JP2003017227A - Plane heating element and heating method - Google Patents

Plane heating element and heating method

Info

Publication number
JP2003017227A
JP2003017227A JP2001197860A JP2001197860A JP2003017227A JP 2003017227 A JP2003017227 A JP 2003017227A JP 2001197860 A JP2001197860 A JP 2001197860A JP 2001197860 A JP2001197860 A JP 2001197860A JP 2003017227 A JP2003017227 A JP 2003017227A
Authority
JP
Japan
Prior art keywords
temperature
heating
heating layer
electric heating
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001197860A
Other languages
Japanese (ja)
Inventor
Norikatsu Ono
典克 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2001197860A priority Critical patent/JP2003017227A/en
Publication of JP2003017227A publication Critical patent/JP2003017227A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a plane heating element, and its heating method, which realizes quick heating without using a power source with complicated control circuit. SOLUTION: The plane heating element has a second electric heating layer laminated on a first electric heating layer through an insulation layer, both heating layers connected to power source enabled to be opened or closed independently. Further, a substrate can also be laminated on the surface of the first and/or second electric heating layers. The method of heating is to heat both the first and the second heating layers by turning on electricity, to begin with, and then, to turn off electricity either for the first or the second heating layer before the temperature balancing time of the first and the second heating layers to get the temperature of the plane heating element balanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、平面的で均一な温
度分布で発熱する熱源として好適な面発熱体に関する。
特に、昇温時間が短く、速熱性に優れた面発熱体とその
発熱方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface heating element suitable as a heat source for generating heat with a flat and uniform temperature distribution.
In particular, the present invention relates to a surface heating element having a short heating time and an excellent rapid heating property and a heating method thereof.

【0002】[0002]

【従来の技術】面発熱体は、床暖房、電気カーペット、
融雪ヒータ等の民生用途や、配管、タンクの保温等の産
業用途の熱源として、広く利用されている。従来の面発
熱体としては、例えば、(1)導電性粉末を熱可塑性樹
脂中に混練したものをシート状に成形したもの、(2)
導電性粉末をシリコーン樹脂や有機ビヒクルと混ぜてペ
ースト状とし、それを厚膜印刷技術を用いて基板上に膜
形成したもの、等の形態が知られている。
2. Description of the Related Art Surface heating elements are used for floor heating, electric carpets,
It is widely used as a heat source for consumer applications such as snow melting heaters and industrial applications such as heat insulation of pipes and tanks. Examples of the conventional surface heating element include (1) a sheet obtained by kneading conductive powder in a thermoplastic resin, and (2)
It is known that a conductive powder is mixed with a silicone resin or an organic vehicle to form a paste, and the paste is formed on a substrate by using a thick film printing technique.

【0003】例えば、上記(1)の形態のものとして
は、特公昭54−13625号公報等に開示されている
様に、ポリエチレン等の熱可塑性樹脂に、黒鉛、カーボ
ンブラック等の導電性炭素から成る導電性粉末を、ブレ
ンド・混練し、シート状に成形したもので、樹脂中に導
電性粉末が配合され、それらの物理的接触により導通を
得ている。また、この様な面発熱体は、導電性粉末と熱
可塑性樹脂との熱膨張係数は、樹脂の方が極端に大き
く、且つ、樹脂はガラス転移点以上の温度で更に大きい
膨張係数を示すため、ブレンドされた導電性粉末の粒子
同士の間隔が、温度上昇とともに広がり、ガラス転移点
以上では、その広がりが極端に大きくなり、電気抵抗の
正温度特性(PTC特性)を示す。そのため、その温度
前後で発熱体に電流が流れ難くなり、自己温度制御が可
能となる特性も有する。
For example, as the form of the above (1), as disclosed in Japanese Patent Publication No. 54-13625, a thermoplastic resin such as polyethylene, a conductive carbon such as graphite or carbon black is used. The conductive powder is formed by blending and kneading, and is molded into a sheet. The conductive powder is mixed in the resin, and the physical contact between the conductive powder provides electrical continuity. Further, in such a surface heating element, the resin has an extremely large coefficient of thermal expansion between the conductive powder and the thermoplastic resin, and the resin exhibits a larger coefficient of expansion at a temperature equal to or higher than the glass transition point. The spacing between the particles of the blended conductive powder expands as the temperature rises, and at the glass transition point or higher, the spread becomes extremely large, exhibiting a positive temperature characteristic (PTC characteristic) of electrical resistance. Therefore, it becomes difficult for an electric current to flow in the heating element before and after that temperature, and the self-temperature control is possible.

【0004】一方、上記(2)の形態のものとしては、
例えば、特公昭58−15913号公報に開示されてい
るものがあり、その詳細は、シリコーン樹脂ワニスに、
黒鉛粉末、有機溶剤、流動性調整剤等を混合し、基板上
に塗布後、250〜450℃温度で焼成なる処理をして
製造した面発熱体が記載されている。
On the other hand, as the form of the above (2),
For example, there is one disclosed in Japanese Examined Patent Publication (Kokoku) No. 58-15913, the details of which are described in Silicone Resin Varnish,
There is described a surface heating element produced by mixing graphite powder, an organic solvent, a fluidity adjusting agent and the like, coating the mixture on a substrate, and then firing the mixture at a temperature of 250 to 450 ° C.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記
(1)の形態のものは、電気抵抗(体積固有抵抗)の正
温度特性の為、室温で大きな電圧を印加して大電流で発
熱量(単位時間・単位面積当たり)を大にしても、高温
に到達すると電気抵抗が急激に高くなり、電流値が減り
発熱量も低下し、過度に高温化することが無い。その
為、抵抗値が大きく変化する温度まで一気に昇温するこ
とは可能である。しかし、熱可塑性樹脂が主成分のた
め、高温の面発熱体は難しい欠点がある。また、樹脂の
熱膨張を繰り返すうちに、カーボン粒子の樹脂マトリッ
クス中での接触状態や配列状態に変化を生じることがあ
り、制御温度が変わったり、あるいは、制御温度を超え
て昇温し更に制御性が著しく低下して発火するという問
題点があった。また、この様な問題を改善すべく、樹脂
を架橋する等の改良も提案されている。しかし、材料が
特殊であったり、高価になったり、加工の手間が増え等
の問題が残る。
However, in the case of the above-mentioned form (1), since the positive temperature characteristic of the electric resistance (volume resistivity), a large voltage is applied at room temperature to generate a large amount of heat (unit: Even if the time (per unit area) is increased, when the temperature reaches a high temperature, the electric resistance rapidly increases, the current value decreases, the calorific value decreases, and the temperature does not rise excessively. Therefore, it is possible to raise the temperature all at once to a temperature at which the resistance value changes greatly. However, since the thermoplastic resin is the main component, a high-temperature surface heating element has a drawback. Also, during repeated thermal expansion of the resin, the contact state and arrangement state of the carbon particles in the resin matrix may change, the control temperature may change, or the temperature may rise above the control temperature for further control. There was a problem that the property was remarkably deteriorated and a fire occurred. Further, in order to improve such problems, improvements such as crosslinking of resins have been proposed. However, there remain problems that the material is special, the cost is high, and the labor of processing is increased.

【0006】一方、(2)の形態のものは、発熱体自体
に自己温度制御性が無い為、上記の如き自己温度制御性
に由来する問題点は回避できるが、到達温度は、発熱体
の面積、抵抗値、印加電圧で決まってしまい、昇温速度
は制御できず、速熱性に劣るという欠点があった。もち
ろん、熱電対等の温度センサで温度を計測し、その計測
値を元に、面発熱体に供給する電力を、サイリスタ等で
制御すると言った帰還(フィードバック)温度制御も可
能である。しかし、その為には、電源に制御回路を付加
する必要が生じる。
On the other hand, in the case of the form (2), since the heating element itself does not have the self-temperature controllability, the above-mentioned problems derived from the self-temperature controllability can be avoided, but the ultimate temperature is Since the area, resistance value, and applied voltage are determined, the rate of temperature rise cannot be controlled, and the rapid heating property is poor. Of course, it is also possible to perform feedback temperature control in which the temperature is measured with a temperature sensor such as a thermocouple and the power supplied to the surface heating element is controlled by a thyristor or the like based on the measured value. However, for that purpose, it becomes necessary to add a control circuit to the power supply.

【0007】すなわち、本発明の課題は、複雑な制御回
路を用いた電源も、或いは特殊な電熱材料も用いること
無く、昇温時間が短く、速熱性に優れた面発熱体を提供
することである。また、その様な発熱方法を提供するこ
とである。
That is, an object of the present invention is to provide a surface heating element which has a short heating time and an excellent rapid heating property without using a power source using a complicated control circuit or a special electric heating material. is there. It is also to provide such a heat generation method.

【0008】[0008]

【課題を解決するための手段】上記課題を解決すべく、
本発明の面発熱体では、ジュール熱により発熱する電熱
層を用いた面発熱体において、第1電熱層上に絶縁層を
介して第2電熱層を積層して成り、且つ両電熱層は、各
々独立に開閉できる様にして電源に接続される構成とし
た。
[Means for Solving the Problems] In order to solve the above problems,
In the surface heating element of the present invention, in the surface heating element using the electric heating layer that generates heat by Joule heat, the second heating layer is laminated on the first heating layer via the insulating layer, and both heating layers are: Each of them can be opened and closed independently and is connected to a power supply.

【0009】この様な構成とすることで、発熱初期の温
度の立ち上がりが早く、短時間で所望の平衡温度に到達
させることができる面発熱体となる。その為、暖房機器
等に利用する場合では迅速な暖房効果が得られる等、昇
温時間が短く、速熱性に優れる。また、PTC特性を有
する材料等特殊な電熱材料を使用する必要が無く、通常
の抵抗体を用いることにより、樹脂の熱膨張の繰り返し
の影響による経時劣化が無く、安定した発熱特性を得る
ことができる。また、電源に温度制御回路を特別付帯せ
ずとも、電流値のみ一定に保てば、一定温度を維持でき
る。
With such a structure, the surface heating element can quickly reach the desired equilibrium temperature in a short period of time when the temperature rises early in the heat generation. Therefore, when it is used for a heating device or the like, a quick heating effect is obtained, and the temperature rising time is short and the rapid heating property is excellent. In addition, it is not necessary to use a special electrothermal material such as a material having PTC characteristics, and by using an ordinary resistor, stable heat generation characteristics can be obtained without deterioration over time due to the effect of repeated thermal expansion of the resin. it can. Further, even if the temperature control circuit is not specially attached to the power source, a constant temperature can be maintained if only the current value is kept constant.

【0010】また、本発明の面発熱体は、上記構成にお
いて更に、第1電熱層又は/及び第2電熱層の表面に、
基材が積層されて成る構成とした。
Further, the surface heating element of the present invention has the above-mentioned constitution, and further, on the surface of the first electric heating layer and / or the second electric heating layer,
The base material is laminated.

【0011】この様な構成とすることで、電熱層を基材
で支持でき、面発熱体の機械的強度を補強できる。
With such a structure, the electrothermal layer can be supported by the base material, and the mechanical strength of the surface heating element can be reinforced.

【0012】そして、本発明の発熱方法は、上記いずれ
かの面発熱体を用い、先ず、第1電熱層及び第2電熱層
の両方を通電して発熱させ、次いで、第1電熱層及び第
2電熱層の温度平衡時間よりも前の時点で、第1電熱層
又は第2電熱層のいずれか一方への通電を停止し、面発
熱体を温度平衡させる方法とした。
The heat generating method of the present invention uses one of the above surface heating elements to first energize both the first electric heating layer and the second electric heating layer to generate heat, and then the first electric heating layer and the second electric heating layer. At a time point before the temperature equilibration time of the two electric heating layers, energization to either the first electric heating layer or the second electric heating layer was stopped, and the surface heating element was subjected to temperature equilibration.

【0013】この様な方法とすることで、発熱初期の温
度の立ち上がりを早くし、短時間で所望の平衡温度に到
達させることができる。その為、暖房機器等に利用する
場合では迅速な暖房効果が得られる等、昇温時間を短く
でき、速熱性を実現できる。また、電源に温度制御回路
を特別付帯せずとも、電流値のみ一定に保てば、一定温
度を維持できる。
By adopting such a method, it is possible to accelerate the rise of the temperature in the initial stage of heat generation and reach the desired equilibrium temperature in a short time. Therefore, when it is used for a heating device or the like, a quick heating effect can be obtained, and thus the temperature rising time can be shortened and a rapid heating property can be realized. Further, even if the temperature control circuit is not specially attached to the power source, a constant temperature can be maintained if only the current value is kept constant.

【0014】[0014]

【発明の実施の形態】以下、本発明について、実施の形
態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0015】〔概要〕先ず、図1(A)は本発明の面発
熱体の或る一形態を例示する断面図である。図1(A)
に示す面発熱体100は、第1電熱層11上に絶縁層2
0を介して第2電熱層12を積層して成り、更に第1電
熱層の表面(図面下方の面)に、基材30が積層されて
成り、しかも、両電熱層11及び12は、各電熱層に接
して互いに独立に形成された各々専用の各一対の電極4
1及び42により、各々独立に通電できる構成である。
また、図1(A)は、両電熱層のうちの第1電熱層の片
面にのみ基材30を設けた形態としたが、図1(B)の
如く、各電熱層のそれぞれの片面に基材30a、30b
を設けて、両基材層30a、30bで、両電熱層を両側
から挟む様な形態等、基材は複層としても良い。もちろ
ん、これら基材は必須ではないが、電熱層のみでは機械
的強度の点で形状維持が出来ない場合等では、これらの
様に基材を積層して成る構成が好ましい。
[Outline] First, FIG. 1A is a cross-sectional view illustrating one embodiment of a surface heating element of the present invention. Figure 1 (A)
The surface heating element 100 shown in FIG.
The second electrothermal layer 12 is laminated with the base material 30 laminated on the surface (lower surface of the drawing) of the first electrothermal layer, and both electrothermal layers 11 and 12 are A pair of dedicated electrodes 4 each formed independently of each other in contact with the heating layer
1 and 42 can independently energize.
In addition, in FIG. 1 (A), the base material 30 is provided only on one surface of the first heating layer of both heating layers, but as shown in FIG. 1 (B), one surface of each heating layer is provided. Substrates 30a, 30b
May be provided, and the base material may be a multi-layer, such as a configuration in which both base material layers 30a and 30b sandwich both electric heating layers from both sides. Of course, these base materials are not indispensable, but when the shape cannot be maintained from the viewpoint of mechanical strength only by the electrothermal layer, the structure in which the base materials are laminated is preferable.

【0016】そして、図1(A)の如き構成の面発熱体
100の或る一形態の平面視形状を示すのが図3の平面
図である。また、図3では、この様な面発熱体100を
加熱する為の、配線例も示してある。
A plan view of FIG. 3 shows a planar view of one embodiment of the surface heating element 100 having the structure as shown in FIG. 1 (A). Further, FIG. 3 also shows an example of wiring for heating such a surface heating element 100.

【0017】すなわち、図3では、面発熱体100は、
電源ケーブル310及び320で共通の電源400に接
続し、第1電熱層11と第2電熱層12とを、各々独立
に通電できる様にしてある。すなわち、第1電熱層11
には、該第1電熱層専用に設けた一対の電極41に、開
閉器210を介して電源400に接続してある電源ケー
ブル310を接続し、第2電熱層12には、該第2電熱
層専用に設けた一対の電極42に、開閉器220を介し
て電源400に接続してある電源ケーブル320を接続
してある。この様に配線すれば、速熱性に優れた発熱方
法が可能となるのである。
That is, in FIG. 3, the surface heating element 100 is
The power cables 310 and 320 are connected to a common power source 400 so that the first electric heating layer 11 and the second electric heating layer 12 can be independently energized. That is, the first electric heating layer 11
A power cable 310 connected to a power source 400 via a switch 210 is connected to the pair of electrodes 41 dedicated to the first heating layer, and the second heating layer 12 is connected to the second heating layer. A power cable 320 connected to a power source 400 via a switch 220 is connected to the pair of electrodes 42 provided exclusively for the layers. If wiring is performed in this manner, a heat generating method with excellent rapid heating property is possible.

【0018】〔電熱層〕第1電熱層11、及び、第2電
熱層12としては、例えば、導電性粉末を、樹脂バイン
ダー中に分散した導電性インキをシルクスクリーン印刷
して形成することができる。
[Electrical Heat Layer] The first electric heat layer 11 and the second electric heat layer 12 can be formed by, for example, silk screen printing conductive ink in which conductive powder is dispersed in a resin binder. .

【0019】導電性粉末としては、例えば、導電性炭素
(黒鉛等)、銀、銅、ニッケル、ITO等の金属或いは
金属酸化物の導電体の粒子或いは鱗片状箔片が用いられ
る。また、バインダー樹脂としては、例えば、エチレン
−酢酸ビニル共重合体、アクリル樹脂、シリコーン樹
脂、ポリイミド樹脂、ポリエステル樹脂、ポリアミド樹
脂等が用いられる。導電性粉末は、通常、樹脂バインダ
ー100質量部に対して100〜3000質量部程度添
加される。そして、第1電熱層、第2電熱層の各層の厚
みは、通常、5〜1000μm程度に形成する。
As the conductive powder, for example, conductive carbon (graphite or the like), conductive particles of metal or metal oxide such as silver, copper, nickel, ITO or scale-like foil pieces are used. Further, as the binder resin, for example, ethylene-vinyl acetate copolymer, acrylic resin, silicone resin, polyimide resin, polyester resin, polyamide resin, etc. are used. The conductive powder is usually added in an amount of about 100 to 3000 parts by mass with respect to 100 parts by mass of the resin binder. And the thickness of each layer of the 1st electric heating layer and the 2nd electric heating layer is usually formed to about 5 to 1000 μm.

【0020】各電熱層の形成方法としては、特に限定は
無いが、例えば、上述したシルクスクリーン印刷の他に
も、グラビア印刷、フレキソ印刷、オフセット印刷、ロ
ール転写印刷等の印刷法により、基材上に所望のパター
ンで形成することができる。或いは、導電性粉末を樹脂
バインダー中に混練した樹脂組成物を、カレンダー法、
熔融押出法、キャスティング法等により、シート状に成
膜することもできる。この場合、基材無しでもできる
が、このシートは、後で基材と積層しても良い。
The method for forming each electrothermal layer is not particularly limited. For example, in addition to the above-mentioned silk screen printing, printing methods such as gravure printing, flexo printing, offset printing, roll transfer printing, etc. It can be formed in a desired pattern on top. Alternatively, a resin composition obtained by kneading a conductive powder in a resin binder is calendered,
A film can also be formed into a sheet by a melt extrusion method, a casting method, or the like. In this case, the sheet may be formed without a base material, but this sheet may be laminated with the base material later.

【0021】〔電極〕電極41、42は、各電熱層を独
立に通電できる様に、電源に接続する為のものであり、
導電性インキの印刷や導電性箔の積層等で形成する。例
えば、導電性インキとしては、銅、銀、ITO、酸化錫
等の金属或いは金属酸化物の粒子、或いは鱗片状箔片等
からなる導電体粉末を樹脂バインダー中に添加したイン
キが使用される。また、例えば上記の様な金属或いは金
属酸化物からなる導電性箔を貼り付けて積層する。
[Electrodes] The electrodes 41 and 42 are for connecting to a power source so that each electric heating layer can be independently energized,
It is formed by printing conductive ink or laminating conductive foil. For example, as the conductive ink, an ink is used in which conductive powder made of metal or metal oxide particles such as copper, silver, ITO, tin oxide, or flaky foil pieces is added to a resin binder. Further, for example, a conductive foil made of the above metal or metal oxide is attached and laminated.

【0022】〔絶縁層〕絶縁層20は、第1電熱層11
と第2電熱層12との層間にわたって電流が流れる事を
防止し、これによって、各電熱層の通電による発熱を個
別、独立に制御する事を可能にする機能を有する。該絶
縁層としては、十分な電気絶縁性、及び所望の平衡温度
において、所望の使用時間の間に強度劣化、変形、溶
融、変質、燃焼等の生じないだけの耐熱性を有する材料
で構成する。例えば、ポリエチレンテレフタレート、ポ
リブチレンテレフタレート、ポリエチレンナフタレー
ト、エチレン−テレフタレート−イソフタレート共重合
体、ポリアリレート等のポリエステル樹脂からなるシー
トで、好ましくは、2軸延伸シートが挙げられる。或い
は、ポリフッ化ビニル、ポリフッ化ビニリデン、ポリ4
フッ化エチレン、エチレン−4フッ化エチレン共重合体
等のフッ素樹脂、ポリイミド樹脂等からなる樹脂シート
等も使用できる。難燃性を付与する為、これらの樹脂に
難燃剤を添加しても良い。難燃剤としては、水酸化アル
ミニウム、水酸化マグネシウム、酸化モリブデン、三酸
化二アンチモン等が用いられる。また、絶縁層は、例え
ば、予め成膜した上記樹脂シートを電熱層に熱融着、ド
ライラミネーション等の方法により接着しても良い。或
いは、シルクスクリーン、グラビア印刷、フレキソ印
刷、オフセット印刷、ロール転写印刷等の印刷法によ
り、所望のパターンで形成することもできる。使用する
インキの樹脂バインダーとしては、例えば、アクリル樹
脂、ポリエステル樹脂、ポリイミド樹脂、シリコーン樹
脂等が使用される。なお、絶縁層の厚みは、通常20〜
300μm程度である。
[Insulating Layer] The insulating layer 20 is the first heating layer 11
It has a function of preventing a current from flowing between the second heating layer 12 and the second heating layer 12 and thereby individually and independently controlling the heat generated by the energization of each heating layer. The insulating layer is made of a material having sufficient electric insulation and heat resistance that does not cause strength deterioration, deformation, melting, alteration, combustion, etc. at a desired equilibrium temperature during a desired use time. . For example, a sheet made of a polyester resin such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, ethylene-terephthalate-isophthalate copolymer, polyarylate, etc., and preferably a biaxially stretched sheet is used. Alternatively, polyvinyl fluoride, polyvinylidene fluoride, poly 4
It is also possible to use a resin sheet made of a fluororesin such as ethylene fluoride or an ethylene-4fluoride ethylene copolymer, or a polyimide resin. A flame retardant may be added to these resins in order to impart flame retardancy. As the flame retardant, aluminum hydroxide, magnesium hydroxide, molybdenum oxide, diantimony trioxide, etc. are used. The insulating layer may be formed by adhering the previously formed resin sheet to the electrothermal layer by a method such as heat fusion or dry lamination. Alternatively, a desired pattern can be formed by a printing method such as silk screen printing, gravure printing, flexographic printing, offset printing, roll transfer printing and the like. As the resin binder of the ink used, for example, acrylic resin, polyester resin, polyimide resin, silicone resin or the like is used. The thickness of the insulating layer is usually 20 to
It is about 300 μm.

【0023】〔基材〕基材30(或いは30a、30
b)は、基本的には不必須であるが、好ましくは、電気
絶縁、面発熱体の補強、支持の為、面発熱体の片面、或
いは両面に積層する。従って、基材は、第1電熱層の表
面、第2電熱層の表面、又は、第1電熱層の表面及び第
2電熱層の表面、のいずれかの形態で積層されることに
なる。
[Substrate] The substrate 30 (or 30a, 30
Although b) is basically not essential, it is preferably laminated on one side or both sides of the surface heating element for electrical insulation, reinforcement of the surface heating element, and support. Therefore, the base material is laminated on the surface of the first electric heating layer, the surface of the second electric heating layer, or the surface of the first electric heating layer and the surface of the second electric heating layer.

【0024】この様な基材としては、シート状の物、板
状の物等が使用できる。シート状の基材としては、電気
絶縁性及び耐熱性を有し、更に好ましく不燃性或いは難
燃性を有するものが使用できる。例えば、ポリエチレン
テレフタレート、ポリエチレンナフタレート、ポリブチ
レンテレフタレート、ポリアリレート等のポリエステル
樹脂のシートであり、より好ましくは、2軸延伸シート
が用いられる。厚みは、特に限定は無いが、通常20〜
300μm程度である。
As such a base material, a sheet-shaped material, a plate-shaped material or the like can be used. As the sheet-shaped substrate, one having electrical insulation and heat resistance, and more preferably nonflammable or flame retardant can be used. For example, it is a sheet of a polyester resin such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and polyarylate, and more preferably a biaxially stretched sheet is used. The thickness is not particularly limited, but is usually 20 to
It is about 300 μm.

【0025】また、シート状の基材としては、ポリフッ
化ビニル、ポリフッ化ビニリデン、ポリ4フッ化エチレ
ン、エチレン−4フッ化エチレン共重合体等のフッ素樹
脂からなる樹脂シート等、或いは、シリコーンゴム、フ
ッ素ゴム、ウレタンゴム、SBR(スチレンブタジエン
ゴム)、EPDM(エチレンプロピレンジエンゴム)、
NBR(ニトリルブタジエンゴム)、CPE(塩素化ポ
リエチレンゴム)、TPE(熱可塑性エラストマー)等
のゴムからなるゴムシートも使用できる。
As the sheet-shaped base material, a resin sheet or the like made of fluororesin such as polyvinyl fluoride, polyvinylidene fluoride, polytetrafluoroethylene, ethylene-4 fluoroethylene copolymer or the like, or silicone rubber , Fluororubber, urethane rubber, SBR (styrene butadiene rubber), EPDM (ethylene propylene diene rubber),
A rubber sheet made of rubber such as NBR (nitrile butadiene rubber), CPE (chlorinated polyethylene rubber), TPE (thermoplastic elastomer) can also be used.

【0026】また、シート状の基材としては、難燃性の
不織布或いは織布(例えば、硝子、石綿、石英等の繊維
からなるもの)、或いは塩化ビニル樹脂シート等も使用
できる。
Further, as the sheet-shaped base material, a flame-retardant non-woven fabric or woven fabric (for example, one made of fibers such as glass, asbestos, quartz) or a vinyl chloride resin sheet can be used.

【0027】また、板状の基材としては、例えば、硝
子、陶器、磁器、アルミナ、フェノール樹脂、上記シー
ト状基材で列記した各種樹脂、等からなるものが使用で
きる。
As the plate-shaped base material, for example, one made of glass, pottery, porcelain, alumina, phenol resin, various resins listed above as the sheet-shaped base material, or the like can be used.

【0028】〔面発熱体の発熱〕ところで、面発熱体を
発熱させる為には、各電熱層に電流を流して、ジュール
熱により発熱させるが、その為の電源は、直流、交流、
いずれでも良い。なお、発熱量を一定に保つ為には、電
流、或いは電圧の安定化された電源が好ましい。また、
当然であるが、各電熱層への通電を独立に開閉できる開
閉器(図3では、210及び220)を取り付ける。更
に、短絡、其の他過電流防止の為、フューズ或いは遮断
機を取り付けることが好ましい。また、電源は、図3の
如く、各電熱層共通の一つの電源を用い、該1電源から
の電流を各電熱層に供給する途中で、二つの電流に分流
し、各々の電流を別々の開閉器で独立に開閉しても良
い。或いは、図示は省くが、各電熱層毎に別々の電源を
(計2つ)用意し、個別の電源から個別の開閉器を通し
て各電熱層に電流を供給しても良い。
[Heating of Surface Heating Element] By the way, in order to heat the surface heating element, an electric current is passed through each heating layer to generate heat by Joule heat.
Either is fine. In order to keep the calorific value constant, a power source with stabilized current or voltage is preferable. Also,
As a matter of course, switches (210 and 220 in FIG. 3) that can independently open and close the energization of each heating layer are attached. Further, in order to prevent short circuit and other overcurrent, it is preferable to install a fuse or a breaker. In addition, as shown in FIG. 3, one power source common to each heating layer is used as a power source, and while the current from the one power source is being supplied to each heating layer, it is divided into two currents, and each current is separated. You may open and close independently with a switch. Alternatively, although not shown, separate power supplies (two in total) may be prepared for each heating layer, and current may be supplied from each power supply to each heating layer through an individual switch.

【0029】次に、本発明の発熱方法として、上述本発
明の面発熱体を発熱させる場合に好適な方法について説
明する。
Next, as a heat generating method of the present invention, a method suitable for causing the above-mentioned surface heating element of the present invention to generate heat will be described.

【0030】本発明の発熱方法は、上述本発明の面発熱
体を発熱体として用い、先ず、第1電熱層と第2電熱層
との両方を通電して発熱させ、この後、第1電熱層及び
第2電熱層の温度平衡時間に達するよりも前の時点で、
第1電熱層又は第2電熱層のいずれか一方への通電を停
止して、残りの片方の電熱層のみの発熱により面発熱体
を温度平衡させる方法である。この方法により、複雑な
制御回路を用いた電源を用いること無く、昇温時間が短
くなり、速熱性が得られる。
The heating method of the present invention uses the above-mentioned surface heating element of the present invention as a heating element. First, both the first electric heating layer and the second electric heating layer are energized to generate heat, and then the first electric heating layer is heated. Before reaching the temperature equilibration time of the bed and the second heating layer,
This is a method in which energization to either the first electric heating layer or the second electric heating layer is stopped and the surface heating element is temperature-balanced by the heat generation of only the remaining one electric heating layer. According to this method, the temperature rising time is shortened and rapid heating is obtained without using a power source using a complicated control circuit.

【0031】次に、図2を参照しながら、更に、本発熱
方法について、その加熱タイミングを中心に、詳述す
る。
Next, the present heating method will be described in detail with reference to FIG. 2, focusing on the heating timing.

