JP2003022888A - Surface heater and heating method therefor - Google Patents

Surface heater and heating method therefor

Info

Publication number
JP2003022888A
JP2003022888A JP2001206048A JP2001206048A JP2003022888A JP 2003022888 A JP2003022888 A JP 2003022888A JP 2001206048 A JP2001206048 A JP 2001206048A JP 2001206048 A JP2001206048 A JP 2001206048A JP 2003022888 A JP2003022888 A JP 2003022888A
Authority
JP
Japan
Prior art keywords
electrode pair
layer
temperature
heating element
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001206048A
Other languages
Japanese (ja)
Other versions
JP4863036B2 (en
Inventor
Norikatsu Ono
典克 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2001206048A priority Critical patent/JP4863036B2/en
Publication of JP2003022888A publication Critical patent/JP2003022888A/en
Application granted granted Critical
Publication of JP4863036B2 publication Critical patent/JP4863036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/006Heaters using a particular layout for the resistive material or resistive elements using interdigitated electrodes

Abstract

PROBLEM TO BE SOLVED: To provide a surface heater and its heating method, capable of obtaining superior high-speed heating performance, without using a power supply using a complicated control circuit. SOLUTION: A first pair of electrodes 21 and a second pair of electrodes 22 are formed on the obverse, the reverse, or both obverse and reverse of an electric-heating layer 10 so as not to be horizontally overlapped. Each pair of electrodes is connected to a power supply, through a separate switch that can be independently opened and closed. An additional electric-heating layer may be laminated on the surface of the electric-heating layer where the pairs of electrodes are formed, or a base material layer may be laminated on the outermost obverse and the outermost reverse. In its heating method, both pairs of electrodes are energized first to heat the surface heater, a shorter temperature balancing time is measured, when only either one of the pairs of electrodes is energized, and current supply to one pair of electrodes is stopped at a time point before the shorter time to bring temperature balancing conditions to the surface heater.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、平面的で均一な温
度分布で発熱する熱源として好適な面発熱体に関する。
特に、昇温時間が短く、速熱性に優れた面発熱体とその
発熱方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface heating element suitable as a heat source for generating heat with a flat and uniform temperature distribution.
In particular, the present invention relates to a surface heating element having a short heating time and an excellent rapid heating property and a heating method thereof.

【0002】[0002]

【従来の技術】面発熱体は、床暖房、電気カーペット、
融雪ヒータ等の民生用途や、配管、タンクの保温等の産
業用途の熱源として、広く利用されている。従来の面発
熱体としては、例えば、(1)導電性粉末を熱可塑性樹
脂中に混練したものをシート状に成形したもの、(2)
導電性粉末をシリコーン樹脂や有機ビヒクルと混ぜてペ
ースト状とし、それを厚膜印刷技術を用いて基板上に膜
形成したもの、等の形態が知られている。
2. Description of the Related Art Surface heating elements are used for floor heating, electric carpets,
It is widely used as a heat source for consumer applications such as snow melting heaters and industrial applications such as heat insulation of pipes and tanks. Examples of the conventional surface heating element include (1) a sheet obtained by kneading conductive powder in a thermoplastic resin, and (2)
It is known that a conductive powder is mixed with a silicone resin or an organic vehicle to form a paste, and the paste is formed on a substrate by using a thick film printing technique.

【0003】例えば、上記(1)の形態のものとして
は、特公昭54−13625号公報等に開示されている
様に、ポリエチレン等の熱可塑性樹脂に、黒鉛、カーボ
ンブラック等の導電性炭素から成る導電性粉末を、ブレ
ンド・混練し、シート状に成形したもので、樹脂中に導
電性粉末が配合され、それらの物理的接触により導通を
得ている。また、この様な面発熱体は、導電性粉末と熱
可塑性樹脂との熱膨張係数は、樹脂の方が極端に大き
く、且つ、樹脂はガラス転移点以上の温度で更に大きい
膨張係数を示すため、ブレンドされた導電性粉末の粒子
同士の間隔が、温度上昇とともに広がり、ガラス転移点
以上では、その広がりが極端に大きくなり、電気抵抗の
正温度特性(PTC特性)を示す。そのため、その温度
前後で発熱体に電流が流れ難くなり、自己温度制御が可
能となる特性も有する。
For example, as the form of the above (1), as disclosed in Japanese Patent Publication No. 54-13625, a thermoplastic resin such as polyethylene, a conductive carbon such as graphite or carbon black is used. The conductive powder is formed by blending and kneading, and is molded into a sheet. The conductive powder is mixed in the resin, and the physical contact between the conductive powder provides electrical continuity. Further, in such a surface heating element, the resin has an extremely large coefficient of thermal expansion between the conductive powder and the thermoplastic resin, and the resin exhibits a larger coefficient of expansion at a temperature equal to or higher than the glass transition point. The spacing between the particles of the blended conductive powder expands as the temperature rises, and at the glass transition point or higher, the spread becomes extremely large, exhibiting a positive temperature characteristic (PTC characteristic) of electrical resistance. Therefore, it becomes difficult for an electric current to flow in the heating element before and after that temperature, and the self-temperature control is possible.

【0004】一方、上記(2)の形態のものとしては、
例えば、特公昭58−15913号公報に開示されてい
るものがあり、その詳細は、シリコーン樹脂ワニスに、
黒鉛粉末、有機溶剤、流動性調整剤等を混合し、基板上
に塗布後、250〜450℃温度で焼成なる処理をして
製造した面発熱体が記載されている。
On the other hand, as the form of the above (2),
For example, there is one disclosed in Japanese Examined Patent Publication (Kokoku) No. 58-15913, the details of which are described in Silicone Resin Varnish,
There is described a surface heating element produced by mixing graphite powder, an organic solvent, a fluidity adjusting agent and the like, coating the mixture on a substrate, and then firing the mixture at a temperature of 250 to 450 ° C.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記
(1)の形態のものは、電気抵抗(体積固有抵抗)の正
温度特性の為、室温で大きな電圧を印加して大電流で発
熱量(単位時間・単位面積当たり)を大にしても、高温
に到達すると電気抵抗が急激に高くなり、電流値が減り
発熱量も低下し、過度に高温化することが無い。その
為、抵抗値が大きく変化する温度まで一気に昇温するこ
とは可能である。しかし、熱可塑性樹脂が主成分のた
め、高温の面発熱体は難しい欠点がある。また、樹脂の
熱膨張を繰り返すうちに、カーボン粒子の樹脂マトリッ
クス中での接触状態や配列状態に変化を生じることがあ
り、制御温度が変わったり、あるいは、制御温度を超え
て昇温し更に制御性が著しく低下して発火するという問
題点があった。また、この様な問題を改善すべく、樹脂
を架橋する等の改良も提案されている。しかし、材料が
特殊であったり、高価になったり、加工の手間が増え等
の問題が残る。
However, in the case of the above-mentioned form (1), since the positive temperature characteristic of the electric resistance (volume resistivity), a large voltage is applied at room temperature to generate a large amount of heat (unit: Even if the time (per unit area) is increased, when the temperature reaches a high temperature, the electric resistance rapidly increases, the current value decreases, the calorific value decreases, and the temperature does not rise excessively. Therefore, it is possible to raise the temperature all at once to a temperature at which the resistance value changes greatly. However, since the thermoplastic resin is the main component, a high-temperature surface heating element has a drawback. Also, during repeated thermal expansion of the resin, the contact state and arrangement state of the carbon particles in the resin matrix may change, the control temperature may change, or the temperature may rise above the control temperature for further control. There was a problem that the property was remarkably deteriorated and a fire occurred. Further, in order to improve such problems, improvements such as crosslinking of resins have been proposed. However, there remain problems that the material is special, the cost is high, and the labor of processing is increased.

【0006】一方、(2)の形態のものは、発熱体自体
に自己温度制御性が無い為、上記の如き自己温度制御性
に由来する問題点は回避できるが、到達温度は、発熱体
の面積、抵抗値、印加電圧で決まってしまい、昇温速度
は制御できず、速熱性に劣るという欠点があった。もち
ろん、熱電対等の温度センサで温度を計測し、その計測
値を元に、面発熱体に供給する電力を、サイリスタ等で
制御すると言った帰還(フィードバック)温度制御も可
能である。しかし、その為には、電源に制御回路を付加
する必要が生じる。
On the other hand, in the case of the form (2), since the heating element itself does not have the self-temperature controllability, the above-mentioned problems derived from the self-temperature controllability can be avoided, but the ultimate temperature is Since the area, resistance value, and applied voltage are determined, the rate of temperature rise cannot be controlled, and the rapid heating property is poor. Of course, it is also possible to perform feedback temperature control in which the temperature is measured with a temperature sensor such as a thermocouple and the power supplied to the surface heating element is controlled by a thyristor or the like based on the measured value. However, for that purpose, it becomes necessary to add a control circuit to the power supply.

【0007】すなわち、本発明の課題は、複雑な制御回
路を用いた電源も、或いは特殊な電熱材料も用いること
無く、昇温時間が短く、速熱性に優れた面発熱体を提供
することである。また、その様な発熱方法を提供するこ
とである。
That is, an object of the present invention is to provide a surface heating element which has a short heating time and an excellent rapid heating property without using a power source using a complicated control circuit or a special electric heating material. is there. It is also to provide such a heat generation method.

【0008】[0008]

【課題を解決するための手段】上記課題を解決すべく、
本発明の面発熱体では、ジュール熱により発熱する電熱
層を用いた面発熱体において、第1電極対、及び第2電
極対が、平面方向に於いて互いに重複しない様にして、
電熱層の表面のみ、裏面のみ、或いは表面と裏面の両面
に形成され、第1電極対と第2電極対は各々独立に開閉
できる別個の開閉器を通じて電源に接続されて成る構成
とした。或いは、本発明の面発熱体は、上記構成におい
て更に、電熱層の電極対が形成された面上に、更に電熱
層を積層して成る構成とした。
[Means for Solving the Problems] In order to solve the above problems,
In the surface heating element of the present invention, in the surface heating element using the electric heating layer that generates heat by Joule heat, the first electrode pair and the second electrode pair are arranged such that they do not overlap with each other in the plane direction,
The heating layer is formed only on the front surface, only on the back surface, or on both the front surface and the back surface, and the first electrode pair and the second electrode pair are connected to the power source through separate switches that can be independently opened and closed. Alternatively, the surface heating element of the present invention has a structure in which an electric heating layer is further laminated on the surface of the electric heating layer on which the electrode pair is formed.

【0009】この様な構成とすることで、発熱初期の温
度の立ち上がりが早く、短時間で所望の平衡温度に到達
させることができる面発熱体となる。その為、暖房機器
等に利用する場合では迅速な暖房効果が得られる等、昇
温時間が短く、速熱性に優れる。また、PTC特性を有
する材料等特殊な電熱材料を使用する必要が無く、通常
の抵抗体を用いることにより、樹脂の熱膨張の繰り返し
の影響による経時劣化が無く、安定した発熱特性を得る
ことができる。また、電源に温度制御回路を特別付帯せ
ずとも、電流値のみ一定に保てば、一定温度を維持でき
る。
With such a structure, the surface heating element can quickly reach the desired equilibrium temperature in a short period of time when the temperature rises early in the heat generation. Therefore, when it is used for a heating device or the like, a quick heating effect is obtained, and the temperature rising time is short and the rapid heating property is excellent. In addition, it is not necessary to use a special electrothermal material such as a material having PTC characteristics, and by using an ordinary resistor, stable heat generation characteristics can be obtained without deterioration over time due to the effect of repeated thermal expansion of the resin. it can. Further, even if the temperature control circuit is not specially attached to the power source, a constant temperature can be maintained if only the current value is kept constant.

【0010】また、本発明の面発熱体は、上記いずれか
の構成において更に、電熱層の最表面又は最裏面のう
ち、いずれか一面又は両面に、更に絶縁体の基材層を積
層して成る構成とした。
In addition, the surface heating element of the present invention further has a base material layer of an insulating material laminated on any one or both of the outermost surface or the backside of the electrothermal layer in any of the above constitutions. It is made up of

【0011】この様な構成とすることで、電熱層を基材
層で支持でき、面発熱体の機械的強度を補強できると共
に絶縁性も付与できる。
With such a constitution, the electrothermal layer can be supported by the base material layer, the mechanical strength of the surface heating element can be reinforced and the insulating property can be imparted.

【0012】そして、本発明の発熱方法は、上記いずれ
かの面発熱体を用いて、先ず、第1電極対と第2電極対
の両方を通電して発熱させ、次いで、電熱層を両電極対
のうち、いずれか一方のみ通電した時の温度平衡時間の
うち、より短い時間よりも前の時点で、両電極対のうち
いずれか一方への通電を停止し、面発熱体を温度平衡に
至らせる方法とした。
In the heating method of the present invention, using either of the above surface heating elements, first, both the first electrode pair and the second electrode pair are energized to generate heat, and then the heating layer is applied to both electrodes. In the temperature equilibration time when only one of the pair is energized, at a time point earlier than the shorter time, the energization to either one of the two electrode pairs is stopped and the surface heating element is allowed to reach temperature equilibrium. I decided to get it.

【0013】この様な方法とすることで、発熱初期の温
度の立ち上がりを早くし、短時間で所望の平衡温度に到
達させることができる。その為、暖房機器等に利用する
場合では迅速な暖房効果が得られる等、昇温時間を短く
でき、速熱性を実現できる。また、電源に温度制御回路
を特別付帯せずとも、電流値のみ一定に保てば、一定温
度を維持できる。
By adopting such a method, it is possible to accelerate the rise of the temperature in the initial stage of heat generation and reach the desired equilibrium temperature in a short time. Therefore, when it is used for a heating device or the like, a quick heating effect can be obtained, and thus the temperature rising time can be shortened and a rapid heating property can be realized. Further, even if the temperature control circuit is not specially attached to the power source, a constant temperature can be maintained if only the current value is kept constant.

【0014】[0014]

【発明の実施の形態】以下、本発明について、実施の形
態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0015】〔概要〕先ず、図1は本発明の面発熱体の
或る一形態を例示する図であり、図1(A)は断面図、
図1(B)は、図1(A)の様な電極対の配置を有する
面発熱体の平面視パターンの一例を例示する平面図であ
る。なお、図1(A)の断面図は、図1(B)中のA−
A線方向での断面図である。
[Outline] First, FIG. 1 is a view illustrating one form of a surface heating element of the present invention, and FIG. 1 (A) is a sectional view.
FIG. 1B is a plan view illustrating an example of a plan view pattern of a surface heating element having an arrangement of electrode pairs as shown in FIG. Note that the cross-sectional view of FIG. 1A is taken along line A- in FIG.
It is sectional drawing in the A line direction.

【0016】図1に示す面発熱体100は、電熱層10
上に、第1電極対21と第2電極対22とが、平面方向
に於いて互いに重複しない様にして、電熱層10の裏面
側のみに形成されて構成であり、上記第1電極対21と
第2電極対22は、各々独立に開閉できる別個の開閉器
を通じて電源に接続され通電され得る構成である。ま
た、図1に例示の面発熱体100の場合は、更に電熱層
10の裏面側に、基材層30を両電極対21、22が基
材層30と電熱層10とで挟まれる様にして積層された
構成である。なお、この様な構成の面発熱体100は、
例えば、基材層30上に先ず両電極対21、22を印刷
等で形成した後、その上から更に電熱層10を印刷等で
形成することで得ることができる。
The surface heating element 100 shown in FIG.
Above, the first electrode pair 21 and the second electrode pair 22 are formed only on the back surface side of the electrothermal layer 10 so as not to overlap each other in the plane direction, and the first electrode pair 21 is formed. The second electrode pair 22 and the second electrode pair 22 are connected to a power source and can be energized through separate switches that can be independently opened and closed. Further, in the case of the surface heating element 100 illustrated in FIG. 1, the base material layer 30 is further disposed on the back surface side of the electric heating layer 10 such that the electrode pairs 21 and 22 are sandwiched between the base material layer 30 and the electric heating layer 10. It is a laminated structure. The surface heating element 100 having such a configuration is
For example, it can be obtained by first forming both electrode pairs 21 and 22 on the base material layer 30 by printing or the like, and then further forming the electrothermal layer 10 on it by printing or the like.

【0017】そして、図1に示す様な面発熱体100
は、例えば、図5に例示の如く、第1電極対21及び第
2電極対22は、各々独立に通電できる様に配線して通
電し加熱する。すなわち、同図の場合では、第1電極対
21には、開閉器210を介して電源410に接続して
ある電源ケーブル310を接続する。第2電極対22に
は、開閉器220を介して電源420に接続してある電
源ケーブル320を接続する。この様に配線して、最初
は、両電極対21及び22によって電熱層10に通電
し、而る後、どちらか片方の電極対への通電を停止し、
残る片方の電極対側の通電のみとすれば、速熱性に優れ
た発熱方法が可能となるのである。
The surface heating element 100 as shown in FIG.
For example, as illustrated in FIG. 5, the first electrode pair 21 and the second electrode pair 22 are wired and heated so that they can be independently energized. That is, in the case of the same drawing, the power supply cable 310 connected to the power supply 410 via the switch 210 is connected to the first electrode pair 21. A power cable 320 connected to a power source 420 via a switch 220 is connected to the second electrode pair 22. By wiring in this way, first, the electrode layers 21 and 22 are energized to the electrothermal layer 10, and thereafter, energization to either one of the electrode pairs is stopped,
If only the remaining one electrode pair side is energized, a heating method excellent in rapid heating property can be realized.

【0018】〔層構成の各種形態例〕次に、図2に、本
発明の面発熱体の別の或る一形態を示す。図2(A)は
断面図であり、図2(B)はその平面図である。なお、
図2(A)の断面図は、図2(B)中のA−A線方向で
の断面図(但し、左半分のみ図示)である。
[Various Examples of Layered Structure] Next, FIG. 2 shows another embodiment of the surface heating element of the present invention. 2A is a cross-sectional view and FIG. 2B is a plan view thereof. In addition,
The sectional view of FIG. 2A is a sectional view taken along the line AA in FIG. 2B (however, only the left half is shown).

【0019】図2で示す面発熱体100は、各電極対2
1、22の平面視パターンが、図1の形態とは異なる形
状の一例である。なお、基材層30、電極対21及び2
2、電熱層10の積層関係は、図1の場合と同じであ
る。
The surface heating element 100 shown in FIG.
The plan view patterns 1 and 22 are an example of a shape different from the form of FIG. The base material layer 30, the electrode pairs 21 and 2
2. The stacking relationship of the electrothermal layer 10 is the same as that in the case of FIG.

【0020】次に、図3は、本発明の面発熱体につい
て、層構成の幾つかの形態例を示す断面図である。図3
(A)に例示の面発熱体100は、電熱層10aの電極
対21及び22が形成された面上に、更に電熱層10b
を積層して成る構成である。
Next, FIG. 3 is a cross-sectional view showing some examples of the layer constitution of the surface heating element of the present invention. Figure 3
In the surface heating element 100 illustrated in (A), the electric heating layer 10b is further formed on the surface of the electric heating layer 10a on which the electrode pairs 21 and 22 are formed.
It is configured by stacking.

【0021】また、図3(B)の面発熱体100は、電
熱層10aの裏面(図面下方)に電極対21が形成さ
れ、該電熱層10aの表面に他方の電極対22が形成さ
れ、更に該電極対22が形成された電熱層10aの面上
の一部に該電熱層10aよりも小面積で電極対21の内
側に電熱層10bを積層した構成である。
Further, in the surface heating element 100 of FIG. 3B, the electrode pair 21 is formed on the back surface (downward in the drawing) of the electrothermal layer 10a, and the other electrode pair 22 is formed on the surface of the electrothermal layer 10a. Further, the electrothermal layer 10b has a smaller area than the electrothermal layer 10a and the electrothermal layer 10b is laminated inside the electrode pair 21 on a part of the surface of the electrothermal layer 10a on which the electrode pair 22 is formed.

【0022】また、図3(C)の面発熱体100は、電
熱層10aの裏面(図面下方)に、第1電極対21が形
成され、電熱層10aの表面(側)には、第2電極対2
2が形成され、該第2電極対22が形成された面上に、
更に、電熱層10aよりも小面積の電熱層10bが積層
され、且つ、第1電極対21が形成された電熱層10a
の裏面(両電熱層の最裏面)には、基材層30が積層さ
れた構成である。
Further, in the surface heating element 100 of FIG. 3C, the first electrode pair 21 is formed on the back surface (lower side of the drawing) of the electric heating layer 10a, and the second electrode is formed on the front surface (side) of the electric heating layer 10a. Electrode pair 2
2 is formed on the surface on which the second electrode pair 22 is formed,
Further, the electric heating layer 10a having a smaller area than the electric heating layer 10a is laminated and the first electrode pair 21 is formed.
The base material layer 30 is laminated on the back surface (the outermost surface of both electrothermal layers).

【0023】また、図3(D)の面発熱体100は、二
つの基材層30a及び30bを設けた構成であり、基材
層30a上に、第1電極対21を介して電熱層10aが
積層され、更に該電熱層10a上に第2電極対22を介
して電熱層10bが積層され、更に電熱層10bの上
に、基材層30bが積層された構成である。基材層30
aは、両電熱層10a及び10bの最裏面に形成され、
一方の基材層30bは、両電熱層10a及び10bの最
表面に形成された構成でもある。
Further, the surface heating element 100 of FIG. 3D has a structure in which two base material layers 30a and 30b are provided, and the electric heating layer 10a is provided on the base material layer 30a via the first electrode pair 21. Is laminated, the electric heating layer 10b is further laminated on the electric heating layer 10a via the second electrode pair 22, and the base material layer 30b is further laminated on the electric heating layer 10b. Base material layer 30
a is formed on the backmost surfaces of both electrothermal layers 10a and 10b,
One of the base material layers 30b is also a structure formed on the outermost surfaces of the electrothermal layers 10a and 10b.

【0024】本発明の面発熱体では、図1、図2で例示
の様に電熱層は1層でも良いが、上記の図3(A)〜
(D)で例示の様に、電極対が形成された電熱層の面上
に、更に電熱層を重ねて、2層構成等の多層構成として
も良い。これらの場合、第1の電熱層10aの電極対形
成面上に、該電極対全体を被覆する様にして、第2の電
熱層10bは積層する。第2の電熱層10bの材料、厚
み等は、第1の電熱層と同様で良い(但し、同一厚みで
なくても良い)。
In the surface heating element of the present invention, the electric heating layer may be one layer as illustrated in FIGS. 1 and 2, but the above-mentioned FIG.
As illustrated in (D), an electric heating layer may be further stacked on the surface of the electric heating layer on which the electrode pair is formed to form a multilayer structure such as a two-layer structure. In these cases, the second electrothermal layer 10b is laminated on the electrode pair formation surface of the first electrothermal layer 10a so as to cover the entire electrode pair. The material, thickness, and the like of the second electric heating layer 10b may be the same as those of the first electric heating layer (however, they do not have to have the same thickness).

【0025】また、本発明の面発熱体では、図3(D)
の様に、基材層30a及び30bで、電熱層を両側から
挟む様な形態等、基材層は、複層としても良い。もちろ
ん、これら基材層は必須ではないが、電熱層のみでは機
械的強度の点で形状維持が出来ない場合、或いは電熱層
の表裏面を絶縁したい場合等では、これらの様に基材層
を積層して成る構成が好ましい。
Further, in the surface heating element of the present invention, FIG.
As described above, the base material layer may be a multilayer, such as a configuration in which the electrothermal layer is sandwiched between the base material layers 30a and 30b. Of course, these base material layers are not essential, but when the shape cannot be maintained from the viewpoint of mechanical strength only by the electric heating layer, or when it is desired to insulate the front and back surfaces of the electric heating layer, the base material layer is formed like these. A laminated structure is preferable.

【0026】〔電熱層〕電熱層10(或いは10a、1
0b)としては、例えば、導電性粉末を、樹脂バインダ
ー中に分散した導電性インキをシルクスクリーン印刷し
て形成することができる。
[Electrical Heat Layer] The electric heat layer 10 (or 10a, 1
As 0b), for example, conductive powder can be formed by silk screen printing a conductive ink dispersed in a resin binder.

【0027】導電性粉末としては、例えば、導電性炭素
(黒鉛等)、銀、銅、ニッケル、ITO等の金属或いは
金属酸化物の導電体の粒子或いは鱗片状箔片が用いられ
る。また、バインダー樹脂としては、例えば、エチレン
−酢酸ビニル共重合体、アクリル樹脂、シリコーン樹
脂、ポリイミド樹脂、ポリエステル樹脂、ポリアミド樹
脂等が用いられる。導電性粉末は、通常、樹脂バインダ
ー100質量部に対して100〜3000質量部程度添
加される。そして、電熱層の厚みは、通常、5〜100
0μm程度に形成する。
As the conductive powder, for example, conductive carbon (graphite or the like), conductive particles of metal or metal oxide such as silver, copper, nickel, ITO or scale-like foil pieces are used. Further, as the binder resin, for example, ethylene-vinyl acetate copolymer, acrylic resin, silicone resin, polyimide resin, polyester resin, polyamide resin, etc. are used. The conductive powder is usually added in an amount of about 100 to 3000 parts by mass with respect to 100 parts by mass of the resin binder. And the thickness of the electrothermal layer is usually 5 to 100.
The thickness is about 0 μm.

【0028】電熱層の形成方法としては、特に限定は無
いが、例えば、上述したシルクスクリーン印刷の他に
も、グラビア印刷、フレキソ印刷、オフセット印刷、ロ
ール転写印刷等の印刷法により、基材層上に所望のパタ
ーンで形成することができる。或いは、導電性粉末を樹
脂バインダー中に混練した樹脂組成物を、カレンダー
法、熔融押出法、キャスティング法等により、シート状
に成膜することもできる。この場合、基材層無しでもで
きるが、このシートは、後で基材層と積層しても良い。
The method for forming the electrothermal layer is not particularly limited. For example, in addition to the above-mentioned silk screen printing, a printing method such as gravure printing, flexographic printing, offset printing, roll transfer printing, etc. is used to form the base material layer. It can be formed in a desired pattern on top. Alternatively, a resin composition obtained by kneading a conductive powder in a resin binder can be formed into a sheet by a calender method, a melt extrusion method, a casting method, or the like. In this case, the base layer may be omitted, but this sheet may be laminated with the base layer later.

