JP2007129128A - Method of manufacturing capacitor - Google Patents

Method of manufacturing capacitor Download PDF

Info

Publication number
JP2007129128A
JP2007129128A JP2005321967A JP2005321967A JP2007129128A JP 2007129128 A JP2007129128 A JP 2007129128A JP 2005321967 A JP2005321967 A JP 2005321967A JP 2005321967 A JP2005321967 A JP 2005321967A JP 2007129128 A JP2007129128 A JP 2007129128A
Authority
JP
Japan
Prior art keywords
capacitor
resin
capacitor element
filling
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005321967A
Other languages
Japanese (ja)
Other versions
JP4715453B2 (en
Inventor
Keiji Mitsuta
敬二 光田
Masakazu Fujiwara
正和 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005321967A priority Critical patent/JP4715453B2/en
Publication of JP2007129128A publication Critical patent/JP2007129128A/en
Application granted granted Critical
Publication of JP4715453B2 publication Critical patent/JP4715453B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To increase capacity and prolong service life of a capacitor in which a dielectric layer and a metal thin-film layer are laminated and formed by vapor deposition. <P>SOLUTION: The method of manufacturing a capacitor consists of a first process of forming a capacitor element mother body 3 by vapor deposition; a second process of pressing the mother body 3 and cutting into a line form, and forming metallicon electrodes 8 to form capacitor element lines; a third process of attaching leading-out electrode terminals 9 to form capacity elements 10; and a fourth process of housing each capacitor element 10 in a resin case 12 having an opening, and then, filling a gap with a filling resin 13. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、コンデンサ素子をケース内に樹脂モールドしたコンデンサで、電子機器に用いるコンデンサの製造方法に関するものである。   The present invention relates to a method of manufacturing a capacitor used in an electronic device, which is a capacitor in which a capacitor element is resin-molded in a case.

近年、車載用のDC/DCコンバータにおけるコンデンサは大電流化による静電容量の向上と小形化が強く求められている。特に、積層フィルムコンデンサに対して車載用においては、その使用環境下での小形化大容量化は不可欠であった。積層フィルムコンデンサにおいて小形大容量化を達成する手段として、以下のようにコンデンサを製造する方法が考えられる。   In recent years, capacitors in in-vehicle DC / DC converters have been strongly required to be improved in capacitance and miniaturized by increasing current. In particular, in the case of an in-vehicle use for a multilayer film capacitor, it is indispensable to reduce the size and increase the capacity under the usage environment. As a means for achieving a small size and large capacity in a laminated film capacitor, a method of manufacturing a capacitor as follows can be considered.

まず、誘電体層と金属薄膜層とを蒸着によって積層したコンデンサ素子母体を形成する。次に前記コンデンサ素子母体をプレスして切断しさらに両端面に溶融金属を吹き付けてメタリコン電極を形成した後、必要な容量になるように切断し、引き出し電極端子を取り付けてコンデンサ素子を形成する。これによって、従来のポリプロピレンやポリエチレンテレフタレート等の誘電体フィルムを用いたコンデンサに比べ誘電体を薄くできることから大容量化を達成できる。   First, a capacitor element base body in which a dielectric layer and a metal thin film layer are laminated by vapor deposition is formed. Next, the capacitor element base is pressed and cut, and further molten metal is sprayed on both end surfaces to form a metallicon electrode, then cut to a required capacity, and a lead electrode terminal is attached to form a capacitor element. As a result, the dielectric can be made thinner than a conventional capacitor using a dielectric film such as polypropylene or polyethylene terephthalate, so that a large capacity can be achieved.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
特開平11−147272号公報
As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
JP 11-147272 A

ところが、このような従来の構成においては、さらに静電容量の大容量化のために金属薄膜層と誘電体層の積層数を、例えば従来のおよそ3000層から6000層に増やすと、金属薄膜層と誘電体層の層間の接着力が低下し、実使用時において必要となるコンデンサの製品としての強度が確保できないという、誘電体層と金属薄膜層とを蒸着によって積層形成したコンデンサ特有の課題を有していた。   However, in such a conventional configuration, when the number of stacked metal thin film layers and dielectric layers is increased from, for example, about 3000 layers to 6000 layers in order to further increase the capacitance, the metal thin film layer As a result, the adhesive strength between the dielectric layer and the dielectric layer is reduced, and it is not possible to secure the required strength of the capacitor product during actual use. Had.

前記従来の課題を解決するために、本発明は、誘電体層と金属薄膜層とを蒸着によって積層形成したコンデンサ素子を、開口部を有する樹脂ケースに収容し、コンデンサ素子と樹脂ケースとの隙間に充填樹脂を充填する工程を有していることを特徴としたものである。   In order to solve the above-mentioned conventional problems, the present invention accommodates a capacitor element formed by laminating a dielectric layer and a metal thin film layer in a resin case having an opening, and a gap between the capacitor element and the resin case. And a step of filling a filling resin.

本発明のコンデンサの製造方法によれば、誘電体層と金属薄膜層とを蒸着によって積層形成したコンデンサの大容量化のために、積層数を増やすことによって低下した層間接着力が原因の製品の強度低下をカバーすることができ、さらにはコンデンサ素子を被覆樹脂によってコーティングすることによって充填樹脂に含まれる腐食成分による金属薄膜層の腐食を防ぐコンデンサを作ることができる。   According to the method for manufacturing a capacitor of the present invention, in order to increase the capacity of a capacitor in which a dielectric layer and a metal thin film layer are stacked by vapor deposition, the product of a product caused by an interlayer adhesive force decreased by increasing the number of stacked layers is used. A reduction in strength can be covered, and furthermore, a capacitor can be manufactured by coating a capacitor element with a coating resin, thereby preventing corrosion of the metal thin film layer due to a corrosive component contained in the filling resin.

これにより、小型で大容量のコンデンサが実現でき、さらに容量減少率を小さくでき、長寿命化も期待できるものである。   As a result, a small-sized and large-capacitance capacitor can be realized, the capacity reduction rate can be reduced, and a longer life can be expected.

以下、本発明の実施の形態1について、図を用いて説明する。従来のコンデンサと同一構成の部分、工程については説明を省略する。   Embodiment 1 of the present invention will be described below with reference to the drawings. The description of the same parts and processes as those of the conventional capacitor will be omitted.

(実施の形態)
図1は本実施の形態における第1の工程で用いられる積層製膜機の概要図である。
(Embodiment)
FIG. 1 is a schematic diagram of a laminated film forming machine used in the first step in the present embodiment.

1は製膜機であり、製膜機1内は真空となっている。2は製膜機内にある円筒状の支持体であり、製膜機内で支持体2が回転し、支持体2上に誘電体層と金属薄膜層とを積層形成することによって、後述するコンデンサ素子母体3を形成していく。   Reference numeral 1 denotes a film forming machine, and the inside of the film forming machine 1 is evacuated. Reference numeral 2 denotes a cylindrical support in the film forming machine. The support 2 rotates in the film forming machine, and a dielectric layer and a metal thin film layer are laminated on the support 2 to form a capacitor element to be described later. The mother body 3 is formed.

次に成膜工程について説明する。まず、真空を保持した状態で、誘電体形成部1cにおいて紫外線或いは電子線などで硬化する樹脂材料を加熱蒸発させ、支持体2の表面に樹脂材料の薄膜を形成し、硬化部1dで紫外線或いは電子線などの照射により樹脂材料の薄膜を硬化し、更に支持体2の回転を繰り返し、支持体2上に、必要な厚みになるように、誘電体層と同じ材料の保護層(図示せず)をコンデンサ素子の一方の最外層となる部分に形成する。次にマージン形成部1aにおいて、金属薄膜層に金属の非蒸着部分となるマージンと呼ばれる部分を形成するためのオイル等を塗布する。これによって誘電体層を挟んで金属薄膜層が対向したときに、コンデンサとしての機能を果たすことができるものである。   Next, the film forming process will be described. First, in a state where a vacuum is maintained, a resin material that is cured by ultraviolet rays or an electron beam in the dielectric forming portion 1c is heated and evaporated, a thin film of the resin material is formed on the surface of the support 2, and ultraviolet rays or A thin film of a resin material is cured by irradiation with an electron beam and the like, and further, the support 2 is rotated repeatedly. ) Is formed in a portion which becomes one outermost layer of the capacitor element. Next, in the margin forming portion 1a, oil or the like for forming a portion called a margin which becomes a metal non-deposition portion is applied to the metal thin film layer. Thus, when the metal thin film layers face each other with the dielectric layer in between, the function as a capacitor can be achieved.

さらに、金属薄膜層を形成するために、金属蒸着部1bにおいて、アルミニウムや亜鉛などの金属を蒸着し、次に誘電体形成部1cにおいて保護層と同様に、樹脂材料を加熱蒸発させ金属薄膜層の上に樹脂材料の薄膜を形成し、硬化部1dで樹脂薄膜を硬化し誘電体層を形成する。   Further, in order to form a metal thin film layer, a metal such as aluminum or zinc is vapor deposited in the metal vapor deposition portion 1b, and then the resin material is heated and evaporated in the dielectric formation portion 1c in the same manner as the protective layer. A thin film of a resin material is formed thereon, and the dielectric film is formed by curing the resin thin film at the curing portion 1d.

そして、これら誘電体層と金属薄膜層の形成を繰り返し、所定の積層数に到達した後に素子の他方の最外層となる部分に保護層を、素子の一方の最外層となる部分と同様に形成する。また、形成する保護層、誘電体層、金属薄膜層の厚みは、計測部1eにおいてX線や光の反射量などの非接触方式にて膜厚を計測し、その結果を元に樹脂材料や金属の蒸発量または支持体2の回転速度などを増減し制御する。必要に応じ、表面処理部1fにおいて、酸化処理などを行う。   Then, the formation of the dielectric layer and the metal thin film layer is repeated, and after the predetermined number of layers is reached, a protective layer is formed in the same manner as the one outermost layer of the element on the other outermost layer of the element. To do. Further, the thickness of the protective layer, dielectric layer, and metal thin film layer to be formed is measured by a non-contact method such as X-ray or light reflection amount in the measurement unit 1e, and based on the result, the resin material or The amount of evaporation of the metal or the rotation speed of the support 2 is increased or decreased and controlled. If necessary, oxidation treatment or the like is performed in the surface treatment unit 1f.

そして、形成されたコンデンサ素子母体3は、取り出し部1gより取り出す。   And the formed capacitor | condenser element base | substrate 3 is taken out from the taking-out part 1g.

なお、誘電体層、金属薄膜層の積層数は数千層のオーダーで行われ、本実施の形態においては6000層とした。   Note that the number of laminated dielectric layers and metal thin film layers is in the order of several thousand layers, and in this embodiment, 6000 layers.

図2(a)〜(c)と図3(a)および(b)は本実施の形態における第2の工程の概要図である。図2(a)において円筒状の支持体2上で積層されたコンデンサ素子母体3は、後工程において作業のし難い曲面を有した状態となっているため、図2(b)にあるようにプレス機4によって略平面状になるようにプレスする。   2A to 2C and FIGS. 3A and 3B are schematic views of the second step in the present embodiment. As shown in FIG. 2B, the capacitor element base 3 stacked on the cylindrical support 2 in FIG. 2A has a curved surface that is difficult to work in a later process. The press machine 4 is pressed so as to be substantially planar.

次に切断機5によって図2(c)にあるように、所定の幅で条3aの形態に切断し、図3(a)にあるように、金属製の枠組6に切断面が同一平面になるように重ねて配置し、図3(b)にあるように、吹き付け機7によって、亜鉛などの溶融金属を切断面に吹き付け、メタリコン電極8を形成しコンデンサ素子条3bとする。メタリコン電極8を形成した後は電極研磨(図示せず)や洗浄などでメタリコン電極8の電気的特性を向上させる処理を施す。   Next, as shown in FIG. 2 (c), the cutting machine 5 cuts the strip 3a with a predetermined width. As shown in FIG. 3 (a), the metal frame 6 has a cut surface on the same plane. As shown in FIG. 3B, molten metal such as zinc is sprayed on the cut surface by a spraying machine 7 to form a metallicon electrode 8 to form a capacitor element strip 3b. After the metallicon electrode 8 is formed, a treatment for improving the electrical characteristics of the metallicon electrode 8 is performed by electrode polishing (not shown) or cleaning.

図4(a)および(b)は本実施の形態における第3の工程の概要図である。   FIGS. 4A and 4B are schematic views of the third step in the present embodiment.

図4(a)にあるように、5は切断機であり、必要容量に応じて、コンデンサ素子条3bを切断し、コンデンサ素子片3cとする。さらに、図4(b)にあるように、最終製品の所定容量になるようコンデンサ素子片3cを重ねて配置し、引き出し電極端子9をメタリコン電極8に取り付けることによって、コンデンサ素子10を形成する。本実施の形態においてはコンデンサ素子片3cを3つ重ねて配置した。   As shown in FIG. 4A, reference numeral 5 denotes a cutting machine, which cuts the capacitor element strip 3b according to the required capacity to obtain a capacitor element piece 3c. Further, as shown in FIG. 4B, the capacitor element 10 is formed by arranging the capacitor element pieces 3 c so as to have a predetermined capacity of the final product and attaching the lead electrode terminal 9 to the metallicon electrode 8. In the present embodiment, three capacitor element pieces 3c are stacked.

図5および図6は本実施の形態における第4の工程の概要図である。11は浴槽に溜められた液状の被覆樹脂である。引き出し電極端子9の先端付近を残し、コンデンサ素子10全体が被覆樹脂11によってコーティングされるように浸漬する。本実施の形態においては被覆樹脂11としてビニルエステル樹脂を用いることとした。   5 and 6 are schematic views of the fourth step in the present embodiment. 11 is a liquid coating resin stored in the bathtub. The entire vicinity of the tip of the lead electrode terminal 9 is left so that the entire capacitor element 10 is coated with the coating resin 11. In the present embodiment, vinyl ester resin is used as the coating resin 11.

これは、後述する充填樹脂13に含まれる腐食性成分によってコンデンサ素子10の金属薄膜層が腐食されることを防ぎ、コンデンサの製品の容量減少率を小さくでき、製品の寿命も飛躍的に向上する効果を奏するものである。   This prevents the metal thin film layer of the capacitor element 10 from being corroded by a corrosive component contained in the filling resin 13 described later, can reduce the capacity reduction rate of the capacitor product, and dramatically improve the product life. There is an effect.

従来であれば、充填樹脂13にエポキシ樹脂を用いた場合、充填樹脂13を硬化させる目的として添加されている硬化剤に含まれる酸無水物が、結果としてコンデンサ素子10の金属薄膜層を腐食することによって、容量減少が発生していた。特に誘電体層と金属薄膜層の層間接着力の低下した状態では、層間への酸無水物の浸入が著しく、容量減少が短時間で発生していた。   Conventionally, when an epoxy resin is used for the filling resin 13, the acid anhydride contained in the curing agent added for the purpose of curing the filling resin 13 results in corrosion of the metal thin film layer of the capacitor element 10. As a result, capacity reduction occurred. In particular, in a state where the interlayer adhesion between the dielectric layer and the metal thin film layer was reduced, the penetration of the acid anhydride into the interlayer was remarkable, and the capacity reduction occurred in a short time.

しかし、本発明の実施の形態では、コンデンサ素子10を酸無水物に対してバリア性を有するビニルエステル樹脂による被覆樹脂11でコーティングするので、充填樹脂13であるエポキシ樹脂中の硬化剤に含まれる酸無水物による金属薄膜層の腐食を防ぐことができるのである。   However, in the embodiment of the present invention, the capacitor element 10 is coated with the coating resin 11 made of the vinyl ester resin having a barrier property against the acid anhydride, so that it is included in the curing agent in the epoxy resin that is the filling resin 13. Corrosion of the metal thin film layer by the acid anhydride can be prevented.

図6において、12は開口部を有する樹脂ケースであり、コンデンサ素子10を収容することのできる大きさとなっている。   In FIG. 6, reference numeral 12 denotes a resin case having an opening, which is large enough to accommodate the capacitor element 10.

13は充填樹脂であり、樹脂ケース12とコンデンサ素子10との隙間に充填機13aによって充填される。本実施の形態においては、先に述べたように、エポキシ樹脂が用いられており、酸無水物を含んだ硬化剤が添加されている。   A filling resin 13 fills a gap between the resin case 12 and the capacitor element 10 by a filling machine 13a. In this embodiment, as described above, an epoxy resin is used, and a curing agent containing an acid anhydride is added.

このように、コンデンサ素子10を樹脂ケース12に収容することで、誘電体層と金属薄膜層とを蒸着によって積層形成したコンデンサの大容量化の問題である、積層数を増やすことで生じる層間接着力の低下によるコンデンサ素子の強度低下をカバーすることができるものである。   In this way, by accommodating the capacitor element 10 in the resin case 12, indirect layer generation caused by increasing the number of layers, which is a problem of increasing the capacity of a capacitor in which a dielectric layer and a metal thin film layer are formed by vapor deposition. It is possible to cover a decrease in strength of the capacitor element due to a decrease in adhesion.

以上の工程を経て、誘電体層と金属薄膜層とを蒸着によって積層形成した大容量のコンデンサを実現することが出来、さらに容量減少率の小さい、長寿命化も期待できるコンデンサを得ることができるものである。   Through the above steps, it is possible to realize a large-capacity capacitor in which a dielectric layer and a metal thin film layer are formed by vapor deposition, and furthermore, it is possible to obtain a capacitor with a small capacity reduction rate and an expected long life. Is.

以上のように、本発明にかかるコンデンサの製造方法によれば、小型大容量で、製品の容量減少率を小さくでき、寿命も飛躍的に向上するコンデンサを提供でき、特に車載用のDC/DCコンバータにおけるノイズ除去などに有用である。   As described above, according to the method for manufacturing a capacitor according to the present invention, it is possible to provide a capacitor having a small size and a large capacity, capable of reducing the rate of decrease in the capacity of the product, and dramatically improving the service life. This is useful for noise removal in converters.

本実施の形態における第1の工程で用いられる積層製膜機の概要図Schematic diagram of the laminated film forming machine used in the first step in the present embodiment (a)〜(c)は本実施の形態における第2の工程の概要図(A)-(c) is the schematic of the 2nd process in this Embodiment. (a)および(b)は本実施の形態における第2の工程の概要図(A) And (b) is the schematic diagram of the 2nd process in this Embodiment. (a)および(b)は本実施の形態における第3の工程の概要図(A) And (b) is the schematic diagram of the 3rd process in this Embodiment. 本実施の形態における第4の工程の概要図Outline diagram of fourth step in the present embodiment 本実施の形態における第5の工程の概要図Outline diagram of fifth step in the present embodiment

符号の説明Explanation of symbols

1 製膜機
2 支持体
3 コンデンサ素子母体
3a 条
3b コンデンサ素子条
3c コンデンサ素子片
4 プレス機
5 切断機
6 枠組
7 吹き付け機
8 メタリコン電極
9 引き出し電極端子
10 コンデンサ素子
11 被覆樹脂
12 樹脂ケース
13 充填樹脂
13a 充填機
DESCRIPTION OF SYMBOLS 1 Film forming machine 2 Support body 3 Capacitor element base 3a Article 3b Capacitor element article 3c Capacitor element piece 4 Press machine 5 Cutting machine 6 Frame 7 Spraying machine 8 Metallicon electrode 9 Lead electrode terminal 10 Capacitor element 11 Coating resin 12 Resin case 13 Filling Resin 13a filling machine

Claims (4)

真空中で周回する支持体上に、樹脂を積層してなる保護層と、マージン部により分割された金属薄膜層と誘電体層を交互に積層することによりコンデンサとしての容量を発生する素子層と、樹脂を積層してなる保護層を順次蒸着により形成した後に、前記二つの保護層と素子層とからなるコンデンサ素子母体を、前記支持体から分離する第1の工程と、前記コンデンサ素子母体をプレスした後に条の形態に切断し、両端面に溶融金属を吹き付けてメタリコン電極を形成し、コンデンサ素子条とする第2の工程と、前記コンデンサ素子条を必要な容量に応じて切断した後に、引き出し電極端子を取り付けてコンデンサ素子とする第3の工程と、開口部を有する樹脂ケースに前記コンデンサ素子を収容した後、前記樹脂ケースと前記コンデンサ素子との隙間を充填樹脂によって充填する第4の工程とからなるコンデンサの製造方法。 A protective layer formed by laminating a resin on a support that circulates in a vacuum, and an element layer that generates a capacitance as a capacitor by alternately laminating metal thin film layers and dielectric layers divided by a margin portion A first step of separating the capacitor element matrix comprising the two protective layers and the element layer from the support after the protective layer formed by laminating the resin is sequentially formed by vapor deposition; and After pressing, cut into strips, spraying molten metal on both end surfaces to form metallicon electrodes, and then cutting the capacitor element strips according to the required capacity A third step of attaching a lead electrode terminal to form a capacitor element; and after accommodating the capacitor element in a resin case having an opening, the resin case and the capacitor element A fourth step the method of manufacturing the capacitor consisting of filling with the filling resin a gap between. 前記第4の工程において、前記樹脂ケースに前記コンデンサ素子を収容する前に前記コンデンサ素子を液状の被覆樹脂に浸漬し、引き出し電極端子の一部を除く前記コンデンサ素子全体をコーティングすることを特徴とした請求項1に記載のコンデンサの製造方法。 In the fourth step, before the capacitor element is accommodated in the resin case, the capacitor element is immersed in a liquid coating resin to coat the entire capacitor element except a part of the lead electrode terminal. The method for producing a capacitor according to claim 1. 前記第4の工程において、充填樹脂がエポキシ樹脂であることを特徴とした請求項1に記載のコンデンサの製造方法。 The method for manufacturing a capacitor according to claim 1, wherein in the fourth step, the filling resin is an epoxy resin. 前記第4の工程において、被覆樹脂がビニルエステル樹脂であることを特徴とした請求項2に記載のコンデンサの製造方法。 3. The method of manufacturing a capacitor according to claim 2, wherein in the fourth step, the coating resin is a vinyl ester resin.
JP2005321967A 2005-11-07 2005-11-07 Capacitor manufacturing method Expired - Fee Related JP4715453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005321967A JP4715453B2 (en) 2005-11-07 2005-11-07 Capacitor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005321967A JP4715453B2 (en) 2005-11-07 2005-11-07 Capacitor manufacturing method

Publications (2)

Publication Number Publication Date
JP2007129128A true JP2007129128A (en) 2007-05-24
JP4715453B2 JP4715453B2 (en) 2011-07-06

Family

ID=38151513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005321967A Expired - Fee Related JP4715453B2 (en) 2005-11-07 2005-11-07 Capacitor manufacturing method

Country Status (1)

Country Link
JP (1) JP4715453B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178133A1 (en) * 2013-05-01 2014-11-06 小島プレス工業株式会社 Power storage device, method for producing same, and device for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144523A (en) * 1980-04-11 1981-11-10 Tdk Electronics Co Ltd Method of manufacturing laminated capacitor
JPS6189618A (en) * 1984-10-08 1986-05-07 松下電器産業株式会社 Resin-filled dry type metalized film capacitor
JP2003022928A (en) * 2001-07-10 2003-01-24 Matsushita Electric Ind Co Ltd Laminated metallized film capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144523A (en) * 1980-04-11 1981-11-10 Tdk Electronics Co Ltd Method of manufacturing laminated capacitor
JPS6189618A (en) * 1984-10-08 1986-05-07 松下電器産業株式会社 Resin-filled dry type metalized film capacitor
JP2003022928A (en) * 2001-07-10 2003-01-24 Matsushita Electric Ind Co Ltd Laminated metallized film capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178133A1 (en) * 2013-05-01 2014-11-06 小島プレス工業株式会社 Power storage device, method for producing same, and device for producing same
CN105164773A (en) * 2013-05-01 2015-12-16 小岛冲压工业株式会社 Power storage device, method for producing same, and device for producing same

Also Published As

Publication number Publication date
JP4715453B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
US20130208401A1 (en) Electronic component and method for manufacturing electronic component
KR100999661B1 (en) Process for producing laminated film capacitor
US7736397B2 (en) Method for manufacturing capacitor embedded in PCB
US8404134B2 (en) Method for manufacturing electrode foil
JP2007200950A (en) Multilayer solid-state electrolytic capacitor
JPH0793236B2 (en) Film capacitor and manufacturing method thereof
JP2007287829A (en) Metallized film capacitor
EP2273517B1 (en) Shapeable short-resistant capacitor
JP2006264317A (en) Metalized film, film for capacitor and film capacitor using it
JP4734369B2 (en) Capacitor and manufacturing method thereof
US7906200B2 (en) Composite circuit substrate structure
JP4715453B2 (en) Capacitor manufacturing method
WO2004075219A1 (en) A wound capacitor
CA1065596A (en) Means and method for applying material to a substrate
JP2013247264A (en) Film capacitor
JP6131395B1 (en) Method for manufacturing printed wiring board
JP4184407B2 (en) Circuit board peelable foil
JPH06168845A (en) Chip type laminated film capacitor
JP2007194310A (en) Solid electrolytic capacitor, and method of manufacturing same
CN115621012A (en) Coil component
US7241510B2 (en) Peelable circuit board foil
JP2007242880A (en) Film deposition method
JP2007318056A (en) Laminated solid electrolytic capacitor and method for manufacturing laminate chip therefor
WO2023190050A1 (en) Solid electrolytic capacitor
JP6432684B2 (en) Conductive substrate, method for manufacturing conductive substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081021

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

R151 Written notification of patent or utility model registration

Ref document number: 4715453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees