JP2003022815A - Manufacturing method of separator for fuel cell - Google Patents

Manufacturing method of separator for fuel cell

Info

Publication number
JP2003022815A
JP2003022815A JP2001207739A JP2001207739A JP2003022815A JP 2003022815 A JP2003022815 A JP 2003022815A JP 2001207739 A JP2001207739 A JP 2001207739A JP 2001207739 A JP2001207739 A JP 2001207739A JP 2003022815 A JP2003022815 A JP 2003022815A
Authority
JP
Japan
Prior art keywords
separator
preform
heating means
heating
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001207739A
Other languages
Japanese (ja)
Inventor
Takashi Yoshida
尚 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001207739A priority Critical patent/JP2003022815A/en
Publication of JP2003022815A publication Critical patent/JP2003022815A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten the time required for a separator manufacturing process, and enhance productivity of the separator by quickly raising the temperature of a preform with a first heating means and a second heating means during the compression molding of the preform, and accelerating curing, by keeping the raised temperature of the preform with the first heating means, after the second heating means has stopped. SOLUTION: The heating means, comprising electric heaters 21, 26 and a direct resistance heating device 28, in installed at the starting of heating, the electric heaters 21, 26 and the direct resistance heating device 28 are energized; and thus after the elapse of the specified time, or reaching a specified temperature, power supply to the direct resistance heating device 28 is stopped.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、加熱硬化工程に要
する時間を短縮し、セパレータの生産性を高めるのに好
適な燃料電池用セパレータの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a fuel cell separator, which is suitable for shortening the time required for a heat curing step and increasing the productivity of the separator.

【0002】[0002]

【従来の技術】燃料電池は、水の電気分解の逆の原理を
利用し、水素と酸素とを反応させて水を得る過程で電気
を得ることができる電池である。一般に、水素に燃料ガ
スを置き換え、酸素に空気や酸化剤ガスを置き換えるの
で、燃料ガス、空気、酸化剤ガスの用語を使用すること
が多い。
2. Description of the Related Art A fuel cell is a cell that utilizes the reverse principle of electrolysis of water to obtain electricity in the process of reacting hydrogen and oxygen to obtain water. In general, hydrogen is used to replace fuel gas, and oxygen is used to replace air and oxidant gas, so the terms fuel gas, air, and oxidant gas are often used.

【0003】このような燃料電池としては、例えば、特
開2000−123848公報「燃料電池」が知られて
いる。同公報の図1によれば、電解質膜18(符号は公
報に記載されているものを使用した。以下同様。)にア
ノード側電極20及びカソード側電極22を添わせ、こ
れらをガスケット24,26を介して第1セパレータ1
4及び第2セパレータ16で挟むことでセルモジュール
を構成する。
As such a fuel cell, for example, Japanese Patent Laid-Open No. 2000-123848 "Fuel Cell" is known. According to FIG. 1 of the publication, the anode membrane 20 and the cathode membrane 22 are added to the electrolyte membrane 18 (the reference numerals are those described in the publication. The same applies hereinafter), and these are gaskets 24, 26. Through the first separator 1
The cell module is configured by being sandwiched by the fourth separator 16 and the second separator 16.

【0004】詳細には、第1セパレータ14の面14a
に燃料ガスの流路となる第1流路38が形成され、第2
セパレータ16の面16aに酸化剤ガスの流路となる第
2流路46が形成され、各々中央の電解質膜18に燃料
ガスと酸化剤ガスとを臨ませる構造である。
Specifically, the surface 14a of the first separator 14
A first flow path 38 serving as a fuel gas flow path is formed in the second
A second flow path 46, which serves as a flow path for the oxidant gas, is formed on the surface 16a of the separator 16, and has a structure in which the fuel gas and the oxidant gas face the electrolyte membrane 18 in the center.

【0005】図1に記載の1個のセルモジュールで得る
電気出力はごく小さいので、このようなセルモジュール
を多数個積層することで、所望の電気出力を得る。従っ
て、第1・第2セパレータ14,16は隣のセルに燃料
ガスや酸化剤ガスが洩れないようにする分離部材である
ことから「セパレータ」と呼ばれる。
Since the electric output obtained by one cell module shown in FIG. 1 is extremely small, a desired electric output can be obtained by stacking a large number of such cell modules. Therefore, the first and second separators 14 and 16 are called “separators” because they are separation members that prevent fuel gas and oxidant gas from leaking to the adjacent cells.