【0029】それ自体がシート状の電熱層の具体例とし
ては、導電性粉末をゴム中に添加した導電性ゴムシート
等もある。導電性ゴムシートの場合、基材層を省略する
ことができる他、面発熱体に伸びや柔軟性が要求される
用途(例えば、座席やベッド等)への適用も容易とな
る。
A specific example of the sheet-like electrothermal layer itself is a conductive rubber sheet in which conductive powder is added to rubber. In the case of the conductive rubber sheet, the base material layer can be omitted, and it can be easily applied to applications where the surface heating element is required to have elongation and flexibility (for example, seats and beds).

【0030】なお、上記ゴムとしては、例えば、シリコ
ーンゴム、フッ素ゴム等の耐熱性の高いものが好まし
い。また、EPDM(エチレンプロピレンジエンゴ
ム)、NBR(ニトリルブタジエンゴム)、CR(クロ
ロプレンゴム)、CE(塩素化ポリエチレンゴム)、S
BR(スチレンブタジエンゴム等も使用することができ
る。また、導電性ゴムシート中には、必要に応じ適宜、
リン酸エステル系可塑剤(トリメチルホスフェート、ト
リブチルフォスフェート等)やアルキレンオキサイド系
可塑剤等の各種可塑剤、ケイ酸塩、炭酸カルシウム、炭
酸マグネシウム、ケイ酸マグネシウム、クレー等の各種
体質顔料、或いは、難燃・不燃剤、各種安定剤等で耐熱
性向上を図ることもできる。
As the rubber, for example, one having high heat resistance such as silicone rubber or fluororubber is preferable. Further, EPDM (ethylene propylene diene rubber), NBR (nitrile butadiene rubber), CR (chloroprene rubber), CE (chlorinated polyethylene rubber), S
BR (styrene-butadiene rubber or the like can also be used. In the conductive rubber sheet, if necessary,
Various plasticizers such as phosphate ester plasticizers (trimethyl phosphate, tributyl phosphate, etc.) and alkylene oxide plasticizers, various extender pigments such as silicates, calcium carbonate, magnesium carbonate, magnesium silicate, clay, or the like, or It is also possible to improve heat resistance by using flame retardants, non-combustible agents, various stabilizers, and the like.

【0031】〔電極対〕第1電極対21及び第2電極対
22は、平面方向に於いて互いに重複しない様にして形
成する。これは、電流を電熱層の平面方向にわたって流
し、電熱層を面的に加熱する為である。電熱層のその形
成面は、電熱層の表面のみ、裏面のみ、或いは表面と裏
面の両面、いずれでも良い。そして、第1電極対と第2
電極対は各々独立に開閉できる別個の開閉器を通じて電
源に接続して、電熱層を発熱させる。そして、この様な
各電極対により、電熱層は、両電極対による加熱、第1
電極対による加熱、第2電極対による加熱の、3種類の
加熱が可能となり、これらを後述の如く切り換えること
により、速熱性に優れた加熱方法が可能となる。
[Electrode Pair] The first electrode pair 21 and the second electrode pair 22 are formed so as not to overlap each other in the plane direction. This is because an electric current is caused to flow in the plane direction of the electric heating layer to heat the electric heating layer in a plane. The formation surface of the electrothermal layer may be only the front surface of the electrothermal layer, only the back surface, or both the front surface and the back surface. And the first electrode pair and the second
The electrode pair is connected to a power source through a separate switch that can be opened and closed independently to generate heat in the electrothermal layer. Then, with each such electrode pair, the electrothermal layer is heated by both electrode pairs,
Three types of heating, heating by the electrode pair and heating by the second electrode pair, are possible, and by switching these as will be described later, a heating method excellent in rapid heating property becomes possible.

【0032】なお、上記の如きとする各電極対の具体的
なパターン形状は、例えば、図1(B)及び図2(B)
の平面図で例示の如き形状である。もろちん、各電極対
のパターン形状としては、ここで例示するパターン形状
に限定されるものでは無く、その他のパターン形状も可
能である。
The specific pattern shape of each electrode pair as described above is, for example, FIG. 1 (B) and FIG. 2 (B).
The shape is as illustrated in the plan view of FIG. Of course, the pattern shape of each electrode pair is not limited to the pattern shape illustrated here, and other pattern shapes are also possible.

【0033】ちなみに、図1(A)及び(B)で例示し
た面発熱体100に於ける電極対の場合は、電熱層10
部分に於いて、第1電極対21は、中央部に存在する直
線状の一つの電極21aと該電極21aの両側を挟む様
に平行配置された直線状の二つの電極21bとから構成
された例である。また、第2電極対22は、電熱層10
部分に於いて、平行配置された直線状の電極22aと2
2bとの二組から構成されたパターン形状の例である。
By the way, in the case of the electrode pair in the surface heating element 100 illustrated in FIGS. 1A and 1B, the heating layer 10 is used.
In the portion, the first electrode pair 21 is composed of one linear electrode 21a existing in the central portion and two linear electrodes 21b arranged in parallel so as to sandwich both sides of the electrode 21a. Here is an example. In addition, the second electrode pair 22 includes the electrothermal layer 10
In the part, the linear electrodes 22a and 2 are arranged in parallel.
2B is an example of a pattern shape composed of two sets of 2b and 2b.

【0034】また、図2(A)及び(B)で例示の面発
熱体100に於ける電極対の場合では、電熱層10部分
に於いて、電極対21は、直線分から成り「コ」の字状
にジクザグの一つの電極21aと、直線分の枝を有する
直線分の櫛形の一つの電極21bとから構成され、電極
21bの枝に該当する部分が、ジグザグ形状の電極の凹
部に丁度入り込んだパターン形状である。また、電極対
22も電極対21と同様だが逆の形状である。
In the case of the electrode pair in the surface heating element 100 illustrated in FIGS. 2 (A) and 2 (B), the electrode pair 21 in the heating layer 10 is composed of straight line segments. It is composed of one zigzag-shaped electrode 21a in the shape of a letter and one comb-shaped electrode 21b having straight branches, and the portion corresponding to the branch of the electrode 21b just enters into the recess of the zigzag electrode. It is a pattern shape. The electrode pair 22 is also similar to the electrode pair 21, but has the opposite shape.

【0035】ところで、第1電極対21及び第2電極対
22は、例えば、導電性インキの印刷や導電性箔の積層
等で形成する。導電性インキとしては、例えば、銀、
銅、ITO、酸化錫等の金属或いは金属酸化物の粒子、
或いは鱗片状箔片等からなる導電体粉末を、例えば前述
電熱層で列記の様な樹脂バインダー中に添加したインキ
が使用される。また、例えば上記の様な金属或いは金属
酸化物からなる導電性箔を貼り付けて積層する。
By the way, the first electrode pair 21 and the second electrode pair 22 are formed by, for example, printing conductive ink or laminating conductive foil. As the conductive ink, for example, silver,
Particles of metal or metal oxide such as copper, ITO, tin oxide,
Alternatively, an ink is used in which a conductor powder composed of a flaky foil piece or the like is added to a resin binder as shown in the above-mentioned electrothermal layer. Further, for example, a conductive foil made of the above metal or metal oxide is attached and laminated.

【0036】〔基材層〕基材層30(或いは30a、3
0b)は、基本的には不必須であるが、好ましくは、電
気絶縁、面発熱体の補強、支持の為、面発熱体の片面、
或いは両面に積層する。従って、基材層は、電熱層の最
表面又は最裏面のうち、いずれか一面又は両面に積層さ
れることになる。
[Base Material Layer] The base material layer 30 (or 30a, 3
0b) is basically not essential, but is preferably one side of the surface heating element for electrical insulation, reinforcement of the surface heating element, and support.
Alternatively, it is laminated on both sides. Therefore, the base material layer is laminated on any one surface or both surfaces of the outermost surface or the outermost surface of the electrothermal layer.

【0037】この様な基材層としては、シート状の物、
板状の物等が使用できる。シート状の基材層としては、
電気絶縁性及び耐熱性を有し、更に好ましく不燃性或い
は難燃性を有するものが使用できる。例えば、ポリエチ
レンテレフタレート、ポリエチレンナフタレート、ポリ
ブチレンテレフタレート、ポリアリレート等のポリエス
テル樹脂のシートであり、より好ましくは、2軸延伸シ
ートが用いられる。厚みは、特に限定は無いが、通常2
0〜300μm程度である。
As such a base material layer, a sheet-like material,
A plate-shaped object can be used. As the sheet-shaped base material layer,
A material having electrical insulation and heat resistance, and more preferably nonflammable or flame retardant can be used. For example, it is a sheet of a polyester resin such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and polyarylate, and more preferably a biaxially stretched sheet is used. The thickness is not particularly limited, but usually 2
It is about 0 to 300 μm.

【0038】また、シート状の基材層としては、ポリフ
ッ化ビニル、ポリフッ化ビニリデン、ポリ4フッ化エチ
レン、エチレン−4フッ化エチレン共重合体等のフッ素
樹脂からなる樹脂シート等、或いは、シリコーンゴム、
フッ素ゴム、ウレタンゴム、SBR(スチレンブタジエ
ンゴム)、EPDM(エチレンプロピレンジエンゴ
ム)、NBR(ニトリルブタジエンゴム)、CPE(塩
素化ポリエチレンゴム)、TPE(熱可塑性エラストマ
ー)等のゴムからなるゴムシートも使用できる。
As the sheet-like base material layer, a resin sheet or the like made of a fluororesin such as polyvinyl fluoride, polyvinylidene fluoride, polytetrafluoroethylene, ethylene-4 fluoroethylene copolymer or the like, or silicone Rubber,
Rubber sheets made of rubber such as fluororubber, urethane rubber, SBR (styrene butadiene rubber), EPDM (ethylene propylene diene rubber), NBR (nitrile butadiene rubber), CPE (chlorinated polyethylene rubber), TPE (thermoplastic elastomer) Can be used.

【0039】また、シート状の基材層としては、難燃性
の不織布或いは織布(例えば、硝子、石綿、石英等の繊
維からなるもの)、或いは塩化ビニル樹脂シート等も使
用できる。
Further, as the sheet-like base material layer, a flame-retardant non-woven fabric or woven fabric (for example, one made of fibers such as glass, asbestos and quartz) or a vinyl chloride resin sheet can be used.

【0040】また、板状の基材層としては、例えば、硝
子、陶器、磁器、アルミナ、フェノール樹脂、上記シー
ト状基材層で列記した各種樹脂、等からなるものが使用
できる。
As the plate-shaped base material layer, for example, one made of glass, pottery, porcelain, alumina, phenol resin, various resins listed above as the sheet-shaped base material layer, or the like can be used.

【0041】〔絶縁層〕なお、電極対の電極端子を取り
出す部分にて、電熱層を発熱させない必要がある場合に
は、その部分に絶縁層を形成してから、該絶縁層上に電
極対を形成して、そこを電極端子取出部とすると良い。
絶縁層によって、電極端子取出部での、電熱層と電極対
との間の電流のリークを防止できる。また、絶縁層は、
電熱層や電極対等を絶縁する為に、これらを覆う様に形
成することもできる。
[Insulating Layer] When it is necessary not to heat the electrothermal layer at the portion where the electrode terminal of the electrode pair is taken out, an insulating layer is formed at that portion, and then the electrode pair is formed on the insulating layer. Is preferably formed and used as an electrode terminal lead-out portion.
The insulating layer can prevent current leakage between the electrothermal layer and the electrode pair at the electrode terminal extraction portion. Also, the insulating layer is
In order to insulate the electric heating layer and the electrode pair, they may be formed so as to cover them.

【0042】絶縁層としては、所望の使用時間の間に強
度劣化、変形、溶融、変質、燃焼等の生じないだけの耐
熱性を有する材料で構成する。例えば、ポリエチレンテ
レフタレート、ポリブチレンテレフタレート、ポリエチ
レンナフタレート、エチレン−テレフタレート−イソフ
タレート共重合体、ポリアリレート等のポリエステル樹
脂からなるシートで、好ましくは、2軸延伸シートが挙
げられる。或いは、ポリフッ化ビニル、ポリフッ化ビニ
リデン、ポリ4フッ化エチレン、エチレン−4フッ化エ
チレン共重合体等のフッ素樹脂、ポリイミド樹脂等から
なる樹脂シート等も使用できる。難燃性を付与する為、
これらの樹脂に難燃剤を添加しても良い。難燃剤として
は、水酸化アルミニウム、水酸化マグネシウム、酸化モ
リブデン、三酸化二アンチモン等が用いられる。また、
絶縁層は、例えば、予め成膜した上記樹脂シートを電熱
層に熱融着、ドライラミネーション等の方法により接着
しても良い。或いは、シルクスクリーン、グラビア印
刷、フレキソ印刷、オフセット印刷、ロール転写印刷等
の印刷法により、所望のパターンで形成することもでき
る。使用するインキの樹脂バインダーとしては、例え
ば、アクリル樹脂、ポリエステル樹脂、ポリイミド樹
脂、シリコーン樹脂等が使用される。なお、絶縁層の厚
みは、通常20〜300μm程度である。
The insulating layer is made of a material having heat resistance that does not cause strength deterioration, deformation, melting, alteration, combustion, etc. during a desired use time. For example, a sheet made of a polyester resin such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, ethylene-terephthalate-isophthalate copolymer, polyarylate, etc., and preferably a biaxially stretched sheet is used. Alternatively, a resin sheet made of a fluororesin such as polyvinyl fluoride, polyvinylidene fluoride, polytetrafluoroethylene, ethylene-4 fluoroethylene copolymer, a polyimide resin, or the like can be used. To impart flame retardancy,
A flame retardant may be added to these resins. As the flame retardant, aluminum hydroxide, magnesium hydroxide, molybdenum oxide, diantimony trioxide, etc. are used. Also,
The insulating layer may be formed by adhering the previously formed resin sheet to the electrothermal layer by a method such as heat fusion or dry lamination. Alternatively, a desired pattern can be formed by a printing method such as silk screen printing, gravure printing, flexographic printing, offset printing, roll transfer printing and the like. As the resin binder of the ink used, for example, acrylic resin, polyester resin, polyimide resin, silicone resin or the like is used. The insulating layer usually has a thickness of about 20 to 300 μm.

