JP2003022907A - Superconducting magnet - Google Patents

Superconducting magnet

Info

Publication number
JP2003022907A
JP2003022907A JP2001207860A JP2001207860A JP2003022907A JP 2003022907 A JP2003022907 A JP 2003022907A JP 2001207860 A JP2001207860 A JP 2001207860A JP 2001207860 A JP2001207860 A JP 2001207860A JP 2003022907 A JP2003022907 A JP 2003022907A
Authority
JP
Japan
Prior art keywords
cooling
refrigerator
superconducting
superconducting coil
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001207860A
Other languages
Japanese (ja)
Other versions
JP4799770B2 (en
Inventor
Hidemi Hayashi
秀美 林
Katsuya Tsutsumi
克哉 堤
Akira Tomioka
章 富岡
Yujiro Yagi
裕治郎 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Fuji Electric Co Ltd
Original Assignee
Kyushu Electric Power Co Inc
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, Fuji Electric Co Ltd filed Critical Kyushu Electric Power Co Inc
Priority to JP2001207860A priority Critical patent/JP4799770B2/en
Publication of JP2003022907A publication Critical patent/JP2003022907A/en
Application granted granted Critical
Publication of JP4799770B2 publication Critical patent/JP4799770B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a superconducting magnet which makes simple the connecting constitution of a refrigerator with a superconductor coil and the assembling work thereof, improves the maintainability of the refrigerator, effectively removes heat resulting from the AC loss and stably operates it, without causing the conductive dislocation. SOLUTION: The magnet comprises a superconducting coil 1 composed of a superconducting wire wound around a bobbin in layers and cooling flanges 4A for supporting it, and a vacuum container 3 for heat-insulating and housing the coil 1. Using an attached refrigerator, the coil 1 is cooled to hold it at cryogenic temperatures. The refrigerator is disposed outside the container 3 and a cooling plate 12 disposed well heat conductively with the cooling flange 4A of the coil 1 is cooled at specified temperatures with a refrigerant gas produced by the refrigerator at cryogenic temperatures to cool the coil 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、強磁界を利用す
る成分分析用やエネルギー貯蔵用等に用いる超電導磁
石、特に冷凍機を用いて超電導コイルを冷却する超電導
磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting magnet used for component analysis and energy storage utilizing a strong magnetic field, and more particularly to a superconducting magnet for cooling a superconducting coil using a refrigerator.

【0002】[0002]

【従来の技術】従来の超電導磁石は、超電導コイルを液
体ヘリウムにより冷却する方式が主流であって、液体ヘ
リウム(約4K)レベルの極低温に超電導コイルを維持
するランニングコストが極めて高く、実用上大きな問題
となっていたが、近年では、超電導線材の臨界温度の向
上や冷凍機の冷凍能力向上に伴って、超電導コイルに冷
凍機を付設して熱伝導によって超電導コイルを冷却する
方式の超電導磁石の開発が盛んに進められ、特許提案も
行われている(例えば、特開昭63−186403号公
報,特開昭64−76706号公報,特開平11−13
5318号公報参照)。
2. Description of the Related Art A conventional superconducting magnet is mainly a system in which a superconducting coil is cooled by liquid helium, and the running cost for maintaining the superconducting coil at an extremely low temperature of liquid helium (about 4K) is extremely high and practically used. Although it was a big problem, in recent years, with the improvement of the critical temperature of the superconducting wire and the improvement of the refrigerating capacity of the refrigerator, a superconducting magnet of the type in which a refrigerator is attached to the superconducting coil and the superconducting coil is cooled by heat conduction Has been actively developed and patent proposals have been made (for example, JP-A-63-186403, JP-A-64-76706, JP-A-11-13).
5318).

【0003】図7は、前記特開平11−135318号
公報に記載された従来の冷凍機冷却方式の超電導磁石の
基本構成を模式的に示す断面図で、中央部に常温の高磁
界空間を備えた超電導磁石について中心軸を通る断面を
示したものである。
FIG. 7 is a sectional view schematically showing the basic structure of a conventional refrigerator-cooling type superconducting magnet disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 11-135318, which has a room temperature high magnetic field space. 2 is a cross section of the superconducting magnet passing through the central axis.

【0004】図7において、1は超電導線をソレノイド
状に巻回して構成された超電導コイル、2は超電導コイ
ル1の周囲に配され、外部からの熱輻射を遮断して断熱
する輻射シールド、3はこれらを取り囲み内部を真空に
保持して断熱する真空容器である。また、7は超電導コ
イル1を冷却する冷凍機、8は冷凍機7に圧縮ヘリウム
ガスを供給し冷凍サイクルの運転制御系を備えた圧縮
機、9は超電導コイル1に図示しない電源より電流を供
給して励磁する電流リードである。
In FIG. 7, reference numeral 1 is a superconducting coil formed by winding a superconducting wire in a solenoid shape, 2 is a radiation shield which is arranged around the superconducting coil 1, and which shields heat radiation from the outside and insulates it. Is a vacuum container that surrounds these and keeps the inside of the vacuum state to insulate them. Further, 7 is a refrigerator that cools the superconducting coil 1, 8 is a compressor that supplies compressed helium gas to the refrigerator 7 and has a refrigeration cycle operation control system, and 9 is a current that is supplied to the superconducting coil 1 from a power source (not shown). It is a current lead that is excited by.

【0005】図7に示すように、冷凍機7は、冷却ボビ
ン5に層状に巻回された超電導コイル1を上下から支持
する一方の冷却フランジ4と輻射シールド2に接続され
ており、超電導コイル1を所定の極低温(約20〜80
K)に、また輻射シールド2を所定の極低温(約80〜
100K)に冷却する。
As shown in FIG. 7, the refrigerator 7 is connected to one of the cooling flanges 4 and the radiation shield 2 for supporting the superconducting coil 1 wound in layers on the cooling bobbin 5 from above and below. 1 to a predetermined cryogenic temperature (about 20-80
K) and the radiation shield 2 at a predetermined cryogenic temperature (about 80-
Cool to 100K).

