JP2007026899A - Fuel cell and manufacturing method of separator therefor - Google Patents

Fuel cell and manufacturing method of separator therefor Download PDF

Info

Publication number
JP2007026899A
JP2007026899A JP2005207672A JP2005207672A JP2007026899A JP 2007026899 A JP2007026899 A JP 2007026899A JP 2005207672 A JP2005207672 A JP 2005207672A JP 2005207672 A JP2005207672 A JP 2005207672A JP 2007026899 A JP2007026899 A JP 2007026899A
Authority
JP
Japan
Prior art keywords
gas
separator
flow path
fuel cell
plate thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005207672A
Other languages
Japanese (ja)
Inventor
Kenichi Toyoshima
剣一 豊島
Motokata Ishihara
基固 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005207672A priority Critical patent/JP2007026899A/en
Publication of JP2007026899A publication Critical patent/JP2007026899A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell of less weight and smaller size by, relating to a separator formed with a metal plate, allowing the plate thickness of an inside gas flow channel to be thinner than the plate thickness of a gas seal that requires rigidity, and preventing increase in plate thickness of the entire separator as the plate thickness of the gas flow channel is equivalent to that of the gas seal part. <P>SOLUTION: A separator 1 is integrally molded from a metal plate. The plate thickness of a gas seal 35 at the periphery of it is so designed as not to be deformed by the reactive force of a compressed seal material 39 that is pressurized under an arbitrary load for preventing gas leakage. Gas communications 31 and 33 as well as a power generation channel 41 that are inside gas flow channels 24 are thinner than the plate thickness of the gas seal part 35. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電解質膜の一方の側に燃料極を備えたガス拡散層を設けるとともに、同他方の側に酸化剤極を備えたガス拡散層を設け、各ガス拡散層の電解質膜と反対側にセパレータを配置し、この各セパレータと各ガス拡散層との間に、燃料ガスおよび酸化剤ガスをそれぞれ供給するガス流路を設けた燃料電池および燃料電池用セパレータの製造方法に関する。   The present invention provides a gas diffusion layer having a fuel electrode on one side of an electrolyte membrane and a gas diffusion layer having an oxidizer electrode on the other side, and each gas diffusion layer is opposite to the electrolyte membrane. The present invention relates to a fuel cell and a method for manufacturing a fuel cell separator, in which a separator is disposed in each of which a gas flow path for supplying a fuel gas and an oxidant gas is provided between each separator and each gas diffusion layer.

燃料電池には、固体高分子型燃料電池、燐酸型燃料電池および溶融炭酸塩型燃料電池など各種のものがある。これらの燃料電池は、酸化ガスと水素などの燃料ガスとの電気化学反応により起電力を生ずる単位電池からなり、この単位電池を電気的に接続するとともに反応ガスを分離させるセパレータを備えている。   There are various types of fuel cells such as solid polymer fuel cells, phosphoric acid fuel cells, and molten carbonate fuel cells. These fuel cells consist of unit cells that generate an electromotive force by an electrochemical reaction between an oxidizing gas and a fuel gas such as hydrogen, and are provided with a separator that electrically connects the unit cells and separates the reaction gas.

上記した単位電池を複数積層して所定の出力を得ることもあり、積層する単位電池の数は数百に及ぶことがある。この単位電池に使用するセパレータは、カーボンや金属製のプレートにガス流路を形成している。   A plurality of unit cells may be stacked to obtain a predetermined output, and the number of unit cells stacked may be several hundreds. The separator used for this unit battery forms a gas flow path in a carbon or metal plate.

カーボン製のセパレータは、ガス流路を切削などにより加工して形成し、強度を確保するため厚さは数mm程度と比較的厚くなることから、低コスト化や薄肉化による小型化を図る上で、ステンレスやチタンなどの金属を適用する技術開発が盛んになってきている。   The carbon separator is formed by cutting the gas flow path by cutting, etc., and the thickness is relatively thick, about several millimeters, to ensure strength. Therefore, technological developments using metals such as stainless steel and titanium are becoming popular.

セパレータに金属を使用した場合には、カーボンに比べて厚さを薄くでき、ガス流路を形成する場合、プレス加工を用いることによって加工費を安価にできる特徴がある。   When a metal is used for the separator, the thickness can be reduced compared to carbon, and when a gas flow path is formed, the processing cost can be reduced by using press working.