【0043】〔面発熱体の発熱〕ところで、面発熱体を
発熱させる為には、電熱層に電流を流して、ジュール熱
により発熱させるが、その為の電源は、直流、交流、い
ずれでも良い。なお、発熱量を一定に保つ為には、電
流、或いは電圧の安定化された電源が好ましい。また、
当然であるが、電熱層へは互いに独立に開閉できる別個
の開閉器(例えば、図5及び6では、符号210及び2
20)を取り付ける。更に、短絡、其の他過電流防止の
為、フューズ或いは遮断機を取り付けることが好まし
い。
[Heat Generation of Surface Heating Element] By the way, in order to heat the surface heating element, an electric current is passed through the heating layer to generate heat by Joule heat. The power source therefor may be either direct current or alternating current. . In order to keep the calorific value constant, a power source with stabilized current or voltage is preferable. Also,
Of course, separate switches (eg 210 and 2 in FIGS. 5 and 6) that can be opened and closed independently of each other to the heating layer.
20) is attached. Further, in order to prevent short circuit and other overcurrent, it is preferable to install a fuse or a breaker.

【0044】なお、電源は、例えば図5及び図6の如
く、各開閉器で別個の電源を用いる他、共通の1つ電源
からの電流を各開閉器で異なる部分の電熱層に供給して
も良い(例えば図7及び図8参照)。
As for the power source, as shown in FIGS. 5 and 6, for example, a separate power source is used for each switch, and a current from one common power source is supplied to the heating layers of different parts in each switch. (See, for example, FIGS. 7 and 8).

【0045】次に、本発明の発熱方法として、上述本発
明の面発熱体を発熱させる場合に好適な方法について説
明する。
Next, as a heat generating method of the present invention, a method suitable for causing the above-mentioned surface heating element of the present invention to generate heat will be described.

【0046】本発明の発熱方法は、上述本発明の面発熱
体を発熱体として用い、先ず、第1電極対と第2電極対
の両方を通電して発熱させ、次いで、電熱層を両電極対
のうち、いずれか一方のみ通電した時の温度平衡時間の
うち、より短い時間よりも前の時点で、両電極対のうち
いずれか一方への通電を停止し、面発熱体を温度平衡に
至らせる方法である。この方法により、複雑な制御回路
を用いた電源を用いること無く、昇温時間が短くなり、
速熱性が得られる。
The heating method of the present invention uses the above-described surface heating element of the present invention as a heating element. First, both the first electrode pair and the second electrode pair are energized to generate heat, and then the heating layer is applied to both electrodes. In the temperature equilibration time when only one of the pair is energized, at a time point earlier than the shorter time, the energization to either one of the two electrode pairs is stopped and the surface heating element is allowed to reach temperature equilibrium. It is a method to reach. By this method, the temperature rise time is shortened without using a power supply using a complicated control circuit,
Fast heat can be obtained.

【0047】次に、図4を参照しながら、更に、本発熱
方法について、その加熱タイミングを中心に、詳述す
る。
Next, with reference to FIG. 4, the present heating method will be described in more detail, focusing on the heating timing.

【0048】先ず、図4(A)に図示の如く、第1電極
対単独で所定の電流で電熱層を通電した場合の昇温特
性、すなわち、通電開始後の(経過)時間tに対する温
度Tの関数関係をT1(t)、その場合の平衡時間、す
なわち、第1電極対のみの加熱で電熱層が温度平衡(飽
和)状態に到達する時刻をtc 1、そのときの電熱層の平
衡(飽和)温度をTsat 1とする。また、第2電極対単独
で所定の電流で電熱層を通電した場合の昇温特性をT2
(t)、その場合の平衡時間をtc 2、そのときの電熱層
の平衡(飽和)温度をT sat 2とする。なお、この場合、
平衡温度及び平衡時間は、電流値、電熱層の体積固有抵
抗と比熱(容量)、熱伝導率、厚み、幅、雰囲気温度、
電流が交流か直流か、特に交流の場合はその周波数、及
び該周波数に於ける電熱層の誘電正接といった要因に依
存する。
First, as shown in FIG. 4A, the first electrode
The temperature rise characteristic when the heating layer is energized with a specified current
That is, the temperature with respect to (elapsed) time t after the start of energization
The functional relation of degree T is T1(T), equilibration time in that case,
That is, the heating of only the first electrode pair causes the electric heating layer to reach temperature equilibrium (
Sum) The time to reach the state is tc 1, The flatness of the electric heating layer at that time
The equilibrium (saturation) temperature is Tsat 1And Also, the second electrode pair alone
T is the temperature rise characteristic when the heating layer is energized with a predetermined current.2
(T), the equilibrium time in that case is tc 2, The electric heating layer at that time
Equilibrium (saturation) temperature of T sat 2And In this case,
The equilibrium temperature and the equilibrium time are the current value and the volume specific resistance of the heating layer.
Resistance and specific heat (capacity), thermal conductivity, thickness, width, ambient temperature,
Whether the current is AC or DC, especially if it is AC, its frequency, and
And the dielectric loss tangent of the heating layer at that frequency
Exist.

【0049】本発明では、第1電極対と第2電極対での
各通電電流は同一でも良いし、互いに異なっていても良
い。また、第1電極対と第2電極対に関係する各電熱層
部分の各体積固有抵抗(誘電損失)と厚み幅も同一でも
良いし、互いに異なっていても良い。これら条件は、用
途、要求特性等により適宜選択すれば良い。
In the present invention, the respective energizing currents in the first electrode pair and the second electrode pair may be the same or may be different from each other. Further, the volume specific resistance (dielectric loss) and the thickness width of the electrothermal layer portions related to the first electrode pair and the second electrode pair may be the same or different from each other. These conditions may be appropriately selected depending on the application, required characteristics and the like.

【0050】一方、第1電極対及び第2電極対の両電極
対で同時に電熱層を通電した場合の昇温特性T
1+2(t)は、図4(B)に示す通りである。この場合
の平衡時間はtc 1+2、平衡温度はTsat 1+2である。但
し、当然、Tsat 1+2>Tsat 1、且つ、T sat 1+2>Tsat 2
となる。
On the other hand, both electrodes of the first electrode pair and the second electrode pair
Temperature rise characteristics T when the heating layers are energized at the same time in pairs
1 + 2(T) is as shown in FIG. in this case
Equilibration time is tc 1 + 2, The equilibrium temperature is Tsat 1 + 2Is. However
And, of course, Tsat 1 + 2> Tsat 1, And T sat 1 + 2> Tsat 2
Becomes

【0051】そして、図1や図2で説明した様な構成の
本発明の面発熱体を用いて、昇温の平衡時間を短縮する
発熱方法を、図4(C)を基に説明する。
Then, a heating method for shortening the equilibrium time of temperature rise by using the surface heating element of the present invention having the structure as described in FIGS. 1 and 2 will be described with reference to FIG. 4 (C).

【0052】先ず、最初は、第1及び第2の両電極対2
1及び22を同時に通電する。その結果、立ち上がり時
の昇温特性は、図の曲線OA、或いはOBの部分の様
に、両電熱層を通電した場合の昇温特性T1+2(t)と
同様のものとなる。当然、各電熱層を単独で通電した場
合の昇温特性T1(t)、T2(t)に比べて立ち上がり
は早い(すなわち、同じ時刻に於ける温度はより高
い)。
First, first, the first and second electrode pairs 2
Energize 1 and 22 simultaneously. As a result, the temperature rising characteristics at the time of rising are similar to the temperature rising characteristics T 1 + 2 (t) when both electric heating layers are energized, as indicated by the curve OA or OB in the figure. As a matter of course, as compared with the temperature rising characteristics T 1 (t) and T 2 (t) when each electric heating layer is energized independently, the rising is faster (that is, the temperature at the same time is higher).

【0053】次いで、第1電極対による場合の電熱層の
平衡時間、及び第2電極対による場合の電熱層の平衡時
間のいずれよりも早い時刻txに於いて、いずれか一方
の電極対による電熱層への通電を停止する。なお、図に
於いては、第1電極対による通電の場合の電熱層の平衡
時間、及び第2電極対による通電の場合の電熱層の平衡
時間のいずれよも早い時刻tx 1(曲線上のA点)で、第
2電極対による通電を停止し、第1電極対のみによる通
電を維持した場合と、時刻tx 2(曲線上のB点)で、第
1電極対による通電を停止し、第2電極対のみ通電を維
持した場合の両方を示した。当然のことだが、tx 1<t
c 1、tx 1<tc 2、tx 2<tc 1、tx 2<tc 2である
Then, at time t x which is earlier than the equilibrium time of the heating layer when the first electrode pair is used and the equilibration time of the heating layer when the second electrode pair is used, either one of the electrode pairs is used. Stop energizing the heating layer. In the figure, the time t x 1 (on the curve) which is earlier than the equilibrium time of the heating layer when energized by the first electrode pair and the equilibration time of the heating layer when energized by the second electrode pair At point A), the energization by the second electrode pair is stopped and the energization by only the first electrode pair is maintained, and at the time t x 2 (point B on the curve), the energization by the first electrode pair is stopped. However, both cases are shown in which only the second electrode pair is energized. Naturally, t x 1 <t
c 1 , t x 1 <t c 2 , t x 2 <t c 1 , t x 2 <t c 2 .

【0054】一方の電極対への通電停止後は、過渡的状
態を経て速やかに、第1電極対又は第2電極対による単
独通電時の平衡温度に収束する。すなわち、時刻t
x 1(A点)に於いて第2電極対からる電熱層への通電を
停止した場合は、A点に於いては、未だ平衡温度Tsat 1
未満の温度ではあるが、熱的慣性及び第1電極対からの
通電による電熱層の発熱量によって、更に温度上昇を続
ける。この部分の昇温特性が過渡的状態T1 tran(t)
である(図のADの部分)。そして、時刻tc 1’(D
点)に於いて第1電極対による通電での電熱層本来の平
衡温度Tsat 1に収束する。当然、図からも明白の様に、
c 1’<tc 1となり、昇温の為の時間、すなわち、平衡
時間は短縮される。
After the energization of one electrode pair is stopped, it transits to a transient state and quickly converges to the equilibrium temperature at the time of single energization by the first electrode pair or the second electrode pair. That is, time t
When the power supply to the heating layer from the second electrode pair is stopped at x 1 (point A), the equilibrium temperature T sat 1 still remains at point A.
Although the temperature is lower than the above, the temperature further continues to rise due to thermal inertia and the amount of heat generated by the electric heating layer due to the energization from the first electrode pair. The temperature rising characteristic of this portion is a transient state T 1 tran (t)
(AD part of the figure). Then, the time t c 1 '(D
At the point), the temperature converges to the original equilibrium temperature T sat 1 of the electric heating layer due to energization by the first electrode pair. Of course, as is clear from the figure,
Since t c 1 ′ <t c 1 , the time for raising the temperature, that is, the equilibrium time is shortened.

【0055】また、時刻tx 2(B点)に於いて第1電極
対からの通電を停止した場合は、B点に於いては、既に
平衡温度Tsat 2超過の温度ではあるが、放熱によって、
温度低下が起きる。この部分の昇温特性が過渡的状態T
2 tran(t)である(図のBCの部分)。そして、時刻
c 2’(C点)に於いて第2電極対による通電での電熱
層本来の平衡温度Tsat 2に収束する。この場合も、図か
らも明白の様に、tc 2’<tc 2となり、昇温の為の時
間、すなわち、平衡時間は短縮される。
Further, when the energization from the first electrode pair is stopped at the time t x 2 (point B), the heat is dissipated at the point B even though the temperature is already above the equilibrium temperature T sat 2. By
A temperature drop occurs. The temperature rising characteristic of this portion is a transient state T
2 tran (t) (BC in the figure). Then, at time t c 2 ′ (point C), it converges to the equilibrium temperature T sat 2 that is the original equilibrium of the electric heating layer due to the energization by the second electrode pair. Also in this case, as is clear from the figure, t c 2 '<t c 2 , and the time for temperature rise, that is, the equilibrium time is shortened.

【0056】なお、図4(C)のOADの様に、目標値
である平衡温度を超過せずに、温度を収束させるか、或
いはOBCの様に、目標値である平衡温度を超過させて
温度を収束させるかは、条件設定次第であり、所望の温
度制御特性、其の他事情も参酌しつつ選択すれば良い。
一般的には、平衡時間(昇温時間)の短縮を優先するの
であれば、OBCの様な形態とする。また、温度が平衡
温度(目標値)を超過させない事を優先するのであれ
ば、OADの様な形態とする。なお、図4(C)に図示
の如く、昇温(平衡)時間の短縮を行う為には、例え
ば、タイマーに所定の通電停止時刻tx 1、或いは、tx 2
を予め設定しておき、該タイマーにより所定の電極対か
らの通電を、所定時刻tx 1或いはtx 2にて停止する方法
が挙げられる。
It should be noted that, as in the case of OAD in FIG. 4C, the temperature is allowed to converge without exceeding the equilibrium temperature which is the target value, or as in the case of OBC, the equilibrium temperature which is the target value is exceeded. Whether the temperature is converged depends on the condition setting, and may be selected while taking into consideration the desired temperature control characteristic and other circumstances.
Generally, if the shortening of the equilibrium time (temperature rising time) is prioritized, a form like OBC is adopted. If priority is given not to let the temperature exceed the equilibrium temperature (target value), a form like OAD is adopted. As shown in FIG. 4C, in order to shorten the temperature raising (equilibrium) time, for example, a timer is used to stop a predetermined energization time t x 1 or t x 2.
Is set in advance, and the energization from a predetermined electrode pair is stopped by the timer at a predetermined time t x 1 or t x 2 .