【0006】冷凍機7により図中下側の冷却フランジ4
の一端を冷却することにより、これに連結された冷却ボ
ビン5、冷却外筒板6、上側の冷却フランジ4が熱伝導
により冷却され、さらにこれらに取り囲まれた超電導コ
イル1が、熱伝導により超電導の臨界温度以下の温度に
冷却され、超電導状態に保持される。超電導状態におい
て、電流リード9を用いて超電導コイル1に電流を供給
すると、強磁界が生じ、同時にインダクタンスに比例し
た磁気エネルギーが超電導コイル1に蓄積されることと
なる。
The cooling flange 4 on the lower side of the drawing by the refrigerator 7
The cooling bobbin 5, the cooling outer cylinder plate 6, and the upper cooling flange 4 connected to the cooling bobbin 5 are cooled by heat conduction by cooling one end of the superconducting coil 1, and the superconducting coil 1 surrounded by these is superconducting by heat conduction. It is cooled to a temperature below its critical temperature and kept in a superconducting state. When current is supplied to the superconducting coil 1 using the current lead 9 in the superconducting state, a strong magnetic field is generated, and at the same time, magnetic energy proportional to the inductance is accumulated in the superconducting coil 1.

【0007】超電導コイル1が交流損失を発生するよう
な運転をした場合には、交流損失による発熱によってコ
イル内部温度が上昇する。この発熱が除去できない場合
には、超電導コイル1は、臨界温度を超えて超電導状態
から常電導状態に転位し、安定した通電ができず、また
コイルが常電導転移(クエンチ)により損傷する恐れがあ
る。
When the superconducting coil 1 is operated so as to generate AC loss, the internal temperature of the coil rises due to heat generation due to AC loss. If this heat generation cannot be removed, the superconducting coil 1 will be transferred from the superconducting state to the normal conducting state by exceeding the critical temperature, stable energization will not be possible, and the coil may be damaged by the normal conducting transition (quenching). is there.

【0008】前述のような常電導転位の危険性を抑制す
るための超電導コイルの構成について、その一例が、前
述の特開平11−135318号公報に記載されてい
る。前記公報に記載された構成に於いては、冷却ボビン
5に層状に巻回された超電導線の層間に、銅あるいは銅
合金等の良熱伝導材料よりなる伝導冷却板が組み込まれ
ており、伝導冷却板の両端は、前記図7における上下の
冷却フランジ4に設けた溝中に挿入されている。この構
成によれば、超電導コイルの内部が、前記伝導冷却板を
介しての伝熱により、臨界電流以下の所定温度へと冷却
されるので、常電導転位を生じることなく運転できる。
An example of the structure of the superconducting coil for suppressing the risk of the normal conducting dislocation as described above is described in the above-mentioned JP-A-11-135318. In the structure described in the above publication, a conductive cooling plate made of a good heat conductive material such as copper or copper alloy is incorporated between the layers of the superconducting wire wound in layers on the cooling bobbin 5 for conduction. Both ends of the cooling plate are inserted into the grooves provided in the upper and lower cooling flanges 4 in FIG. According to this configuration, the inside of the superconducting coil is cooled to a predetermined temperature below the critical current by heat transfer through the conduction cooling plate, so that the superconducting coil can be operated without causing a normal conduction dislocation.

【0009】次に、前記特開昭63−186403号公
報や特開昭64−76706号公報に記載された超電導
磁石の概要について以下に述べる。
Next, an outline of the superconducting magnet described in the above-mentioned Japanese Patent Laid-Open Nos. 63-186403 and 64-76706 will be described below.

【0010】特開昭63−186403号公報の第1図
には、前記図7と同様に、真空容器内に挿入設置した2
段冷凍機の一つの低温端を超電導コイル冷却用配管に接
続し、温度レベルの高い他の低温端を輻射シールド冷却
用配管に接続した構成が開示されている。前記超電導コ
イル冷却用配管は、円筒状超電導コイルの外周に巻回さ
れ、配管内部に極低温の冷媒ガスが通流されて超電導コ
イルを冷却する構造となっている。
In FIG. 1 of Japanese Patent Application Laid-Open No. 63-186403, as in the case of FIG.
A configuration is disclosed in which one low temperature end of the multistage refrigerator is connected to a superconducting coil cooling pipe and the other low temperature end having a high temperature level is connected to a radiation shield cooling pipe. The superconducting coil cooling pipe is wound around the outer periphery of the cylindrical superconducting coil, and a cryogenic refrigerant gas is passed through the pipe to cool the superconducting coil.

【0011】また、特開昭64−76706号公報に
は、真空容器内部に冷凍機の主要コンポーネントである
熱交換器や断熱膨張弁がビルトインされ、極低温の冷媒
ガスを超電導コイルの巻枠部に通流して超電導コイルを
冷却する構成が開示されている。
Further, in Japanese Patent Laid-Open No. 64-76706, a heat exchanger and an adiabatic expansion valve, which are main components of a refrigerator, are built in a vacuum container, and a cryogenic refrigerant gas is used for a winding portion of a superconducting coil. There is disclosed a structure in which the superconducting coil is cooled by flowing the gas through the.

【0012】[0012]

【発明が解決しようとする課題】ところで、冷凍機を付
設して熱伝導によって超電導コイルを冷却する上記従来
の超電導磁石においては、下記のような問題があった。
The conventional superconducting magnet, which has a refrigerator and cools the superconducting coil by heat conduction, has the following problems.

【0013】冷凍機もしくは冷凍機の主要コンポーネン
トを真空容器内部にビルトインした場合、冷凍機と超電
導コイルとの接続構成および組立て作業が煩雑となる。
また、冷凍機の定期的なメンテナンスや故障時に真空容
器内の真空を破って常圧とする必要があり、メンテナン
ス性が悪い問題もある。さらに、交流損失が発生する超
電導コイルの場合、ビルトインする冷凍機の能力不足に
関わり、下記のような問題がある。
When the refrigerator or the main components of the refrigerator are built in the vacuum container, the connecting structure and assembling work between the refrigerator and the superconducting coil become complicated.
In addition, it is necessary to break the vacuum in the vacuum container to normal pressure when the refrigerator is regularly maintained or fails, which causes a problem of poor maintainability. Further, in the case of a superconducting coil in which AC loss occurs, there are the following problems due to the lack of built-in capacity of the refrigerator.