【0006】[0006]

【発明が解決しようとする課題】上記公報にはセパレー
タの製造方法は記載されていないが、一般的な製造方法
としては、材料を混練し、混練物を型で成形してプ
リフォームを造り、このプリフォームを成形型で圧縮
成形し、圧縮成形中に加熱硬化させてセパレータを造
る、方法が知られている。
Although the above publication does not describe a method for manufacturing a separator, a general manufacturing method is to knead materials and mold the kneaded material into a mold to prepare a preform. A method is known in which this preform is compression-molded with a molding die and cured by heating during the compression molding to produce a separator.

【0007】このような方法でセパレータを量産する場
合には、生産性を高めるために上記した各工程に要する
時間を短縮することが要求される。特に、上記の加熱
硬化工程は、材料が完全に硬化するまでに長い時間を要
するため、セパレータ製造工程の中で大きな時間比率を
占める。
When mass-producing separators by such a method, it is required to shorten the time required for each of the above steps in order to improve productivity. In particular, the above-mentioned heat curing step occupies a large time ratio in the separator manufacturing step because it takes a long time until the material is completely cured.

【0008】そこで、本発明の目的は、燃料電池用セパ
レータの製造方法において、加熱硬化工程に要する時間
を短縮し、セパレータの生産性を高めることにある。
Therefore, an object of the present invention is to shorten the time required for the heating and curing step in the method for manufacturing a fuel cell separator and increase the productivity of the separator.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に請求項1は、導電性材料と熱硬化性樹脂との混練物か
らプリフォームを成形し、このプリフォームを所定の形
状に圧縮成形するとともに加熱手段で加熱することによ
りセパレータを製造する燃料電池用セパレータの製造方
法において、第1加熱手段と第2加熱手段とからなる加
熱手段を準備し、加熱開始時に第1・第2加熱手段を共
に作動させ、所定時間が経過したら、若しくは所定温度
に達したら第2加熱手段を停止することを特徴とする。
In order to achieve the above object, the first aspect of the present invention is to form a preform from a kneaded material of a conductive material and a thermosetting resin, and compression-mold the preform into a predetermined shape. In addition to the above, in the method for manufacturing a fuel cell separator in which a separator is manufactured by heating with a heating means, a heating means including a first heating means and a second heating means is prepared, and at the start of heating, the first and second heating means are provided. Are operated together, and the second heating means is stopped when a predetermined time elapses or when a predetermined temperature is reached.

【0010】加熱手段として第1加熱手段と第2加熱手
段とを共に作動させることで、プリフォームを圧縮成形
中にプリフォームの温度を急速に高めることができ、第
2加熱手段を停止してからは高まったプリフォームの温
度を第1加熱手段で保持することにより硬化を促進する
ことができ、セパレータ製造工程に要する時間を短縮す
ることができる。
By operating both the first heating means and the second heating means as heating means, the temperature of the preform can be rapidly raised during compression molding of the preform, and the second heating means is stopped. By increasing the temperature of the preform by the first heating means, curing can be promoted, and the time required for the separator manufacturing process can be shortened.

【0011】請求項2は、第1加熱手段で間接抵抗加熱
を行い、第2加熱手段でプリフォーム自体に通電して発
熱させるところの直接抵抗加熱を行うことを特徴とす
る。導電性のプリフォームに第2加熱手段で直接に電流
を流すことで、プリフォーム自体を発熱させる、即ち直
接加熱する直接抵抗加熱を行うことで、圧縮成形中のプ
リフォームを短時間に加熱することができる。
According to a second aspect of the present invention, the first heating means performs indirect resistance heating, and the second heating means performs direct resistance heating for energizing the preform itself to generate heat. By directly passing an electric current to the conductive preform by the second heating means, the preform itself is heated, that is, direct resistance heating is performed to directly heat the preform during compression molding in a short time. be able to.

【0012】また、プリフォームとは別に設けた導体と
しての第1加熱手段に電流を流すことで第1加熱手段を
加熱させ、この第1加熱手段でプリフォームを間接的に
加熱する間接抵抗加熱を行うことで、第2加熱手段と協
働してプリフォームに大きな熱量を供給することができ
るとともに、高まったプリフォームの温度を保持するこ
とができる。従って、プリフォームを2種の加熱方法で
効率良く硬化させることができる。
In addition, indirect resistance heating in which the first heating means is heated by passing a current through the first heating means as a conductor provided separately from the preform, and the preform is indirectly heated by the first heating means By performing the above, a large amount of heat can be supplied to the preform in cooperation with the second heating means, and the increased temperature of the preform can be maintained. Therefore, the preform can be efficiently cured by the two heating methods.