【0057】〔面発熱体の用途〕本発明による面発熱体
の用途は、特に制限は無いが、例えば、床暖房、電気カ
ーペット、椅子や座席の暖房、融雪ヒータ等の民生用途
や、配管、タンクの保温等の産業用途に利用され得る。
[Application of Surface Heating Element] The application of the surface heating element according to the present invention is not particularly limited. For example, floor heating, electric carpet, heating of chairs and seats, consumer applications such as snow melting heaters, piping, It can be used for industrial applications such as keeping the tank warm.

【0058】[0058]

【実施例】次に実施例及び比較例により本発明を更に説
明する。
The present invention will be further described with reference to Examples and Comparative Examples.

【0059】〔実施例1〕図1(A)の如き断面図、及
び図1(B)の如き平面図の様な、面発熱体100を次
の様にして作製した。基材層30として、厚さ188μ
mの2軸延伸ポリエチレンテレフタレートシートの片面
に、電極21a及び21bから成る第1電極対21とし
て、銀ペースト(十条ケミカル株式会社製、商品名「J
ELCONSH−1」)を250メッシュの版を用いて
シルクスクリーン印刷し、オーブンで150℃、30
分、加熱し固化して、線幅4mm、電極間距離38m
m、膜厚9μmの電極パターンを形成した。次に、上記
基材層30の第1電極対21形成面上に、更に、第1電
極対21と同一形成条件で、第1電極対21に重ならな
い様に、電極22a及び22bから成る第2電極対22
を形成した。この第2電極対は、線幅4mm、電極間距
離10mm、膜厚9μmの電極パターンとして形成し
た。
Example 1 A surface heating element 100 having a cross-sectional view as shown in FIG. 1A and a plan view as shown in FIG. 1B was produced as follows. As the base material layer 30, a thickness of 188 μ
As a first electrode pair 21 composed of electrodes 21a and 21b, silver paste (manufactured by Jujo Chemical Co., Ltd., trade name "J") is provided on one surface of a biaxially stretched polyethylene terephthalate sheet of m.
ELCONSH-1 ") is silk screen-printed using a 250 mesh plate and heated in an oven at 150 ° C for 30
Minute, heated and solidified, line width 4mm, distance between electrodes 38m
m and a film thickness of 9 μm were formed. Next, on the surface of the base material layer 30 on which the first electrode pair 21 is formed, under the same formation conditions as the first electrode pair 21, a second electrode 22a and a second electrode 22b are formed so as not to overlap the first electrode pair 21. 2 electrode pairs 22
Was formed. This second electrode pair was formed as an electrode pattern having a line width of 4 mm, a distance between electrodes of 10 mm, and a film thickness of 9 μm.

【0060】次に、第1電極対21及び第2電極対22
上にかかる様に、導電性カーボンペースト(十条ケミカ
ル株式会社製、商品名「CH−1」)を250メッシュ
の版を用いてシルクスクリーン印刷し、オーブンで12
0℃、20分、加熱し固化して、縦80mm、横100
mm、膜厚9μmの電熱層10を形成して、面発熱体1
00を得た。なお、電極端子をとるため、第1電極対2
1及び第2電極対22の一部分(長さ30mm)には、
カーボンペーストがかからない様に重ね印刷を行った。
Next, the first electrode pair 21 and the second electrode pair 22
As described above, conductive carbon paste (manufactured by Jujo Chemical Co., Ltd., trade name "CH-1") is silk screen printed using a 250 mesh plate and then 12 in an oven.
Heated at 0 ℃ for 20 minutes to solidify, length 80mm, width 100
The surface heating element 1 is formed by forming the electrothermal layer 10 having a thickness of 9 mm and a thickness of 9 μm.
I got 00. In addition, since the electrode terminal is provided, the first electrode pair 2
Part of the first and second electrode pairs 22 (length 30 mm),
Overprinting was performed so that the carbon paste was not applied.

【0061】以上の様にして得られた、面発熱体100
は、表面抵抗は20Ω/□、端子間抵抗は、第1電極対
で17Ω、第2電極対で8Ωであった。
The surface heating element 100 obtained as described above.
Had a surface resistance of 20Ω / □, and a terminal resistance of 17Ω for the first electrode pair and 8Ω for the second electrode pair.

【0062】この面発熱体において、図5で示す様に、
その第1電極対21(電極21a、21b)及び第2電
極対22(電極22a、22b)のそれぞれに、独立に
電源ケーブル310、320を各開閉器210、220
を介して、電源410、420を接続した。そして、各
電源410、420から各々直流12Vを、各電極対2
1及び22に通電すると電熱層10が、ジュール発熱し
て昇温した。その時の、表面温度の経時変化を測定した
結果を、比較例1及び2の場合と共に表1に示す。な
お、発熱方法としては、最初は第1電極対21と第2電
極対22に同時に通電し、30秒後に、開閉器220を
開いて第2電極対22への通電を停止し、以降は第1電
極対21側のみの通電とした。
In this surface heating element, as shown in FIG.
The power supply cables 310 and 320 are independently connected to the first electrode pair 21 (electrodes 21a and 21b) and the second electrode pair 22 (electrodes 22a and 22b), respectively.
The power supplies 410 and 420 were connected via the. Then, DC 12V is applied from each of the power supplies 410 and 420 to each electrode pair 2
When electricity was applied to Nos. 1 and 22, the electrothermal layer 10 generated Joule heat and increased in temperature. Table 1 shows the results of measuring the change with time of the surface temperature at that time, together with those of Comparative Examples 1 and 2. As a heat generation method, first, the first electrode pair 21 and the second electrode pair 22 are simultaneously energized, and after 30 seconds, the switch 220 is opened to stop energizing the second electrode pair 22, and thereafter, the second electrode pair 22 is stopped. Only one electrode pair 21 side was energized.

【0063】〔比較例1〕実施例1で作製した面発熱体
100に対して、その発熱方法を実施例1とは変えて、
表面温度の経時変化を測定した。発熱方法は、通電を最
初から第1電極対21側のみとした。結果は、表1に示
す。
Comparative Example 1 With respect to the surface heating element 100 manufactured in Example 1, the heating method is changed from that in Example 1,
The change in surface temperature with time was measured. As a heat generating method, electricity was applied only to the first electrode pair 21 side from the beginning. The results are shown in Table 1.

【0064】〔比較例2〕実施例1で作製した面発熱体
100に対して、その発熱方法を実施例1とは変えて、
表面温度の経時変化を測定した。発熱方法は、通電を最
初から第2電極対22側のみとした。結果は、表1に示
す。
[Comparative Example 2] With respect to the surface heating element 100 manufactured in Example 1, the heating method is changed from that in Example 1,
The change in surface temperature with time was measured. As a heat generating method, electricity was applied only to the second electrode pair 22 side from the beginning. The results are shown in Table 1.

【0065】[0065]

【表1】 [Table 1]

【0066】〔実施例1と比較例1、2の結果比較〕表
1の如く、比較例1及び2に於ける発熱方法では、昇温
速度が遅く、経時と共に昇温速度は低下してしまい、2
分以上経過しても穏やかな昇温を続けている。それに対
して、実施例1における発熱方法では、60秒後に一定
温度に到達しており、速熱性を向上させることができ
た。
[Comparison of Results between Example 1 and Comparative Examples 1 and 2] As shown in Table 1, in the heat generating methods of Comparative Examples 1 and 2, the rate of temperature increase is slow and the rate of temperature increase decreases with time. Two
Even after more than a minute, the temperature continues to rise moderately. On the other hand, in the heat generation method of Example 1, the constant temperature was reached after 60 seconds, and the rapid heating property could be improved.

【0067】〔実施例2〕図2(A)の如き断面図、及
び図2(B)の如き平面図の様な、面発熱体100を次
の様にして作製した。基材層30として、厚さ188μ
mの2軸延伸ポリエチレンテレフタレートシートの片面
に、電極21a及び21bから成る第1電極対21とし
て、銀ペースト(十条ケミカル株式会社製、商品名「J
ELCONSH−1」)を250メッシュの版を用いて
シルクスクリーン印刷し、オーブンで150℃、30
分、加熱し固化して、線幅5mm、電極間距離5mm、
膜厚9μmの櫛形形状を有する電極パターンを形成し
た。次に、上記基材層30の第1電極対21形成面上
に、更に、第1電極対21と同一形成条件で、第1電極
対21に重ならない様に、電極22a及び22bから成
る第2電極対22を形成した。この第2電極対は、線幅
5mm、電極間距離5mm、膜厚9μmの櫛形形状を有
する電極パターンとして形成した。
Example 2 A surface heating element 100 having a cross-sectional view as shown in FIG. 2A and a plan view as shown in FIG. 2B was produced as follows. As the base material layer 30, a thickness of 188 μ
As a first electrode pair 21 composed of electrodes 21a and 21b, silver paste (manufactured by Jujo Chemical Co., Ltd., trade name "J") is provided on one surface of a biaxially stretched polyethylene terephthalate sheet of m.
ELCONSH-1 ") is silk screen-printed using a 250 mesh plate and heated in an oven at 150 ° C for 30
Minute, heated and solidified, line width 5mm, distance between electrodes 5mm,
An electrode pattern having a comb shape with a film thickness of 9 μm was formed. Next, on the surface of the base material layer 30 on which the first electrode pair 21 is formed, under the same formation conditions as the first electrode pair 21, a second electrode 22a and a second electrode 22b are formed so as not to overlap the first electrode pair 21. Two electrode pairs 22 were formed. This second electrode pair was formed as a comb-shaped electrode pattern having a line width of 5 mm, a distance between electrodes of 5 mm, and a film thickness of 9 μm.

【0068】次に、第1電極対21及び第2電極対22
上にかかる様に、導電性カーボンペースト(十条ケミカ
ル株式会社製、商品名「CH−1」)を250メッシュ
の版を用いてシルクスクリーン印刷し、オーブンで12
0℃、20分、加熱し固化して、縦155mm、横11
5mm、膜厚9μmの電熱層10を形成して、面発熱体
100を得た。なお、電極端子をとるため、第1電極対
21及び第2電極対22の一部分(長さ15mm)に
は、カーボンペーストがかからない様に重ね印刷を行っ
た。
Next, the first electrode pair 21 and the second electrode pair 22
As described above, conductive carbon paste (manufactured by Jujo Chemical Co., Ltd., trade name "CH-1") is silk screen printed using a 250 mesh plate and then 12 in an oven.
Heated and solidified at 0 ℃ for 20 minutes, length 155mm, width 11
An electrothermal layer 10 having a thickness of 5 mm and a film thickness of 9 μm was formed to obtain a surface heating element 100. In addition, in order to take an electrode terminal, the 1st electrode pair 21 and the 2nd electrode pair 22 were overlap-printed so that a part (length 15mm) might not be covered with carbon paste.

【0069】以上の様にして得られた、面発熱体100
は、表面抵抗は20Ω/□、端子間抵抗は、第1電極対
で20Ω、第2電極対で21Ωであった。
The surface heating element 100 obtained as described above.
Had a surface resistance of 20 Ω / □, and inter-terminal resistance of 20 Ω for the first electrode pair and 21 Ω for the second electrode pair.

【0070】この面発熱体において、図6で示す様に、
その第1電極対21及び第2電極対22のそれぞれに、
独立に電源ケーブル310、320を各開閉器210、
220を介して、電源410、420を接続した。そし
て、各電源410、420から各々直流12Vを、各電
極対21及び22に通電すると電熱層10が、ジュール
発熱して昇温した。その時の、表面温度の経時変化を測
定した結果を、比較例3及び4の場合と共に表2に示
す。なお、発熱方法としては、最初は第1電極対21と
第2電極対22に同時に通電し、30秒後に、開閉器2
20を開いて第2電極対22への通電を停止し、以降は
第1電極対21側のみの通電とした。
In this surface heating element, as shown in FIG.
In each of the first electrode pair 21 and the second electrode pair 22,
Independently connect the power cables 310, 320 to the switches 210,
Power supplies 410 and 420 were connected via 220. Then, when a direct current of 12 V was applied to each of the electrode pairs 21 and 22 from each of the power supplies 410 and 420, the electrothermal layer 10 generated Joule heat and increased in temperature. The results of measuring the time-dependent change of the surface temperature at that time are shown in Table 2 together with the cases of Comparative Examples 3 and 4. As a heat generation method, first, the first electrode pair 21 and the second electrode pair 22 are simultaneously energized, and after 30 seconds, the switch 2
20 was opened to stop energizing the second electrode pair 22, and thereafter, energizing only the first electrode pair 21 side.

