JP2003022812A - Manufacturing method of separator for fuel cell - Google Patents

Manufacturing method of separator for fuel cell

Info

Publication number
JP2003022812A
JP2003022812A JP2001206596A JP2001206596A JP2003022812A JP 2003022812 A JP2003022812 A JP 2003022812A JP 2001206596 A JP2001206596 A JP 2001206596A JP 2001206596 A JP2001206596 A JP 2001206596A JP 2003022812 A JP2003022812 A JP 2003022812A
Authority
JP
Japan
Prior art keywords
separator
preform
manufacturing
molding
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001206596A
Other languages
Japanese (ja)
Inventor
Takashi Yoshida
尚 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001206596A priority Critical patent/JP2003022812A/en
Publication of JP2003022812A publication Critical patent/JP2003022812A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To install a hole in a preform during a separator manufacturing process and prior to curing of the preform. SOLUTION: The working surface of the hole is made smooth, since generation of cracks on the working surface of the hole or the roughened working surface caused by increased hardness is prevented, unlike the case of cured preform. Fuel gas or oxidizing agent gas can be supplied stably from the hole to a gas passage, or exhausted from it formed in the preform, and the power generation performance of a fuel cell can be enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、良好な状態の加工
面を有する孔を開けるのに好適な燃料電池用セパレータ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a fuel cell separator suitable for forming a hole having a machined surface in a good condition.

【0002】[0002]

【従来の技術】燃料電池は、水の電気分解の逆の原理を
利用し、水素と酸素とを反応させて水を得る過程で電気
を得ることができる電池である。一般に、水素に燃料ガ
スを置き換え、酸素に空気や酸化剤ガスを置き換えるの
で、燃料ガス、空気、酸化剤ガスの用語を使用すること
が多い。
2. Description of the Related Art A fuel cell is a cell that utilizes the reverse principle of electrolysis of water to obtain electricity in the process of reacting hydrogen and oxygen to obtain water. In general, hydrogen is used to replace fuel gas, and oxygen is used to replace air and oxidant gas, so the terms fuel gas, air, and oxidant gas are often used.

【0003】このような燃料電池としては、例えば、特
開2000−123848公報「燃料電池」が知られて
いる。同公報の図1によれば、電解質膜18(符号は公
報に記載されているものを使用した。以下同様。)にア
ノード側電極20及びカソード側電極22を添わせ、こ
れらをガスケット24,26を介して第1セパレータ1
4及び第2セパレータ16で挟むことでセルモジュール
を構成する。
As such a fuel cell, for example, Japanese Patent Laid-Open No. 2000-123848 "Fuel Cell" is known. According to FIG. 1 of the publication, the anode membrane 20 and the cathode membrane 22 are added to the electrolyte membrane 18 (the reference numerals are those described in the publication. The same applies hereinafter), and these are gaskets 24, 26. Through the first separator 1
The cell module is configured by being sandwiched by the fourth separator 16 and the second separator 16.

【0004】詳細には、第1セパレータ14の面14a
に燃料ガスの流路となる第1流路38が形成され、第2
セパレータ16の面16aに酸化剤ガスの流路となる第
2流路46が形成され、各々中央の電解質膜18に燃料
ガスと酸化剤ガスとを臨ませる構造である。
Specifically, the surface 14a of the first separator 14
A first flow path 38 serving as a fuel gas flow path is formed in the second
A second flow path 46, which serves as a flow path for the oxidant gas, is formed on the surface 16a of the separator 16, and has a structure in which the fuel gas and the oxidant gas face the electrolyte membrane 18 in the center.

【0005】図1に記載の1個のセルモジュールで得る
電気出力はごく小さいので、このようなセルモジュール
を多数個積層することで、所望の電気出力を得る。従っ
て、第1・第2セパレータ14,16は隣のセルに燃料
ガスや酸化剤ガスが洩れないようにする分離部材である
ことから「セパレータ」と呼ばれる。
Since the electric output obtained by one cell module shown in FIG. 1 is extremely small, a desired electric output can be obtained by stacking a large number of such cell modules. Therefore, the first and second separators 14 and 16 are called “separators” because they are separation members that prevent fuel gas and oxidant gas from leaking to the adjacent cells.

【0006】第1セパレータ14は面14aに燃料ガス
のための流路38を備え、第2セパレータ16は面16
aに酸化剤ガスのための流路46を備えるが、ガスを効
果的にアノード側電極20及びカソード側電極22に接
触させる必要があり、そのために、流路38,46はご
く浅い溝を多数本条設する必要がある。
The first separator 14 has a flow path 38 for fuel gas on the surface 14a, and the second separator 16 has a surface 16a.
Although the flow path 46 for the oxidant gas is provided in a, it is necessary to effectively contact the gas with the anode electrode 20 and the cathode electrode 22, and therefore the flow paths 38 and 46 have a large number of shallow grooves. It is necessary to establish this article.

【0007】そして、第1・第2セパレータ14,16
は、流路38,46に燃料ガス又は酸化剤ガスを供給す
るために上部にそれぞれ燃料ガス供給孔部32a、酸化
剤ガス供給孔部34aを備え、下部にそれぞれ燃料ガス
排出孔部32b、酸化剤ガス排出孔部34bを備え、ま
た、冷却水を通すための冷却水供給孔部36aをそれぞ
れの上部に、冷却水排出孔部36bをそれぞれの下部に
備える。
Then, the first and second separators 14 and 16
Is provided with a fuel gas supply hole 32a and an oxidant gas supply hole 34a in the upper part for supplying the fuel gas or the oxidant gas to the flow paths 38 and 46, respectively, and is provided in the lower part with the fuel gas discharge hole 32b and the oxidant gas, respectively. The agent gas discharge holes 34b are provided, the cooling water supply holes 36a for passing the cooling water are provided at the upper part of each, and the cooling water discharge holes 36b are provided at the lower part of each.

【0008】[0008]

【発明が解決しようとする課題】上記した第1セパレー
タ14及び第2セパレータ16の各孔部32a,34
a,32b,34b,36a,36bを開ける場合、例
えば、材料が熱硬化性樹脂で完全に硬化した後では、硬
度が大きいためにポンチ等で打ち抜く際に孔部の加工面
が荒れたり割れが発生することが予想される。また、硬
化が進まない状態で孔あけすれば、せん断が十分に行わ
れず、ばりが発生しやすくなる。
Each of the holes 32a, 34 of the first separator 14 and the second separator 16 described above is solved.
When opening a, 32b, 34b, 36a, 36b, for example, after the material is completely hardened with a thermosetting resin, the hardness of the material is large, so that the punched surface may have a roughened or cracked surface when punched. Expected to occur. Further, if holes are drilled in a state where curing does not proceed, sufficient shearing will not occur and burrs will easily occur.

【0009】そこで、本発明の目的は、燃料電池用セパ
レータの製造方法において、セパレータに良好な状態の
加工面を有する孔を形成することにある。
Therefore, an object of the present invention is to form, in the method of manufacturing a fuel cell separator, a hole having a processed surface in a good condition in the separator.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に請求項1は、カーボンと熱硬化性樹脂とにバインダを
加え、混練し、成形することで平板状のプリフォームを
製造するプリフォーム工程と、このプリフォームを所定
形状に圧縮成形するとともに硬化温度に加熱することで
セパレータを製造するセパレータ製造工程とからなる燃
料電池用セパレータの製造方法において、セパレータ製
造工程中に且つプリフォームが硬化する前にプリフォー
ムに孔あけ加工を施すことを特徴とする。
In order to achieve the above object, the first aspect of the present invention is to provide a preform for producing a flat plate-like preform by adding a binder to carbon and a thermosetting resin, kneading and molding the mixture. In a method for manufacturing a fuel cell separator, which comprises a step and a separator manufacturing step in which the preform is compression-molded into a predetermined shape and heated to a curing temperature, a preform is cured during the separator manufacturing step. It is characterized in that the preform is perforated before being processed.

【0011】プリフォームが硬化した後のような、硬度
が大きくなって孔の加工面に割れが発生したり加工面が
粗くなったりするようなことがなく、孔の加工面を滑ら
かにすることができる。
Smoothing of the machined surface of the hole without the occurrence of cracks on the machined surface of the hole or roughening of the machined surface such as after hardening of the preform. You can

【0012】請求項2は、孔あけ加工を、セパレータ製
造工程を開始してから所定時間経過したときに行うこと
を特徴とする。孔開け加工のタイミングを時間で管理す
ることにより、孔の加工面を常に良好な状態にすること
ができる。
According to a second aspect of the present invention, the boring process is performed when a predetermined time has elapsed since the separator manufacturing process was started. By controlling the timing of the drilling process by time, the machined surface of the hole can always be kept in a good state.