【0014】小型冷凍機の冷凍能力は一般的に20Kに
おいて20W程度であり、交流損失の大きい超電導コイ
ルの場合、冷凍能力が不足して、超電導コイルを所定の
温度に保持できない。冷凍機の台数を増やして対応する
方法もあるが、設置スペースの制限から多数の冷凍機を
真空容器内にビルトインして配置することには難があ
る。特に、冷凍機は低磁界下に設置する必要があり、超
電導コイルの近傍に置くことは望ましくなく、冷凍機か
ら超電導コイルまでの距離が長くなる場合には、効果的
な冷却が期待できない。従って、多数の冷凍機の設置
は、より一層困難となる。
The refrigerating capacity of a small refrigerator is generally about 20 W at 20 K, and in the case of a superconducting coil having a large AC loss, the refrigerating capacity is insufficient and the superconducting coil cannot be kept at a predetermined temperature. There is also a method of increasing the number of refrigerators to deal with it, but it is difficult to arrange a large number of refrigerators in a vacuum container due to the limitation of the installation space. In particular, the refrigerator needs to be installed in a low magnetic field, and it is not desirable to place it in the vicinity of the superconducting coil. If the distance from the refrigerator to the superconducting coil becomes long, effective cooling cannot be expected. Therefore, installation of a large number of refrigerators becomes even more difficult.

【0015】冷凍機の能力が不足する場合には、超電導
コイルの運転が制限され、所定の性能を発揮できないば
かりでなく、常電導に転移して安定通電できない可能性
がある。
When the capacity of the refrigerator is insufficient, the operation of the superconducting coil is restricted, and not only the prescribed performance cannot be exhibited, but also there is a possibility that the superconducting coil is transferred to normal conduction and stable energization cannot be performed.

【0016】この発明は、上記のような問題点を解消す
るためになされたもので、本発明の課題は、冷凍機と超
電導コイルとの接続構成および組立て作業がシンプル
で、かつ冷凍機のメンテナンス性が良く、さらに、交流
損失に伴う発熱が効果的に除去され、常電導転移を生じ
ることなく安定して運転できる超電導磁石を提供するこ
とにある。
The present invention has been made to solve the above problems, and an object of the present invention is to simplify the connection construction and assembling work of a refrigerator and a superconducting coil, and to maintain the refrigerator. Another object of the present invention is to provide a superconducting magnet which has good properties and which can effectively remove heat generated by AC loss and can be stably operated without causing a normal conduction transition.

【0017】[0017]

【課題を解決するための手段】前述の課題を解決するた
め、この発明は、超電導線を巻枠に層状に巻回し冷却フ
ランジで支持してなる超電導コイルと、超電導コイルを
断熱して収納する真空容器とを備え、付設した冷凍機を
用いて超電導コイルを冷却し、極低温に保持してなる超
電導磁石において、前記冷凍機は前記真空容器の外部に
設置し、前記超電導コイルの冷却フランジと熱良導的に
配設した冷却板を、前記冷凍機で発生する極低温の冷媒
ガスにより所定温度に冷却することにより、超電導コイ
ルを冷却するように構成する(請求項1の発明)。
In order to solve the above-mentioned problems, the present invention has a superconducting coil in which layers are wound around a superconducting wire and supported by a cooling flange, and the superconducting coil is heat-insulated and accommodated. A superconducting magnet comprising a vacuum container, cooling the superconducting coil using an attached refrigerator, and maintaining the cryogenic temperature in the superconducting magnet, the refrigerator is installed outside the vacuum container, and a cooling flange of the superconducting coil. The superconducting coil is cooled by cooling the cooling plate arranged in good heat conduction to a predetermined temperature with the cryogenic refrigerant gas generated in the refrigerator (invention of claim 1).

【0018】請求項1の発明によれば、冷凍機が真空容
器の外部に設置され、冷凍機の冷媒ガス配管と、超電導
コイルの前記冷却板とを接続すればよいので、冷凍機と
超電導コイルとの接続構成がシンプルとなり、また冷凍
機のメンテナンス性が良くなる。さらに、超電導コイル
の交流損失が増大した場合には、冷媒ガス温度や流量を
適切に選定することにより、超電導コイル内部の温度を
所定温度以下に保つことができる。
According to the invention of claim 1, since the refrigerator is installed outside the vacuum container and the refrigerant gas pipe of the refrigerator is connected to the cooling plate of the superconducting coil, the refrigerator and the superconducting coil are connected. The connection configuration with and becomes simple, and the maintainability of the refrigerator is improved. Further, when the AC loss of the superconducting coil increases, the temperature inside the superconducting coil can be kept below a predetermined temperature by appropriately selecting the refrigerant gas temperature and the flow rate.

【0019】また、上記請求項1の発明において、前記
冷却板は、非磁性の良熱伝導性材料からなり、その内部
に前記極低温の冷媒ガスの流通路を形成してなるものと
する(請求項2の発明)。上記のように、良熱伝導性材
料を用いることにより、冷媒ガスと接触する熱伝達周囲
面と、超電導コイルとの熱伝導部との温度差を抑制し、
超電導コイルを効果的に冷却できる。また前記冷却板に
おいて、例えば、冷媒ガスがジグザグに通流するように
冷媒ガスの流通路を構成することにより、熱伝達長さを
確保しつつ冷却板自身を小型化でき、かつ、冷却板自身
の温度分布を均一化できる。従って、簡単な構造で効果
的に超電導コイルが冷却できる。さらに、冷却板の材質
を非磁性材料とすることにより、超電導コイル近傍に配
置できるので、熱伝導に要する長さを極力短くでき、効
果的に冷却できる。
Further, in the invention of claim 1, the cooling plate is made of a nonmagnetic material having good heat conductivity, and a flow passage for the cryogenic refrigerant gas is formed therein ( The invention of claim 2). As described above, by using the material having good heat conductivity, the temperature difference between the heat transfer peripheral surface in contact with the refrigerant gas and the heat transfer portion between the superconducting coil is suppressed,
The superconducting coil can be cooled effectively. Further, in the cooling plate, for example, by configuring the flow path of the refrigerant gas so that the refrigerant gas flows in zigzag, the cooling plate itself can be downsized while ensuring the heat transfer length, and the cooling plate itself. The temperature distribution can be made uniform. Therefore, the superconducting coil can be effectively cooled with a simple structure. Furthermore, since the cooling plate is made of a non-magnetic material, it can be arranged in the vicinity of the superconducting coil, so that the length required for heat conduction can be shortened as much as possible and effective cooling can be achieved.