【0013】請求項3は、加熱開始時を、圧縮成形型内
でセパレータの外形形成が完了した時点としたことを特
徴とする。圧縮成形を開始してから、プリフォームがキ
ャビティ内に十分に充填されていない状態で加熱を行え
ば、プリフォームが硬化し始め、キャビティ内へ充填し
にくくなるので、プリフォームのキャビティ内への充填
が完了した時点、即ちセパレータの外形形成が完了した
時点で加熱を開始することにより、成形後のセパレータ
の品質を高めることができる。
A third aspect of the present invention is characterized in that the start of heating is the time when the outer shape of the separator is completed in the compression mold. If heating is performed in a state where the preform is not sufficiently filled in the cavity after starting compression molding, the preform will start to harden and it will be difficult to fill the cavity. By starting heating when the filling is completed, that is, when the outer shape of the separator is completed, the quality of the separator after molding can be improved.

【0014】[0014]

【発明の実施の形態】本発明の実施の形態を添付図に基
づいて以下に説明する。なお、図面は符号の向きに見る
ものとする。図1は本発明に係る燃料電池用セパレータ
の製造方法のフローである。なお、ST××はステップ
番号を示す。 ST01……所定の配合割合で熱硬化性樹脂粉末と導電
性材料としてのカーボン粉末とをブレンドし、適量のバ
インダを加えて、混練する。 ST02…混練したものを次の要領で成形することで、
プリフォームを造る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings. The drawings should be viewed in the direction of the reference numerals. FIG. 1 is a flow of a method for manufacturing a fuel cell separator according to the present invention. Note that STXX indicates a step number. ST01 ... Blending thermosetting resin powder and carbon powder as a conductive material in a predetermined mixing ratio, adding an appropriate amount of binder, and kneading. ST02 ... By molding the kneaded product in the following procedure,
Build a preform.

【0015】図2(a),(b)は本発明に係るプリフ
ォーム成形の要領を説明する作用図であり、まず、
(a)において、プリフォーム成形下型11の成形面1
2に混練物13を載せる。そして、プリフォーム成形上
型15を白抜き矢印のように下げて、混練物13を加圧
成形する。次に、(b)において、プリフォーム成形下
型11とプリフォーム成形上型15とで、所望の形状に
プリフォーム17を成形したことを示す。
2 (a) and 2 (b) are operation diagrams for explaining the procedure of preform molding according to the present invention. First,
In (a), molding surface 1 of preform molding lower mold 11
Place the kneaded product 13 on 2. Then, the preform molding upper die 15 is lowered as shown by the white arrow, and the kneaded material 13 is pressure-molded. Next, in (b), it is shown that the preform lower mold 11 and the preform upper mold 15 mold the preform 17 into a desired shape.

【0016】図1に戻り、セパレータの製造フローの説
明を続ける。 ST03…プリフォームの圧縮成形を開始する。 ST04…上記圧縮成形開始とほぼ同時に加熱硬化処理
を行い、セパレータを造る。上記したセパレータ製造工
程(圧縮成形及び加熱硬化処理)を以下の図3〜図5で
詳細に説明する。
Returning to FIG. 1, the description of the separator manufacturing flow will be continued. ST03 ... Start compression molding of the preform. ST04 ... Heat curing treatment is carried out almost simultaneously with the start of the compression molding to produce a separator. The above-described separator manufacturing process (compression molding and heat curing treatment) will be described in detail with reference to FIGS. 3 to 5 below.

【0017】図3(a),(b)は本発明に係るセパレ
ータ製造工程を説明する第1作用図であり、まず、
(a)において、第1加熱手段としての電熱ヒータ21
及び第2加熱手段を構成する下型用電極22とを備えた
セパレータ成形用下型25にプリフォーム17を載せ、
このセパレータ成形用下型25に上方から、第1加熱手
段としての電熱ヒータ26及び第2加熱手段を構成する
上型用電極27を備えたセパレータ成形用上型32を白
抜き矢印のように型合わせする。
FIGS. 3 (a) and 3 (b) are first operation diagrams for explaining the separator manufacturing process according to the present invention.
In (a), the electric heater 21 as the first heating means.
And the preform 17 is placed on the separator forming lower die 25 including the lower die electrode 22 constituting the second heating means,
An upper die 32 for forming a separator including an electric heater 26 as a first heating means and an electrode 27 for an upper die that constitutes a second heating means is formed on the lower die 25 for forming a separator from above, as shown by a white arrow. To match.

【0018】電熱ヒータ21,26は、プリフォームを
圧縮成形中に間接的に加熱する間接抵抗加熱を行う装置
であり、下型用電極22及び上型用電極27は、プリフ
ォームに通電することでプリフォーム自体を発熱させ
る、即ちプリフォームの直接抵抗加熱を行う直接抵抗加
熱装置28を構成するものである。セパレータ成形用下
型25及びセパレータ成形用上型32は、圧縮成形型と
してのセパレータ成形型29を構成するものである。
The electric heaters 21 and 26 are devices for performing indirect resistance heating for indirectly heating the preform during compression molding, and the lower die electrode 22 and the upper die electrode 27 energize the preform. Thus, the direct resistance heating device 28 that heats the preform itself, that is, performs direct resistance heating of the preform is configured. The separator molding lower die 25 and the separator molding upper die 32 constitute a separator molding die 29 as a compression molding die.

【0019】ここで、33は下型用電極22及び上型用
電極27のそれぞれに複数個埋め込んだ銅片であり、電
気抵抗の小さい銅片により、下型用電極22、上型用電
極27間で電流を分散させるようにした。
Here, 33 is a copper piece embedded in each of the lower die electrode 22 and the upper die electrode 27, and the lower die electrode 22 and the upper die electrode 27 are made of copper pieces having a small electric resistance. The current is distributed between them.

【0020】34はセパレータ成形用下型25内に設け
た絶縁板であり、セパレータ成形用下型25を外部と電
気的に絶縁する部材である。35はセパレータ成形用上
型32内に設けた絶縁板であり、セパレータ成形用上型
32を外部と電気的に絶縁する部材である。36,3
6,37,37は絶縁片であり、セパレータ成形用下型
25とセパレータ成形用上型32とを電気的に絶縁する
部材である。41,42は下型用電極22及び上型用電
極27にそれぞれ通電する導線、43はコネクタ、44
はボルトである。
Reference numeral 34 denotes an insulating plate provided in the separator molding lower die 25, which is a member for electrically insulating the separator molding lower die 25 from the outside. An insulating plate 35 is provided inside the separator molding upper die 32, and is a member that electrically insulates the separator molding upper die 32 from the outside. 36,3
Reference numerals 6, 37 and 37 denote insulating pieces, which are members that electrically insulate the lower mold 25 for separator molding and the upper mold 32 for separator molding. Reference numerals 41 and 42 are conductive wires for respectively energizing the lower die electrode 22 and the upper die electrode 27, 43 is a connector, 44
Is a bolt.

【0021】(b)はセパレータ成形用下型25に設け
た電熱ヒータ21及び下型用電極22を説明する平面図
であり、セパレータ成形用下型25に電熱ヒータ21を
複数個並べて配置し、これらの電熱ヒータ21の上方に
下型用電極22を配置したことを示す。セパレータ成形
用上型32の電熱ヒータ26及び上型用電極27につい
ても同様であり、説明は省略する。
(B) is a plan view for explaining the electrothermal heater 21 and the lower die electrode 22 provided on the separator molding lower die 25. A plurality of electrothermal heaters 21 are arranged side by side on the separator molding lower die 25, It is shown that the lower mold electrode 22 is arranged above these electric heaters 21. The same applies to the electrothermal heater 26 and the upper mold electrode 27 of the separator molding upper mold 32, and a description thereof will be omitted.

【0022】図4は本発明に係るセパレータ製造工程を
説明する第2作用図であり、型合わせしたセパレータ成
形用下型25とセパレータ成形用上型32とでプリフォ
ームを圧縮成形するとともに加熱硬化処理を行ってセパ
レータ50を造る。この圧縮成形及び加熱硬化処理の時
間的経過を次図で説明する。
FIG. 4 is a second action diagram for explaining the separator manufacturing process according to the present invention. The preform is compression-molded by the separator-forming lower mold 25 and the separator-forming upper mold 32 and heat-cured. Processing is performed to make the separator 50. The time course of this compression molding and heat curing treatment will be described with reference to the following figure.

【0023】図5は本発明に係るセパレータ製造工程の
時間的変化を説明するグラフであり、縦軸に、型内への
材料投入のタイミング、圧縮成形における型の開閉タイ
ミング、通電加熱の時の電熱ヒータ及び直接抵抗加熱装
置への通電状態、成形した製品(セパレータ)を型外へ
取り出す脱型のタイミング及び材料温度Tを表し、横軸
は時間tを表す。
FIG. 5 is a graph for explaining the change with time in the separator manufacturing process according to the present invention, in which the vertical axis represents the timing of material injection into the mold, the mold opening / closing timing in compression molding, and the time of electric heating. The energization state of the electric heater and the direct resistance heating device, the timing of demolding the molded product (separator) taken out of the mold, and the material temperature T are shown, and the horizontal axis shows the time t.

【0024】まず、時間t1でセパレータ成形下型内へ
の材料(プリフォーム)の投入を開始し、時間t2で材
料投入を完了させる。また、この時間t2でセパレータ
成形上型の下降を開始し、型を閉じ始める。そして、時
間t3でキャビティ内での材料の圧縮成形を開始する
と、この時間t3の時点から材料温度Tが上昇し始め、
時間t4から材料温度TはT2となり、横ばいになる。
First, at time t1, the material (preform) is introduced into the separator molding lower die, and at time t2, the material is completed. Further, at this time t2, the separator forming upper die starts to descend, and the die starts to be closed. Then, when the compression molding of the material in the cavity is started at time t3, the material temperature T starts to rise at the time t3,
From time t4, the material temperature T becomes T2, which is level.

【0025】時間t5では型が完全に閉じるため、キャ
ビティ内に材料が完全に充填される、即ち、セパレータ
の外形形成が完了する。この時間t5の時点で第1加熱
手段としての電熱ヒータに通電(ON。実線で示
す。)するとともに第2加熱手段としての直接抵抗加熱
装置に通電(ON。破線で示す。)し、通電加熱を行
う。これにより、両方の加熱手段で材料を急速に加熱
し、材料温度Tを短時間に上昇させ、時間t5から所定
時間tstが経過したら(即ち、時間t6となった
ら)、若しくは材料温度Tが硬化温度の上限である温度
T3に達した時点で直接抵抗加熱装置への通電を停止
(OFF)する。
At time t5, the mold is completely closed, so that the cavity is completely filled with the material, that is, the outer shape of the separator is completed. At time t5, the electric heater serving as the first heating means is energized (ON; indicated by the solid line), and the direct resistance heating device serving as the second heating means is energized (ON, indicated by the broken line) to perform energization heating. I do. As a result, the material is rapidly heated by both heating means to raise the material temperature T in a short time, and when the predetermined time tst has passed from the time t5 (that is, when the time t6 is reached) or the material temperature T is cured. When the temperature reaches the upper limit temperature T3, the power supply to the resistance heating device is directly stopped (OFF).

【0026】以後は電熱ヒータだけで加熱するため、材
料温度TはT3に保たれる。そして、時間t7にて電熱
ヒータへの通電を停止(OFF)する。これ以後、型の
熱容量が大きいために材料温度Tは穏やかに下降する。
材料の硬化は、図中にハッチングで示した領域の熱量で
促進する。
After that, the material temperature T is maintained at T3 because it is heated only by the electric heater. Then, at time t7, the power supply to the electric heater is stopped (OFF). After that, since the heat capacity of the mold is large, the material temperature T gently drops.
The hardening of the material is accelerated by the amount of heat in the hatched area in the figure.

【0027】そして、材料温度TがT2まで下降した時
間t8の時点で材料の硬化が完了したと判断し、圧縮成
形を停止して型を開き始め、時間t9で型開きを終了
し、この時間t9で製品の脱型を開始し、時間t10で
製品の脱型を終了する。
Then, at time t8 when the material temperature T drops to T2, it is judged that the curing of the material is completed, the compression molding is stopped and the mold starts to be opened, and the mold opening is finished at time t9. The product demolding is started at t9, and the product demolding is completed at time t10.

【0028】以上の図2、図4及び図5で説明したよう
に、本発明は第1に、カーボン粉末と熱硬化性樹脂粉末
との混練物13からプリフォーム17を成形し、このプ
リフォーム17を所定の形状に圧縮成形するとともに加
熱手段で加熱することによりセパレータ50を製造する
燃料電池用セパレータ50の製造方法において、電熱ヒ
ータ21,26と直接抵抗加熱装置28とからなる加熱
手段を準備し、加熱開始時に電熱ヒータ21,26と直
接抵抗加熱装置28とに共に通電し、所定時間tstが
経過したら、若しくは所定温度T3に達したら直接抵抗
加熱装置28への通電を停止することを特徴とする。
As described above with reference to FIGS. 2, 4 and 5, the present invention firstly forms a preform 17 from a kneaded material 13 of carbon powder and thermosetting resin powder, and the preform 17 is formed. In the manufacturing method of the fuel cell separator 50, in which the separator 50 is manufactured by compression-molding 17 into a predetermined shape and heating with a heating means, a heating means including electric heaters 21 and 26 and a direct resistance heating device 28 is prepared. However, the electric heaters 21 and 26 and the direct resistance heating device 28 are energized together at the start of heating, and the energization to the direct resistance heating device 28 is stopped when a predetermined time tst elapses or when a predetermined temperature T3 is reached. And

【0029】加熱手段として電熱ヒータ21,26と直
接抵抗加熱装置28とを共に作動させることで、プリフ
ォーム17を圧縮成形中にプリフォーム17の温度を硬
化温度の上限である温度T3まで急速に高めることがで
き、直接抵抗加熱装置28への通電を停止してから温度
T3を保持することで硬化を促進させることができて、
プリフォームの加熱硬化時間th(図5参照)、ひいて
は成形時間tp(図5参照)を短縮することができる。
従って、セパレータ製造工程に要する時間を短縮するこ
とができ、セパレータ50の生産性を高めることができ
る。
By operating both the electric heaters 21 and 26 and the direct resistance heating device 28 as heating means, the temperature of the preform 17 is rapidly increased to the temperature T3 which is the upper limit of the curing temperature during compression molding of the preform 17. The temperature can be increased, and the temperature T3 can be maintained after the power supply to the resistance heating device 28 is stopped, so that the curing can be accelerated.
The heat curing time th (see FIG. 5) of the preform, and eventually the molding time tp (see FIG. 5) can be shortened.
Therefore, the time required for the separator manufacturing process can be shortened, and the productivity of the separator 50 can be improved.

【0030】本発明は第2に、第1加熱手段、即ち電熱
ヒータ21,26で間接抵抗加熱を行い、第2加熱手
段、即ち直接抵抗加熱装置28でプリフォーム17自体
に通電して発熱させるところの直接抵抗加熱を行うこと
を特徴とする。直接抵抗加熱装置28で直接抵抗加熱を
行うことで、導電性のプリフォーム17内に生じるジュ
ール熱により、圧縮成形中のプリフォーム17を短時間
に加熱することができ、また、電熱ヒータ21,26で
間接抵抗加熱を行うことで、直接抵抗加熱装置28と協
働してプリフォーム17に大きな熱量を供給することが
できるとともに、高まったプリフォーム17の温度を保
持することができる。従って、プリフォーム17を2種
の加熱方法で効率良く硬化させることができる。
Secondly, in the present invention, the first heating means, that is, the electric heaters 21 and 26 perform indirect resistance heating, and the second heating means, that is, the direct resistance heating device 28 energizes the preform 17 itself to generate heat. However, it is characterized by performing direct resistance heating. By performing direct resistance heating with the direct resistance heating device 28, it is possible to heat the preform 17 during compression molding in a short time by the Joule heat generated in the conductive preform 17, and the electric heater 21, By performing indirect resistance heating at 26, a large amount of heat can be supplied to the preform 17 in cooperation with the direct resistance heating device 28, and the increased temperature of the preform 17 can be maintained. Therefore, the preform 17 can be efficiently cured by the two heating methods.

【0031】本発明は第3に、加熱開始時を、圧縮成形
型としてのセパレータ成形用下型25及び圧縮成形型と
してのセパレータ成形用上型32内でセパレータ50の
外形形成が完了した時点としたことを特徴とする。
Thirdly, according to the present invention, the heating start time is defined as the time when the outer shape of the separator 50 is completed in the separator forming lower die 25 as the compression forming die and the separator forming upper die 32 as the compression forming die. It is characterized by having done.

【0032】圧縮成形を開始してから、例えば、プリフ
ォーム17がキャビティ内に十分に充填されていない状
態で加熱を行えば、プリフォーム17が硬化し始め、キ
ャビティ内へ充填しにくくなるので、プリフォームのキ
ャビティ内への充填が完了した時点、即ちセパレータの
外形形成が完了した時点で加熱を開始することにより、
成形後のセパレータの品質を高めることができる。
If heating is performed after the compression molding is started, for example, in a state where the preform 17 is not sufficiently filled in the cavity, the preform 17 begins to harden and it becomes difficult to fill the cavity. By starting heating at the time when the filling of the preform into the cavity is completed, that is, when the outer shape of the separator is completed,
The quality of the separator after molding can be improved.

【0033】尚、本発明では、第2加熱手段で直接抵抗
加熱を行うようにしたが、これに限らず、第2加熱手段
の各極板をコイルに替えて、このコイルに通電すること
で、導電性材料内に誘導電流を発生させ、導電性材料自
体を発熱させる誘導加熱を行ってもよい。誘導加熱は、
短時間に且つ導電性材料を全体的に加熱することがで
き、加熱効率が高いため、プリフォームの加熱硬化処理
には好適である。
In the present invention, the resistance heating is directly performed by the second heating means. However, the present invention is not limited to this, and each electrode plate of the second heating means is replaced with a coil, and the coil is energized. Alternatively, induction heating may be performed to generate an induction current in the conductive material and heat the conductive material itself. Induction heating
Since the conductive material can be entirely heated in a short time and the heating efficiency is high, it is suitable for the heat curing treatment of the preform.

【0034】[0034]

【発明の効果】本発明は上記構成により次の効果を発揮
する。請求項1の燃料電池用セパレータの製造方法は、
第1加熱手段と第2加熱手段とからなる加熱手段を準備
し、加熱開始時に第1・第2加熱手段を共に作動させ、
所定時間が経過したら、若しくは所定温度に達したら第
2加熱手段を停止するので、プリフォームを圧縮成形中
に第1加熱手段及び第2加熱手段の両方でプリフォーム
の温度を急速に高めることができ、第2加熱手段を停止
した後は、高まったプリフォームの温度を第1加熱手段
で保持することで硬化を促進させることができる。従っ
て、セパレータ製造工程に要する時間を短縮することが
でき、セパレータの生産性を高めることができる。
The present invention has the following effects due to the above configuration. A method for manufacturing a fuel cell separator according to claim 1,
A heating means including a first heating means and a second heating means is prepared, and both the first and second heating means are operated at the start of heating,
Since the second heating means is stopped when a predetermined time has elapsed or when the temperature reaches a predetermined temperature, it is possible to rapidly raise the temperature of the preform by both the first heating means and the second heating means during compression molding of the preform. Therefore, after the second heating means is stopped, the elevated temperature of the preform can be maintained by the first heating means to accelerate the curing. Therefore, the time required for the separator manufacturing process can be shortened, and the productivity of the separator can be improved.

【0035】請求項2の燃料電池用セパレータの製造方
法は、第1加熱手段で間接抵抗加熱を行い、第2加熱手
段で直接抵抗加熱を行うので、第2加熱手段によって導
電性のプリフォーム自体を発熱させることにより、圧縮
成形中のプリフォームを短時間に加熱することができ
る。また、第2加熱手段を停止した後に第1加熱手段に
よってプリフォームの温度保持を実施することができる
ため、プリフォームを2種の加熱方法で効率良く硬化さ
せることができる。
In the method for manufacturing the fuel cell separator according to the second aspect, since the first heating means performs the indirect resistance heating and the second heating means performs the direct resistance heating, the second heating means conducts the conductive preform itself. By heating the preform, the preform during compression molding can be heated in a short time. Moreover, since the temperature of the preform can be maintained by the first heating means after the second heating means is stopped, the preform can be efficiently cured by two heating methods.

【0036】請求項3の燃料電池用セパレータの製造方
法は、加熱開始時を、圧縮成形型内でセパレータの外形
形成が完了した時点としたので、プリフォームのキャビ
ティ内への充填が完了した時点で加熱を開始することが
でき、成形後のセパレータの品質を高めることができ
る。
In the method for manufacturing the fuel cell separator according to the third aspect of the present invention, since the start of heating is the time when the outer shape of the separator is completed in the compression mold, the time when the filling of the preform into the cavity is completed. The heating can be started at, and the quality of the separator after molding can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る燃料電池用セパレータの製造方法
のフロー
FIG. 1 is a flow of a method for manufacturing a fuel cell separator according to the present invention.

【図2】本発明に係るプリフォーム成形の要領を説明す
る作用図
FIG. 2 is an operation diagram for explaining the procedure of preform molding according to the present invention.

【図3】本発明に係るセパレータ製造工程を説明する第
1作用図
FIG. 3 is a first operation diagram illustrating a separator manufacturing process according to the present invention.

【図4】本発明に係るセパレータ製造工程を説明する第
2作用図
FIG. 4 is a second action diagram illustrating a separator manufacturing process according to the present invention.

【図5】本発明に係るセパレータ製造工程の時間的変化
を説明するグラフ
FIG. 5 is a graph illustrating changes over time in a separator manufacturing process according to the present invention.

【符号の説明】[Explanation of symbols]

13…混練物、17…プリフォーム、21,26…第1
加熱手段(電熱ヒータ)、28…第2加熱手段(直接抵
抗加熱装置)、29…圧縮成形型(セパレータ成形
型)、50…セパレータ、t5…加熱開始時間。
13 ... Kneaded product, 17 ... Preform, 21, 26 ... First
Heating means (electrothermal heater), 28 ... Second heating means (direct resistance heating device), 29 ... Compression molding die (separator molding die), 50 ... Separator, t5 ... Heating start time.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 導電性材料と熱硬化性樹脂との混練物か
らプリフォームを成形し、このプリフォームを所定の形
状に圧縮成形するとともに加熱手段で加熱することによ
りセパレータを製造する燃料電池用セパレータの製造方
法において、 第1加熱手段と第2加熱手段とからなる加熱手段を準備
し、加熱開始時に第1・第2加熱手段を共に作動させ、
所定時間が経過したら、若しくは所定温度に達したら第
2加熱手段を停止することを特徴とする燃料電池用セパ
レータの製造方法。
1. A fuel cell for producing a separator by molding a preform from a kneaded material of a conductive material and a thermosetting resin, compression-molding the preform into a predetermined shape, and heating by a heating means. In the method for manufacturing a separator, a heating means including a first heating means and a second heating means is prepared, and both the first and second heating means are operated at the start of heating,
A method for manufacturing a fuel cell separator, characterized in that the second heating means is stopped after a lapse of a predetermined time or when a predetermined temperature is reached.
【請求項2】 前記第1加熱手段で間接抵抗加熱を行
い、前記第2加熱手段でプリフォーム自体に通電して発
熱させるところの直接抵抗加熱を行うことを特徴とする
請求項1記載の燃料電池用セパレータの製造方法。
2. The fuel according to claim 1, wherein the first heating means performs indirect resistance heating, and the second heating means performs direct resistance heating for energizing the preform itself to generate heat. Method for manufacturing battery separator.
【請求項3】 前記加熱開始時は圧縮成形型内で前記セ
パレータの外形形成が完了した時点であることを特徴と
する請求項1又は請求項2記載の燃料電池用セパレータ
の製造方法。
3. The method for producing a fuel cell separator according to claim 1, wherein the heating is started at the time when the outer shape of the separator is completed in the compression mold.
JP2001207739A 2001-07-09 2001-07-09 Manufacturing method of separator for fuel cell Pending JP2003022815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001207739A JP2003022815A (en) 2001-07-09 2001-07-09 Manufacturing method of separator for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001207739A JP2003022815A (en) 2001-07-09 2001-07-09 Manufacturing method of separator for fuel cell

Publications (1)

Publication Number Publication Date
JP2003022815A true JP2003022815A (en) 2003-01-24

Family

ID=19043678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001207739A Pending JP2003022815A (en) 2001-07-09 2001-07-09 Manufacturing method of separator for fuel cell

Country Status (1)

Country Link
JP (1) JP2003022815A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07164463A (en) * 1993-12-14 1995-06-27 Arai Pump Mfg Co Ltd Method and apparatus for manufacturing molded form
WO2000039872A1 (en) * 1998-12-25 2000-07-06 Araco Kabushiki Kaisha Fuel cell, fuel cell separator, and method of manufacture of separator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07164463A (en) * 1993-12-14 1995-06-27 Arai Pump Mfg Co Ltd Method and apparatus for manufacturing molded form
WO2000039872A1 (en) * 1998-12-25 2000-07-06 Araco Kabushiki Kaisha Fuel cell, fuel cell separator, and method of manufacture of separator

Similar Documents

Publication Publication Date Title
CN109950569A (en) A kind of molding preparation method of fuel battery double plates
JP2000208154A (en) Fuel cell separator and its production
KR102226806B1 (en) Method for manufacturing gasket integrated separator
US7138206B2 (en) Method of manufacturing separator for fuel cell
JP4774570B2 (en) Solid polymer electrolyte fuel cell and method for producing the same
WO2000039872A1 (en) Fuel cell, fuel cell separator, and method of manufacture of separator
US20080116609A1 (en) In-Situ Molding Of Fuel Cell Separator Plate Reinforcement
JP2003022815A (en) Manufacturing method of separator for fuel cell
EP1267434A2 (en) Fuel cell and its production method
CA2569448A1 (en) Manufacturing method of separator for fuel cell using preform and separator manufactured by the same
JP2003059501A (en) Manufacturing method of fuel cell separator, manufacturing method of intermediate molding and intermediate molding
JP4011867B2 (en) Manufacturing method of fuel cell separator
JP2003022818A (en) Molding device of separator for fuel cell
CN100517837C (en) Method of manufacturing separator for fuel cell
JP4587177B2 (en) Manufacturing method of fuel cell separator
JP2006310020A (en) Manufacturing method and manufacturing device of fuel cell separator
KR20100020308A (en) Molding apparatus for fuel cell separator
JP2005228703A (en) Fuel cell
JP2003022812A (en) Manufacturing method of separator for fuel cell
JP4652614B2 (en) Manufacturing method of fuel cell separator
JP4192525B2 (en) Manufacturing method of fuel cell separator
JP2023538040A (en) Bipolar plate and method for making same
KR20230136138A (en) Methods and devices related to bipolar batteries
JP2004111304A (en) Fuel cell separator and its manufacturing method
KR101060800B1 (en) Manufacturing method of integrated fuel cell separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329