【0071】〔比較例3〕実施例2で作製した面発熱体
100に対して、その発熱方法を実施例2とは変えて、
表面温度の経時変化を測定した。発熱方法は、通電を最
初から第1電極対21側のみとした。結果は、表2に示
す。
[Comparative Example 3] With respect to the surface heating element 100 manufactured in Example 2, the heating method was changed from that in Example 2,
The change in surface temperature with time was measured. As a heat generating method, electricity was applied only to the first electrode pair 21 side from the beginning. The results are shown in Table 2.

【0072】〔比較例4〕実施例2で作製した面発熱体
100に対して、その発熱方法を実施例2とは変えて、
表面温度の経時変化を測定した。発熱方法は、通電を最
初から第2電極対22側のみとした。結果は、表2に示
す。
[Comparative Example 4] With respect to the surface heating element 100 manufactured in Example 2, the heating method is changed from that in Example 2,
The change in surface temperature with time was measured. As a heat generating method, electricity was applied only to the second electrode pair 22 side from the beginning. The results are shown in Table 2.

【0073】[0073]

【表2】 [Table 2]

【0074】〔実施例2と比較例3、4の結果比較〕表
2の如く、比較例3及び4に於ける発熱方法では、昇温
速度が遅く、経時と共に昇温速度は低下してしまい、3
分以上経過しても穏やかな昇温を続けている。それに対
して、実施例2における発熱方法では、120秒後に一
定温度に到しており、速熱性を向上させることができ
た。
[Comparison of Results between Example 2 and Comparative Examples 3 and 4] As shown in Table 2, in the heat generating methods of Comparative Examples 3 and 4, the rate of temperature increase is slow and the rate of temperature increase decreases with time. Three
Even after more than a minute, the temperature continues to rise moderately. On the other hand, in the heat generation method in Example 2, the temperature reached a constant temperature after 120 seconds, and the rapid heating property could be improved.

【0075】〔実施例3〕図7(A)の如き断面図、及
び配線例も兼ねた図7(B)の如き平面図の、面発熱体
100を次の様にして作製した。なお、図7(A)の断
面図は、図7(B)中のA−A線方向での断面図であ
る。また、作製した面発熱体100は、電熱層10aの
裏面(図面下方)に、平行直線の電極21a及び21b
からなる第1電極対21が形成され、電熱層10aの表
面(側)には、平行直線の電極22a及び22bからな
る第2電極対22が第1電極対21に平行に形成され、
該第2電極対22が形成された面上に、更に、電熱層1
0aよりも小面積で且つ第1電極対21よりも内側に電
熱層10bが積層され、且つ、第1電極対21が形成さ
れた電熱層10aの裏面(最裏面)には、基材層30が
積層された構成である。
[Embodiment 3] A surface heating element 100 having a sectional view as shown in FIG. 7A and a plan view as shown in FIG. 7B which also serves as an example of wiring was produced as follows. Note that the cross-sectional view of FIG. 7A is a cross-sectional view taken along the line AA in FIG. 7B. In addition, the produced surface heating element 100 has parallel linear electrodes 21a and 21b on the back surface of the electrothermal layer 10a (downward in the drawing).
Is formed on the surface (side) of the electrothermal layer 10a, the second electrode pair 22 formed of parallel linear electrodes 22a and 22b is formed in parallel to the first electrode pair 21.
Further, on the surface on which the second electrode pair 22 is formed, the electric heating layer 1
The heating layer 10b has a smaller area than 0a and is located inside the first electrode pair 21, and the base layer 30 is provided on the back surface (the back surface) of the heating layer 10a on which the first electrode pair 21 is formed. Is a laminated structure.

【0076】先ず、基材層30として、厚さ188μm
の2軸延伸ポリエチレンテレフタレートシートの片面
に、電極21a及び21bから成る第1電極対21とし
て、銀ペースト(十条ケミカル株式会社製、商品名「J
ELCON SH−1」)を250メッシュの版を用い
てシルクスクリーン印刷し、オーブンで150℃、30
分、加熱し固化して、線幅5mm、長さ145mm、電
極間距離50mm、膜厚8μmの電極パターンを形成し
た。
First, as the base material layer 30, a thickness of 188 μm
On one surface of the biaxially stretched polyethylene terephthalate sheet, a silver paste (manufactured by Jujo Chemical Co., Ltd. under the trade name "J" is used as the first electrode pair 21 composed of the electrodes 21a and 21b.
ELCON SH-1 ") is silk screen-printed using a 250 mesh plate, and is heated in an oven at 150 ° C. for 30 days.
By heating for 5 minutes to solidify, an electrode pattern having a line width of 5 mm, a length of 145 mm, a distance between electrodes of 50 mm, and a film thickness of 8 μm was formed.

【0077】次に、上記第1電極対21上にかかる様
に、導電性カーボンペースト(東洋紡績株式会社製、商
品名「DY−280H−3」)を同様にシルクスクリー
ン印刷し、オーブンで150℃、30分、加熱し固化し
て、幅70mm、長さ100mm、膜厚9μmの電熱層
10aを形成した。なお、電極端子をとるため、第1電
極対21の一部分(長さ45mm)には、カーボンペー
ストがかからない様に重ね印刷を行った。
Next, a conductive carbon paste (manufactured by Toyobo Co., Ltd., trade name "DY-280H-3") is similarly silk-screen printed so as to cover the first electrode pair 21, and the same is subjected to 150 in an oven. It was heated and solidified at 30 ° C. for 30 minutes to form an electrothermal layer 10 a having a width of 70 mm, a length of 100 mm and a film thickness of 9 μm. In addition, in order to take the electrode terminal, a part of the first electrode pair 21 (45 mm in length) was overprinted so that the carbon paste was not applied.

【0078】次に、上記電熱層10a上にかかる様に、
且つ第1電極対21とは重ならないで平行になる様に、
銀ペースト(十条ケミカル株式会社製、商品名「JEL
CON SH−1」)を250メッシュの版を用いてシ
ルクスクリーン印刷し、オーブンで150℃、30分、
加熱し固化して、線幅5mm、長さ130mm、電極間
距離30mm、膜厚8μmの電極パターンを形成した。
Next, so as to cover the electric heating layer 10a,
And, so that the first electrode pair 21 does not overlap and becomes parallel,
Silver paste (Jujo Chemical Co., Ltd., trade name "JEL
CON SH-1 ") is silk-screen printed using a 250 mesh plate, and is heated in an oven at 150 ° C for 30 minutes,
It was heated and solidified to form an electrode pattern having a line width of 5 mm, a length of 130 mm, a distance between electrodes of 30 mm, and a film thickness of 8 μm.

【0079】次いで、電熱層10a(の一部)及び第2
電極対22上にかかる様に、更に、導電性カーボンペー
スト(東洋紡績株式会社製、商品名「DY−280H−
3」)を同様にシルクスクリーン印刷し、オーブンで1
50℃、30分、加熱し固化して、幅50mm、長さ1
00mm、膜厚9μmの第2の電熱層10bを形成し
て、面発熱体100を得た。なお、電極端子をとるた
め、第2電極対22の一部分(長さ30mm分)には、
カーボンペーストがかからない様に重ね印刷を行った。
Next, (part of) the heating layer 10a and the second
A conductive carbon paste (manufactured by Toyobo Co., Ltd., trade name “DY-280H-
3 ”) is silk-screened in the same manner and
50 ℃, 30 minutes, heated and solidified, width 50mm, length 1
The second heating layer 10b having a thickness of 00 mm and a thickness of 9 μm was formed to obtain the surface heating element 100. In addition, in order to take an electrode terminal, a part (30 mm in length) of the second electrode pair 22 is
Overprinting was performed so that the carbon paste was not applied.

【0080】以上の様にして得られた面発熱体100
は、表面抵抗は48Ω/□、端子間抵抗は、第1電極対
で28Ω、第2電極対で20Ωであった。
The surface heating element 100 obtained as described above
Had a surface resistance of 48Ω / □, and a terminal resistance of 28Ω for the first electrode pair and 20Ω for the second electrode pair.

【0081】この面発熱体において、図7(B)に示す
様に、第1電極対21及び第2電極対22のそれぞれ
に、独立の電源ケーブル310、320で、それぞれの
開閉器210、220を介して共通の一つ電源400に
接続した。なお、図7(B)中、符号500は温度計、
符号510はその温度センサである。そして、電源40
0から直流12Vを、各電極対21及び22に通電する
と、積層された電熱層10a及び10bが、ジュール発
熱して昇温した。その時の、表面温度の経時変化を測定
した結果を、比較例5及び6の場合と共に表3に示す。
なお、発熱方法としては、最初は第1電極対21と第2
電極対22に同時に通電し、30秒後に、開閉器220
を開いて第2電極対22への通電を停止し、以降は第1
電極対21側のみの通電とした。
In this surface heating element, as shown in FIG. 7B, independent power cables 310 and 320 are provided for the first electrode pair 21 and the second electrode pair 22, respectively, and the switches 210 and 220 are respectively provided. It was connected to one common power source 400 via. In FIG. 7B, reference numeral 500 is a thermometer,
Reference numeral 510 is the temperature sensor. And the power supply 40
When a direct current of 0 to 12 V was applied to each of the electrode pairs 21 and 22, the laminated electrothermal layers 10a and 10b generated Joule heat and increased in temperature. The results of measuring the time-dependent change of the surface temperature at that time are shown in Table 3 together with the cases of Comparative Examples 5 and 6.
As a heat generation method, first, the first electrode pair 21 and the second
The electrode pair 22 is energized at the same time, and after 30 seconds, the switch 220
To stop energizing the second electrode pair 22, and thereafter
Only the electrode pair 21 side was energized.

【0082】〔比較例5〕実施例3で作製した面発熱体
100に対して、その発熱方法を実施例3とは変えて、
表面温度の経時変化を測定した。発熱方法は、通電を最
初から第1電極対21側のみとした。結果は、表3に示
す。
[Comparative Example 5] With respect to the surface heating element 100 manufactured in Example 3, the heating method is changed from that in Example 3,
The change in surface temperature with time was measured. As a heat generating method, electricity was applied only to the first electrode pair 21 side from the beginning. The results are shown in Table 3.

【0083】〔比較例6〕実施例3で作製した面発熱体
100に対して、その発熱方法を実施例3とは変えて、
表面温度の経時変化を測定した。発熱方法は、通電を最
初から第2電極対22側のみとした。結果は、表3に示
す。
[Comparative Example 6] With respect to the surface heating element 100 manufactured in Example 3, the heating method is changed from that in Example 3,
The change in surface temperature with time was measured. As a heat generating method, electricity was applied only to the second electrode pair 22 side from the beginning. The results are shown in Table 3.

【0084】[0084]

【表3】 [Table 3]

【0085】〔実施例3と比較例5、6の結果比較〕表
3の如く、比較例5及び6に於ける発熱方法では、昇温
速度が遅く、通電後30秒間の昇温速度は、それぞれ
1.2℃/s、1.3℃/sであった。また、経時と共
に昇温速度は低下してしまい、8分以上経過しても穏や
かな昇温を続けている。それに対して、実施例3におけ
る発熱方法では、初期の30秒間に3.1℃/sの昇温
速度となり、120秒後に一定温度に到達しており、速
熱性を向上させることができた。
[Comparison of Results between Example 3 and Comparative Examples 5 and 6] As shown in Table 3, in the heat generating methods of Comparative Examples 5 and 6, the rate of temperature increase was slow and the rate of temperature increase for 30 seconds after energization was: They were 1.2 ° C./s and 1.3 ° C./s, respectively. In addition, the temperature rising rate decreases with the lapse of time, and even after 8 minutes or more, the temperature is kept rising moderately. On the other hand, in the heat generation method of Example 3, the temperature rising rate was 3.1 ° C./s in the initial 30 seconds, and the temperature reached the constant temperature after 120 seconds, and the rapid heating property could be improved.

【0086】〔実施例4〕図8(A)及び(B)の如き
断面図、及び配線例も兼ねた図8(C)の如き平面図
の、面発熱体100を次の様にして作製した。なお、図
8(A)は発熱部分の断面図であり、図8(B)は電極
端子取出部分の断面図である。すなわち、図8(A)の
断面図は、図8(C)中の電熱層部分であるA−A線方
向での断面図、図8(B)の断面図は、図8(C)中の
絶縁層部分であるB−B線方向での断面図である。
[Embodiment 4] A surface heating element 100 having a sectional view as shown in FIGS. 8 (A) and 8 (B) and a plan view as shown in FIG. 8 (C) which also serves as a wiring example is manufactured as follows. did. 8A is a cross-sectional view of the heat generating portion, and FIG. 8B is a cross-sectional view of the electrode terminal lead-out portion. That is, the cross-sectional view of FIG. 8A is a cross-sectional view taken along the line AA of the heating layer portion of FIG. 8C, and the cross-sectional view of FIG. 8B is the same as that of FIG. 8C. FIG. 6 is a cross-sectional view taken along line B-B of the insulating layer portion of FIG.

【0087】また、作製した面発熱体100は、ゴムを
用いた電熱層10上に、それぞれ平行直線からなる第1
電極対21及び第2電極対22が形成され、各電極対の
端子取出部分は、電熱層と電極対間に絶縁層40を設け
た構成である。
Further, the surface heating element 100 thus manufactured has the first linear parallel lines on the electric heating layer 10 made of rubber.
The electrode pair 21 and the second electrode pair 22 are formed, and the terminal lead-out portion of each electrode pair has a configuration in which an insulating layer 40 is provided between the electrothermal layer and the electrode pair.