【0020】なお、超電導コイルの冷却性能向上の観点
から、前記冷媒ガスの流通路を前記冷却フランジに直接
設け、前記請求項1または2の発明における冷却板を省
略することもできる。また、さらに冷却性能を向上する
観点からは、下記請求項3の発明のように構成すること
が好ましい。即ち、前記請求項1ないし3に記載の超電
導磁石において、前記冷却板は、前記超電導コイルの上
下両側の冷却フランジに設けてなるものとする。この場
合にも、冷媒ガスの流通路を冷却フランジに直接設ける
ことにより、さらに冷却性能を向上することができる。
From the viewpoint of improving the cooling performance of the superconducting coil, the coolant gas flow passage may be provided directly on the cooling flange, and the cooling plate in the invention of claim 1 or 2 may be omitted. Further, from the viewpoint of further improving the cooling performance, it is preferable to configure as the invention of claim 3 below. That is, in the superconducting magnet according to any one of claims 1 to 3, the cooling plates are provided on the cooling flanges on the upper and lower sides of the superconducting coil. Also in this case, the cooling performance can be further improved by directly providing the cooling gas flow passage on the cooling flange.

【0021】さらに、前記請求項1ないし3のいずれか
に記載の超電導磁石において、前記冷却板を冷却した冷
媒ガスを、超電導コイルに電流を供給する電流リードに
通流して電流リードを冷却した後、前記冷凍機に還流す
るように構成する(請求項4の発明)。
Further, in the superconducting magnet according to any one of claims 1 to 3, after the refrigerant gas that has cooled the cooling plate is passed through a current lead for supplying a current to the superconducting coil to cool the current lead. It is configured to flow back to the refrigerator (the invention of claim 4).

【0022】これにより、超電導コイルのみならず、電
流リードも冷媒ガスによって冷却されるので、電流リー
ドを介しての侵入熱量が大幅に低下し、超電導コイルで
の熱損失に比べて無視できるレベルとなる。従って、電
流リードを介しての侵入熱量に影響されることなく、超
電導コイル内部の温度を容易に所定温度以下に保つこと
ができる。
As a result, not only the superconducting coil but also the current lead is cooled by the refrigerant gas, so that the amount of heat penetrating through the current lead is significantly reduced, which is negligible compared to the heat loss in the superconducting coil. Become. Therefore, the temperature inside the superconducting coil can be easily kept below a predetermined temperature without being affected by the amount of heat entering through the current lead.

【0023】さらにまた、上記請求項1ないし4のいず
れかに記載の超電導磁石において、前記超電導コイルへ
の外部からの熱輻射を遮断するために前記真空容器内に
輻射シールドを配設してなり、この輻射シールドを前記
冷凍機とは別に設けた小型単段式冷凍機により冷却する
ように構成する(請求項5の発明)。
Furthermore, in the superconducting magnet according to any one of claims 1 to 4, a radiation shield is provided in the vacuum container to block heat radiation to the superconducting coil from the outside. The radiation shield is cooled by a small single-stage refrigerator provided separately from the refrigerator (the invention of claim 5).

【0024】これにより、輻射シールドが専用の小型単
段式冷凍機により80〜100Kに効果的に冷却でき、
超電導コイルの冷却効率が向上する。メンテナンス性向
上の観点からは、前記輻射シールド専用の冷凍機も、真
空容器の外部に設けることが望ましいが、超電導コイル
への冷凍機の接続に比べて作業性が容易で、かつ温度的
にも高いレベルにあって熱的結合レベルが比較的簡略で
よいので、真空容器内に設けることもできる。
As a result, the radiation shield can be effectively cooled to 80 to 100K by the dedicated small single-stage refrigerator.
The cooling efficiency of the superconducting coil is improved. From the viewpoint of improving maintainability, it is desirable to provide the refrigerator dedicated to the radiation shield also outside the vacuum container, but it is easier to work as compared to connecting the refrigerator to the superconducting coil, and also in terms of temperature. It can also be provided in a vacuum vessel, since at a high level the thermal coupling level may be relatively simple.

【0025】[0025]

【発明の実施の形態】図面に基づき、本発明の実施の形
態について以下に述べる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0026】図1は、本発明による超電導磁石の実施例
の超電導コイル部を拡大して示す断面図で、図7の従来
例に比べて一部簡略化して図示したものである。また、
図1において、図7における構成部材と同一機能を有す
る部材には、同一番号を付しその説明を一部省略する。
FIG. 1 is an enlarged sectional view showing a superconducting coil portion of an embodiment of a superconducting magnet according to the present invention, which is partially simplified as compared with the conventional example of FIG. Also,
In FIG. 1, members having the same functions as those of the constituent members in FIG. 7 are designated by the same reference numerals and the description thereof is partially omitted.

【0027】本実施例においては、冷却ボビン5に超電
導線を巻回して、超電導コイル1が形成され、上下の冷
却フランジ4A,4B及び冷却外筒板6がその周囲に配
設される。冷却フランジ4Aは冷却板12に熱良導的に
連結されている。冷却板12は冷却用配管20と熱的に
連結され、この両者で熱交換器を構成する。これらは真
空容器3内に配設される。
In this embodiment, the superconducting wire is wound around the cooling bobbin 5 to form the superconducting coil 1, and the upper and lower cooling flanges 4A and 4B and the cooling outer cylinder plate 6 are arranged around the superconducting coil 1. The cooling flange 4A is thermally conductively connected to the cooling plate 12. The cooling plate 12 is thermally connected to the cooling pipe 20, and these both constitute a heat exchanger. These are arranged in the vacuum container 3.

【0028】冷却用配管20は、真空容器3の外部にお
いて、極低温の冷媒ガスが供給可能な図示しない冷凍機
と連結されており、冷却用配管20を介して極低温の冷
媒ガスを通流することにより、超電導コイル1は、冷却
板12および冷却フランジ4Aを介して熱伝導で冷却さ
れ、極低温に保持される。
The cooling pipe 20 is connected to a refrigerator (not shown) capable of supplying a cryogenic refrigerant gas outside the vacuum container 3, and the cryogenic refrigerant gas is passed through the cooling pipe 20. By doing so, the superconducting coil 1 is cooled by heat conduction via the cooling plate 12 and the cooling flange 4A, and is maintained at an extremely low temperature.