【0032】先ず、図2(A)に図示の如く、第1電熱
層を単独で所定の電流で通電した場合の昇温特性、すな
わち、通電開始後の(経過)時間tに対する温度Tの関
数関係をT1(t)、その場合の平衡時間、すなわち、
第1電熱層が温度平衡(飽和)状態に到達する時刻をt
c 1、第1電熱層の平衡(飽和)温度をTsat 1とする。ま
た、第2電熱層を単独で所定の電流で通電した場合の昇
温特性をT2(t)、その場合の平衡時間をtc 2、第2
電熱層の平衡(飽和)温度をTsat 2とする。なお、この
場合、平衡温度及び平衡時間は、電流値、電熱層の体積
固有抵抗と比熱(容量)、熱伝導率、厚み、幅、雰囲気
温度、電流が交流か直流か、特に交流の場合はその周波
数、及び該周波数に於ける電熱層の誘電正接といった要
因に依存する。
First, as shown in FIG. 2A, the temperature rise characteristics when the first heating layer is independently energized with a predetermined current, that is, a function of the temperature T with respect to the (elapsed) time t after the start of energization. The relationship is T 1 (t), the equilibrium time in that case, that is,
The time when the first electric heating layer reaches the temperature equilibrium (saturation) state is t
c 1 and the equilibrium (saturation) temperature of the first heating layer are T sat 1 . In addition, the temperature rise characteristic when the second electric heating layer is independently energized with a predetermined current is T 2 (t), the equilibrium time in that case is t c 2 ,
Let the equilibrium (saturation) temperature of the heating layer be T sat 2 . In this case, the equilibrium temperature and the equilibrium time are the current value, the volume resistivity and the specific heat (capacity) of the heating layer, the thermal conductivity, the thickness, the width, the ambient temperature, whether the current is AC or DC, and especially when AC is used. It depends on factors such as its frequency and the dielectric loss tangent of the heating layer at that frequency.

【0033】本発明では、第1電熱層と第2電熱層の各
通電電流は同一でも良いし、互いに異なっていても良
い。また、第1電熱層と第2電熱層の各体積固有抵抗
(誘電損失)と厚み幅も同一でも良いし、互いに異なっ
ていても良い。これら条件は、用途、要求特性等により
適宜選択すれば良い。
In the present invention, the energization currents of the first electrothermal layer and the second electrothermal layer may be the same or different from each other. Further, the volume specific resistance (dielectric loss) and the thickness width of the first electric heating layer and the second electric heating layer may be the same or different from each other. These conditions may be appropriately selected depending on the application, required characteristics and the like.

【0034】一方、第1電熱層及び第2電熱層の両層を
同時に通電した場合の昇温特性T1+ 2(t)は、図2
(B)に示す通りである。この場合の平衡時間は
c 1+2、平衡温度はTsat 1+2である。但し、当然、T
sat 1+2>Tsat 1、且つ、Tsat 1+2>Tsa t 2となる。
On the other hand, the temperature rise characteristic T 1+ 2 (t) when both the first heating layer and the second heating layer are simultaneously energized is shown in FIG.
As shown in (B). In this case, the equilibrium time is t c 1 + 2 and the equilibrium temperature is T sat 1 + 2 . However, of course, T
sat 1 + 2> T sat 1 , and, and T sat 1 + 2> T sa t 2.

【0035】そして、図1で説明した様な、絶縁層20
を介して第1電熱層11と第2電熱層12とを、互いに
独立に通電できる様に積層した構成である本発明の面発
熱体を用いて、昇温の平衡時間を短縮する発熱方法を、
図2(C)を基に説明する。
Then, the insulating layer 20 as described with reference to FIG.
Using the surface heating element of the present invention having a structure in which the first electric heating layer 11 and the second electric heating layer 12 are laminated so that they can be independently energized, ,
A description will be given based on FIG.

【0036】先ず、最初は、第1及び第2の両電熱層1
1及び12を同時に通電する。その結果、立ち上がり時
の昇温特性は、図の曲線OA、或いはOBの部分の様
に、両電熱層を通電した場合の昇温特性T1+2(t)と
同様のものとなる。当然、各電熱層を単独で通電した場
合の昇温特性T1(t)、T2(t)に比べて立ち上がり
は早い(すなわち、同じ時刻に於ける温度はより高
い)。
First, first of all, the first and second electric heating layers 1
Energize 1 and 12 simultaneously. As a result, the temperature rising characteristics at the time of rising are similar to the temperature rising characteristics T 1 + 2 (t) when both electric heating layers are energized, as indicated by the curve OA or OB in the figure. As a matter of course, as compared with the temperature rising characteristics T 1 (t) and T 2 (t) when each electric heating layer is energized independently, the rising is faster (that is, the temperature at the same time is higher).

【0037】次いで、第1電熱層の平衡時間、及び第2
電熱層の平衡時間のいずれよも早い時刻txに於いて、
いずれか一方の電熱層への通電を停止する。なお、図に
於いては、第1電熱層の平衡時間、及び第2電熱層の平
衡時間のいずれよりも早い時刻tx 1(曲線上のA点)
で、第2電熱層の通電を停止し、第1電熱層のみ通電を
維持した場合と、時刻tx 2(曲線上のB点)で、第1電
熱層の通電を停止し、第2電熱層のみ通電を維持した場
合の両方を示した。当然のことだが、tx 1<tc 1、tx 1
<tc 2、tx 2<tc 1、tx 2<tc 2である
Then, the equilibrium time of the first heating layer, and the second
At time t x, which is earlier than the equilibrium time of the heating layer,
Stop energizing one of the heating layers. In the figure, time t x 1 (point A on the curve) earlier than both the equilibrium time of the first heating layer and the second heating layer
Then, when the energization of the second electric heating layer is stopped and only the first electric heating layer is kept energized, the energization of the first electric heating layer is stopped and the second electric heating layer is stopped at time t x 2 (point B on the curve). Both cases are shown where only the layers are energized. As a matter of course, t x 1 <t c 1 , t x 1
<T c 2 , t x 2 <t c 1 , t x 2 <t c 2 .

【0038】一方の電熱層への通電停止後は、過渡的状
態を経て速やかに第1電熱層又は第2電熱層の単独通電
時の平衡温度に収束する。すなわち、時刻tx 1(A点)
に於いて第2電熱層への通電を停止した場合は、A点に
於いては、未だ平衡温度Tsat 1未満の温度ではあるが、
熱的慣性及び第1電熱層の発熱量によって、更に温度上
昇を続ける。この部分の昇温特性が過渡的状態T1 tran
(t)である(図のADの部分)。そして、時刻tc 1
(D点)に於いて第1電熱層本来の平衡温度Tsat 1に収
束する。当然、図からも明白の様に、tc 1’<tc 1とな
り、昇温の為の時間、すなわち、平衡時間は短縮され
る。
After the energization of one of the heating layers is stopped, it transits to a transient state and quickly converges to the equilibrium temperature of the first heating layer or the second heating layer when the individual heating is performed. That is, time t x 1 (point A)
When the power supply to the second heating layer is stopped at the point A, the temperature at the point A is still less than the equilibrium temperature T sat 1 ,
The temperature is further increased due to the thermal inertia and the heat generation amount of the first electric heating layer. The temperature rising characteristic of this portion is a transient state T 1 tran
(T) (AD part of the figure). And time t c 1 '
At point (D), it converges to the original equilibrium temperature T sat 1 of the first heating layer. Naturally, as is clear from the figure, t c 1 '<t c 1 , and the time for raising the temperature, that is, the equilibrium time is shortened.