【0013】請求項3は、孔あけ加工を、セパレータ製
造工程を開始してから所定時間経過後で、且つプリフォ
ームの温度が所定温度に達したときに行うことを特徴と
する。
A third aspect of the present invention is characterized in that the perforating process is performed after a predetermined time has elapsed since the separator manufacturing process was started and when the temperature of the preform reached a predetermined temperature.

【0014】孔開け加工のタイミングを時間及びプリフ
ォームの温度で管理することにより、例えば、型の温度
が変化してプリフォームの硬化時間が変化しても、確実
にプリフォームの硬化状態を把握することができ、良好
な加工面を有する孔を開けることができる。
By controlling the timing of the punching process by the time and the temperature of the preform, for example, even if the temperature of the mold changes and the curing time of the preform changes, the cured state of the preform can be surely grasped. It is possible to make a hole having a good processed surface.

【0015】[0015]

【発明の実施の形態】本発明の実施の形態を添付図に基
づいて以下に説明する。なお、図面は符号の向きに見る
ものとする。図1は本発明に係る燃料電池用セパレータ
の製造フローである。なお、ST××はステップ番号を
示す。 ST01……所定の配合割合でカーボン粉末と熱硬化性
樹脂粉末とをブレンドし、適量のバインダを加えて、混
練する。 ST02…混練したものを次の要領で成形することで、
プリフォームを造る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings. The drawings should be viewed in the direction of the reference numerals. FIG. 1 is a manufacturing flow of a fuel cell separator according to the present invention. Note that STXX indicates a step number. ST01: Carbon powder and thermosetting resin powder are blended in a predetermined mixing ratio, an appropriate amount of binder is added, and kneading is performed. ST02 ... By molding the kneaded product in the following procedure,
Build a preform.

【0016】図2(a),(b)は本発明に係るプリフ
ォーム成形の要領を説明する作用図であり、まず、
(a)において、プリフォーム成形下型11の成形面1
2に混練物13を載せる。そして、プリフォーム成形上
型15を白抜き矢印のように下げて、混練物13を加圧
成形する。次に、(b)において、プリフォーム成形下
型11とプリフォーム成形上型15とで、所望の形状に
プリフォーム17を成形したことを示す。
2 (a) and 2 (b) are operation diagrams for explaining the procedure of preform molding according to the present invention. First,
In (a), molding surface 1 of preform molding lower mold 11
Place the kneaded product 13 on 2. Then, the preform molding upper die 15 is lowered as shown by the white arrow, and the kneaded material 13 is pressure-molded. Next, in (b), it is shown that the preform lower mold 11 and the preform upper mold 15 mold the preform 17 into a desired shape.

【0017】図1に戻り、セパレータの製造フローの説
明を続ける。 ST03…プリフォームの圧縮成形を開始する。 ST04…上記圧縮成形開始とほぼ同時に加熱硬化処理
を行う。 ST05…圧縮、加熱したプリフォームに後述する要領
で孔あけ加工を実施し、この後、完全に硬化させて、セ
パレータを造る。
Returning to FIG. 1, the description of the separator manufacturing flow will be continued. ST03 ... Start compression molding of the preform. ST04 ... The heat curing treatment is performed almost at the same time as the start of the compression molding. ST05 ... The preform which has been compressed and heated is subjected to perforation processing in a manner described later, and then completely cured to form a separator.

【0018】図3(a),(b)は本発明に係るセパレ
ータ成形の要領を説明する第1作用図であり、まず、
(a)において、まず、ヒータ21を備えるセパレータ
成形下型22の成形面23にプリフォーム17を載せ
る。そして、ヒータ25を備えるセパレータ成形上型2
6を白抜き矢印のように型合わせする。
FIGS. 3 (a) and 3 (b) are first operation diagrams for explaining the procedure for molding the separator according to the present invention.
In (a), first, the preform 17 is placed on the molding surface 23 of the separator molding lower die 22 including the heater 21. Then, the separator molding upper mold 2 including the heater 25
6 is aligned as shown by the white arrow.

【0019】ここで、28はセパレータに燃料ガス流路
又は酸化剤ガス流路を形成するための凸部(複数のうち
の1本のみを示す。)、31は孔あけ加工を行うために
セパレータ上型26に設けたポンチ、32はポンチ31
により打ち抜かれる材料を保持するパッド、33はパッ
ド32内に上下移動可能に挿入した熱電対である。
Here, 28 is a convex portion (only one of a plurality is shown) for forming a fuel gas flow passage or an oxidant gas flow passage in the separator, and 31 is a separator for performing a perforating process. Punch provided on the upper die 26, 32 is a punch 31
The pad 33 holds the material to be punched by, and 33 is a thermocouple inserted in the pad 32 so as to be vertically movable.

【0020】(b)において、ヒータ21,25でセパ
レータ下型22及びセパレータ上型26を加熱しながら
所望の形状にプレス成形を実施する。なお、プリフォー
ム17を圧縮、加熱した状態で、完全に硬化する前のも
のを圧縮成形物40Pとする。
In (b), while the heaters 21 and 25 are heating the separator lower mold 22 and the separator upper mold 26, press molding is performed into a desired shape. The preform 17 in a compressed and heated state before being completely cured is referred to as a compression molded product 40P.

【0021】図4(a)〜(c)は本発明に係るセパレ
ータ成形の要領を説明する第2作用図であり、孔あけ加
工について説明する。まず、(a)において、プリフォ
ームを圧縮した直後に圧縮成形物40P内に熱電対33
を挿入し、圧縮成形物40Pの温度を測定する。
FIGS. 4 (a) to 4 (c) are second operational views for explaining the procedure of the separator molding according to the present invention, and the drilling process will be described. First, in (a), immediately after compressing the preform, the thermocouple 33 is placed in the compression molded product 40P.
Then, the temperature of the compression molded product 40P is measured.

【0022】(b)において、圧縮成形を開始した時点
から所定時間が経過し、且つ圧縮成形物40Pの温度が
所定温度に達したら、ポンチ31を下降させ、圧縮成形
物40Pを打ち抜き、孔41を開ける。これに伴い、パ
ッド32を下降させる。熱電対33は先端の温度検出部
が細いため、この先端部の曲がりや折損を防止するため
に、ポンチ31を下降させる直前にパッド32内を下降
させ、退避させておく。(c)において、圧縮成形物4
0Pが完全に硬化したら、セパレータ成形上型26を上
昇させ、セパレータ40を取り出す。
In (b), when a predetermined time elapses from the time when the compression molding is started and the temperature of the compression molded product 40P reaches a predetermined temperature, the punch 31 is lowered to punch out the compression molded product 40P and the hole 41 is formed. Open. Along with this, the pad 32 is lowered. Since the temperature detecting portion at the tip of the thermocouple 33 is thin, the inside of the pad 32 is lowered and retracted immediately before the punch 31 is lowered in order to prevent the tip from being bent or broken. In (c), compression molded product 4
When the 0P is completely cured, the separator molding upper die 26 is raised and the separator 40 is taken out.

【0023】図5は本発明に係るセパレータの成形時間
と材料温度との関係を示すグラフである。縦軸は圧縮成
形物40Pの材料温度T(単位は°C)、横軸は圧縮成
形を開始してからの成形時間tを表す。時間t0で圧縮
成形を開始して、材料温度Tは次第に上昇し、材料温度
TがT1に達してほぼ一定になる。この材料温度T1は
予め設定した成形温度である。図4で説明した孔あけ
は、材料温度Tが成形温度T1に達した直後の成形時間
t1から成形時間t2の間の期間で実施する。上記した
成形温度T1、成形時間t1、成形時間t2は、例え
ば、T1=185°c、t1=65sec、t2=84
secである。
FIG. 5 is a graph showing the relationship between the molding time and the material temperature of the separator according to the present invention. The vertical axis represents the material temperature T (unit: ° C) of the compression molded product 40P, and the horizontal axis represents the molding time t from the start of compression molding. The compression molding is started at time t0, the material temperature T gradually rises, and the material temperature T reaches T1 and becomes almost constant. This material temperature T1 is a preset molding temperature. The perforation described with reference to FIG. 4 is performed in a period between the molding time t1 and the molding time t2 immediately after the material temperature T reaches the molding temperature T1. The molding temperature T1, the molding time t1, and the molding time t2 described above are, for example, T1 = 185 ° c, t1 = 65 sec, t2 = 84.
sec.

【0024】この成形時間t1から成形時間t2の間で
圧縮成形物の孔あけを実施すれば、開けた孔の加工面
を、割れ、ばり等を発生させずに滑らかに形成すること
ができる。即ち、成形時間tがt1になる前に孔あけを
行えば、材料温度Tが低いので、硬化がそれほど進まな
いためにせん断が十分に行われず、ばりが発生しやすく
なる。成形時間tがt2を過ぎた後に孔あけを行えば、
圧縮成形物の硬化がかなり進み、又は完全に硬化して硬
度が大きくなり、ポンチで打ち抜く際に加工面が荒れた
り割れが発生する。
If the compression-molded product is perforated between the molding time t1 and the molding time t2, the machined surface of the perforated hole can be smoothly formed without causing cracks or burrs. That is, if the holes are punched before the molding time t reaches t1, the material temperature T is low, so that the curing does not proceed so much, the shearing is not sufficiently performed, and burrs are easily generated. If drilling is performed after the molding time t exceeds t2,
The hardening of the compression molded product progresses considerably, or it completely hardens to increase the hardness, and when punching with a punch, the machined surface becomes rough and cracks occur.

【0025】以上説明したように、本発明は第1に、カ
ーボンと熱硬化性樹脂とにバインダを加え、混練し、成
形することで平板状のプリフォームを製造するプリフォ
ーム工程と、このプリフォームを所定形状に圧縮成形す
るとともに硬化温度に加熱することでセパレータを製造
するセパレータ製造工程とからなる燃料電池用セパレー
タの製造方法において、セパレータ製造工程中に且つ圧
縮成形物40P(図4(c)参照)が硬化する前に圧縮
成形物40Pに孔あけ加工を施すことを特徴とする。
As described above, the present invention firstly includes a preform process for producing a flat plate-like preform by adding a binder to carbon and a thermosetting resin, kneading the mixture, and molding the same. In a method for manufacturing a fuel cell separator, which comprises a separator manufacturing step of manufacturing a separator by compression-molding a reform into a predetermined shape and heating it to a curing temperature, a compression-molded product 40P (Fig. 4 (c )) Is hardened, the compression molded product 40P is subjected to perforation processing.

【0026】上記製造方法により、プリフォームが硬化
した後のような、硬度が大きくなって孔41(図4
(c)参照)の加工面に割れが発生したり加工面が粗く
なったりするようなことがなく、孔41の加工面を滑ら
かにすることができる。
According to the above-mentioned manufacturing method, the hardness is increased and the hole 41 (see FIG. 4) is formed after the preform is cured.
The processed surface of the hole 41 can be made smooth without cracking or roughening of the processed surface (see (c)).

【0027】従って、この孔41を、燃料ガス流路や酸
化剤ガス流路へ燃料ガス又は酸化剤ガスを供給する供給
孔としたり、あるいは燃料ガス流路や酸化剤ガス流路か
ら燃料ガス又は酸化剤ガスを排出する排出孔とした場合
に、孔41の加工面を滑らかにすることで、燃料ガスや
酸化剤ガスに含まれる水分、発電中に生成した水分を、
供給孔及び排水孔の加工面に付着しにくくすることがで
きる。
Therefore, the hole 41 is used as a supply hole for supplying the fuel gas or the oxidant gas to the fuel gas passage or the oxidant gas passage, or the fuel gas or the oxidant gas passage is supplied with the fuel gas or the oxidant gas passage. When the discharge hole for discharging the oxidant gas is used, by smoothing the processed surface of the hole 41, the moisture contained in the fuel gas and the oxidant gas and the moisture generated during the power generation are
It can be made difficult to adhere to the processed surface of the supply hole and the drain hole.

【0028】この結果、供給孔が部分的に塞がれて燃料
ガスや酸化剤ガスの供給量が少なくなったり、排水孔が
部分的に塞がれて燃料ガス流路や酸化剤ガス流路の水分
を十分に排出したりすることができなくなる心配がな
い。これにより、燃料ガスや酸化剤ガスを安定的に供給
することができ、燃料電池の発電性能を高めることがで
きる。
As a result, the supply holes are partially blocked to reduce the supply amount of the fuel gas and the oxidant gas, and the drain holes are partially blocked to cause the fuel gas passage and the oxidant gas passage. There is no need to worry about not being able to fully drain the water. Thereby, the fuel gas and the oxidant gas can be stably supplied, and the power generation performance of the fuel cell can be improved.

【0029】本発明は第2に、孔あけ加工を、セパレー
タ製造工程を開始してから所定時間経過したときに、即
ち成形時間t1から成形時間t2の間に行うことを特徴
とする。孔開け加工のタイミングを時間で管理すること
により、孔の加工面を常に良好な状態にすることができ
る。従って、容易に安定した品質のセパレータ40を製
造することができる。
Secondly, the present invention is characterized in that the perforating process is carried out when a predetermined time has elapsed from the start of the separator manufacturing process, that is, between the molding time t1 and the molding time t2. By controlling the timing of the drilling process by time, the machined surface of the hole can always be kept in a good state. Therefore, the separator 40 of stable quality can be easily manufactured.

【0030】本発明は第3に、孔あけ加工を、セパレー
タ製造工程を開始してから所定時間経過後、即ち成形時
間t1から成形時間t2の間で、且つ圧縮成形物40P
の材料温度Tが所定温度としての成形温度T1に達した
ときに行うことを特徴とする。
Thirdly, in the present invention, the punching process is performed after a predetermined time has elapsed from the start of the separator manufacturing process, that is, between the molding time t1 and the molding time t2, and the compression molded product 40P.
It is performed when the material temperature T of 1 reaches the molding temperature T1 as a predetermined temperature.

【0031】孔あけ加工のタイミングを成形時間t及び
圧縮成形物40Pの直接の材料温度Tで管理することに
より、例えば、型の温度が変化して圧縮成形物40Pの
硬化時間が変化しても、圧縮成形物40Pの硬化状態を
精度よく把握することができ、孔あけ加工に好適なタイ
ミングを決めることができて、良好な加工面を有する孔
を開けることができる。従って、セパレータ40の品質
を向上させることができる。
By controlling the timing of punching by the molding time t and the direct material temperature T of the compression molded product 40P, for example, even if the mold temperature changes and the curing time of the compression molded product 40P changes. The cured state of the compression molded product 40P can be accurately grasped, the timing suitable for drilling can be determined, and a hole having a good machined surface can be drilled. Therefore, the quality of the separator 40 can be improved.

【0032】尚、本発明の実施の形態では、図4に示し
たように、圧縮成形物40Pの温度を直接測定すること
により、孔あけのタイミングを決定するようにしたが、
これに限らず、圧縮成形物40Pに近いセパレータ成形
下型22又はセパレータ成形上型26の温度を測定して
孔あけのタイミングを決定するようにすれば、簡単な構
成で好適な加工面を持つ孔を得ることができる。
In the embodiment of the present invention, as shown in FIG. 4, the temperature of the compression molded product 40P is directly measured to determine the timing of punching.
Not limited to this, if the temperature of the separator molding lower mold 22 or the separator molding upper mold 26 close to the compression molded product 40P is measured to determine the timing of punching, a suitable structure is obtained with a simple structure. Pores can be obtained.

【0033】[0033]

【発明の効果】本発明は上記構成により次の効果を発揮
する。請求項1の燃料電池用セパレータの製造方法は、
カーボンと熱硬化性樹脂とにバインダを加え、混練し、
成形することで平板状のプリフォームを製造するプリフ
ォーム工程と、このプリフォームを所定形状に圧縮成形
するとともに硬化温度に加熱することでセパレータを製
造するセパレータ製造工程とからなる燃料電池用セパレ
ータの製造方法において、セパレータ製造工程中に且つ
プリフォームが硬化する前にプリフォームに孔あけ加工
を施すので、プリフォームが硬化した後のような、硬度
が大きくなって孔の加工面に割れが発生したり加工面が
粗くなったりするようなことがなく、孔の加工面を滑ら
かにすることができる。従って、セパレータに形成した
ガス流路に、上記した孔から燃料ガスや酸化剤ガスを安
定的に供給したり排出したりすることができ、燃料電池
の発電性能を高めることができる。
The present invention has the following effects due to the above configuration. A method for manufacturing a fuel cell separator according to claim 1,
Add a binder to carbon and thermosetting resin, knead,
A preform step of manufacturing a flat plate-like preform by molding, and a separator for fuel cell comprising a separator manufacturing step of manufacturing a separator by compressing and molding this preform into a predetermined shape and heating to a curing temperature. In the manufacturing method, since the preform is perforated during the separator manufacturing process and before the preform is cured, the hardness becomes large and cracks occur on the machined surface of the hole, such as after the preform is cured. The machined surface of the hole can be made smooth without causing the machining or roughening of the machined surface. Therefore, the fuel gas and the oxidant gas can be stably supplied to and discharged from the above-described holes in the gas flow path formed in the separator, and the power generation performance of the fuel cell can be improved.

【0034】請求項2の燃料電池用セパレータの製造方
法は、孔あけ加工を、セパレータ製造工程を開始してか
ら所定時間経過したときに行うので、孔あけ加工のタイ
ミングを時間で管理することにより、孔の加工面を常に
良好な状態にすることができる。従って、容易に安定し
た品質のセパレータを製造することができる。
In the fuel cell separator manufacturing method according to the second aspect, since the hole forming process is performed when a predetermined time has elapsed since the separator manufacturing process was started, the hole forming process is controlled by time. The processed surface of the hole can always be in a good state. Therefore, a separator of stable quality can be easily manufactured.

【0035】請求項3の燃料電池用セパレータの製造方
法は、孔あけ加工を、セパレータ製造工程を開始してか
ら所定時間経過後で、且つプリフォームの温度が所定温
度に達したときに行うので、孔開け加工のタイミングを
時間及びプリフォームの直接の温度で管理することによ
り、例えば、型の温度が変化してプリフォームの硬化時
間が変化しても、精度よくプリフォームの硬化状態を把
握することができ、良好な加工面を有する孔を開けるこ
とができる。従って、セパレータの品質を向上させるこ
とができる。
In the fuel cell separator manufacturing method of the third aspect of the present invention, the perforating process is performed after a lapse of a predetermined time from the start of the separator manufacturing process and when the temperature of the preform reaches a predetermined temperature. By controlling the timing of punching with time and direct temperature of the preform, for example, even if the mold temperature changes and the curing time of the preform changes, the cured state of the preform can be accurately grasped. It is possible to make a hole having a good processed surface. Therefore, the quality of the separator can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る燃料電池用セパレータの製造フロ
FIG. 1 is a flow chart of manufacturing a fuel cell separator according to the present invention.

【図2】本発明に係るプリフォーム成形の要領を説明す
る作用図
FIG. 2 is an operation diagram for explaining the procedure of preform molding according to the present invention.

【図3】本発明に係るセパレータ成形の要領を説明する
第1作用図
FIG. 3 is a first operation diagram for explaining the procedure for forming a separator according to the present invention.

【図4】本発明に係るセパレータ成形の要領を説明する
第2作用図
FIG. 4 is a second operation diagram for explaining the procedure for forming a separator according to the present invention.

【図5】本発明に係るセパレータの成形時間と材料温度
との関係を示すグラフ
FIG. 5 is a graph showing the relationship between the molding time and the material temperature of the separator according to the present invention.

【符号の説明】[Explanation of symbols]

17…プリフォーム、40…セパレータ、40P…圧縮
成形物、41…孔、T1…所定温度(成形温度)、t1
…成形時間、t2…成形時間。
17 ... Preform, 40 ... Separator, 40P ... Compression molded product, 41 ... Hole, T1 ... Predetermined temperature (molding temperature), t1
Molding time, t2 Molding time.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 カーボンと熱硬化性樹脂とにバインダを
加え、混練し、成形することで平板状のプリフォームを
製造するプリフォーム工程と、このプリフォームを所定
形状に圧縮成形するとともに硬化温度に加熱することで
セパレータを製造するセパレータ製造工程とからなる燃
料電池用セパレータの製造方法において、 前記セパレータ製造工程中に且つプリフォームが硬化す
る前にプリフォームに孔あけ加工を施すことを特徴とす
る燃料電池用セパレータの製造方法。
1. A preform step of producing a flat plate-like preform by adding a binder to carbon and a thermosetting resin, kneading and molding the mixture, and compression molding the preform into a predetermined shape and curing temperature. In a method for manufacturing a fuel cell separator comprising a separator manufacturing step of manufacturing a separator by heating the preform, during the separator manufacturing step and before the preform is cured, the preform is perforated. Method for manufacturing a fuel cell separator.
【請求項2】 前記孔あけ加工は、前記セパレータ製造
工程を開始してから所定時間経過したときに行うことを
特徴とする請求項1記載の燃料電池用セパレータの製造
方法。
2. The method for manufacturing a fuel cell separator according to claim 1, wherein the perforating process is performed when a predetermined time has elapsed after the separator manufacturing process was started.
【請求項3】 前記孔あけ加工は、前記セパレータ製造
工程を開始してから所定時間経過後で、且つプリフォー
ムの温度が所定温度に達したときに行うことを特徴とす
る請求項1記載の燃料電池用セパレータの製造方法。
3. The method according to claim 1, wherein the perforating process is performed after a predetermined time has elapsed from the start of the separator manufacturing process and when the temperature of the preform reaches a predetermined temperature. Method for manufacturing fuel cell separator.
JP2001206596A 2001-07-06 2001-07-06 Manufacturing method of separator for fuel cell Pending JP2003022812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001206596A JP2003022812A (en) 2001-07-06 2001-07-06 Manufacturing method of separator for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001206596A JP2003022812A (en) 2001-07-06 2001-07-06 Manufacturing method of separator for fuel cell

Publications (1)

Publication Number Publication Date
JP2003022812A true JP2003022812A (en) 2003-01-24

Family

ID=19042704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001206596A Pending JP2003022812A (en) 2001-07-06 2001-07-06 Manufacturing method of separator for fuel cell

Country Status (1)

Country Link
JP (1) JP2003022812A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005117180A1 (en) * 2004-05-31 2005-12-08 Matsushita Electric Industrial Co., Ltd. Polyelectrolyte fuel cell-use separator, polyelectrolyte fuel cell, method of evaluating polyelectrolyte fuel cell-use separator, and production method of polyelectrolyte fuel cell-use separator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH103931A (en) * 1996-06-14 1998-01-06 Toyota Motor Corp Manufacture of fuel cell separator, and the separator
JP2000077079A (en) * 1998-08-31 2000-03-14 Nippon Pillar Packing Co Ltd Separator for fuel cell and its manufacture
JP2002075400A (en) * 2000-08-31 2002-03-15 Hitachi Chem Co Ltd Separator for fuel cell and fuel cell using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH103931A (en) * 1996-06-14 1998-01-06 Toyota Motor Corp Manufacture of fuel cell separator, and the separator
JP2000077079A (en) * 1998-08-31 2000-03-14 Nippon Pillar Packing Co Ltd Separator for fuel cell and its manufacture
JP2002075400A (en) * 2000-08-31 2002-03-15 Hitachi Chem Co Ltd Separator for fuel cell and fuel cell using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005117180A1 (en) * 2004-05-31 2005-12-08 Matsushita Electric Industrial Co., Ltd. Polyelectrolyte fuel cell-use separator, polyelectrolyte fuel cell, method of evaluating polyelectrolyte fuel cell-use separator, and production method of polyelectrolyte fuel cell-use separator

Similar Documents

Publication Publication Date Title
JP2011113806A (en) Separator for fuel cell and method of manufacturing the same
US6818165B2 (en) Method of fabricating fluid flow field plates
JP3751911B2 (en) Polymer electrolyte fuel cell and method of manufacturing separator plate thereof
KR102226806B1 (en) Method for manufacturing gasket integrated separator
WO2006126638A1 (en) Molding die for fuel cell separator, method of manufacturing fuel cell separator, and fuel cell separator
JP2003022812A (en) Manufacturing method of separator for fuel cell
JP2009302037A (en) Separation board for fuel battery stack and its manufacturing method
US11946695B2 (en) Apparatus and method for plasticizing solid oxide fuel cell
CN101218699B (en) Electrolyte membrane and process for producing the same
JP2007026899A (en) Fuel cell and manufacturing method of separator therefor
JP2005209607A (en) Gas diffusion layer member of solid polymer fuel cell and its manufacturing method
JP2006216257A (en) Manufacturing method of separator for fuel cell
KR101425561B1 (en) Separator and method for manufacturing the same
KR20100020308A (en) Molding apparatus for fuel cell separator
JP2007137017A (en) Mold for molding fuel cell separator, manufacturing process of fuel cell separator and fuel cell separator
JP2000021425A (en) Current collector for fuel cell
CN101009381A (en) Method of manufacturing separator for fuel cell, and method of connecting the separator to electrode diffusion layer
JP2008159587A (en) Process for molding composite bipolar plate with reinforced outer edge
GB2386467A (en) Bipolar plates
JP2007141724A (en) Molding die for fuel cell separator, method for manufacturing fuel cell separator, and fuel cell separator
JP2003022818A (en) Molding device of separator for fuel cell
JP2007242315A (en) Manufacturing method of separator for fuel cell, separator for fuel cell, and manufacturing device of separator for fuel cell
RU2748853C1 (en) Bipolar plate of fuel cell with solid polymer electrolyte and the method for its manufacture
JP2002373670A (en) Manufacturing method of separator for fuel cell
JP2008159587A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101214