【0029】超電導コイルが交流損失を伴う運転をした
場合には、超電導コイル1が発熱するが、この熱は、上
記の熱伝導経路により冷却用配管20に通流する冷媒ガ
スによって除去される。従って、交流損失を伴う場合で
あっても、超電導コイルの発熱が除去されるので、超電
導コイルの温度の上昇は低く抑えられる。熱交換できる
伝熱量は、冷媒流量および冷媒温度により設定すること
ができる。超電導コイルの発熱に相当する伝熱量に設定
することにより、超電導コイルを所定の温度に保持で
き、安定通電が可能となる。
When the superconducting coil is operated with AC loss, the superconducting coil 1 generates heat, but this heat is removed by the refrigerant gas flowing through the cooling pipe 20 through the heat conduction path. Therefore, even when AC loss is involved, the heat generation of the superconducting coil is removed, so that the temperature rise of the superconducting coil can be suppressed low. The amount of heat transfer capable of heat exchange can be set by the refrigerant flow rate and the refrigerant temperature. By setting the heat transfer amount corresponding to the heat generation of the superconducting coil, the superconducting coil can be maintained at a predetermined temperature and stable energization becomes possible.

【0030】なお、上述の図1の実施例の構成において
(以下の実施例の構成でも同様であるが)、特に超電導
コイル1が交流損失を発生するような運転を行う場合に
は、前述の特開平11−135318号公報に記載され
たように、超電導コイル1内部の伝導冷却を強化する手
段として、例えば、冷却ボビン5に層状に巻回された超
電導線の層間に、図示しない伝導冷却板を組み込み、そ
の両端を上下の冷却フランジ4A,4Bに設けた、図示
しない溝中に挿入した構成とすることにより、巻線内部
を軸方向端部から効果的に冷却できるようにすることが
望ましい。
In the configuration of the embodiment of FIG. 1 described above (the same applies to the configurations of the following embodiments), particularly when the superconducting coil 1 is operated so as to generate AC loss, As described in Japanese Patent Laid-Open No. 11-135318, as a means for enhancing the conduction cooling inside the superconducting coil 1, for example, a conduction cooling plate (not shown) is provided between layers of the superconducting wire wound in layers on the cooling bobbin 5. It is desirable that the inside of the winding can be effectively cooled from the axial end portion by incorporating the above structure into the groove (not shown) in which both ends are provided in the upper and lower cooling flanges 4A and 4B. .

【0031】図2は、図1の冷却用配管20の一部を冷
却板12と一体化した実施例の平面図を示す。冷却板1
2内部には、冷媒ガス流路24が設けられ、冷媒ガス流
路24は冷却用配管20と接続されている。冷媒ガス流
路24は、冷却板12においてジグザグに構成され、冷
媒ガスが冷却板と十分熱伝達できる長さを有している。
これにより、冷媒ガスと冷却板12との間で効果的に熱
交換でき、結果として超電導コイルが良好に冷却でき
る。また、冷却板12の材料としては、非磁性の良熱伝
導性材料が適しており、銅や窒化アルミなどが好まし
い。
FIG. 2 shows a plan view of an embodiment in which a part of the cooling pipe 20 of FIG. 1 is integrated with the cooling plate 12. Cooling plate 1
A coolant gas passage 24 is provided inside the coolant 2, and the coolant gas passage 24 is connected to the cooling pipe 20. The coolant gas flow path 24 is formed in a zigzag pattern on the cooling plate 12, and has a length that allows the coolant gas to sufficiently transfer heat to the cooling plate.
Thereby, heat exchange can be effectively performed between the refrigerant gas and the cooling plate 12, and as a result, the superconducting coil can be cooled well. Further, as the material of the cooling plate 12, a non-magnetic material having good thermal conductivity is suitable, and copper, aluminum nitride or the like is preferable.

【0032】次に、図3および図4は、図1とは異なる
実施例に関わる超電導磁石の超電導コイル部の模式的拡
大断面図を示す。図3によれば、冷却用配管20は、冷
却板12Aと熱的に接触し、その後冷却板12Bと熱的
に接触する。極低温の冷媒ガスは、初めに冷却板12
A、冷却フランジ4Aを介して超電導コイル1を冷却す
る。ここで冷媒ガスは若干の温度が上昇するが、さらに
冷却する能力を持っているので、冷却板12A、冷却フ
ランジ4Bを介して超電導コイル1を冷却することがで
きる。結果として超電導コイルの両端から内部を冷却で
きる。
Next, FIGS. 3 and 4 are schematic enlarged sectional views of a superconducting coil portion of a superconducting magnet according to an embodiment different from that shown in FIG. According to FIG. 3, the cooling pipe 20 is in thermal contact with the cooling plate 12A and then in thermal contact with the cooling plate 12B. The cryogenic refrigerant gas first flows into the cooling plate 12
A, the superconducting coil 1 is cooled via the cooling flange 4A. Here, although the temperature of the refrigerant gas rises slightly, it has the ability to further cool, so that the superconducting coil 1 can be cooled via the cooling plate 12A and the cooling flange 4B. As a result, the inside can be cooled from both ends of the superconducting coil.

【0033】図4は、冷媒ガスの流通路を冷却フランジ
に直接設ける実施例を示す。図4に示す実施例において
は、冷却用配管20は、冷却フランジ4Aと熱的に接触
し、その後冷却フランジ4Bと熱的に接触する。冷却用
配管20が直接冷却フランジに接触するので、接触熱抵
抗が低減でき、冷媒と超電導コイルとの温度差を縮小す
ることができる。
FIG. 4 shows an embodiment in which the flow passage for the refrigerant gas is provided directly on the cooling flange. In the embodiment shown in FIG. 4, the cooling pipe 20 is in thermal contact with the cooling flange 4A and then with the cooling flange 4B. Since the cooling pipe 20 directly contacts the cooling flange, the contact thermal resistance can be reduced and the temperature difference between the refrigerant and the superconducting coil can be reduced.

【0034】次に、図5は、冷却板12を通流した冷媒
ガスを、電流リードの冷却に用いる構成を示したもので
ある。冷却用配管20は、冷却板12に接続された後、
バイパス配管25と接続配管26とに分岐する。パイバ
ス配管25は、電流リード9への冷媒ガス供給量を調整
するために設けられる。接続配管26は、図示しない絶
縁配管によって電流リードとの間を電気絶縁する構造と
し、電流リード9に接続される。
Next, FIG. 5 shows a configuration in which the refrigerant gas flowing through the cooling plate 12 is used for cooling the current leads. After the cooling pipe 20 is connected to the cooling plate 12,
It branches into a bypass pipe 25 and a connection pipe 26. The bypass bus pipe 25 is provided to adjust the amount of refrigerant gas supplied to the current lead 9. The connection pipe 26 has a structure in which it is electrically insulated from the current lead by an insulating pipe (not shown) and is connected to the current lead 9.

【0035】本構成によれば、冷媒ガスを用いて電流リ
ードを冷却するので、電流リードの熱侵入量は一本あた
り、例えば1.2W/kA程度となり、伝導冷却方式
(冷媒ガスで冷却しない方式)に比べ大幅に低減でき
る。電流リード9の下端は、超電導コイル1とほぼ同一
の温度に冷却されるので、電流リード9と超電導コイル
1とは高温超電導導体13を用いて電気的に接続する。
高温超電導導体13は、電気抵抗がほぼゼロでありジュ
ール発熱がなく、熱伝導率は金属に比べて1/100程度で
あり、超電導コイルヘの熱侵入量は無視できる程度に抑
制可能となる。従って、冷媒ガスのもつ冷却能力の大半
を超電導コイルに使用でき、大型コイルの発熱除去に好
適となる。
According to this structure, since the current lead is cooled by using the refrigerant gas, the amount of heat intrusion of the current lead is, for example, about 1.2 W / kA, which is a conduction cooling method (not cooled by the refrigerant gas. It can be significantly reduced compared to the method). Since the lower end of the current lead 9 is cooled to almost the same temperature as the superconducting coil 1, the current lead 9 and the superconducting coil 1 are electrically connected using the high temperature superconducting conductor 13.
The high-temperature superconducting conductor 13 has an electric resistance of almost zero, does not generate Joule heat, has a thermal conductivity of about 1/100 of that of metal, and the amount of heat entering the superconducting coil can be suppressed to a negligible level. Therefore, most of the cooling capacity of the refrigerant gas can be used for the superconducting coil, which is suitable for removing heat from the large coil.

【0036】また、冷却用配管20、バイパス配管25
及び大気側配管27は、冷媒ガス循環機能をもった外部
設置の図示しない冷凍機に接続される。大気側配管27
を流れる冷媒の温度はほぼ室温であり、冷凍機によって
所定の温度に冷却した後、冷却用配管20に供給するこ
とにより、超電導コイルを冷却する。
Further, the cooling pipe 20 and the bypass pipe 25
The atmosphere side pipe 27 is connected to an externally installed refrigerator having a refrigerant gas circulation function. Atmosphere side pipe 27
The temperature of the refrigerant flowing through is approximately room temperature, and after cooling to a predetermined temperature by the refrigerator, the superconducting coil is cooled by supplying it to the cooling pipe 20.

【0037】図6は、輔射シールドに専用の単段式冷凍
機の低温端を接続した実施例を示す。輔射シールド2は
小型単段式冷凍機7aに接続されて冷却される。本構成
により、超電導コイル冷却用の冷媒ガス供給とは無関係
に、専用の冷凍機によって輔射シールドが冷却される。
一般に、超電導コイル1が運転休止の場合、冷媒ガスの
供給も停止するが、このとき超電導コイルの温度は上昇
する。図6に示す構成によれば、冷凍機7aを連続運転
することにより、幅射シールド2は連続的に冷却できる
ので、図示しない超電導コイル支持材を介して超電導コ
イルが冷却できる。このとき運転時の温度までは冷却で
きないが、超電導コイル冷却用の冷媒ガスの供給を再開
してから運転開始までの冷却時間を短縮できる。この場
合には、速やかに運転再開できるので、効率的に超電導
コイルを運用できる。
FIG. 6 shows an embodiment in which the low temperature end of a dedicated single-stage refrigerator is connected to the radiation shield. The radiation shield 2 is connected to the small single-stage refrigerator 7a and cooled. With this configuration, the radiation shield is cooled by the dedicated refrigerator regardless of the supply of the refrigerant gas for cooling the superconducting coil.
Generally, when the superconducting coil 1 is out of operation, the supply of the refrigerant gas is also stopped, but at this time, the temperature of the superconducting coil rises. According to the configuration shown in FIG. 6, the radiation shield 2 can be continuously cooled by continuously operating the refrigerator 7a, so that the superconducting coil can be cooled through the superconducting coil support member (not shown). At this time, the temperature cannot be cooled to the temperature during operation, but the cooling time from the restart of the supply of the refrigerant gas for cooling the superconducting coil to the start of operation can be shortened. In this case, since the operation can be restarted promptly, the superconducting coil can be operated efficiently.

【0038】[0038]

【発明の効果】この発明によれば、前述のように、超電
導線を巻枠に層状に巻回し冷却フランジで支持してなる
超電導コイルと、超電導コイルを断熱して収納する真空
容器とを備え、付設した冷凍機を用いて超電導コイルを
冷却し、極低温に保持してなる超電導磁石において、前
記冷凍機は前記真空容器の外部に設置し、前記超電導コ
イルの冷却フランジと熱良導的に配設した冷却板を、前
記冷凍機で発生する極低温の冷媒ガスにより所定温度に
冷却することにより、超電導コイルを冷却するように構
成したので、冷凍機と超電導コイルとの接続構成および
組立て作業がシンプルとなり、また冷凍機のメンテナン
ス性が向上する。さらに、超電導コイルにおける交流損
失に伴う発熱が効果的に除去されるので、超電導コイル
は常電導転移を生じることなく安定して運転できる。
According to the present invention, as described above, the superconducting wire is wound around the winding frame in layers and supported by the cooling flange, and the vacuum container for insulating and housing the superconducting coil is provided. , In a superconducting magnet that cools a superconducting coil using an attached refrigerator, and holds it at a cryogenic temperature, the refrigerator is installed outside the vacuum container, and the cooling flange of the superconducting coil and heat conduction Since the arranged cooling plate is configured to cool the superconducting coil by cooling it to a predetermined temperature with the cryogenic refrigerant gas generated in the refrigerator, the connecting configuration and assembling work of the refrigerator and the superconducting coil are performed. Is simple, and the maintainability of the refrigerator is improved. Further, since heat generation due to AC loss in the superconducting coil is effectively removed, the superconducting coil can be stably operated without causing a normal conduction transition.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に関わる超電導磁石の超電導コ
イル部の模式的拡大断面図
FIG. 1 is a schematic enlarged sectional view of a superconducting coil portion of a superconducting magnet according to an embodiment of the present invention.

【図2】本発明に係る冷却板の実施例の平面図FIG. 2 is a plan view of an embodiment of a cooling plate according to the present invention.

【図3】図1とは異なる実施例の超電導磁石の超電導コ
イル部の模式的拡大断面図
FIG. 3 is a schematic enlarged cross-sectional view of a superconducting coil portion of a superconducting magnet of an embodiment different from FIG.

【図4】図3とは異なる実施例の超電導磁石の超電導コ
イル部の模式的拡大断面図
FIG. 4 is a schematic enlarged cross-sectional view of a superconducting coil portion of a superconducting magnet of an embodiment different from FIG.

【図5】本発明の異なる実施例の超電導磁石の模式的断
面図
FIG. 5 is a schematic sectional view of a superconducting magnet according to another embodiment of the present invention.

【図6】本発明のさらに異なる実施例の超電導磁石の模
式的断面図
FIG. 6 is a schematic cross-sectional view of a superconducting magnet of still another embodiment of the present invention.

【図7】従来の冷凍機冷却方式の超電導磁石の基本構成
を模式的に示す断面図
FIG. 7 is a cross-sectional view schematically showing the basic configuration of a conventional refrigerator-cooled superconducting magnet.

【符号の説明】[Explanation of symbols]

1:超電導コイル、2:輻射シールド、3:真空容器、
4A,4B:冷却フランジ、5:冷却ボビン、6:冷却
外筒板、7a:冷凍機、9:電流リード、12,12
A,12B:冷却板、20:冷却用配管。
1: superconducting coil, 2: radiation shield, 3: vacuum container,
4A, 4B: Cooling flange, 5: Cooling bobbin, 6: Cooling outer cylinder plate, 7a: Refrigerator, 9: Current lead, 12, 12
A, 12B: cooling plate, 20: piping for cooling.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堤 克哉 福岡県福岡市南区塩原二丁目1番47号 九 州電力株式会社総合研究所内 (72)発明者 富岡 章 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 八木 裕治郎 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Katsuya Tsutsumi             2-47 Shiobara 2-chome, Minami-ku, Fukuoka City, Fukuoka Prefecture             State Electric Power Co., Inc. (72) Inventor Akira Tomioka             1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa             Within Fuji Electric Co., Ltd. (72) Inventor Yujiro Yagi             1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa             Within Fuji Electric Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 超電導線を巻枠に層状に巻回し冷却フラ
ンジで支持してなる超電導コイルと、超電導コイルを断
熱して収納する真空容器とを備え、付設した冷凍機を用
いて超電導コイルを冷却し、極低温に保持してなる超電
導磁石において、前記冷凍機は前記真空容器の外部に設
置し、前記超電導コイルの冷却フランジと熱良導的に配
設した冷却板を、前記冷凍機で発生する極低温の冷媒ガ
スにより所定温度に冷却することにより、超電導コイル
を冷却するように構成することを特徴とする超電導磁
石。
1. A superconducting coil comprising a superconducting wire wound around a winding frame in layers and supported by a cooling flange, and a vacuum container for accommodating and insulating the superconducting coil. In a superconducting magnet that is cooled and kept at an extremely low temperature, the refrigerator is installed outside the vacuum container, and a cooling flange of the superconducting coil and a cooling plate arranged in good heat conduction are provided in the refrigerator. A superconducting magnet, which is configured to cool a superconducting coil by cooling it to a predetermined temperature with a cryogenic refrigerant gas generated.
【請求項2】 請求項1記載の超電導磁石において、前
記冷却板は、非磁性の良熱伝導性材料からなり、その内
部に前記極低温の冷媒ガスの流通路を形成してなること
を特徴とする超電導磁石。
2. The superconducting magnet according to claim 1, wherein the cooling plate is made of a non-magnetic material having good heat conductivity, and a flow passage for the cryogenic refrigerant gas is formed therein. And a superconducting magnet.
【請求項3】 請求項1または2に記載の超電導磁石に
おいて、前記冷却板は、前記超電導コイルの上下両側の
冷却フランジに設けてなることを特徴とする超電導磁
石。
3. The superconducting magnet according to claim 1, wherein the cooling plate is provided on cooling flanges on both upper and lower sides of the superconducting coil.
【請求項4】 請求項1ないし3のいずれかに記載の超
電導磁石において、前記冷却板を冷却した冷媒ガスを、
超電導コイルに電流を供給する電流リードに通流して電
流リードを冷却した後、前記冷凍機に還流するように構
成することを特徴とする超電導磁石。
4. The superconducting magnet according to claim 1, wherein the refrigerant gas that has cooled the cooling plate is
A superconducting magnet, which is configured to flow through a current lead for supplying a current to a superconducting coil, cool the current lead, and then return the current to the refrigerator.
【請求項5】 請求項1ないし4のいずれかに記載の超
電導磁石において、前記超電導コイルへの外部からの熱
輻射を遮断するために前記真空容器内に輻射シールドを
配設してなり、この輻射シールドを前記冷凍機とは別に
設けた小型単段式冷凍機により冷却するように構成する
ことを特徴とする超電導磁石。
5. The superconducting magnet according to any one of claims 1 to 4, wherein a radiation shield is arranged in the vacuum container to block heat radiation to the superconducting coil from the outside. A superconducting magnet, characterized in that the radiation shield is cooled by a small single-stage refrigerator provided separately from the refrigerator.
JP2001207860A 2001-07-09 2001-07-09 Superconducting magnet Expired - Lifetime JP4799770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001207860A JP4799770B2 (en) 2001-07-09 2001-07-09 Superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001207860A JP4799770B2 (en) 2001-07-09 2001-07-09 Superconducting magnet

Publications (2)

Publication Number Publication Date
JP2003022907A true JP2003022907A (en) 2003-01-24
JP4799770B2 JP4799770B2 (en) 2011-10-26

Family

ID=19043771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001207860A Expired - Lifetime JP4799770B2 (en) 2001-07-09 2001-07-09 Superconducting magnet

Country Status (1)

Country Link
JP (1) JP4799770B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007013095A (en) * 2005-05-30 2007-01-18 Toshiba Corp Superconductive coil device
JP2008091928A (en) * 2006-10-04 2008-04-17 Oxford Instruments Superconductivity Ltd Flow-cooled magnet system

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62299005A (en) * 1986-06-18 1987-12-26 Sumitomo Electric Ind Ltd Superconducting magnet device
JPS6486506A (en) * 1987-09-28 1989-03-31 Kobe Steel Ltd Method of cooling superconducting magnet
JPH065412A (en) * 1992-06-19 1994-01-14 Hitachi Ltd Magnet for magnetic resonance imaging device
JPH0623265U (en) * 1992-08-19 1994-03-25 住友電気工業株式会社 Cryogenic container
JPH0869911A (en) * 1994-08-30 1996-03-12 Toshiba Corp Superconducting magnet device
JPH09306722A (en) * 1996-05-16 1997-11-28 Toshiba Corp Superconducting magnet device
JPH1026427A (en) * 1996-07-12 1998-01-27 Hitachi Ltd Cooler
WO1998035365A1 (en) * 1997-02-07 1998-08-13 Siemens Aktiengesellschaft Current supply device for a cooled electrical device
JPH10238876A (en) * 1997-02-25 1998-09-08 Toshiba Corp Heat insulating vessel, heat insulating device and heat insulating method
JPH10313135A (en) * 1997-05-09 1998-11-24 Rikagaku Kenkyusho High-temperature superconductor magnetic shielding device
JPH11233334A (en) * 1998-02-18 1999-08-27 Hitachi Ltd Conduction cooling type superconducting electromagnet
JP2001004237A (en) * 1999-06-24 2001-01-12 Mitsubishi Electric Corp Cryogenic cooling system and cryogenic cooling method
JP2002043117A (en) * 2000-07-26 2002-02-08 Sumitomo Heavy Ind Ltd Conductively cooled superconducting magnet

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62299005A (en) * 1986-06-18 1987-12-26 Sumitomo Electric Ind Ltd Superconducting magnet device
JPS6486506A (en) * 1987-09-28 1989-03-31 Kobe Steel Ltd Method of cooling superconducting magnet
JPH065412A (en) * 1992-06-19 1994-01-14 Hitachi Ltd Magnet for magnetic resonance imaging device
JPH0623265U (en) * 1992-08-19 1994-03-25 住友電気工業株式会社 Cryogenic container
JPH0869911A (en) * 1994-08-30 1996-03-12 Toshiba Corp Superconducting magnet device
JPH09306722A (en) * 1996-05-16 1997-11-28 Toshiba Corp Superconducting magnet device
JPH1026427A (en) * 1996-07-12 1998-01-27 Hitachi Ltd Cooler
WO1998035365A1 (en) * 1997-02-07 1998-08-13 Siemens Aktiengesellschaft Current supply device for a cooled electrical device
JPH10238876A (en) * 1997-02-25 1998-09-08 Toshiba Corp Heat insulating vessel, heat insulating device and heat insulating method
JPH10313135A (en) * 1997-05-09 1998-11-24 Rikagaku Kenkyusho High-temperature superconductor magnetic shielding device
JPH11233334A (en) * 1998-02-18 1999-08-27 Hitachi Ltd Conduction cooling type superconducting electromagnet
JP2001004237A (en) * 1999-06-24 2001-01-12 Mitsubishi Electric Corp Cryogenic cooling system and cryogenic cooling method
JP2002043117A (en) * 2000-07-26 2002-02-08 Sumitomo Heavy Ind Ltd Conductively cooled superconducting magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007013095A (en) * 2005-05-30 2007-01-18 Toshiba Corp Superconductive coil device
JP2008091928A (en) * 2006-10-04 2008-04-17 Oxford Instruments Superconductivity Ltd Flow-cooled magnet system

Also Published As

Publication number Publication date
JP4799770B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
US20090293504A1 (en) Refrigeration installation having a warm and a cold connection element and having a heat pipe which is connected to the connection elements
US9508477B2 (en) Superconducting magnet system
JPH11288809A (en) Superconducting magnet
US20080115510A1 (en) Cryostats including current leads for electronically powered equipment
KR20020073428A (en) Cryogenic cooling system with cooldown and normal modes of operation
JP2005217392A (en) Low eddy current cryogen circuit for superconducting magnet
JP2002208512A (en) High-temperature superconducting coil cooling method and cooling structure
JP4799757B2 (en) Superconducting magnet
US5979176A (en) Refrigerator
JP2006324325A (en) Super-conducting magnet apparatus
JP2002270913A (en) Superconductive coil unit and mri device
JP3955022B2 (en) Refrigeration equipment
US6708503B1 (en) Vacuum retention method and superconducting machine with vacuum retention
JP6104007B2 (en) Current supply device
JP2003022907A (en) Superconducting magnet
JPH10189328A (en) Superconducting magnet
JP2010101580A (en) Cryogenic refrigerant recondensing device and superconducting magnet device
JP6021791B2 (en) Permanent current switch and superconducting device equipped with it
JP2004111581A (en) Superconducting magnet unit
JP3725305B2 (en) Superconducting magnet cooling system
JPH10116725A (en) Superconducting magnet device
JP7348410B1 (en) Superconducting magnet system for cyclotron and cyclotron with it
JP2005129609A (en) Conduction cooling type super-conductive magnet
JP2017069358A (en) Super conducting magnet device
JP2001068328A (en) Superconducting electromagnet device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4799770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term