 is 0.5 mm or more,
Since the capacitor element 7 is adversely affected by moisture remaining in the space formed by the protective film 6, it is desirable that the thickness is about 0.02 mm to 0.5 mm.

【0022】この実施の形態では、保護フィルムでコン
デンサ素子7の外周部に巻き付け・包装した状態で樹脂
充填した際に、切断面4で発生する放電エネルギー、放
電や自己回復時に発生する可燃性ガスを切断面両側に形
成された空間8に逃すことができ、それらのコンデンサ
素子7内への浸入を防ぎ、内部での連続的な放電、電気
的短絡状態を回避することで、より高い安全性を得るこ
とができる。その他の構成効果は、第1の実施の形態と
同様である。なお、第1の実施の形態において空間8を
設けても同様の作用効果が得られる。
In this embodiment, when the protective film is wrapped around the outer periphery of the capacitor element 7 and filled with resin, the discharge energy generated at the cut surface 4 and the flammable gas generated during discharge or self-recovery Can be escaped to the space 8 formed on both sides of the cut surface, prevent their invasion into the capacitor element 7, and avoid continuous discharge and electrical short-circuit state inside, thereby further improving safety. Can be obtained. Other configuration effects are similar to those of the first embodiment. In addition, even if the space 8 is provided in the first embodiment, the same operational effect can be obtained.

【0023】上記実施の形態において、一般的にガス透
過性、耐熱性の優れたポリエチレン、ポリプロピレンフ
ィルムを保護フィルムに用いることで、切断面を被覆、
包装などしても自己回復時に発生するガスを密閉・充満
させることなく、又発熱を伴う連続使用においても効果
を損なうことなく、高い安全性を確保できる。また、外
装樹脂2として、エポキシ樹脂、ウレタン樹脂、フェノ
ール樹脂、シリコン樹脂の熱硬化性樹脂またはUV硬化
樹脂を用いることで、製造工程、工数に応じて使い分け
が可能となる。
In the above embodiment, the cut surface is covered by using a polyethylene or polypropylene film, which is generally excellent in gas permeability and heat resistance, as a protective film.
High safety can be ensured without sealing or filling the gas generated at the time of self-recovery even in the case of packaging, and without impairing the effect even in continuous use with heat generation. Further, by using a thermosetting resin such as an epoxy resin, a urethane resin, a phenol resin, or a silicon resin or a UV curing resin as the exterior resin 2, it is possible to use the resin properly according to the manufacturing process and the number of steps.

【0024】[0024]

【実施例】この発明の実施例1について説明する。厚さ
4μmのポリプロピレンフィルムに亜鉛を主成分とした
金属を両面に蒸着し電極層を設けた両面金属化ポリプロ
ピレンフィルムに、同じく厚さ4μmの非金属化ポリプ
ロピレンフィルムを交互に大きなドラム上に巻回・積層
し、そのフィルム両端部に亜鉛金属溶射によりメタリコ
ンを施し、さらに105℃の加熱エージングをし、巻取
りドラムを外して大円環のコンデンサ母体を切断、単位
コンデンサを得る。
Embodiment 1 Embodiment 1 of the present invention will be described. A double-sided metallized polypropylene film in which a metal having zinc as a main component is vapor-deposited on both surfaces of a 4 μm-thick polypropylene film and electrode layers are provided, and a non-metallized polypropylene film of the same thickness of 4 μm is alternately wound on a large drum. -Laminating, metallikon is applied to both ends of the film by thermal spraying with zinc metal, further heat aging at 105 ° C, the winding drum is removed, and the large circular capacitor mother body is cut to obtain a unit capacitor.