【0088】先ず、カーボンブラックを含有する導電性
シリコーンゴムシート(クレハエラストマー株式会社
製、商品名「SB70ENK」、厚み200μm)の片
面に、絶縁ペースト(十条ケミカル株式会社製、商品名
「JELCON IN−15M」)を200メッシュの
版を用いてシルクスクリーン印刷した後、紫外線(ラン
プ強度120W/cm2、メタルハライドランプ1灯)
をコンベアスピード6m/min、照射距離10cmの
条件で照射して、インキを硬化させて、幅10cm、長
さ2cm、厚さ18μmの絶縁層40を形成した。
First, on one surface of a conductive silicone rubber sheet containing carbon black (Kureha Elastomer Co., Ltd., trade name "SB70ENK", thickness 200 μm), an insulating paste (Jujo Chemical Co., Ltd. trade name, "JELCON IN-") was used. 15M ") is silk-screened using a 200-mesh plate, and then ultraviolet rays (lamp intensity 120 W / cm 2 , metal halide lamp 1 light)
Was irradiated at a conveyor speed of 6 m / min and an irradiation distance of 10 cm to cure the ink to form an insulating layer 40 having a width of 10 cm, a length of 2 cm and a thickness of 18 μm.

【0089】次に、第1電極対21として、銀ペースト
(十条ケミカル株式会社製、商品名「JELCON S
H−1」)を250メッシュの版を用いてシルクスクリ
ーン印刷し、オーブンで150℃、30分、加熱し固化
して、線幅5mm、電極間距離50mm、膜厚9μmの
電極パターンを形成した。
Next, as the first electrode pair 21, a silver paste (manufactured by Jujo Chemical Co., Ltd., trade name "JELCON S") was used.
H-1 ") was silk screen printed using a 250 mesh plate and heated in an oven at 150 ° C for 30 minutes for solidification to form an electrode pattern having a line width of 5 mm, a distance between electrodes of 50 mm and a film thickness of 9 µm. .

【0090】次に、第2電極対22として、上記第1電
極対21とは重ならないで平行になる様に、銀ペースト
(十条ケミカル株式会社製、商品名「JELCON S
H−1」)を250メッシュの版を用いてシルクスクリ
ーン印刷し、オーブンで150℃、30分、加熱し固化
して、線幅5mm、電極間距離30mm、膜厚9μmの
電極パターンを形成した。なお、各電極対の一部、すな
わち、電源ケーブルを接続する為に電極端子部分は、絶
縁層40上に重なる様に印刷した〔図8(B)及び
(C)参照〕。
Next, as the second electrode pair 22, a silver paste (manufactured by Jujo Chemical Co., Ltd. under the trade name "JELCON S" so as to be parallel to the first electrode pair 21 without overlapping.
H-1 ") was silk screen printed using a 250 mesh plate and heated in an oven at 150 ° C for 30 minutes for solidification to form an electrode pattern having a line width of 5 mm, a distance between electrodes of 30 mm and a film thickness of 9 µm. . In addition, a part of each electrode pair, that is, an electrode terminal portion for connecting a power cable was printed so as to overlap the insulating layer 40 [see FIGS. 8 (B) and 8 (C)].

【0091】この面発熱体において、図8(C)で示す
様に、その第1電極対21及び第2電極対22のそれぞ
れに、独立の電源ケーブル310、320で、それぞれ
の開閉器210、220を介して共通の一つ電源400
に接続した。そして、電源400から直流12Vを、各
電極対21及び22に通電すると、電熱層10がジュー
ル発熱して昇温した。その時の、表面温度の経時変化を
測定した結果を、実施例5、比較例7、8及び9の場合
と共に表4に示す。なお、発熱方法としては、最初は第
1電極対21と第2電極対22に同時に通電し、30秒
後に第2電極対22への通電を停止し、以降は第1電極
対21側のみの通電とした。結果は、表4に纏めて示
す。
In this surface heating element, as shown in FIG. 8C, independent power cables 310 and 320 are provided to the first electrode pair 21 and the second electrode pair 22, respectively, and the respective switches 210, One common power source 400 via 220
Connected to. Then, when a direct current of 12 V was applied to each of the electrode pairs 21 and 22 from the power supply 400, the electrothermal layer 10 generated Joule heat and increased in temperature. The results of measuring the time-dependent change of the surface temperature at that time are shown in Table 4 together with the cases of Example 5, Comparative Examples 7, 8 and 9. As a heat generation method, first, the first electrode pair 21 and the second electrode pair 22 are simultaneously energized, the energization to the second electrode pair 22 is stopped after 30 seconds, and thereafter, only the first electrode pair 21 side is energized. It was energized. The results are summarized in Table 4.

【0092】〔比較例7〕実施例4で作製した面発熱体
100に対して、その発熱方法を実施例4とは変えて、
表面温度の経時変化を測定した。発熱方法は、通電を最
初から第2電極対21側のみとした。結果は、表4に示
す。
[Comparative Example 7] With respect to the surface heating element 100 manufactured in Example 4, the heating method was changed from that in Example 4,
The change in surface temperature with time was measured. As a heat generating method, electricity was applied only to the second electrode pair 21 side from the beginning. The results are shown in Table 4.

【0093】〔実施例5〕実施例4に於いて、第1電極
対及び第2電極対の形状を、実施例2の図2及び図6で
例示した如き、櫛形を有するパターン形状とた他は、電
極端子取出部分は絶縁層を介して形成する等、実施例4
と同様して、図9で示す如き面発熱体100を作製し
た。図9(A)は発熱部分である図9(C)中のA−A
線方向での断面図、図9(B)は電極端子取出部分であ
る図9(C)中のB−B線方向での断面図である。そし
て、実施例2と同様に、図9(C)に示す様な配線によ
る発熱方法によって、最初は第1電極対21と第2電極
対22に同時に通電し、30秒後に第2電極対22への
通電を停止し、以降は第1電極対21側のみの通電とし
た。結果は、表4に示す。
[Embodiment 5] In Embodiment 4, the shape of the first electrode pair and the second electrode pair is a comb-like pattern shape as illustrated in FIG. 2 and FIG. 6 of Embodiment 2. In Example 4, the electrode terminal lead-out portion is formed via an insulating layer.
Similarly to the above, a surface heating element 100 as shown in FIG. 9 was produced. FIG. 9 (A) is a heat generating portion, which is AA in FIG. 9 (C).
FIG. 9B is a cross-sectional view taken along the line direction, and FIG. 9B is a cross-sectional view taken along the line BB in FIG. Then, similarly to the second embodiment, the first electrode pair 21 and the second electrode pair 22 are simultaneously energized initially by the heating method using wiring as shown in FIG. 9C, and after 30 seconds, the second electrode pair 22 is turned on. To the first electrode pair 21 side only. The results are shown in Table 4.

【0094】〔比較例8〕実施例5で作製した面発熱体
100に対して、その発熱方法を実施例5とは変えて、
表面温度の経時変化を測定した。発熱方法は、通電を最
初から第2電極対22側のみとした。結果は、表4に示
す。
[Comparative Example 8] With respect to the surface heating element 100 manufactured in Example 5, the heating method is changed from that in Example 5,
The change in surface temperature with time was measured. As a heat generating method, electricity was applied only to the second electrode pair 22 side from the beginning. The results are shown in Table 4.

【0095】〔実施例6〕図10(A)の如き断面図、
及び配線例表示も兼ねた図10(B)の如き平面図の、
面発熱体100を次の様にして作製した。なお、この面
発熱体100は、基材層30の上に、電熱層10が形成
され、該電熱層10の裏面(基材層と電熱層との間)
に、それぞれ平行直線からなる第1電極対21と第2電
極対22とが、互いに平行に形成された構成である。
[Embodiment 6] A sectional view as shown in FIG.
And a plan view as shown in FIG. 10B, which also serves as a wiring example display,
The surface heating element 100 was manufactured as follows. In this surface heating element 100, the electric heating layer 10 is formed on the base material layer 30, and the back surface of the electric heating layer 10 (between the base material layer and the electric heating layer).
In addition, the first electrode pair 21 and the second electrode pair 22, which are parallel straight lines, are formed in parallel with each other.

【0096】先ず、基材30として、ガラスクロス入り
シリコーンゴムシート(クレハエラストマー株式会社
製、商品名「R733」、厚さ1.5mm)を用い、こ
の片面に、第1電極対21として、銀ペースト(十条ケ
ミカル株式会社製、商品名「JELCON SH−
1」)を250メッシュの版を用いてシルクスクリーン
印刷し、オーブンで150℃、30分、加熱し固化し
て、線幅5mm、長さ145mm、電極間距離50m
m、膜厚8μmの電極パターンを形成した。
First, as the base material 30, a glass cloth-containing silicone rubber sheet (Kureha Elastomer Co., Ltd., trade name "R733", thickness 1.5 mm) was used. Paste (manufactured by Jujo Chemical Co., Ltd., trade name "JELCON SH-
1 ") is silk-screen printed using a 250 mesh plate and heated in an oven at 150 ° C for 30 minutes for solidification to give a line width of 5 mm, a length of 145 mm, and an interelectrode distance of 50 m.
m and a film thickness of 8 μm were formed.

【0097】次に、第2電極対22として、上記第1電
極対21とは重ならないで平行になる様に、第1電極対
21に用いた銀ペーストを同様にシルクスクリーン印刷
し、オーブンで150℃、30分、加熱し固化して、線
幅5mm、長さ130mm、電極間距離30mm、膜厚
8μmの電極パターンを形成した。
Next, as the second electrode pair 22, the silver paste used for the first electrode pair 21 was silk-screen printed in the same manner so as not to overlap with the first electrode pair 21 and to be parallel, and then, in an oven. It was heated and solidified at 150 ° C. for 30 minutes to form an electrode pattern having a line width of 5 mm, a length of 130 mm, a distance between electrodes of 30 mm, and a film thickness of 8 μm.

【0098】次に、導電性カーボンペースト(東洋紡績
株式会社製、商品名「DY−280H−3」)を同様に
シルクスクリーン印刷し、オーブンで150℃、30
分、加熱し固化して、幅50mm、長さ100mm、膜
厚9μmの電熱層10を形成した。なお、電極端子をと
るため、第1電極対21及び第2電極対22の一部分
(長さ30mm)には、カーボンペーストがかからない
様に重ね印刷を行った。
Next, a conductive carbon paste (manufactured by Toyobo Co., Ltd., trade name "DY-280H-3") was silk-screen printed in the same manner, and was heated in an oven at 150 ° C. for 30 days.
The solid was heated and solidified for a minute to form the electrothermal layer 10 having a width of 50 mm, a length of 100 mm and a film thickness of 9 μm. In addition, in order to take an electrode terminal, a part of the first electrode pair 21 and the second electrode pair 22 (length 30 mm) was overprinted so that the carbon paste was not applied.

【0099】この面発熱体において、図10(B)に示
す様に、その第1電極対21及び第2電極対22のそれ
ぞれに、独立の電源ケーブル310、320で、それぞ
れの開閉器210、220を介して共通の一つ電源40
0に接続した。そして、電源から直流12Vを、各電極
対21及び22に通電すると、電熱層10がジュール発
熱して昇温した。なお、発熱方法としては、最初は第1
電極対21と第2電極対22に同時に通電し、30秒後
に第2電極対22への通電を停止し、以降は第1電極対
21側のみの通電とした。結果は、表4に示す。
In this surface heating element, as shown in FIG. 10 (B), a switch 210 for each of the first electrode pair 21 and the second electrode pair 22 is provided with an independent power cable 310, 320. One common power supply 40 via 220
Connected to 0. Then, when a direct current of 12 V was applied to each of the electrode pairs 21 and 22 from the power supply, the electrothermal layer 10 generated Joule heat to raise the temperature. The first heat generation method is first
The electrode pair 21 and the second electrode pair 22 were simultaneously energized, and after 30 seconds, the energization to the second electrode pair 22 was stopped, and thereafter, only the first electrode pair 21 side was energized. The results are shown in Table 4.

【0100】[0100]

【表4】 [Table 4]

【0101】〔実施例5及び6と、比較例7及び8の結
果比較〕表4の如く、比較例7及び8に於ける発熱方法
では、昇温速度が遅く、経時と共に昇温速度は低下して
しまい、2分以上経過しても穏やかな昇温を続けてい
る。それに対して、実施例5及び6における発熱方法で
は、120秒後に一定温度に到達しており、速熱性を向
上させることができた。また、実施例5及び6は、基材
層無しで且つ電熱層にゴムを用いた構成の為、伸び性も
有していた。
[Comparison between Results of Examples 5 and 6 and Comparative Examples 7 and 8] As shown in Table 4, in the heat generating methods of Comparative Examples 7 and 8, the rate of temperature rise was slow and the rate of temperature rise decreased with time. However, even after 2 minutes or more, the temperature continues to rise moderately. On the other hand, in the heat generation methods of Examples 5 and 6, the constant temperature was reached after 120 seconds, and the rapid heating property could be improved. In addition, in Examples 5 and 6, since the base material layer was not used and rubber was used for the electric heating layer, it also had extensibility.

【0102】[0102]

【発明の効果】(1)本発明の面発熱体によれば、発熱
初期の温度の立ち上がりが早く、短時間で所望の平衡温
度に到達させることができる。その為、暖房機器等に利
用する場合では迅速な暖房効果が得られる等、昇温時間
が短く、速熱性に優れる。また、PTC特性を有する材
料等特殊な電熱材料を使用する必要が無く、通常の抵抗
体を用いることにより、樹脂の熱膨張の繰り返しの影響
による経時劣化が無く、安定した発熱特性を得ることが
できる。また、温度制御回路を特別付帯せずとも、電流
値のみ一定に保てば、一定温度を維持できる。 (2)また、電熱層に基材層を積層した構成とすること
で、電熱層を基材層で支持でき、面発熱体の機械的強度
を補強できる。
(1) According to the surface heating element of the present invention, the temperature rises quickly in the initial stage of heat generation, and the desired equilibrium temperature can be reached in a short time. Therefore, when it is used for a heating device or the like, a quick heating effect is obtained, and the temperature rising time is short and the rapid heating property is excellent. In addition, it is not necessary to use a special electrothermal material such as a material having PTC characteristics, and by using an ordinary resistor, stable heat generation characteristics can be obtained without deterioration over time due to the effect of repeated thermal expansion of the resin. it can. Further, even if the temperature control circuit is not specially attached, a constant temperature can be maintained by keeping only the current value constant. (2) Further, by forming the base layer on the electrothermal layer, the electrothermal layer can be supported by the base layer and the mechanical strength of the surface heating element can be reinforced.

【0103】(3)また、本発明の発熱方法によれば、
発熱初期の温度の立ち上がりを早くし、短時間で所望の
平衡温度に到達させることができる。その為、暖房機器
等に利用する場合では迅速な暖房効果が得られる等、昇
温時間を短くでき、速熱性を実現できる。
(3) According to the heat generating method of the present invention,
It is possible to accelerate the rise of the temperature in the initial stage of heat generation and reach the desired equilibrium temperature in a short time. Therefore, when it is used for a heating device or the like, a quick heating effect can be obtained, and thus the temperature rising time can be shortened and a rapid heating property can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の面発熱体の一形態を示す断面図と平面
図。
FIG. 1 is a sectional view and a plan view showing an embodiment of a surface heating element of the present invention.

【図2】本発明の面発熱体の別の形態例を示す断面図と
平面図。
2A and 2B are a sectional view and a plan view showing another embodiment of the surface heating element of the present invention.

【図3】本発明の面発熱体の層構成を中心とした各種形
態例を示す断面図。
FIG. 3 is a cross-sectional view showing various forms of examples centering on the layer structure of the surface heating element of the present invention.

【図4】本発明に於ける発熱方法を詳述する説明図。FIG. 4 is an explanatory view detailing a heating method according to the present invention.

【図5】本発明の面発熱体の或る一形態の発熱方法に対
する配線例を示す平面図。
FIG. 5 is a plan view showing an example of wiring for a heating method of a certain aspect of the surface heating element of the present invention.

【図6】本発明の面発熱体の別の或る一形態の発熱方法
に対する配線例を示す平面図。
FIG. 6 is a plan view showing an example of wiring for a heating method according to another aspect of the surface heating element of the present invention.

【図7】本発明の面発熱体の別の形態例(及びその配線
例)を示す断面図と平面図。
7A and 7B are a cross-sectional view and a plan view showing another embodiment of the surface heating element of the present invention (and its wiring example).

【図8】本発明の面発熱体の別の形態例(及びその配線
例)を示す断面図と平面図。
8A and 8B are a cross-sectional view and a plan view showing another embodiment of the surface heating element of the present invention (and its wiring example).

【図9】本発明の面発熱体の別の形態例(及びその配線
例)を示す断面図と平面図。
9A and 9B are a cross-sectional view and a plan view showing another embodiment of the surface heating element of the present invention (and its wiring example).

【図10】本発明の面発熱体の別の形態例(及びその配
線例)を示す断面図と平面図。
10A and 10B are a sectional view and a plan view showing another example of the surface heating element of the present invention (and its wiring example).

【符号の説明】[Explanation of symbols]

10、10a、10b 電熱層 21 第1電極対 21a、21b (第1電極対の)電極 22 第2電極対 22a、22b (第2電極対の)電極 30、30a、30b 基材層 40 絶縁層 100 面発熱体 210、220 開閉器 310、320 電源ケーブル 400、410、420 電源(直流安定化電源等) 500 温度計(デジタル温度計等) 510 温度センサ T1+2 sat 平衡温度 T1 sat 平衡温度 T2 sat 平衡温度10, 10a, 10b Electrothermal layer 21 First electrode pair 21a, 21b (First electrode pair) Electrode 22 Second electrode pair 22a, 22b (Second electrode pair) Electrode 30, 30a, 30b Base material layer 40 Insulating layer 100 surface heating element 210, 220 switch 310, 320 power supply cable 400, 410, 420 power supply (DC stabilized power supply, etc.) 500 thermometer (digital thermometer, etc.) 510 temperature sensor T 1 + 2 sat equilibrium temperature T 1 sat equilibrium Temperature T 2 sat Equilibrium temperature

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05B 3/00 310 H05B 3/00 310A Fターム(参考) 2D026 CL02 CL03 3K034 AA02 AA03 AA04 AA11 AA15 AA34 BB08 BB13 BC12 BC13 BC16 BC22 BC23 CA02 CA05 CA14 CA17 CA22 HA04 HA09 JA09 3K058 AA02 BA02 BA16 CE02 CE03 CE13 CE19 CE24 3L072 AA01 AB03 AC02 AD13 AD14 AE01 AE03 AF07 AG03 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H05B 3/00 310 H05B 3/00 310A F term (reference) 2D026 CL02 CL03 3K034 AA02 AA03 AA04 AA11 AA15 AA34 BB08 BB13 BC12 BC13 BC16 BC22 BC23 CA02 CA05 CA14 CA17 CA22 HA04 HA09 JA09 3K058 AA02 BA02 BA16 CE02 CE03 CE13 CE19 CE24 3L072 AA01 AB03 AC02 AD13 AD14 AE01 AE03 AF07 AG03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ジュール熱により発熱する電熱層を用い
た面発熱体において、 第1電極対、及び第2電極対が、平面方向に於いて互い
に重複しない様にして、電熱層の表面のみ、裏面のみ、
或いは表面と裏面の両面に形成され、第1電極対と第2
電極対は各々独立に開閉できる別個の開閉器を通じて電
源に接続されて成る、面発熱体。
1. A surface heating element using an electric heating layer that generates heat by Joule heat, so that the first electrode pair and the second electrode pair do not overlap each other in the planar direction, and only the surface of the electric heating layer is provided. Only the back side,
Alternatively, the first electrode pair and the second electrode are formed on both the front surface and the back surface.
A surface heating element in which each pair of electrodes is connected to a power source through a separate switch that can be opened and closed independently.
【請求項2】 電熱層の電極対が形成された面上に、更
に電熱層を積層して成る、請求項1記載の面発熱体。
2. The surface heating element according to claim 1, wherein an electric heating layer is further laminated on the surface of the electric heating layer on which the electrode pair is formed.
【請求項3】 電熱層の最表面又は最裏面のうち、いず
れか一面又は両面に、更に絶縁体の基材層を積層して成
る、請求項1又は請求項2記載の面発熱体。
3. The surface heating element according to claim 1, which is formed by further laminating a base material layer of an insulating material on any one surface or both surfaces of the outermost surface or the back surface of the electrothermal layer.
【請求項4】 請求項1〜3のいずれか1項記載の面発
熱体を用いて、 先ず、第1電極対と第2電極対の両方を通電して発熱さ
せ、 次いで、電熱層を両電極対のうち、いずれか一方のみ通
電した時の温度平衡時間のうち、より短い時間よりも前
の時点で、両電極対のうちいずれか一方への通電を停止
し、面発熱体を温度平衡に至らせる、発熱方法。
4. Using the surface heating element according to claim 1, first, both the first electrode pair and the second electrode pair are energized to generate heat, and then the heating layer is applied to both sides. At a point before the shorter time of the temperature equilibration time when only one of the electrode pairs is energized, the energization of either of the electrode pairs is stopped and the surface heating element is temperature balanced. How to generate heat.
JP2001206048A 2001-07-06 2001-07-06 Heat generation method Expired - Fee Related JP4863036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001206048A JP4863036B2 (en) 2001-07-06 2001-07-06 Heat generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001206048A JP4863036B2 (en) 2001-07-06 2001-07-06 Heat generation method

Publications (2)

Publication Number Publication Date
JP2003022888A true JP2003022888A (en) 2003-01-24
JP4863036B2 JP4863036B2 (en) 2012-01-25

Family

ID=19042245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001206048A Expired - Fee Related JP4863036B2 (en) 2001-07-06 2001-07-06 Heat generation method

Country Status (1)

Country Link
JP (1) JP4863036B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031343A (en) * 2001-07-10 2003-01-31 Dainippon Printing Co Ltd Surface heating element
JP2005259564A (en) * 2004-03-12 2005-09-22 Matsushita Electric Ind Co Ltd Polymer heating element and manufacturing method of the heating element
JP2006172971A (en) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd Polymer heating element and its manufacturing method
JP2006216476A (en) * 2005-02-07 2006-08-17 Matsushita Electric Ind Co Ltd Polymer heating element
JP2007059167A (en) * 2005-08-24 2007-03-08 Matsushita Electric Ind Co Ltd Heating element
JP2007059066A (en) * 2005-08-22 2007-03-08 Matsushita Electric Ind Co Ltd Heating element
JP2007515584A (en) * 2003-12-02 2007-06-14 ワナー・エンジニアリング・インコーポレーテッド Damage detection of pump diaphragm
JP2009270661A (en) * 2008-05-09 2009-11-19 Satoru Murayama Electric heater
WO2011001953A1 (en) * 2009-07-03 2011-01-06 株式会社クラベ Cord-like heater and planar heater
WO2014111740A1 (en) * 2013-01-15 2014-07-24 Kongsberg Automotive Ab Seat assembly having heating element providing electrical heating of variable temperature along a predetermined path to a zone
JP2016012494A (en) * 2014-06-30 2016-01-21 三菱自動車工業株式会社 battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017216723A1 (en) * 2017-09-21 2019-03-21 Robert Bosch Gmbh heater

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031343A (en) * 2001-07-10 2003-01-31 Dainippon Printing Co Ltd Surface heating element
JP4647846B2 (en) * 2001-07-10 2011-03-09 大日本印刷株式会社 Surface heating element and manufacturing method thereof
JP2007515584A (en) * 2003-12-02 2007-06-14 ワナー・エンジニアリング・インコーポレーテッド Damage detection of pump diaphragm
JP4667391B2 (en) * 2003-12-02 2011-04-13 ワナー・エンジニアリング・インコーポレーテッド Damage detection of pump diaphragm
JP2005259564A (en) * 2004-03-12 2005-09-22 Matsushita Electric Ind Co Ltd Polymer heating element and manufacturing method of the heating element
JP2006172971A (en) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd Polymer heating element and its manufacturing method
JP2006216476A (en) * 2005-02-07 2006-08-17 Matsushita Electric Ind Co Ltd Polymer heating element
JP2007059066A (en) * 2005-08-22 2007-03-08 Matsushita Electric Ind Co Ltd Heating element
JP2007059167A (en) * 2005-08-24 2007-03-08 Matsushita Electric Ind Co Ltd Heating element
JP2009270661A (en) * 2008-05-09 2009-11-19 Satoru Murayama Electric heater
WO2011001953A1 (en) * 2009-07-03 2011-01-06 株式会社クラベ Cord-like heater and planar heater
WO2014111740A1 (en) * 2013-01-15 2014-07-24 Kongsberg Automotive Ab Seat assembly having heating element providing electrical heating of variable temperature along a predetermined path to a zone
US9457702B2 (en) 2013-01-15 2016-10-04 Kongsberg Automotive Ab Seat assembly having heating element providing electrical heating of variable temperature along a predetermined path to a zone
JP2016012494A (en) * 2014-06-30 2016-01-21 三菱自動車工業株式会社 battery

Also Published As

Publication number Publication date
JP4863036B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
US8481898B2 (en) Self regulating electric heaters
JP2003022888A (en) Surface heater and heating method therefor
KR100361895B1 (en) Heater with ptc element and buss system
US4845343A (en) Electrical devices comprising fabrics
US6084206A (en) Internally temperature controlled heat blanket
US20200224926A1 (en) Air heating device for a vehicle
US20120175362A1 (en) Positive Temperature Coefficient Heating Elements and Their Manufacturing
JP2007299546A (en) Planar heating element
EP3595404A1 (en) Multi polymer positive temperature coefficient heater
JP2009199794A (en) Planar heating element
JP2008300050A (en) Polymer heating element
JP2003017227A (en) Plane heating element and heating method
JP4647846B2 (en) Surface heating element and manufacturing method thereof
JP2809432B2 (en) Heating element
JP2002143038A (en) Warm toilet seat device
JP4283624B2 (en) Fuse for short circuit protection and floor heating device using this fuse
JPH10106725A (en) Sheet-like heater element and electric carpet
JPH02266501A (en) Organic positive temperature coefficient thermistor
RU201394U1 (en) Flexible film infrared electric heater
JP2000195650A (en) Planar heating element
JP2002050455A (en) Surface-formed heat generation body and thermal equipment using it
JP2001023760A (en) Sheet heating element
JPH08185069A (en) Fixing heater and device, and image forming device
JP4154493B2 (en) Exothermic sheet
JP2002334769A (en) Sheet heating element and thermal equipment using this

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees