JP6742898B2 - Method for manufacturing metallized film capacitor - Google Patents

Method for manufacturing metallized film capacitor Download PDF

Info

Publication number
JP6742898B2
JP6742898B2 JP2016251762A JP2016251762A JP6742898B2 JP 6742898 B2 JP6742898 B2 JP 6742898B2 JP 2016251762 A JP2016251762 A JP 2016251762A JP 2016251762 A JP2016251762 A JP 2016251762A JP 6742898 B2 JP6742898 B2 JP 6742898B2
Authority
JP
Japan
Prior art keywords
film
vapor deposition
low resistance
magnesium
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016251762A
Other languages
Japanese (ja)
Other versions
JP2018107273A (en
Inventor
甲児 ▲高▼垣
甲児 ▲高▼垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP2016251762A priority Critical patent/JP6742898B2/en
Publication of JP2018107273A publication Critical patent/JP2018107273A/en
Application granted granted Critical
Publication of JP6742898B2 publication Critical patent/JP6742898B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、誘電体フィルム、金属蒸着電極、膜厚を厚くした低抵抗部(ヘビーエッジ部)を基本構造とする第1および第2の金属化フィルムを交互に重ね合わせ、陽極側および陰極側の電極引出し部(メタリコン)が接続されてなるコンデンサ素子を有し、さらに、金属蒸着電極としてアルミニウム(Al)を主成分とする蒸着電極を用いて構成される金属化フィルムコンデンサの製造方法に関する。 According to the present invention, first and second metallized films having a basic structure of a dielectric film, a metal vapor deposition electrode, and a thickened low resistance portion (heavy edge portion) are alternately laminated, and an anode side and a cathode side are formed. the electrode lead-out portion (metallikon) have a capacitor element is connected, furthermore, a method for producing a metallized film capacitor formed by using a deposition electrode mainly composed of aluminum (Al) as a metal deposition electrode.

上記構成の金属化フィルムコンデンサは一般的に図2に示すような構造(概略構造)を有している(例えば特許文献1参照)。図2において、1は第1の金属化フィルム、2は第2の金属化フィルム、1a,2aは誘電体フィルムとしてのポリプロピレンフィルム、1b,2bはアルミニウムを主成分とする蒸着電極、1c′,2c′は膜厚を厚くした低抵抗部、1d,2dは絶縁マージン、3Aは陽極側の電極引出し部、3Bは陰極側の電極引出し部、4はコンデンサ素子、5Aは陽極側の外部引き出し端子、5Bは陰極側の外部引き出し端子である。 The metallized film capacitor having the above structure generally has a structure (schematic structure) as shown in FIG. 2 (see, for example, Patent Document 1). In FIG. 2, 1 is a first metallized film, 2 is a second metallized film, 1a and 2a are polypropylene films as dielectric films, 1b and 2b are vapor deposition electrodes containing aluminum as a main component, 1c′, Reference numeral 2c' is a low resistance portion having a thick film thickness, 1d and 2d are insulation margins, 3A is an electrode lead portion on the anode side, 3B is an electrode lead portion on the cathode side, 4 is a capacitor element, 5A is an external lead terminal on the anode side. 5B is an external lead terminal on the cathode side.

第1の金属化フィルム1において、ポリプロピレンフィルム1aのフィルム面上にアルミニウムを主成分とする蒸着電極1bが形成され、蒸着電極1bの幅方向の一端側の表面に膜厚を厚くした低抵抗部1c′が形成されている。同様に、第2の金属化フィルム2において、ポリプロピレンフィルム2aのフィルム面上にアルミニウムを主成分とする蒸着電極2bが形成され、蒸着電極2bの幅方向の他端側の表面に低抵抗部2c′が形成されている。 In the first metallized film 1, a vapor deposition electrode 1b containing aluminum as a main component is formed on the film surface of a polypropylene film 1a, and a low resistance portion having a thick film on the surface of the vapor deposition electrode 1b at one end side in the width direction. 1c' is formed. Similarly, in the second metallized film 2, the vapor deposition electrode 2b containing aluminum as a main component is formed on the film surface of the polypropylene film 2a, and the low resistance portion 2c is formed on the surface of the vapor deposition electrode 2b on the other end side in the width direction. 'Is formed.

第1の金属化フィルム1と第2の金属化フィルム2とが重ね合わされた上で多重に巻回されて円筒状にされ、プレスで断面小判形の扁平柱状体に成形され、その軸方向の一端および他端のそれぞれにおいて亜鉛(Zn)の金属溶射により陽極側の電極引出し部3Aと陰極側の電極引出し部3Bを接続してコンデンサ素子4を構成している。蒸着電極1bと低抵抗部1c′は陽極側の電極引出し部3Aに接続され、蒸着電極2bと低抵抗部2c′は陰極側の電極引出し部3Bに接続される。 The first metallized film 1 and the second metallized film 2 are superposed and wound in multiple layers to form a cylindrical shape, which is pressed into a flat columnar body having an oval cross section. At each of one end and the other end, the anode side electrode lead-out portion 3A and the cathode side electrode lead-out portion 3B are connected by metal spraying of zinc (Zn) to form the capacitor element 4. The vapor deposition electrode 1b and the low resistance portion 1c' are connected to the electrode lead-out portion 3A on the anode side, and the vapor deposition electrode 2b and the low resistance portion 2c' are connected to the electrode lead-out portion 3B on the cathode side.

そして、陽極側の電極引出し部3Aに対して陽極側の外部引き出し端子5Aが接続され、陰極側の電極引出し部3Bに対して陰極側の外部引き出し端子5Bが接続されて金属化フィルムコンデンサが構成されている。 Then, the external lead-out terminal 5A on the anode side is connected to the electrode lead-out portion 3A on the anode side, and the external lead-out terminal 5B on the cathode side is connected to the electrode lead-out portion 3B on the cathode side to form a metallized film capacitor. Has been done.

一般的に亜鉛の溶射によって形成される電極引出し部3A,3Bに対してアルミニウムからなる蒸着電極1b,2bを電気的に接続する。この場合に、接続抵抗を小さくするために蒸着電極1b,2bの端部に亜鉛の蒸着膜による低抵抗部1c′,2c′を形成し、この亜鉛の低抵抗部1c′,2c′を介してアルミニウムの蒸着電極1b,2bと亜鉛の電極引出し部3A,3Bとを接続する。 The vapor deposition electrodes 1b and 2b made of aluminum are electrically connected to the electrode lead-out portions 3A and 3B which are generally formed by spraying zinc. In this case, in order to reduce the connection resistance, low resistance portions 1c' and 2c' made of a zinc vapor deposition film are formed at the end portions of the vapor deposition electrodes 1b and 2b, and the low resistance portions 1c' and 2c' of zinc are interposed. The aluminum vapor deposition electrodes 1b and 2b are connected to the zinc electrode lead-out portions 3A and 3B.

図3は特許文献2に開示された第1の従来例の金属化フィルムコンデンサの要部の断面構造を示す。ポリプロピレンフィルム11上にアルミニウムからなる蒸着電極12Aが形成され、このアルミニウムからなる蒸着電極12Aの幅方向端部に亜鉛の蒸着膜による低抵抗部12Cが形成されている。そして、亜鉛の低抵抗部12Cとアルミニウムの蒸着電極12Aとの全体に対してマグネシウムからなる蒸着電極12Bが形成されている。なお、蒸着電極部のうち低抵抗部12Cを除いた部分であるアクティブ部はアルミニウムの蒸着電極12Aとマグネシウムの蒸着電極12Bとの2層構造となっている(図8A、段落[0076]参照)。 FIG. 3 shows a sectional structure of a main part of the first conventional metallized film capacitor disclosed in Patent Document 2. A vapor deposition electrode 12A made of aluminum is formed on the polypropylene film 11, and a low resistance portion 12C made of a vapor deposition film of zinc is formed at an end portion in the width direction of the vapor deposition electrode 12A made of aluminum. Then, a vapor deposition electrode 12B made of magnesium is formed on the entire low resistance portion 12C of zinc and the vapor deposition electrode 12A of aluminum. The active portion, which is a portion of the vapor deposition electrode portion excluding the low resistance portion 12C, has a two-layer structure of an aluminum vapor deposition electrode 12A and a magnesium vapor deposition electrode 12B (see FIG. 8A, paragraph [0076]). ..

蒸着電極部のアクティブ部をアルミニウムとマグネシウムとの2層構造とすることにより、アルミニウム単独で構成する場合に比べて耐湿性が改善されるとしている(段落[0071]参照)。すなわち、アルミニウムは水分と反応して酸化アルミニウム(Al23 )を生成するが、これは絶縁体であるために、蒸着電極部としての機能が損なわれることになる。そこで、水分との反応性がアルミニウムより高いマグネシウムを加えることにより水分を取り除き、耐湿性の改善を通じて漏れ電流を低減する(段落[0029]〜[0034]参照)。 It is said that the moisture resistance is improved by forming the active portion of the vapor deposition electrode portion into a two-layer structure of aluminum and magnesium, as compared with the case of using aluminum alone (see paragraph [0071]). That is, aluminum reacts with water to generate aluminum oxide (Al 2 O 3 ), but since this is an insulator, the function as the vapor deposition electrode part is impaired. Therefore, moisture is removed by adding magnesium, which has a higher reactivity with water than aluminum, and leakage current is reduced by improving moisture resistance (see paragraphs [0029] to [0034]).

亜鉛の低抵抗部12Cの上部を被覆するマグネシウムの蒸着電極12Bの役割については、マグネシウムの蒸着電極12Bが亜鉛の低抵抗部12Cの酸化劣化を抑制するとしている(段落[0076]参照)。 Regarding the role of the vapor deposition electrode 12B of magnesium covering the upper portion of the low resistance portion 12C of zinc, the vapor deposition electrode 12B of magnesium suppresses the oxidative deterioration of the low resistance portion 12C of zinc (see paragraph [0076]).

図4は特許文献3に開示された第2の従来例の金属化フィルムコンデンサの要部の断面構造を示す。ポリプロピレンフィルム3a(3b)上にアルミニウムの蒸着電極4a(4b)が形成され、このアルミニウムの蒸着電極4a(4b)の幅方向端部に亜鉛(またはアルミニウム)の低抵抗部13a(13b)が形成されている。そして、亜鉛の低抵抗部13a(13b)の上面に対して主成分が酸化アルミニウム(絶縁体)からなる蒸着膜(第1の膜)14a(14b)が形成され、さらに酸化アルミニウムの第1の蒸着膜14a(14b)の上面に酸化マグネシウム(MgO)からなる蒸着膜(第2の膜)15a(15b)が形成されている。5a(5b)は絶縁マージンである。 FIG. 4 shows a cross-sectional structure of a main part of a second conventional metallized film capacitor disclosed in Patent Document 3. The aluminum vapor deposition electrode 4a (4b) is formed on the polypropylene film 3a (3b), and the low resistance portion 13a (13b) of zinc (or aluminum) is formed at the widthwise end of the aluminum vapor deposition electrode 4a (4b). Has been done. Then, a vapor deposition film (first film) 14a (14b) whose main component is aluminum oxide (insulator) is formed on the upper surface of the low resistance portion 13a (13b) of zinc, and the first aluminum oxide film is further formed. A vapor deposition film (second film) 15a (15b) made of magnesium oxide (MgO) is formed on the upper surface of the vapor deposition film 14a (14b). 5a (5b) is an insulation margin.

この場合に、亜鉛の低抵抗部13a(13b)を酸化アルミニウムの第1の蒸着膜14a(14b)で覆い、さらに第1の蒸着膜14a(14b)を酸化マグネシウムの第2の蒸着膜15a(15b)で覆っているので、低抵抗部13a(13b)の腐食が抑制され、アルミニウムの蒸着電極4a(4b)とメタリコン電極6a(6b)との優れたコンタクト性を長期間にわたり維持できるとしている。その理由は、マグネシウムは水に対する反応性がアルミニウムよりも高くてコンデンサの内部に浸入してきた水分を取り除く性質に優れるため、低抵抗部13a(13b)と水分の接触を抑制できるからであるとしている(図4、段落[0045]〜[0049]参照)。なお、第2の蒸着膜15a(15b)については、酸化マグネシウムの代わりに酸化ベリリウムまたは酸化チタンで構成してもよいとしている(段落[0051]参照)。 In this case, the low resistance portion 13a (13b) of zinc is covered with the first vapor deposition film 14a (14b) of aluminum oxide, and the first vapor deposition film 14a (14b) is further covered with the second vapor deposition film 15a of magnesium oxide ( Since it is covered with 15b), corrosion of the low resistance portion 13a (13b) is suppressed, and excellent contact property between the aluminum vapor deposition electrode 4a (4b) and the metallikon electrode 6a (6b) can be maintained for a long time. .. The reason is that magnesium has a higher reactivity with water than aluminum and has an excellent property of removing water that has penetrated into the inside of the capacitor, so that the contact between the low resistance portion 13a (13b) and water can be suppressed. (See Figure 4, paragraphs [0045]-[0049]). The second vapor deposition film 15a (15b) may be composed of beryllium oxide or titanium oxide instead of magnesium oxide (see paragraph [0051]).

以上、第1の従来例と第2の従来例について詳しく見てきた。いずれも水分との反応性がアルミニウムより高いマグネシウムを追加することによって水分を取り除き、耐湿性を改善することに重点をおいている。 The first conventional example and the second conventional example have been described in detail above. Both focus on improving moisture resistance by removing water by adding magnesium, which has a higher reactivity with water than aluminum.

特開2013−219094号公報JP, 2013-219094, A 国際公開第2011/055517号International Publication No. 2011/055517 国際公開第2013/179612号International Publication No. 2013/179612

しかしながら、特許文献2、3に記載のフィルムコンデンサによれば、耐湿性は改善するものの、以下に示す問題があった。 However, although the film capacitors described in Patent Documents 2 and 3 have improved moisture resistance, they have the following problems.

アルミニウムや亜鉛を誘電体フィルム上に蒸着する際に、誘電体フィルムは蒸着源からの熱影響を少なからず受けてしまうが、ポリプロピレンフィルム等の誘電体フィルムは比較的熱に弱い。そのため、アルミニウム蒸着源や亜鉛蒸着源に加えてマグネシウムを蒸着するための蒸着源を設けた場合には、誘電体フィルムが受ける熱ダメージが大きくなり、誘電体フィルムが劣化するおそれがある。 When aluminum or zinc is vapor-deposited on a dielectric film, the dielectric film is affected by heat from a vapor deposition source to a considerable extent, but a dielectric film such as a polypropylene film is relatively weak against heat. Therefore, when the vapor deposition source for vapor-depositing magnesium is provided in addition to the aluminum vapor deposition source and the zinc vapor deposition source, the thermal damage to the dielectric film increases and the dielectric film may deteriorate.

また、マグネシウムを蒸着するための蒸着源を新たに配置する必要があることから、設備の増設を要し、コストが増加してしまう。 In addition, since it is necessary to newly dispose a vapor deposition source for vapor depositing magnesium, it is necessary to add equipment and the cost is increased.

また、特許文献1に記載のフィルムコンデンサでは、低抵抗部の亜鉛とポリプロピレンフィルム等の誘電体フィルムの密着性が悪く、低抵抗部と対向する誘電体フィルムとが密着せず、低抵抗部と誘電体フィルムとの界面にわずかではあるが他の部位と比較して大きな空隙が生じ、長期使用における電圧印加によって空隙での部分放電が頻発し、誘電体フィルムの絶縁性能の低下、フィルム端部の集中破壊ひいては金属化フィルムコンデンサの寿命短縮を招いていた。 Further, in the film capacitor described in Patent Document 1, the adhesion between the low resistance portion zinc and the dielectric film such as polypropylene film is poor, and the low resistance portion and the opposing dielectric film do not adhere to each other, and A large gap is created at the interface with the dielectric film, although it is small compared to other parts, and partial discharge in the gap frequently occurs due to voltage application during long-term use, which lowers the insulation performance of the dielectric film and the film edge. This resulted in the concentrated destruction of the metallized film capacitor, which in turn shortened the life of the metalized film capacitor.

本発明はこのような事情に鑑みて創作したものであり、誘電体フィルムの熱による劣化を抑制しながら、低抵抗部と誘電体フィルムとの密着性を改善することでフィルム端部の集中破壊を確実に防止し、金属化フィルムコンデンサの寿命を向上させることを目的とする。 The present invention has been made in view of such circumstances, and by suppressing the deterioration of the dielectric film due to heat, by improving the adhesion between the low resistance portion and the dielectric film, the concentrated destruction of the film edge portion is achieved. Is reliably prevented, and the life of the metallized film capacitor is improved.

すなわち、一方の金属化フィルムにおける低抵抗部と、この金属化フィルムに重ね合わされる他方の金属化フィルムにおける誘電体フィルムとの密着性の改善を図ろうとするものである。 That is, it is intended to improve the adhesion between the low resistance portion of one metallized film and the dielectric film of the other metallized film which is superposed on this metallized film.

本発明は、次の手段を講じることにより上記の課題を解決する。 The present invention solves the above problems by taking the following means.

発明による金属化フィルムコンデンサの製造方法は、
誘電体フィルムの表面にアルミニウムを主成分とする金属粒子を蒸着して蒸着電極を形成し、前記蒸着電極の幅方向の一方端の表面に蒸着膜厚を厚くして抵抗値を低くした低抵抗部を形成して第1および第2の金属化フィルムを作製する工程と
得られた前記第1および第2の金属化フィルム各々の前記低抵抗部の前記幅方向における位置関係を互いに反対側とする状態で、これら第1の金属化フィルムと第2の金属化フィルムとを重ね合わせ巻回する工程と
得られた巻回体の軸方向の一端および他端にそれぞれ陽極側および陰極側の電極引出し部を接続してコンデンサ素子を作製する工程と
前記コンデンサ素子の前記陽極側および陰極側の各電極引出し部にそれぞれ極性を対応させて陽極側および陰極側の外部引き出し端子を接続する工程と
を備えた金属化フィルムコンデンサの製造方法であって、
前記蒸着電極および低抵抗部を形成する工程は、
前記アルミニウムを主成分とする金属蒸着源から蒸発される金属微粒子を前記誘電体フィルムに付着させる第1の工程と、
亜鉛とマグネシウムの混合蒸着源から蒸発される亜鉛・マグネシウムの微粒子を、前記アルミニウムを主成分とする蒸着電極の幅方向の一方端の表面に付着させて前記第1および第2の金属化フィルムにおける前記各低抵抗部を亜鉛とマグネシウムの混合蒸着層で形成する第2の工程と
を有することを特徴とする。
The method for producing a metallized film capacitor according to the present invention comprises:
Dielectric aluminum was deposited fine metal particles composed mainly forming a deposited electrode on the surface of the film, it was to increase the deposited film thickness on the surface of the hand end in the width direction of the deposition electrode and the resistance value low Forming a low resistance portion to produce the first and second metallized films ;
The first metallized film and the second metallized film are obtained in a state where the positional relationship in the width direction of the low resistance portions of each of the obtained first and second metallized films is opposite to each other. a step of winding by superimposing,
A step of manufacturing a capacitor element by connecting the electrode lead-out portions on the anode side and the cathode side, respectively, to one end and the other end in the axial direction of the obtained wound body,
A step of connecting external lead terminals on the anode side and the cathode side by making the polarities correspond to the respective electrode lead portions on the anode side and the cathode side of the capacitor element ;
A method of manufacturing a metallized film capacitor comprising:
The step of forming the vapor deposition electrode and the low resistance portion,
A first step of adhering fine metal particles evaporated from a metal deposition source containing aluminum as a main component to the dielectric film;
In the first and second metallized films, zinc/magnesium fine particles evaporated from a mixed deposition source of zinc and magnesium are attached to the surface of one end in the width direction of the deposition electrode containing aluminum as a main component . A second step of forming each of the low resistance portions by a mixed vapor deposition layer of zinc and magnesium;
It is characterized by having .

上記構成の本発明の金属化フィルムコンデンサおよびその製造方法においては、誘電体フィルムのフィルム面に金属の蒸着によって蒸着電極を形成するが、これについてはアルミニウムを主成分とする蒸着電極とする。誘電体フィルムに蒸着電極を形成したものが金属化フィルムであるが、これには陽極側の金属化フィルムと陰極側の金属化フィルムとがある。これが第1の金属化フィルムと第2の金属化フィルムであり、いずれが陽極側であってもいずれが陰極側であっても構わない。第1の金属化フィルムの幅方向の一端側の表面に蒸着膜厚を厚くして抵抗値を低くした低抵抗部が形成され、第2の金属化フィルムの幅方向の他端側の表面に同様の低抵抗部が形成される。低抵抗部は蒸着電極(主成分アルミニウム)の幅方向の端部でその電極面に積層する状態で蒸着されたものである。第1の金属化フィルムの低抵抗部は第2の金属化フィルムの誘電体フィルムに接触し、第2の金属化フィルムの低抵抗部は第1の金属化フィルムの誘電体フィルムに接触する状態で、第1の金属化フィルムと第2の金属化フィルムとが交互に重ね合わされる。 In the metallized film capacitor of the present invention having the above-described structure and the method for manufacturing the same, the vapor deposition electrode is formed on the film surface of the dielectric film by vapor deposition of metal, and this is a vapor deposition electrode containing aluminum as a main component. A metallized film is formed by forming a vapor deposition electrode on a dielectric film, and includes a metallized film on the anode side and a metallized film on the cathode side. This is the first metallized film and the second metallized film, which may be on the anode side or on the cathode side. On the surface of the first metallized film on one end side in the width direction, a low resistance portion having a thicker vapor deposition film and a lower resistance value is formed, and on the surface of the other end of the second metallized film in the width direction. A similar low resistance part is formed. The low resistance portion is vapor-deposited in a state of being laminated on the electrode surface at the end portion in the width direction of the vapor deposition electrode (main component aluminum). The low resistance part of the first metallized film contacts the dielectric film of the second metallized film, and the low resistance part of the second metallized film contacts the dielectric film of the first metalized film. Then, the first metallized film and the second metallized film are alternately stacked.

本発明の金属化フィルムコンデンサにおいては、金属化フィルムの幅方向端部における蒸着金属上の低抵抗部が亜鉛とマグネシウムとを含有する蒸着金属(混合蒸着金属)で構成されていることから、この亜鉛・マグネシウムからなる低抵抗部と誘電体フィルムとの密着性が向上し、その結果、低抵抗部と誘電体フィルムとの界面での空隙の発生ひいては電圧印加による空隙での部分放電を防止する。よって、誘電体フィルムの絶縁性能の低下(フィルム端部の集中破壊)を確実に防止することができ、金属化フィルムコンデンサの寿命を延ばすことが可能となった。 In the metallized film capacitor of the present invention, since the low resistance portion on the vapor-deposited metal at the widthwise end portion of the metallized film is composed of the vapor-deposited metal containing zinc and magnesium (mixed vapor-deposited metal), Adhesion between the low resistance part made of zinc/magnesium and the dielectric film is improved, and as a result, generation of voids at the interface between the low resistance part and the dielectric film and eventually partial discharge in the void due to voltage application is prevented. .. Therefore, it is possible to reliably prevent the insulation performance of the dielectric film from being deteriorated (concentrated destruction of the film end portion), and it is possible to extend the life of the metallized film capacitor.

また、従来例のように亜鉛の蒸着とマグネシウムの蒸着とを個別に実施する場合は個別の蒸着源の熱影響による誘電体フィルムの熱ダメージが大きいが、本発明のように混合蒸着することは亜鉛とマグネシウムの蒸着源を共有一体化することであり、蒸着源の熱影響による誘電体フィルムの熱ダメージを軽減し、誘電体フィルムの劣化を抑制することができる。 Further, when performing the vapor deposition of zinc and the vapor deposition of magnesium individually as in the conventional example, the thermal damage to the dielectric film due to the thermal influence of the individual vapor deposition sources is large, but mixed vapor deposition as in the present invention is not possible. By co-integrating the vapor deposition sources of zinc and magnesium, it is possible to reduce the thermal damage to the dielectric film due to the thermal effect of the vapor deposition sources and suppress the deterioration of the dielectric film.

さらに、本発明においては、蒸着源の坩堝(るつぼ)内で亜鉛とマグネシウムを混合状態とした上で蒸発させ、誘電体フィルム上の蒸着電極上に蒸着する。誘電体フィルム上のアルミニウムの蒸着電極に対して亜鉛とマグネシウムとを含む低抵抗部を金属蒸着によって形成するのに、亜鉛の蒸着とマグネシウムの蒸着とを前後して層状に形成したり、あるいはマグネシウムの蒸着と亜鉛の蒸着とを前後して層状に形成する場合に比べて、亜鉛とマグネシウムが混在するかたちで蒸着して一挙に形成するようにしている。亜鉛の蒸着とマグネシウムの蒸着とを個別に実施する場合は、蒸着源の坩堝および加熱源、冷却部、制御部などを別個に必要とするが、混合蒸着であればそれらの設備を単一化ないし共通化することが可能となり、製造設備をその規模(コスト、設置スペース)において縮小化することができる。 Further, in the present invention, zinc and magnesium are mixed in a crucible of a vapor deposition source and then evaporated to deposit on a vapor deposition electrode on a dielectric film. In order to form a low resistance portion containing zinc and magnesium on a vapor deposition electrode of aluminum on a dielectric film by metal vapor deposition, the vapor deposition of zinc and the vapor deposition of magnesium are formed in layers before or after vapor deposition of magnesium, or magnesium is deposited. Compared with the case where the vapor deposition of (1) and the vapor deposition of zinc are performed before and after the vapor deposition, zinc and magnesium are vapor-deposited in a mixed form to be formed all at once. When performing the vapor deposition of zinc and the vapor deposition of magnesium separately, the crucible of the vapor deposition source, the heating source, the cooling unit, the control unit, etc. are required separately, but if it is mixed vapor deposition, those facilities will be unified. Or, it becomes possible to standardize, and the manufacturing equipment can be reduced in scale (cost, installation space).

なお、低抵抗部を構成する亜鉛とマグネシウムとの蒸着金属において、マグネシウムの含有量が10〜50重量%に設定するのが好ましい。 In addition, in the vapor-deposited metal of zinc and magnesium forming the low resistance portion, the content of magnesium is preferably set to 10 to 50% by weight.

本発明によれば、誘電体フィルムに対する低抵抗部の密着性を向上させ、両者間での空隙の発生ひいては部分放電を防止し、誘電体フィルムの絶縁性能の低下(フィルム端部の集中破壊)を確実に防止するため、金属化フィルムコンデンサの寿命延長に効果を発揮する。さらに、亜鉛とマグネシウムとを含む低抵抗部を形成するに亜鉛の蒸着源とマグネシウムの蒸着源とを共有一体化してあるので、製造設備(コスト、設置スペース)を小規模化できるとともに、蒸着源による熱ダメージを軽減して誘電体フィルムの信頼性を向上することができるADVANTAGE OF THE INVENTION According to this invention, the adhesiveness of the low resistance part with respect to a dielectric film is improved, the generation|occurrence|production of the space|gap between them and the partial discharge is prevented, and the insulation performance of a dielectric film falls (concentrated destruction of a film edge part). This is effective in extending the life of metallized film capacitors. Further, since the zinc vapor deposition source and the magnesium vapor deposition source are shared and integrated to form the low resistance portion containing zinc and magnesium , the manufacturing equipment (cost, installation space) can be downsized, and the vapor deposition source can be reduced. It is possible to improve the reliability of the dielectric film by reducing the heat damage due to .

本発明の実施例における金属化フィルムコンデンサの構造を概略的に示す断面図Sectional drawing which shows schematically the structure of the metallized film capacitor in the Example of this invention. 一般的な金属化フィルムコンデンサの構造を概略的に示す断面図Cross-sectional view schematically showing the structure of a general metallized film capacitor 第1の従来例の金属化フィルムコンデンサの要部の構造を示す断面図Sectional drawing which shows the structure of the principal part of the metallized film capacitor of a 1st prior art example. 第2の従来例の金属化フィルムコンデンサの要部の構造を示す断面図Sectional drawing which shows the structure of the principal part of the metallized film capacitor of a 2nd prior art example.

以下、上記構成の本発明の金属化フィルムコンデンサにつき、その実施の形態を具体的な実施例のレベルで詳しく説明する。 Hereinafter, the embodiment of the metalized film capacitor of the present invention having the above-described structure will be described in detail at the level of a specific example.

図1は本発明の実施例における金属化フィルムコンデンサの構造を概略的に示す断面図である。図1において、1は第1の金属化フィルム、2は第2の金属化フィルム、1a,2aは誘電体フィルムとしてのポリプロピレンフィルム、1b,2bはアルミニウムを主成分とする蒸着電極、1c,2cは膜厚を厚くした低抵抗部、1d,2dは絶縁マージン、3Aは陽極側の電極引出し部(メタリコン)、3Bは陰極側の電極引出し部、4はコンデンサ素子、5Aは陽極側の外部引き出し端子、5Bは陰極側の外部引き出し端子である。 FIG. 1 is a sectional view schematically showing the structure of a metallized film capacitor according to an embodiment of the present invention. In FIG. 1, 1 is a first metallized film, 2 is a second metallized film, 1a and 2a are polypropylene films as dielectric films, 1b and 2b are vapor deposition electrodes containing aluminum as a main component, 1c and 2c. Is a thickened low resistance part, 1d and 2d are insulation margins, 3A is an anode side electrode lead-out part (metallikon), 3B is a cathode side electrode lead-out part, 4 is a capacitor element, 5A is an anode side lead-out part. Terminals 5B are external lead terminals on the cathode side.

第1の金属化フィルム1は、ポリプロピレンフィルム1aのフィルム面上にアルミニウムを主成分とする蒸着電極1bが形成され、さらに蒸着電極1bの幅方向の一端側の表面に膜厚を厚くした低抵抗部1cが形成されたものである。同様に、第2の金属化フィルム2は、ポリプロピレンフィルム2aのフィルム面上にアルミニウムを主成分とする蒸着電極2bが形成され、さらに蒸着電極2bの幅方向の他端側の表面に膜厚を厚くした低抵抗部2cが形成されたものである。第1の金属化フィルム1における低抵抗部1cと第2の金属化フィルム2における低抵抗部2cとは、幅方向(コンデンサ素子4の軸方向)で互いに反対側に位置している。 In the first metallized film 1, a vapor deposition electrode 1b containing aluminum as a main component is formed on the film surface of a polypropylene film 1a, and further, a low resistance is obtained by increasing the film thickness on the surface of the vapor deposition electrode 1b at one end side in the width direction. The part 1c is formed. Similarly, in the second metallized film 2, the vapor deposition electrode 2b containing aluminum as a main component is formed on the film surface of the polypropylene film 2a, and the film thickness is formed on the surface of the vapor deposition electrode 2b on the other end side in the width direction. The thickened low resistance portion 2c is formed. The low resistance portion 1c of the first metallized film 1 and the low resistance portion 2c of the second metallized film 2 are located on opposite sides in the width direction (axial direction of the capacitor element 4).

第1の金属化フィルム1と第2の金属化フィルム2とが重ね合わされた上で多重に巻回されて円筒状にされ、さらに直径方向にプレスして断面小判形の扁平柱状体に成形される。その軸方向の一端および他端のそれぞれにおいて亜鉛(Zn)などの金属溶射により陽極側の電極引出し部3Aと陰極側の電極引出し部3Bを接続することにより、コンデンサ素子4を構成している。 The first metallized film 1 and the second metallized film 2 are superposed on each other and wound in multiple layers to form a cylindrical shape, which is further pressed in the diametrical direction to form a flat columnar body having an oval cross section. It The capacitor element 4 is configured by connecting the electrode lead-out portion 3A on the anode side and the electrode lead-out portion 3B on the cathode side by spraying a metal such as zinc (Zn) at each of one end and the other end in the axial direction.

第1の金属化フィルム1の場合、低抵抗部1cに対して幅方向の反対側の端部において蒸着電極1bが形成されていない絶縁マージン1dが確保されている。これは、蒸着電極1bが陰極側の電極引出し部3Bに対して非接続の絶縁状態を保つためである。第1の金属化フィルム1における蒸着電極1bと低抵抗部1cは陽極側の電極引出し部3Aに対して電気的に接続される。一方、第2の金属化フィルム2の場合、低抵抗部2cに対して幅方向の反対側の端部において蒸着電極2bが形成されていない絶縁マージン2dが確保されている。これは、蒸着電極2bが陽極側の電極引出し部3Aに対して非接続の絶縁状態を保つためである。第2の金属化フィルム2における蒸着電極2bと低抵抗部2cは陰極側の電極引出し部3Bに対して電気的に接続される。このような接続形態は扁平柱状体のコンデンサ素子4の各周回部分で重ね合わされている第1および第2の金属化フィルム1,2のそれぞれに当てはまる。 In the case of the first metallized film 1, an insulation margin 1d where the vapor deposition electrode 1b is not formed is secured at the end portion on the opposite side in the width direction with respect to the low resistance portion 1c. This is because the vapor deposition electrode 1b maintains an insulated state in which it is not connected to the electrode lead-out portion 3B on the cathode side. The vapor deposition electrode 1b and the low resistance portion 1c in the first metallized film 1 are electrically connected to the electrode lead-out portion 3A on the anode side. On the other hand, in the case of the second metallized film 2, the insulation margin 2d where the vapor deposition electrode 2b is not formed is secured at the end portion on the opposite side in the width direction with respect to the low resistance portion 2c. This is because the vapor deposition electrode 2b maintains an insulated state in which it is not connected to the electrode lead-out portion 3A on the anode side. The vapor deposition electrode 2b and the low resistance portion 2c in the second metallized film 2 are electrically connected to the electrode lead-out portion 3B on the cathode side. Such a connection form applies to each of the first and second metallized films 1 and 2 that are superposed on each other in each wrapping portion of the flat columnar capacitor element 4.

そして、コンデンサ素子4の陽極側の電極引出し部3Aに対して陽極側の外部引き出し端子5Aが接続され、陰極側の電極引出し部3Bに対して陰極側の外部引き出し端子5Bが接続されて金属化フィルムコンデンサが構成されている。 Then, the anode-side electrode lead-out portion 3A of the capacitor element 4 is connected to the anode-side external lead-out terminal 5A, and the cathode-side electrode lead-out portion 3B is connected to the cathode-side external lead-out terminal 5B. A film capacitor is constructed.

上記構成の金属化フィルムコンデンサにあっては、誘電体フィルム(1a,2a)がポリプロピレンフィルムで構成され、蒸着電極1a,2aが主成分をアルミニウムとする蒸着膜として形成され、さらに低抵抗部1c,2cが亜鉛とマグネシウムとを含有する蒸着金属で構成されている。 In the metallized film capacitor having the above structure, the dielectric film (1a, 2a) is formed of a polypropylene film, the vapor deposition electrodes 1a, 2a are formed as a vapor deposition film whose main component is aluminum, and the low resistance portion 1c is further formed. , 2c are composed of vapor-deposited metal containing zinc and magnesium.

低抵抗部1c,2cを構成する亜鉛とマグネシウムとの混合割合については、マグネシウムの含有量を10〜50重量%、亜鉛の含有量を90〜50重量%とするのが好ましい。マグネシウムの含有量を10重量%以上とすることにより、金属化フィルムコンデンサの寿命レベルを向上させることができる。また、マグネシウムの含有量を50重量%以下とすることにより、耐電流性能の低下を防止することができる。 With respect to the mixing ratio of zinc and magnesium forming the low resistance portions 1c and 2c, it is preferable that the magnesium content is 10 to 50% by weight and the zinc content is 90 to 50% by weight. By setting the content of magnesium to 10% by weight or more, the life level of the metallized film capacitor can be improved. Further, by setting the content of magnesium to 50% by weight or less, it is possible to prevent the withstand current performance from being lowered.

金属化フィルムを製造する蒸着装置にあっては、巻き出しロールから繰り出された未蒸着のポリプロピレンフィルムが大径円筒状の冷却キャンに案内されて通過するときに、その下方にあるアルミニウムの蒸着源から蒸発されるアルミニウムの微粒子がフィルム幅方向一端部の絶縁マージン領域1d,2dを除いてほぼ全幅にわたってポリプロピレンフィルム上に冷却付着される。引き続いて冷却キャンの回転方向下手側にある亜鉛・マグネシウムの混合蒸着源から蒸発される亜鉛・マグネシウムの微粒子が絶縁マージン領域1d,2dとは反対側のフィルム幅方向端部の狭い領域においてポリプロピレンフィルム上のアルミニウム蒸着金属1b,2bの上に冷却付着され、低抵抗部1c,2cを形成する。 In a vapor deposition apparatus for producing a metallized film, when an undeposited polypropylene film unwound from an unwinding roll is guided by a large-diameter cylindrical cooling can and passes through, a vapor deposition source of aluminum below Fine particles of aluminum evaporated from the film are cooled and deposited on the polypropylene film over almost the entire width except for the insulating margin regions 1d and 2d at one end in the film width direction. Subsequently, zinc/magnesium particles evaporated from the zinc/magnesium mixed vapor deposition source on the lower side in the rotation direction of the cooling can are polypropylene film in a narrow region of the film width direction end opposite to the insulation margin regions 1d and 2d. The low-resistance portions 1c and 2c are formed by cooling and depositing on the upper aluminum vapor-deposited metal 1b and 2b.

亜鉛・マグネシウムの混合蒸着源は、亜鉛の蒸着源とマグネシウムの蒸着源とを分離することなく単一の蒸着源としたものである。 The zinc-magnesium mixed vapor deposition source is a single vapor deposition source without separating the zinc vapor deposition source and the magnesium vapor deposition source.

冷却キャンを通過して巻き取りロールに巻き取られ、金属化フィルムが作製される。第1の金属化フィルム1と第2の金属化フィルム2とでは亜鉛・マグネシウムの微粒子からなる低抵抗部1c,2cの位置がフィルム幅方向で互いに反対側とされる。 The metallized film is produced by passing through a cooling can and winding on a take-up roll. In the first metallized film 1 and the second metallized film 2, the low resistance portions 1c and 2c made of zinc-magnesium fine particles are located on opposite sides in the film width direction.

そして、第1の金属化フィルム1と第2の金属化フィルム2とを重ね合わせた状態で巻回し、得られた巻回体の軸方向の一端および他端にそれぞれ陽極側および陰極側の電極引出し部3A,3Bを接続してコンデンサ素子4を作製する。さらに、コンデンサ素子4の陽極側および陰極側の各電極引出し部3A,3Bにそれぞれ極性を対応させて陽極側および陰極側の外部引き出し端子5A,5Bを接続し、金属化フィルムコンデンサを得る。 Then, the first metallized film 1 and the second metallized film 2 are wound in a state of being overlapped with each other, and one end and the other end in the axial direction of the obtained wound body are provided with electrodes on the anode side and the cathode side, respectively. The lead-out portions 3A and 3B are connected to produce the capacitor element 4. Furthermore, the anode-side and cathode-side electrode lead-out portions 3A and 3B of the capacitor element 4 are connected to the anode-side and cathode-side external lead-out terminals 5A and 5B in correspondence with the respective polarities to obtain a metallized film capacitor.

以上のように、亜鉛の蒸着源とマグネシウムの蒸着源とを分離することなく単一の蒸着源である亜鉛・マグネシウムの混合蒸着源としたので、両蒸着源を別個に配置するものに比べて製造設備の規模(コスト、設置スペース)の縮小化を図ることができる。 As described above, since the zinc vapor deposition source and the magnesium vapor deposition source are not separated and the single vapor deposition source of zinc/magnesium is used, compared to the case where both vapor deposition sources are arranged separately. It is possible to reduce the scale (cost, installation space) of manufacturing equipment.

加えて、亜鉛の蒸着源とマグネシウムの蒸着源とを共有一体化してあるので、蒸着源の熱影響によるポリプロピレンフィルム等の誘電体フィルムの熱ダメージが軽減される(フィルムの劣化抑制)。誘電体フィルムに対する熱ダメージの抑制は、比較的熱に弱い誘電体フィルムに対する信頼性の向上に寄与する。 In addition, since the vapor deposition source of zinc and the vapor deposition source of magnesium are commonly integrated, the thermal damage of the dielectric film such as the polypropylene film due to the thermal effect of the vapor deposition source is reduced (deterioration of the film is suppressed). The suppression of heat damage to the dielectric film contributes to improvement in reliability of the dielectric film which is relatively weak to heat.

また、低抵抗部を亜鉛・マグネシウムの混合蒸着層で形成することにより、低抵抗部と誘電体フィルムとの界面での空隙の発生ひいては空隙での部分放電が防止され、フィルム端部の集中破壊が確実に防止される。すなわち、金属化フィルムコンデンサの寿命延長に貢献することができる。 Also, by forming the low resistance part with a mixed vapor deposition layer of zinc and magnesium, the occurrence of voids at the interface between the low resistance part and the dielectric film, and thus partial discharge in the voids, is prevented and the film edge is concentrated and destroyed. Is reliably prevented. That is, it can contribute to extending the life of the metallized film capacitor.

本実施例では、誘電体フィルムにポリプロピレンフィルムを用いたが、本発明はこれに限られるものではなく、ポリエチレンテレフタレートフィルム、ポリフェニレンスルフィドフィルム、ポリエチレンナフタレートフィルムなど公知のフィルムを用いることができる。 In this embodiment, a polypropylene film is used as the dielectric film, but the present invention is not limited to this, and a known film such as a polyethylene terephthalate film, a polyphenylene sulfide film, or a polyethylene naphthalate film can be used.

本発明は、金属化フィルムコンデンサに関して、誘電体フィルムに対する低抵抗部の密着性を向上させ、両者間での空隙の発生ひいては部分放電を防止し、誘電体フィルムの絶縁性能の低下を確実に防止する技術として有用である。また、蒸着源を簡素化し、製造設備を小規模化する技術として有用である。 The present invention, with regard to a metallized film capacitor, improves the adhesion of the low resistance portion to the dielectric film, prevents the occurrence of voids between the two and thus partial discharge, and reliably prevents the insulation performance of the dielectric film from decreasing. It is useful as a technology to do. It is also useful as a technique for simplifying the vapor deposition source and reducing the scale of manufacturing equipment.

1 第1の金属化フィルム
2 第2の金属化フィルム
1a,2a ポリプロピレンフィルム(誘電体フィルム)
1b,2b アルミニウムを主成分とする蒸着電極
1c,2c 低抵抗部(亜鉛とマグネシウムと亜鉛とを含有する蒸着金属)
3A 陽極側の電極引出し部
3B 陰極側の電極引出し部
4 コンデンサ素子
5A 陽極側の外部引き出し端子
5B 陰極側の外部引き出し端子
1 1st metallized film 2 2nd metallized film 1a, 2a Polypropylene film (dielectric film)
1b, 2b Vapor-deposited electrode containing aluminum as a main component 1c, 2c Low resistance part (vapor-deposited metal containing zinc, magnesium and zinc)
3A Anode side electrode lead-out part 3B Cathode side electrode lead-out part 4 Capacitor element 5A Anode side external lead terminal 5B Cathode side external lead terminal

Claims (2)

誘電体フィルムの表面にアルミニウムを主成分とする金属粒子を蒸着して蒸着電極を形成し、前記蒸着電極の幅方向の一方端の表面に蒸着膜厚を厚くして抵抗値を低くした低抵抗部を形成して第1および第2の金属化フィルムを作製する工程と
得られた前記第1および第2の金属化フィルム各々の前記低抵抗部の前記幅方向における位置関係を互いに反対側とする状態で、これら第1の金属化フィルムと第2の金属化フィルムとを重ね合わせ巻回する工程と
得られた巻回体の軸方向の一端および他端にそれぞれ陽極側および陰極側の電極引出し部を接続してコンデンサ素子を作製する工程と
前記コンデンサ素子の前記陽極側および陰極側の各電極引出し部にそれぞれ極性を対応させて陽極側および陰極側の外部引き出し端子を接続する工程と
を備えた金属化フィルムコンデンサの製造方法であって、
前記蒸着電極および低抵抗部を形成する工程は、
前記アルミニウムを主成分とする金属蒸着源から蒸発される金属微粒子を前記誘電体フィルムに付着させる第1の工程と、
亜鉛とマグネシウムの混合蒸着源から蒸発される亜鉛・マグネシウムの微粒子を、前記アルミニウムを主成分とする蒸着電極の幅方向の一方端の表面に付着させて前記第1および第2の金属化フィルムにおける前記各低抵抗部を亜鉛とマグネシウムの混合蒸着層で形成する第2の工程と
を有することを特徴とする金属化フィルムコンデンサの製造方法。
Dielectric aluminum was deposited fine metal particles composed mainly forming a deposited electrode on the surface of the film, it was to increase the deposited film thickness on the surface of the hand end in the width direction of the deposition electrode and the resistance value low Forming a low resistance portion to produce the first and second metallized films ;
The first metallized film and the second metallized film are obtained in a state where the positional relationship in the width direction of the low resistance portions of each of the obtained first and second metallized films is opposite to each other. a step of winding by superimposing,
A step of manufacturing a capacitor element by connecting the electrode lead-out portions on the anode side and the cathode side, respectively, to one end and the other end in the axial direction of the obtained wound body,
A step of connecting external lead terminals on the anode side and the cathode side by making the polarities correspond to the respective electrode lead portions on the anode side and the cathode side of the capacitor element ;
A method of manufacturing a metallized film capacitor comprising:
The step of forming the vapor deposition electrode and the low resistance portion,
A first step of adhering fine metal particles evaporated from a metal deposition source containing aluminum as a main component to the dielectric film;
In the first and second metallized films, zinc/magnesium fine particles evaporated from a mixed deposition source of zinc and magnesium are attached to the surface of one end in the width direction of the deposition electrode containing aluminum as a main component . A second step of forming each of the low resistance portions by a mixed vapor deposition layer of zinc and magnesium;
A method of manufacturing a metallized film capacitor, comprising:
前記第2の工程において、前記低抵抗部を構成する亜鉛とマグネシウムとの蒸着金属中のマグネシウムの含有量が10〜50重量%に設定されている請求項に記載の金属化フィルムコンデンサの製造方法。 The metalized film capacitor according to claim 1 , wherein in the second step, the content of magnesium in the vapor-deposited metal of zinc and magnesium forming the low resistance portion is set to 10 to 50% by weight. Method.
JP2016251762A 2016-12-26 2016-12-26 Method for manufacturing metallized film capacitor Active JP6742898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016251762A JP6742898B2 (en) 2016-12-26 2016-12-26 Method for manufacturing metallized film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016251762A JP6742898B2 (en) 2016-12-26 2016-12-26 Method for manufacturing metallized film capacitor

Publications (2)

Publication Number Publication Date
JP2018107273A JP2018107273A (en) 2018-07-05
JP6742898B2 true JP6742898B2 (en) 2020-08-19

Family

ID=62785802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016251762A Active JP6742898B2 (en) 2016-12-26 2016-12-26 Method for manufacturing metallized film capacitor

Country Status (1)

Country Link
JP (1) JP6742898B2 (en)

Also Published As

Publication number Publication date
JP2018107273A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
EP1962308B1 (en) Electric double layer capacitor
JP2009010418A (en) Electrolytic capacitor
JP5429436B2 (en) Capacitor
TWI810503B (en) electrolytic capacitor
JP4915947B2 (en) Metallized film capacitors
JP2015201527A (en) Metalized film capacitor
JP6742898B2 (en) Method for manufacturing metallized film capacitor
US8659875B2 (en) Capacitor and manufacturing method therefor
JP2009277830A (en) Metallized film capacitor
JP2012009764A (en) Film capacitor
JP2008235414A (en) Metalized film capacitor
JP6430328B2 (en) Capacitor element manufacturing method
JP2008235415A (en) Metalized film capacitor
JP2005085870A (en) Metallized film capacitor
WO2020031940A1 (en) Metalized film and film capacitor
JP2013172045A (en) Film capacitor
JP2008177199A (en) Solid electrolytic capacitor
JP2008177200A (en) Solid electrolytic capacitor
JP7143674B2 (en) metallized film and film capacitors
US20120075769A1 (en) High temperature high current metalized film capacitor
JP2012099712A (en) Metalization film capacitor and manufacturing method therefor
JP2012009654A (en) Film capacitor
JP2009071091A (en) Film capacitor
JP2017059612A (en) Metalization film capacitor
JP2007250833A (en) Dc metallized film capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200729

R150 Certificate of patent or registration of utility model

Ref document number: 6742898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250