【0025】コンデンサ母体を切断して得たコンデンサ
素子の切断面を厚さ10μmのポリプロピレンフィルム
を被覆し、メタリコン電極部に金属端子を溶接、または
半田付けした後に、外装工程で樹脂ケースへ挿入後、主
剤と硬化剤からなる2液性エポキシ樹脂を充填、90℃
にて約3時間加熱した後に常温放置して、本発明の一実
施の形態のコンデンサ(図1)を得た。同時に比較例と
して、実施例1と同工程で切断したコンデンサ素子を、
従来どおりに保護フィルムをせずに、そのまま同様の外
装工程で従来例の形態のコンデンサを得た。
After the cut surface of the capacitor element obtained by cutting the capacitor base is covered with a polypropylene film having a thickness of 10 μm, the metal terminals are welded or soldered with metal terminals, and then inserted into a resin case in the exterior process. , Filled with a two-part epoxy resin consisting of a main agent and a curing agent, 90 ° C
After heating for about 3 hours at room temperature, it was left at room temperature to obtain a capacitor (FIG. 1) according to one embodiment of the present invention. At the same time, as a comparative example, a capacitor element cut in the same process as in Example 1 was used.
A conventional capacitor was obtained in the same exterior process as it was without the protective film as in the conventional case.

【0026】この発明の実施例2について説明する。実
施例1と同様の工程で切断して得たコンデンサ素子の外
周部に厚さ5μmのポリプロピレンフィルムを巻きつ
け、包装した後に、メタリコン電極部に金属端子を溶
接、または半田付けした後に、同様の外装工程で本発明
の一実施の形態のコンデンサ(図2)を得た。
A second embodiment of the present invention will be described. A 5 μm-thick polypropylene film was wrapped around the outer periphery of the capacitor element obtained by cutting in the same process as in Example 1 and packaged, and then a metal terminal was welded or soldered to the metallikon electrode part, followed by the same procedure. A capacitor (FIG. 2) according to one embodiment of the present invention was obtained in the exterior process.

【0027】この発明の実施例3について説明する。実
施例1と同様の工程で切断して得たコンデンサ素子の外
周部に厚さ5μmのポリプロピレンフィルムをコンデン
サ素子の切断面との間に約0.1mmの隙間を形成する
ように切断面側をたるませて巻きつけ、包装した後に、
同様の外装工程で本発明の一実施の形態のコンデンサ(
図3) を得た。図中8はモールド後のコンデンサ素子と
巻きつけた保護フィルム間の空間・隙間である。
A third embodiment of the present invention will be described. A polypropylene film having a thickness of 5 μm was cut on the outer peripheral portion of the capacitor element obtained by cutting in the same process as in Example 1 so that the cut surface side was formed so as to form a gap of about 0.1 mm between the cut surface of the capacitor element. After slackening and wrapping and wrapping,
In the same exterior process, the capacitor of one embodiment of the present invention (
Figure 3) was obtained. In the figure, 8 is a space / gap between the molded capacitor element and the wound protective film.

【0028】この発明の実施例4について説明する。厚
さ5μmのポリエチレンテレフタレートフィルムに亜鉛
を主成分とした金属を両面に蒸着し電極層を設けた両面
金属化ポリエチレンテレフタレートフィルムに、同じく
厚さ4μmの非金属化ポリプロピレンフィルムを交互に
大きなドラム上に巻回・積層し、そのフィルム両端部に
亜鉛金属溶射によりメタリコンを施し、さらに120℃
の加熱エージングをし、巻取りドラムを外して大円環の
コンデンサ母体を作りあげる。後は実施例3と同様の工
程で、図3に示す本発明の一実施の形態のコンデンサを
得た。
A fourth embodiment of the present invention will be described. A double-sided metallized polyethylene terephthalate film in which a metal mainly containing zinc is vapor-deposited on both sides of a polyethylene terephthalate film having a thickness of 5 μm and electrode layers are provided, and a non-metallized polypropylene film also having a thickness of 4 μm is alternately placed on a large drum. It is wound and laminated, and both ends of the film are subjected to metallikon by thermal spraying with zinc metal, and further 120 ° C.
After heat aging, remove the take-up drum and make a large-circle condenser body. Thereafter, the same steps as in Example 3 were carried out to obtain a capacitor according to one embodiment of the present invention shown in FIG.

【0029】この発明の実施例5について説明する。実
施例1と同様の工程で、外装樹脂にUV硬化型樹脂を使
用した図1に示す本発明の一実施の形態のコンデンサを
得た。
A fifth embodiment of the present invention will be described. By the same steps as in Example 1, a capacitor according to one embodiment of the present invention shown in FIG. 1 in which a UV curable resin was used as the exterior resin was obtained.

【0030】なお、これらの実施例1〜5、従来例のコ
ンデンサの定格は250V、C=10μFである。
The capacitors of Examples 1 to 5 and the conventional example are rated at 250 V and C = 10 μF.

【0031】上記実施例1〜5の積層金属化フィルムコ
ンデンサを室温25℃及び70℃の雰囲気の中で交流電
圧による絶縁破壊試験を行い、従来例の積層金属化フィ
ルムコンデンサとの比較を実施した。試験は200Vか
らスタートして、以下1分ごとに20Vずつ昇圧してい
き、コンデンサの容量が初期値からΔC=−20%以
上、又は電気的短絡状態に至る電圧を絶縁破壊電圧とし
た。その結果を表1に示した。
The laminated metallized film capacitors of Examples 1 to 5 were subjected to a dielectric breakdown test by an AC voltage in an atmosphere at room temperature of 25 ° C. and 70 ° C. and compared with the conventional laminated metallized film capacitors. . The test was started from 200 V, and the voltage was increased by 20 V every minute thereafter, and the voltage at which the capacitance of the capacitor was ΔC = −20% or more from the initial value, or an electrical short circuit state was taken as the dielectric breakdown voltage. The results are shown in Table 1.

【0032】[0032]

【表1】 [Table 1]

【0033】上記表1より、切断面又は素子外周にシー
ト状の保護フィルムの被覆、巻きつけのない従来の積層
金属化フィルムコンデンサが亜鉛を主とした蒸着電極金
属を用いた場合、約AC300〜350Vにて発煙を伴
った絶縁破壊をしたのに対し、本実施例のシート状のフ
ィルムを切断面に被覆したり、包装した図1、図2、図
3の構造である積層金属化コンデンサは誘電体フィルム
がポリプロピレン又はポリエチレンテレフタレートに関
係なく、AC600〜660Vにて保安機構が動作し発
煙・発火を伴う破壊が生じなかった。又外装樹脂をエポ
キシ樹脂だけでなく、UV樹脂を使用した際にも同様の
効果が見られた。誘電体フィルムに亜鉛を主成分とした
蒸着金属電極を用いた場合、約400℃と比較的融点が
低いため切断時の溶融が大きく、フィルム・金属の溶融
層の厚みが厚くなり、さらに従来例では素子周辺を外装
樹脂で隙間なく充填したために、自己回復時に発生する
フィルム・金属等の分解ガスが外部へ流出することが出
来ず、フィルム素子間に充満し、電気的短絡状態を招い
たためである。これに対し、本実施例では素子外周へシ
ート状の保護フィルムにて切断面を被覆、更に外周部へ
の巻きつけ・包装保護や保護フィルム−外装樹脂との間
に隙間を形成した場合には、自己回復時に発生するガス
の抜け性の向上、急激な内圧上昇による電気的短絡を防
ぐことができ、亜鉛を蒸着電極金属とした場合でも従来
例に比べ高い耐圧水準を得ることができる。
From Table 1 above, when a conventional laminated metallized film capacitor without a sheet-shaped protective film covering or wrapping the cut surface or the outer periphery of the element uses a vapor-deposited electrode metal mainly containing zinc, about AC300 to In contrast to the dielectric breakdown accompanied by smoking at 350 V, the laminated metallized capacitor having the structure of FIGS. 1, 2 and 3 in which the sheet-like film of the present embodiment is coated on the cut surface or packaged. Regardless of whether the dielectric film was polypropylene or polyethylene terephthalate, the safety mechanism operated at AC 600 to 660 V, and no destruction accompanied by smoking or ignition did not occur. Further, the same effect was observed when not only epoxy resin but also UV resin was used as the exterior resin. When a vapor-deposited metal electrode containing zinc as the main component is used for the dielectric film, the melting point is relatively low at about 400 ° C., so melting at the time of cutting is large, and the thickness of the film / metal molten layer becomes thicker. Since the surroundings of the elements were filled with the exterior resin without gaps, the decomposition gas of the film, metal, etc. generated during self-recovery could not flow out to the outside, and it filled between the film elements, causing an electrical short circuit. is there. On the other hand, in the present embodiment, when the cut surface is covered with a sheet-like protective film on the outer periphery of the element, and further when wound around the outer periphery, the package is protected, and a gap is formed between the protective film and the exterior resin. Further, it is possible to improve the escape property of gas generated at the time of self-recovery, prevent an electric short circuit due to a rapid increase in internal pressure, and obtain a higher withstand voltage level compared with the conventional example even when zinc is used as a vapor deposition electrode metal.

【0034】さらにコンデンサ素子の切断面にシート状
の保護フィルムを被覆したり、巻きつけ・包装する場合
には、電気絶縁性の優れた接着剤、粘着テープなどを用
いて、包装の密閉性を向上させることもできる。
When the cut surface of the capacitor element is covered with a sheet-like protective film, or wrapped and wrapped, an adhesive or an adhesive tape having an excellent electric insulation property is used to ensure the tightness of the package. It can also be improved.

【0035】本実施例では、誘電体フィルム、保護フィ
ルムとして厚さ5μm〜10μmのポリプロピレン、ポ
リエチレンテレフタレート等を用いたが、本発明はフィ
ルム厚み、種類等、これに限られるものではなく、他の
フィルム厚やポリエチレン系、塩化ビニル系、ポリオレ
フィン系、ポリフェニレンサルファイド系等のフィルム
を用いた場合でも、同様の効果が得られる。
In the present embodiment, as the dielectric film and the protective film, polypropylene having a thickness of 5 μm to 10 μm, polyethylene terephthalate, etc. were used, but the present invention is not limited to this in terms of film thickness, type, etc. Similar effects can be obtained even when a film thickness, a polyethylene film, a vinyl chloride film, a polyolefin film, a polyphenylene sulfide film, or the like is used.

【0036】同様に本実施例では、外装樹脂として主剤
と硬化剤からなる2液性の熱硬化性エポキシ樹脂、UV
樹脂等を用いたが、本発明はこれに限られるものではな
く、エポキシ樹脂、ウレタン樹脂、フェノール樹脂、シ
リコン樹脂などの熱硬化性樹脂を用いても同様の効果が
得られる。樹脂の硬化方法として、熱硬化性のほかに、
UV硬化などの方法も適用できる。
Similarly, in this embodiment, as the exterior resin, a two-component thermosetting epoxy resin composed of a main agent and a curing agent, UV is used.
Although a resin or the like is used, the present invention is not limited to this, and the same effect can be obtained by using a thermosetting resin such as an epoxy resin, a urethane resin, a phenol resin, or a silicone resin. As a method of curing the resin, in addition to thermosetting,
A method such as UV curing can also be applied.

【0037】[0037]

【発明の効果】この発明の請求項1記載の積層金属化フ
ィルムコンデンサによれば、コンデンサ素子の切断面を
シート状の保護フィルムにより被覆保護した状態で外装
樹脂を充填したので、構造的に切断面を有する積層金属
化コンデンサにおいて、蒸着金属に亜鉛を主とした金属
を用いた場合でも、切断面をシート状の保護フィルムで
被覆、保護することにより、切断面と外装樹脂との密着
を緩和することで、自己回復時に発生するフィルム・金
属等の分解ガスのガス抜け性の向上、急激な内圧上昇に
よる電気的短絡、発煙・発火を伴う絶縁破壊を防ぐこと
ができるコンデンサを低コストで得ることができる。こ
れにより長期使用における容量減少が少なく、優れた耐
電流、電圧特性をもち、かつ高い安全性、高電位傾度設
計を可能とした積層金属化フィルムコンデンサを実現で
きる効果を有するものである。
According to the laminated metallized film capacitor of the first aspect of the present invention, since the cut surface of the capacitor element is covered and protected by the sheet-like protective film and the exterior resin is filled, it is structurally cut. In a laminated metallized capacitor having a surface, even when a metal mainly containing zinc is used as a vapor-deposited metal, by covering and protecting the cut surface with a sheet-like protective film, the adhesion between the cut surface and the exterior resin is eased. By doing so, it is possible to obtain at low cost a capacitor that can improve the degassing property of decomposition gas such as film and metal generated during self-recovery, prevent electrical short circuit due to sudden increase in internal pressure, and prevent dielectric breakdown due to smoking and ignition. be able to. As a result, a laminated metallized film capacitor having a small capacity reduction over a long period of use, excellent withstand current and voltage characteristics, high safety, and a high potential gradient design can be realized.

【0038】請求項2では、保護フィルムをコンデンサ
素子の外周部に巻き付けて包装した状態で樹脂充填した
ので、請求項1の効果に加え、電極形成のメタリコン部
への外装樹脂浸入を防ぎ、メタリコンと蒸着電極金属と
のコンタクトの低下を回避できる。
In the second aspect, since the protective film is wrapped around the outer peripheral portion of the capacitor element and filled with the resin, the effect of the first aspect is obtained, and in addition to the effect of the first aspect, the external resin is prevented from invading the metallicon portion of the electrode formation, and the metallicon is prevented. It is possible to avoid a decrease in contact between the vapor-deposited electrode metal and.

【0039】請求項3では、保護フィルムはコンデンサ
素子の切断面側をたるませて、切断面と保護フィルム間
に0.02mm以上0.5mm以下の空間を設けたの
で、請求項1又は2の効果に加えて、保護フィルムでコ
ンデンサ素子の切断面を被覆、またはコンデンサ素子の
外周部に巻き付け・包装した状態で樹脂充填した際に、
切断面で発生する放電エネルギー、放電や自己回復時に
発生する可燃性ガスを切断面両側に形成された空間に逃
すことができ、それらのコンデンサ素子内への浸入を防
ぎ、内部での連続的な放電、電気的短絡状態を回避する
ことで、より高い安全性を得ることができる。
In the third aspect of the present invention, the protective film sags the cut surface side of the capacitor element, and a space of 0.02 mm or more and 0.5 mm or less is provided between the cut surface and the protective film. In addition to the effect, when the cut surface of the capacitor element is covered with a protective film, or wrapped around the outer periphery of the capacitor element and filled with resin,
The discharge energy generated at the cut surface, and the flammable gas generated at the time of discharge or self-recovery can be released to the space formed on both sides of the cut surface, preventing their infiltration into the capacitor element, and continuous inside. Higher safety can be obtained by avoiding discharge and electrical short circuit.

【0040】請求項4では、保護フィルムは、ポリエチ
レン系、ポリプロピレン系のフィルムのいずれかである
ので、一般的にガス透過性、耐熱性の優れたポリエチレ
ン、ポリプロピレンフィルムを保護フィルムに用いるこ
とで、切断面を被覆、包装などしても自己回復時に発生
するガスを密閉・充満させることなく、又発熱を伴う連
続使用においても効果を損なうことなく、高い安全性を
確保できる。
In the present invention, the protective film is either a polyethylene-based film or a polypropylene-based film. Therefore, by using a polyethylene or polypropylene film, which is generally excellent in gas permeability and heat resistance, as the protective film, Even if the cut surface is covered or packaged, the gas generated during self-recovery is not sealed and filled, and even in continuous use with heat generation, the effect is not impaired and high safety can be secured.

【0041】請求項5では、外装樹脂は、エポキシ樹
脂、ウレタン樹脂、フェノール樹脂、シリコン樹脂の熱
硬化性樹脂またはUV硬化樹脂であるので、製造工程、
工数に応じての使い分けが可能となる。
In the fifth aspect, the exterior resin is a thermosetting resin such as an epoxy resin, a urethane resin, a phenol resin, a silicone resin or a UV curing resin.
It can be used properly according to man-hours.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施の形態の積層金属化フィ
ルムコンデンサの外装後の構成を示す断面図である。
FIG. 1 is a cross-sectional view showing a structure of a laminated metalized film capacitor according to a first embodiment of the present invention after being packaged.

【図2】この発明の第2の実施の形態の積層金属化フィ
ルムコンデンサの外装後の構成を示す断面図である。
FIG. 2 is a sectional view showing a structure of a laminated metalized film capacitor according to a second embodiment of the present invention after being packaged.

【図3】この発明の第3の実施の形態の積層金属化フィ
ルムコンデンサの外装後の構成を示す断面図である。
FIG. 3 is a sectional view showing a structure of a laminated metalized film capacitor according to a third embodiment of the present invention after being packaged.

【図4】自己回復機能の作用説明図である。FIG. 4 is a diagram for explaining the operation of the self-healing function.

【図5】母体コンデンサの切断説明図である。FIG. 5 is an explanatory view for cutting a mother capacitor.

【図6】従来における積層金属化フィルムコンデンサの
切断面構成拡大図である。
FIG. 6 is an enlarged view of a cut surface configuration of a conventional laminated metallized film capacitor.

【符号の説明】[Explanation of symbols]

1 樹脂ケース 2 外装樹脂 3 電極引き出しメタリコン 4 切断刃による切断面 5 電極端子 6 保護フィルム 7 コンデンサ素子 1 resin case 2 Exterior resin 3 electrode extraction metallikon 4 Cutting surface by cutting blade 5 electrode terminals 6 protective film 7 Capacitor element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 納村 和美 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 竹岡 宏樹 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 塩田 浩平 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5E082 AA06 EE03 FF05 FG06 FG36   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kazumi Nomura             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Hiroki Takeoka             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Kohei Shioda             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F term (reference) 5E082 AA06 EE03 FF05 FG06 FG36

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 亜鉛を主とした蒸着電極金属を誘電体フ
ィルムの片面に形成した一対の金属化フィルム、または
誘電体フィルムの両面に形成した両面金属化フィルムと
非金属化フィルムとを重ね合わせて積層し、積層したフ
ィルムの両端面に電極を形成した母体コンデンサを切断
して得られるコンデンサ素子を有する積層金属化フィル
ムコンデンサであって、前記コンデンサ素子の切断面を
シート状の保護フィルムにより被覆保護した状態で外装
樹脂を充填したことを特徴とする積層金属化フィルムコ
ンデンサ。
1. A pair of metallized films in which a vapor-deposited electrode metal mainly containing zinc is formed on one side of a dielectric film, or a double-sided metallized film and non-metallized film formed on both sides of a dielectric film are superposed. A laminated metallized film capacitor having a capacitor element obtained by cutting a mother capacitor having electrodes formed on both end surfaces of the laminated film, the cut surface of the capacitor element being covered with a sheet-like protective film. A laminated metallized film capacitor characterized by being filled with an exterior resin in a protected state.
【請求項2】 保護フィルムをコンデンサ素子の外周部
に巻き付けて包装した状態で樹脂充填した請求項1記載
の積層金属化フィルムコンデンサ。
2. The laminated metallized film capacitor according to claim 1, wherein the protective film is wrapped around the outer periphery of the capacitor element and packaged and filled with resin.
【請求項3】 保護フィルムはコンデンサ素子の切断面
側をたるませて、切断面と保護フィルム間に0.02m
m以上0.5mm以下の空間を設けた請求項1または2
記載の積層金属化フィルムコンデンサ。
3. The protective film sags the cut surface side of the capacitor element, and the distance between the cut surface and the protective film is 0.02 m.
Claim 1 or 2 which provided the space of m or more and 0.5 mm or less.
The laminated metallized film capacitor described.
【請求項4】 保護フィルムは、ポリエチレン系、ポリ
プロピレン系のフィルムのいずれかである請求項1,2
または3記載の積層金属化フィルムコンデンサ。
4. The protective film is either a polyethylene-based film or a polypropylene-based film.
Or the laminated metallized film capacitor described in 3.
【請求項5】 外装樹脂は、エポキシ樹脂、ウレタン樹
脂、フェノール樹脂、シリコン樹脂の熱硬化性樹脂また
はUV硬化樹脂である請求項1,2,3または4記載の
積層金属化フィルムコンデンサ。
5. The laminated metallized film capacitor according to claim 1, wherein the exterior resin is a thermosetting resin such as an epoxy resin, a urethane resin, a phenol resin, a silicon resin or a UV curing resin.
JP2001209427A 2001-07-10 2001-07-10 Laminated metallized film capacitor Pending JP2003022928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001209427A JP2003022928A (en) 2001-07-10 2001-07-10 Laminated metallized film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001209427A JP2003022928A (en) 2001-07-10 2001-07-10 Laminated metallized film capacitor

Publications (1)

Publication Number Publication Date
JP2003022928A true JP2003022928A (en) 2003-01-24

Family

ID=19045082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001209427A Pending JP2003022928A (en) 2001-07-10 2001-07-10 Laminated metallized film capacitor

Country Status (1)

Country Link
JP (1) JP2003022928A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191462A (en) * 2003-12-26 2005-07-14 Shizuki Electric Co Inc Metallization film capacitor
JP2007129128A (en) * 2005-11-07 2007-05-24 Matsushita Electric Ind Co Ltd Method of manufacturing capacitor
JP2010140925A (en) * 2008-12-09 2010-06-24 Denso Corp Capacitor single element and capacitor module
JP2018160498A (en) * 2017-03-22 2018-10-11 ニチコン株式会社 Caseless film capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191462A (en) * 2003-12-26 2005-07-14 Shizuki Electric Co Inc Metallization film capacitor
JP2007129128A (en) * 2005-11-07 2007-05-24 Matsushita Electric Ind Co Ltd Method of manufacturing capacitor
JP4715453B2 (en) * 2005-11-07 2011-07-06 パナソニック株式会社 Capacitor manufacturing method
JP2010140925A (en) * 2008-12-09 2010-06-24 Denso Corp Capacitor single element and capacitor module
JP2018160498A (en) * 2017-03-22 2018-10-11 ニチコン株式会社 Caseless film capacitor

Similar Documents

Publication Publication Date Title
JP4249251B2 (en) Pouch-type lithium secondary battery
JP7300616B2 (en) Electrolytic capacitor and manufacturing method thereof
EP2133894B1 (en) Radial lead aluminum electrolytic capacitor
CA1193085A (en) Dielectric fluid for a capacitor
JP2007287829A (en) Metallized film capacitor
JP2007019235A (en) Dry capacitor
JP2007311625A (en) Metallized film capacitor
JP2003022928A (en) Laminated metallized film capacitor
KR100369070B1 (en) Material for battery case
JPS5911615A (en) Case sheathing type electronic part
CN210349582U (en) Capacitor with safety film
KR100551395B1 (en) Method of fabricating pouch type lithium secondary battery
JP2016197491A (en) Jacket material for battery and battery using the same
JP2001085268A (en) Dry metallized film capacitor
JPH04372107A (en) Metallized film capacitor
JP7272861B2 (en) Wound energy storage device and manufacturing method thereof
US11935697B2 (en) Capacitor
US9362051B2 (en) Self-protected low-voltage capacitor
JP6742898B2 (en) Method for manufacturing metallized film capacitor
JP2900751B2 (en) Film capacitor and manufacturing method thereof
JPH012312A (en) capacitor element
JP2770293B2 (en) Electrolytic capacitor
JP2874394B2 (en) Capacitor
JPH02294011A (en) Electrolytic capacitor
JPH08227824A (en) Capacitor