【0039】また、時刻tx 2(B点)に於いて第1電熱
層への通電を停止した場合は、B点に於いては、既に平
衡温度Tsat 2超過の温度ではあるが、放熱によって、温
度低下が起きる。この部分の昇温特性が過渡的状態T2
tran(t)である(図のBCの部分)。そして、時刻t
c 2’(C点)に於いて第2電熱層本来の平衡温度Tsa t 2
に収束する。この場合も、図からも明白の様に、tc 2
<tc 2となり、昇温の為の時間、すなわち、平衡時間は
短縮される。
Further, when the power supply to the first heating layer is stopped at time t x 2 (point B), at point B, although the temperature is already above the equilibrium temperature T sat 2 , heat dissipation Causes a temperature drop. The temperature rising characteristic of this portion is a transient state T 2
tran (t) (BC part of the figure). And time t
c 2 'In (C point) the second electrical heating layer intrinsic equilibrium temperature T sa t 2
Converge to. In this case as well, as is clear from the figure, t c 2 '
<T c 2 , and the time for raising the temperature, that is, the equilibrium time is shortened.

【0040】なお、図2(C)のOADの様に、目標値
である平衡温度を超過せずに、温度を収束させるか、或
いはOBCの様に、目標値である平衡温度を超過させて
温度を収束させるかは、条件設定次第であり、所望の温
度制御特性、其の他事情も参酌しつつ選択すれば良い。
一般的には、平衡時間(昇温時間)の短縮を優先するの
であれば、OBCの様な形態とする。また、温度が平衡
温度(目標値)を超過させない事を優先するのであれ
ば、OADの様な形態とする。なお、図2(C)に図示
の如く、昇温(平衡)時間の短縮を行う為には、例え
ば、タイマーに所定の通電停止時刻tx 1、或いは、tx 2
を予め設定しておき、該タイマーにより所定の電熱層へ
の通電を、所定時刻tx 1或いはtx 2にて停止する方法が
挙げられる。
As in the case of OAD in FIG. 2C, the temperature is converged without exceeding the target value of the equilibrium temperature, or as in the case of OBC, the target value is exceeded. Whether the temperature is converged depends on the condition setting, and may be selected while taking into consideration the desired temperature control characteristic and other circumstances.
Generally, if the shortening of the equilibrium time (temperature rising time) is prioritized, a form like OBC is adopted. If priority is given not to let the temperature exceed the equilibrium temperature (target value), a form like OAD is adopted. Note that, as shown in FIG. 2C, in order to shorten the temperature raising (equilibrium) time, for example, a timer sets a predetermined energization stop time t x 1 or t x 2.
Is set in advance, and the energization of a predetermined electric heating layer is stopped by the timer at a predetermined time t x 1 or t x 2 .

【0041】〔面発熱体の用途〕本発明による面発熱体
の用途は、特に制限は無いが、例えば、床暖房、電気カ
ーペット、椅子や座席の暖房、融雪ヒータ等の民生用途
や、配管、タンクの保温等の産業用途に利用され得る。
[Application of Surface Heating Element] The application of the surface heating element according to the present invention is not particularly limited. For example, floor heating, electric carpet, heating of chairs and seats, consumer applications such as snow melting heaters, piping, It can be used for industrial applications such as keeping the tank warm.

【0042】[0042]

【実施例】次に実施例及び比較例により本発明を更に説
明する。
The present invention will be further described with reference to Examples and Comparative Examples.

【0043】〔実施例1〕図1(A)の如き断面図、及
び図3の如き平面図の、面発熱体100を次の様にして
作製した。基材30として、厚さ188μmの2軸延伸
ポリエチレンテレフタレートシートの片面に、一対の第
1電極41として、銀ペースト(十条ケミカル株式会社
製、商品名「JELCON SH−1」)を250メッ
シュの版を用いてシルクスクリーン印刷し、オーブンで
150℃、30分、加熱し固化して、線幅5mm、長さ
145mm、電極間距離50mmの平行直線からなる、
膜厚8μmの対向電極パターンを形成した。
Example 1 A surface heating element 100 having a sectional view as shown in FIG. 1A and a plan view as shown in FIG. 3 was produced as follows. A 250 mesh plate of silver paste (manufactured by Jujo Chemical Co., Ltd., trade name "JELCON SH-1") as a pair of first electrodes 41 on one side of a biaxially stretched polyethylene terephthalate sheet having a thickness of 188 μm as the base material 30. Silk screen printing using, and heating in an oven at 150 ° C. for 30 minutes to solidify, consisting of parallel straight lines with a line width of 5 mm, a length of 145 mm, and an electrode distance of 50 mm.
A counter electrode pattern having a film thickness of 8 μm was formed.

【0044】次に、上記第1電極上にかかる様に導電性
カーボンペースト(十条ケミカル株式会社製、商品名
「CH−2」)を同様にシルクスクリーン印刷し、オー
ブンで120℃、20分、加熱し固化して、幅70m
m、長さ100mm、膜厚9μmの第1電熱層11を形
成した。なお、第1電極41は、電極端子をとるため、
第1電極41の一部分には、カーボンペーストがかから
ない様に重ね印刷を行った。
Next, a conductive carbon paste (manufactured by Jujo Chemical Co., Ltd., trade name "CH-2") was silk-screen printed in the same manner on the first electrode, and then in an oven at 120 ° C. for 20 minutes. 70m wide by heating and solidifying
The first electric heating layer 11 having a length of m, a length of 100 mm and a film thickness of 9 μm was formed. Since the first electrode 41 serves as an electrode terminal,
Overprinting was performed so that the carbon paste was not applied to a part of the first electrode 41.

【0045】次に、第1電熱層11上を覆う様に、絶縁
ペースト(十条ケミカル株式会社製、商品名「JELC
ON IN−15M」)を200メッシュの版を用いて
シルクスクリーン印刷した後、紫外線(ランプ強度12
0W/cm2、メタルハライドランプ1灯)を照射し
て、厚さ18μmの絶縁層20を形成した。なお、照射
は、コンベアスピード6m/min、照射距離10cm
の条件で行った。なお、第1電極41の端子部を確保す
る為、絶縁層20の印刷は、第1電極41の一部(長さ
25mm分)は、絶縁ペーストがかかならない様にし
て、重ね印刷を行った。
Next, an insulating paste (manufactured by Jujo Chemical Co., Ltd., trade name "JELC") is formed so as to cover the first heating layer 11.
ON IN-15M ") is silk screen printed using a 200 mesh plate, and then UV (lamp intensity 12
The insulating layer 20 having a thickness of 18 μm was formed by irradiating with 0 W / cm 2 and one metal halide lamp. The irradiation is carried out at a conveyor speed of 6 m / min and an irradiation distance of 10 cm.
It went on condition of. In order to secure the terminal portion of the first electrode 41, the insulating layer 20 is printed by overlapping printing so that the insulating paste does not cover a part (25 mm length) of the first electrode 41. It was

【0046】次に、第1電熱層11と重なる様に、絶縁
層20の上に銀ペースト(東洋紡績株式会社製、商品名
「ドータイトXA−3006」)を、250メッシュの
版でシルクスクリーン印刷して、オーブンで150℃、
30分、加熱し固化して、膜厚8μmの第2電極42を
形成した。第2電極42のパターンは、第1電極41の
端子取出し部分と重ならない様に且つ第1電極41と平
行にして第1電極41の内側となる位置に、線幅5m
m、長さ130mm、電極間距離30mmの平行直線か
らなる対向電極パターンとした。
Next, a silver paste (trade name "Dotite XA-3006" manufactured by Toyobo Co., Ltd.) is silk-screen printed on the insulating layer 20 so as to overlap the first heating layer 11 using a 250 mesh plate. And then in the oven at 150 ° C,
It was heated and solidified for 30 minutes to form the second electrode 42 having a film thickness of 8 μm. The pattern of the second electrode 42 has a line width of 5 m at a position inside the first electrode 41 so as not to overlap the terminal lead-out portion of the first electrode 41 and parallel to the first electrode 41.
The counter electrode pattern was composed of parallel straight lines with m, length 130 mm, and electrode distance 30 mm.

【0047】次いで、上記第2電極42上にかかる様
に、導電性カーボンペースト(十条ケミカル株式会社
製、商品名「CH−2」)を250メッシュの版でシル
クスクリーン印刷し、オーブンで120℃、15分、加
熱し固化して、幅50mm、長さ100mm、膜厚6μ
mの第2電熱層12を形成した。なお、電極端子を取る
ため、第2電極42の一部(長さ30mm分)は、カー
ボンペーストがかからない様に重ね印刷を行った。
Then, a conductive carbon paste (trade name "CH-2" manufactured by Jujo Chemical Co., Ltd.) was silk screen printed with a 250 mesh plate so as to cover the second electrode 42, and then 120 ° C. in an oven. 15 minutes, heated and solidified, width 50mm, length 100mm, film thickness 6μ
m second electric heating layer 12 was formed. In addition, in order to take an electrode terminal, a part of the second electrode 42 (for a length of 30 mm) was overprinted so that the carbon paste was not applied.

【0048】以上の様にして得られた、面発熱体100
は、表面抵抗は20Ω/□、端子間抵抗は、第1電極で
60Ω、第2電極で55Ωであった。
The surface heating element 100 obtained as described above.
Had a surface resistance of 20Ω / □, and a terminal resistance of 60Ω at the first electrode and 55Ω at the second electrode.

【0049】この面発熱体において、図3で示す様に、
第1電極41及び第2電極42のそれぞれに、独立に電
源ケーブル310、320を各開閉器210、220を
介して、電源400から直流12Vを通電すると、第1
電熱層11及び第2電熱層12が、発熱して昇温した。
その時の、表面温度の経時変化を測定した結果を、比較
例の場合と共に表1に示す。なお、発熱方法としては、
最初は第1電熱層11と第2電熱層12に同時に通電
し、30秒後に、開閉器220を開いて第2電熱層12
の通電を停止し、以降は第1電熱層11のみの通電とし
た。
In this surface heating element, as shown in FIG.
When 12 V DC is supplied from the power source 400 to the first electrode 41 and the second electrode 42 independently of the power cables 310 and 320 via the switches 210 and 220, respectively,
The electric heating layer 11 and the second electric heating layer 12 generated heat and increased in temperature.
Table 1 shows the results of measuring the change with time of the surface temperature at that time together with the case of the comparative example. In addition, as a heat generation method,
At first, the first electric heating layer 11 and the second electric heating layer 12 are simultaneously energized, and after 30 seconds, the switch 220 is opened to open the second electric heating layer 12.
The energization of No. 1 was stopped, and thereafter, only the first electric heating layer 11 was energized.

【0050】〔比較例1〕実施例1で作製した面発熱体
100に対して、その発熱方法を実施例1とは変えて、
表面温度の経時変化を測定した。発熱方法は、通電を最
初から第1電熱層11のみとした。結果は、表1に示
す。
Comparative Example 1 With respect to the surface heating element 100 manufactured in Example 1, the heating method is changed from that in Example 1, and
The change in surface temperature with time was measured. As the heat generation method, electricity was applied only to the first electrothermal layer 11 from the beginning. The results are shown in Table 1.

【0051】〔比較例2〕実施例1で作製した面発熱体
100に対して、その発熱方法を実施例1とは変えて、
表面温度の経時変化を測定した。発熱方法は、通電を最
初から第2電熱層12のみとした。結果は、表1に示
す。
[Comparative Example 2] With respect to the surface heating element 100 manufactured in Example 1, the heating method is changed from that in Example 1, and
The change in surface temperature with time was measured. As a heat generating method, electricity was applied only to the second electric heating layer 12 from the beginning. The results are shown in Table 1.

【0052】[0052]

【表1】 [Table 1]

【0053】〔結果比較〕表1の如く、比較例1及び2
に於ける発熱方法では、昇温速度が遅く、経時と共に昇
温速度は低下してしまい、2分以上経過しても穏やかな
昇温を続けている。それに対して、実施例1における発
熱方法では、60秒後に一定温度に到達しており、速熱
性を向上させることができた。
[Result Comparison] As shown in Table 1, Comparative Examples 1 and 2
In the heat generation method in (1), the temperature rising rate is slow, and the temperature rising rate decreases with time, and the temperature is kept rising gently even after 2 minutes or more. On the other hand, in the heat generation method of Example 1, the constant temperature was reached after 60 seconds, and the rapid heating property could be improved.

【0054】[0054]

【発明の効果】(1)本発明の面発熱体によれば、発熱
初期の温度の立ち上がりが早く、短時間で所望の平衡温
度に到達させることができる。その為、暖房機器等に利
用する場合では迅速な暖房効果が得られる等、昇温時間
が短く、速熱性に優れる。また、PTC特性を有する材
料等特殊な電熱材料を使用する必要が無く、通常の抵抗
体を用いることにより、樹脂の熱膨張の繰り返しの影響
による経時劣化が無く、安定した発熱特性を得ることが
できる。また、温度制御回路を特別付帯せずとも、所定
時間に開閉器の開閉を行うのみで、昇温時間の短縮を行
うことが出来、また、電流値のみ一定に保てば、一定温
度を維持できる。 (2)更に、第1電熱層又は/及び第2電熱層の表面
に、基材を積層した構成とすることで、電熱層を基材で
支持でき、面発熱体の機械的強度を補強できる。 (3)また、本発明の発熱方法によれば、発熱初期の温
度の立ち上がりを早くし、短時間で所望の平衡温度に到
達させることができる。その為、暖房機器等に利用する
場合では迅速な暖房効果が得られる等、昇温時間を短く
でき、速熱性を実現できる。
(1) According to the surface heating element of the present invention, the temperature rises quickly in the initial stage of heat generation, and the desired equilibrium temperature can be reached in a short time. Therefore, when it is used for a heating device or the like, a quick heating effect is obtained, and the temperature rising time is short and the rapid heating property is excellent. In addition, it is not necessary to use a special electrothermal material such as a material having PTC characteristics, and by using an ordinary resistor, stable heat generation characteristics can be obtained without deterioration over time due to the effect of repeated thermal expansion of the resin. it can. In addition, the temperature rise time can be shortened simply by opening and closing the switch at a predetermined time without adding a temperature control circuit, and if the current value is kept constant, a constant temperature is maintained. it can. (2) Further, by forming a base material on the surface of the first electric heating layer and / or the second electric heating layer, the electric heating layer can be supported by the base material and the mechanical strength of the surface heating element can be reinforced. . (3) Further, according to the heat generation method of the present invention, it is possible to accelerate the rise of the temperature at the initial stage of heat generation and reach the desired equilibrium temperature in a short time. Therefore, when it is used for a heating device or the like, a quick heating effect can be obtained, and thus the temperature rising time can be shortened and a rapid heating property can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の面発熱体の幾つかの形態例を示す断面
図。
FIG. 1 is a cross-sectional view showing some form examples of a surface heating element of the present invention.

【図2】本発明に於ける発熱方法を詳述する説明図。FIG. 2 is an explanatory view detailing a heating method according to the present invention.

【図3】本発明の面発熱体の或る一形態の平面視形状
と、その発熱方法に対する配線例を示す平面図。
FIG. 3 is a plan view showing an example of a planar view shape of a surface heating element of the present invention and an example of wiring for the heating method.

【符号の説明】[Explanation of symbols]

11 第1電熱層 12 第2電熱層 20 絶縁層 30、30a、30b 基材 41 第1電極 42 第2電極 100 面発熱体 210、220 開閉器 310、320 電源ケーブル 400 電源(直流安定化電源等) 500 温度計(デジタル温度計等) 510 温度センサ T1+2 sat 平衡温度 T1 sat 平衡温度 T2 sat 平衡温度11 1st electric heating layer 12 2nd electric heating layer 20 Insulating layers 30, 30a, 30b Base material 41 1st electrode 42 2nd electrode 100 Surface heating element 210, 220 Switch 310, 320 Power supply cable 400 Power supply (DC stabilized power supply etc.) ) 500 thermometer (digital thermometer, etc.) 510 temperature sensor T 1 + 2 sat equilibrium temperature T 1 sat equilibrium temperature T 2 sat equilibrium temperature

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ジュール熱により発熱する電熱層を用い
た面発熱体において、 第1電熱層上に絶縁層を介して第2電熱層を積層して成
り、且つ両電熱層は、各々独立に開閉できる様にして電
源に接続される、面発熱体。
1. A surface heating element using an electric heating layer which generates heat by Joule heat, wherein a second electric heating layer is laminated on a first electric heating layer with an insulating layer interposed therebetween, and both electric heating layers are independently formed. A surface heating element that can be opened and closed and connected to a power supply.
【請求項2】 第1電熱層又は/及び第2電熱層の表面
に、基材が積層されて成る、請求項1記載の面発熱体。
2. The surface heating element according to claim 1, wherein a base material is laminated on the surface of the first electric heating layer and / or the second electric heating layer.
【請求項3】 請求項1又は2記載の面発熱体を用い、
先ず、第1電熱層及び第2電熱層の両方を通電して発熱
させ、次いで、第1電熱層及び第2電熱層のいずれの温
度平衡時間よりも前の時点で、第1電熱層又は第2電熱
層のいずれか一方への通電を停止し、面発熱体を温度平
衡させる、発熱方法。
3. The surface heating element according to claim 1 or 2,
First, both the first electric heating layer and the second electric heating layer are energized to generate heat, and then, before the temperature equilibration time of any of the first electric heating layer and the second electric heating layer, the first electric heating layer or the second electric heating layer is heated. (2) A heating method in which the power supply to any one of the heating layers is stopped and the surface heating element is temperature-balanced.
JP2001197860A 2001-06-29 2001-06-29 Plane heating element and heating method Pending JP2003017227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001197860A JP2003017227A (en) 2001-06-29 2001-06-29 Plane heating element and heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001197860A JP2003017227A (en) 2001-06-29 2001-06-29 Plane heating element and heating method

Publications (1)

Publication Number Publication Date
JP2003017227A true JP2003017227A (en) 2003-01-17

Family

ID=19035398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001197860A Pending JP2003017227A (en) 2001-06-29 2001-06-29 Plane heating element and heating method

Country Status (1)

Country Link
JP (1) JP2003017227A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007515584A (en) * 2003-12-02 2007-06-14 ワナー・エンジニアリング・インコーポレーテッド Damage detection of pump diaphragm
CN104589714A (en) * 2015-01-15 2015-05-06 东华大学 Electric heating textile based on carbon nano tubular membrane
KR20210092881A (en) * 2020-01-17 2021-07-27 오유상 Heating floor members and manufacturing method thereof
KR20230041283A (en) * 2021-09-17 2023-03-24 (주)삼창 Sheet type heating element and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54123439U (en) * 1978-02-18 1979-08-29
JPS5743595U (en) * 1980-08-26 1982-03-10
JPS58195996U (en) * 1982-06-22 1983-12-26 三菱瓦斯化学株式会社 sheet heating element
JPS61200684A (en) * 1985-02-28 1986-09-05 京セラ株式会社 Ceramic heater
JPH04359887A (en) * 1991-06-05 1992-12-14 Nippondenso Co Ltd Electrically heated windshield
JPH11121148A (en) * 1997-10-14 1999-04-30 Toyobo Co Ltd Plane flexible heater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54123439U (en) * 1978-02-18 1979-08-29
JPS5743595U (en) * 1980-08-26 1982-03-10
JPS58195996U (en) * 1982-06-22 1983-12-26 三菱瓦斯化学株式会社 sheet heating element
JPS61200684A (en) * 1985-02-28 1986-09-05 京セラ株式会社 Ceramic heater
JPH04359887A (en) * 1991-06-05 1992-12-14 Nippondenso Co Ltd Electrically heated windshield
JPH11121148A (en) * 1997-10-14 1999-04-30 Toyobo Co Ltd Plane flexible heater

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007515584A (en) * 2003-12-02 2007-06-14 ワナー・エンジニアリング・インコーポレーテッド Damage detection of pump diaphragm
JP4667391B2 (en) * 2003-12-02 2011-04-13 ワナー・エンジニアリング・インコーポレーテッド Damage detection of pump diaphragm
CN104589714A (en) * 2015-01-15 2015-05-06 东华大学 Electric heating textile based on carbon nano tubular membrane
KR20210092881A (en) * 2020-01-17 2021-07-27 오유상 Heating floor members and manufacturing method thereof
KR102366642B1 (en) * 2020-01-17 2022-02-22 오유상 Manufacturing method for heating floor members
KR20230041283A (en) * 2021-09-17 2023-03-24 (주)삼창 Sheet type heating element and method for manufacturing the same
KR102650405B1 (en) * 2021-09-17 2024-03-22 (주)삼창 Sheet type heating element and method for manufacturing the same

Similar Documents

Publication Publication Date Title
KR970003210B1 (en) Electrical device comprising conductive polymers
US4845343A (en) Electrical devices comprising fabrics
US8481898B2 (en) Self regulating electric heaters
CA1062755A (en) Layered self-regulating heating article
US3287684A (en) Electrical heating device
EP0417097B1 (en) Heating element and method for making such a heating element
CN101523975B (en) Heating element
JP4863036B2 (en) Heat generation method
GB1562085A (en) Electrical heater and proxesses using it
US20200224926A1 (en) Air heating device for a vehicle
JP2003017227A (en) Plane heating element and heating method
JP2007299546A (en) Planar heating element
JP2008300050A (en) Polymer heating element
JP4647846B2 (en) Surface heating element and manufacturing method thereof
JP2809432B2 (en) Heating element
JPH06176857A (en) Car sheet heater
JP4283624B2 (en) Fuse for short circuit protection and floor heating device using this fuse
JPH02266501A (en) Organic positive temperature coefficient thermistor
JPH10106725A (en) Sheet-like heater element and electric carpet
JP2006325948A (en) Heating cooker and heater for food and drink
EP0307007A2 (en) Making electrical contact between metals and resistive elements
JPH03187201A (en) Thermosensible electric resistance composition body
JPS6046789B2 (en) electric heating device
JP2000195650A (en) Planar heating element
JP2010132055A (en) Vehicle heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110223