このガス流路は、金属板を多数の凹凸部を有する形状に加工することで確保するが、凹凸部の角部にRを設けることで曲げ歪みの増大による破断を防止し、またプレス加工時に予備プレスを行って最終成形時に凹凸部の肩部の割れや破断を防止し、さらに凹凸部のガス拡散層への接触面を平坦にしてその接触面積が低減するのを防止する方法が、下記特許文献1に記載されている。
特開2002−313354号公報
This gas flow path is secured by processing the metal plate into a shape having a large number of irregularities, but by providing R at the corners of the irregularities, it prevents breakage due to an increase in bending strain, and during press working A method of preventing the cracking and breaking of the shoulder portion of the concavo-convex portion at the time of final molding by performing preliminary pressing, and further reducing the contact area by flattening the contact surface to the gas diffusion layer of the concavo-convex portion is described below. It is described in Patent Document 1.
JP 2002-313354 A

ところで、セパレータは、その周縁部をガスシールする必要があり、このガスシール部 は圧縮応力を受けることから剛性を確保する必要があり、このためある程度の板厚が必要となる。   By the way, it is necessary to gas-seal the peripheral part of the separator, and since this gas-sealed part receives compressive stress, it is necessary to ensure rigidity, and therefore a certain thickness is required.

ところが、上記した従来のセパレータでは、全体の板厚が均一であることから、ガスシール部ほどの板厚が不要なガス流路を形成する部位についても、ガスシール部と同様な比較的厚い板厚になってしまい、この結果セパレータ全体の板厚が厚くなり、これにより燃料電池として重量増加、あるいは単位電池相互間のピッチが大きくなって燃料電池の大型化を招く。   However, in the above-described conventional separator, since the overall plate thickness is uniform, a relatively thick plate similar to the gas seal portion is also used for a portion where a gas flow path that does not require a plate thickness as much as the gas seal portion is formed. As a result, the plate thickness of the entire separator increases, which increases the weight of the fuel cell or increases the pitch between unit cells, leading to an increase in the size of the fuel cell.

そこで、本発明は、セパレータ全体の板厚増大を防止することを目的としている。   Then, this invention aims at preventing the plate | board thickness increase of the whole separator.

本発明は、電解質膜の一方の側に燃料極を備えたガス拡散層を設けるとともに、同他方の側に酸化剤極を備えたガス拡散層を設け、前記各ガス拡散層の前記電解質膜と反対側にセパレータをそれぞれ配置し、この各セパレータと前記各ガス拡散層との間に、燃料ガスおよび酸化剤ガスをそれぞれ供給するガス流路を設けた燃料電池において、前記セパレータを金属板で形成し、前記セパレータの周縁部におけるガスシール部の板厚に対し、このガスシール部の内側の前記ガス流路を形成するガス流路部の板厚を薄くすることを最も主要な特徴とする。   The present invention provides a gas diffusion layer having a fuel electrode on one side of an electrolyte membrane, and a gas diffusion layer having an oxidizer electrode on the other side, and the electrolyte membrane of each of the gas diffusion layers In the fuel cell in which separators are arranged on the opposite sides and gas flow paths for supplying fuel gas and oxidant gas are provided between the separators and the gas diffusion layers, the separators are formed of metal plates. The most important feature is that the thickness of the gas flow path portion forming the gas flow path inside the gas seal portion is made thinner than the thickness of the gas seal portion at the peripheral edge of the separator.

本発明によれば、金属板で形成するセパレータを、剛性が必要なガスシール部の板厚に対し、その内側のガス流路部の板厚を薄くするようにしたので、ガスシール部の板厚に合わせてガス流路部も同様の板厚となることによるセパレータ全体の板厚増大を防止し、これにより燃料電池として重量低減および小型化を達成することができる。   According to the present invention, the separator formed of the metal plate is made thinner in the gas flow path portion on the inner side than the plate thickness of the gas seal portion requiring rigidity. According to the thickness, the gas flow path portion has the same plate thickness, thereby preventing an increase in the plate thickness of the entire separator, thereby achieving weight reduction and miniaturization as a fuel cell.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態を示す燃料電池に使用する酸化剤極側のセパレータ1の平面図で、このセパレータ1は、例えばステンレスからなる金属板で形成したものである。図2は、セパレータ1を用いた燃料電池の図1のA−A線に対応する簡略化した断面図で、電解質膜3の一方の側に燃料極を備えるガス拡散層5を設けるとともに、電解質膜3の他方の側に酸化剤極を備えるガス拡散層7を設けている。   FIG. 1 is a plan view of a separator 1 on the oxidizer electrode side used in a fuel cell according to an embodiment of the present invention. The separator 1 is formed of a metal plate made of, for example, stainless steel. FIG. 2 is a simplified cross-sectional view corresponding to the line AA of FIG. 1 of the fuel cell using the separator 1, in which a gas diffusion layer 5 having a fuel electrode is provided on one side of the electrolyte membrane 3, and the electrolyte A gas diffusion layer 7 having an oxidant electrode is provided on the other side of the film 3.

そして、酸化剤極を備えるガス拡散層7側に前記した酸化剤極側のセパレータ1を、燃料極を備えるガス拡散層5に燃料極側のセパレータ9を、それぞれ配置する。   Then, the separator 1 on the oxidant electrode side described above is disposed on the gas diffusion layer 7 side including the oxidant electrode, and the separator 9 on the fuel electrode side is disposed on the gas diffusion layer 5 including the fuel electrode.

上記した電解質膜3,両ガス拡散層5,7および酸化剤極側のセパレータ1,燃料極側セパレータ9により、燃料電池の単位電池を構成し、通常はこの単位電池を複数積層して燃料電池スタックとして使用する。   The above-described electrolyte membrane 3, both gas diffusion layers 5 and 7, the oxidant electrode side separator 1, and the fuel electrode side separator 9 constitute a unit cell of a fuel cell. Usually, a plurality of unit cells are stacked to form a fuel cell. Use as a stack.

燃料極側のセパレータ9は、酸化剤極側のセパレータ1と同様な構造であるので、以下は前記図1に示す酸化剤極側のセパレータ1について説明する。   Since the separator 9 on the fuel electrode side has the same structure as the separator 1 on the oxidant electrode side, the separator 1 on the oxidant electrode side shown in FIG. 1 will be described below.

酸化剤極側のセパレータ1の図1中で上下両端には、酸化ガスが通る酸化ガス入口,出口マニホールド用の孔11,13、冷却水が通る冷却水入口,出口マニホールド用の孔15,17、燃料ガスが通る燃料ガス入口,出口マニホールド用の孔19,21を、それぞれ貫通して形成してある。   The separator 1 on the oxidizer electrode side in FIG. 1 has an oxidizing gas inlet through which oxidizing gas passes, outlet manifold holes 11 and 13, cooling water inlet through which cooling water passes, and outlet manifold holes 15 and 17. The fuel gas inlet and outlet manifold holes 19 and 21 through which the fuel gas passes are respectively formed to penetrate therethrough.

これら各孔11,13,15,17,19,21は、燃料電池を構成する他の部材である電解質膜3および燃料極側のセパレータ9にも同様に形成して、これら各部材間で互いに整合する位置にある各孔によってそれぞれのマニホールドを構成する。   These holes 11, 13, 15, 17, 19, 21 are also formed in the electrolyte membrane 3, which is another member constituting the fuel cell, and the separator 9 on the fuel electrode side. Each manifold is constituted by each hole located at a matching position.

そして、図1中で上部側の各孔11,15,21と同下部側の各孔13,17,19との間には、酸化ガス入口,出口マニホールド用の孔11,13相互を連通するガス流路23を設けている。このガス流路23を備える部位をガス流路部24としている。   1, the holes 11 and 13 for the oxidizing gas inlet and the outlet manifold communicate with each other between the holes 11, 15 and 21 on the upper side and the holes 13, 17 and 19 on the lower side. A gas flow path 23 is provided. A portion including the gas flow path 23 is a gas flow path portion 24.

ガス流路23は、図1中の上下方向中央位置にて上下方向に互いに平行に延びる複数の発電部ガス流路25と、この発電部ガス流路25と酸化ガス入口マニホールド用の孔11とを連絡する拡散流路27と、発電部ガス流路25と酸化ガス出口マニホールド用の孔13とを連絡する集合流路29と、をそれぞれ備えている。上記した拡散流路27および集合流路29を備える部位をガス連絡部31および33としている。   The gas flow path 23 includes a plurality of power generation section gas flow paths 25 extending in parallel with each other in the vertical direction at the center position in the vertical direction in FIG. 1, and the power generation section gas flow paths 25 and the holes 11 for the oxidizing gas inlet manifold. , And a collective flow path 29 that communicates the power generation unit gas flow path 25 and the oxidant gas outlet manifold hole 13. The parts including the diffusion channel 27 and the collecting channel 29 described above are used as gas communication parts 31 and 33.

また、上記したガス流路23の前記孔11,13に対応する部位を除く周囲と、各孔1,13のガス流路23に対応する部位を除く周囲と、前記した各孔15,17,19,21の周囲とを、ガスおよび冷却水のリークを防ぐガスシール部35としている。ガスシール部35の表裏両面には、図2に示すように圧縮シール材37,39を設けている。   Further, the periphery of the gas flow path 23 excluding the part corresponding to the holes 11 and 13, the periphery of the holes 1 and 13 excluding the part corresponding to the gas flow path 23, and the holes 15, 17, A gas seal portion 35 that prevents leakage of gas and cooling water is provided around the areas 19 and 21. As shown in FIG. 2, compression seal materials 37 and 39 are provided on both the front and back surfaces of the gas seal portion 35.

ガスシール部35は、図2に示すように、それより内側の発電部ガス流路25を形成する発電流路部41より板厚を厚くしている。すなわち、酸化剤極側のセパレータ1の一部を単体で示す図3(a)のように、ガスシール部35の板厚をT、発電流路部41の板厚をt1とすると、T>t1としている。   As shown in FIG. 2, the gas seal portion 35 is thicker than the power generation flow path portion 41 that forms the power generation section gas flow path 25 on the inner side. That is, as shown in FIG. 3A showing a part of the separator 1 on the oxidizer electrode side as a single unit, assuming that the plate thickness of the gas seal portion 35 is T and the plate thickness of the power generation flow passage portion 41 is t1, T> t1.

図3(b)は、図1のB−B断面図で、集合流路29を備えるガス連絡部33に対応している。このガス連絡部33の肉厚をt2とすると、T>t2である。   FIG. 3B is a cross-sectional view taken along the line BB in FIG. 1 and corresponds to the gas communication part 33 including the collecting flow path 29. When the thickness of the gas communication part 33 is t2, T> t2.

図3(c)は、図1のC−C断面図を時計回り方向に90度回転して示したもので、酸化ガス出口マニホールド用の孔13を備えるガス連絡部33に対応している。この孔13付近のガス連絡部33の板厚も、上記した集合流路29を備える部位と同様にt2であり、ガスシール部35の板厚Tより薄くしている。   FIG. 3C shows the CC cross-sectional view of FIG. 1 rotated 90 degrees in the clockwise direction, and corresponds to the gas communication part 33 having the holes 13 for the oxidizing gas outlet manifold. The plate thickness of the gas communication part 33 in the vicinity of the hole 13 is t2 similarly to the part including the collective flow path 29 described above, and is thinner than the plate thickness T of the gas seal part 35.

また、特に図示しないが、拡散流路27を備えるガス連絡部31および、孔11付近のガス連絡部31の板厚についても、上記したガス連絡部33と同様にt2としてあり、ガスシール部35の肉厚Tより薄くしている。   Further, although not particularly shown, the thickness of the gas communication part 31 including the diffusion flow path 27 and the thickness of the gas communication part 31 in the vicinity of the hole 11 are also set to t2 similarly to the gas communication part 33 described above, and the gas seal part 35 The wall thickness is less than T.

上記したガスシール部35の板厚Tは、ガスリークを防ぐために任意の荷重で押付けられている圧縮シール材37,39の反力で変形しないものとしている。   The above-described plate thickness T of the gas seal portion 35 is assumed not to be deformed by the reaction force of the compression seal members 37 and 39 pressed with an arbitrary load in order to prevent gas leakage.

このように、本実施形態では、セパレータ1の周縁部におけるガスシール部35の板厚に対し、ガスシール部35の内側のガス流路23を形成する、ガス連絡部31,33および発電流路部41からなるガス流路部24の板厚を薄くしている。   Thus, in this embodiment, the gas communication parts 31 and 33 and the power generation flow path that form the gas flow path 23 inside the gas seal part 35 with respect to the plate thickness of the gas seal part 35 at the peripheral edge part of the separator 1. The plate thickness of the gas flow path portion 24 including the portion 41 is reduced.

また、図3(b),(c)に示す板厚t2となるガス連絡部33(31)は、圧縮シール材37,39から反力を受けないころはもちろん、発電部ガス流路25を形成する発電流路部41のようにガス拡散層からの反力を受けないため、板厚をより薄くすることが可能であり、したがってt1>t2としてもよい。   3 (b) and 3 (c), the gas communication part 33 (31) having the plate thickness t2 is not limited to the roller that does not receive the reaction force from the compression seal materials 37 and 39, but also the power generation part gas flow path 25. Since the reaction force from the gas diffusion layer is not received unlike the power generation flow path portion 41 to be formed, it is possible to make the plate thickness thinner, and therefore, t1> t2.

上記したようなセパレータ1の製造は、板厚Tの金属板Pに連続した凹凸部をプレス加工により成形し、これにより発電部ガス流路25,拡散流路27および集合流路29を備えるガス流路23を形成する。図4(a)は、発電部ガス流路25を備える発電流路部41におけるプレス成形後の断面図であり、プレス成形の際、セパレータ1の凹凸部の縦壁部1aには金型の抜き勾配を、曲げ部1bはRをそれぞれ与える必要がある。   In the manufacture of the separator 1 as described above, an uneven portion continuous with the metal plate P having a thickness T is formed by press working, whereby a gas including the power generation unit gas flow path 25, the diffusion flow path 27, and the collective flow path 29. A flow path 23 is formed. FIG. 4A is a cross-sectional view after the press molding in the power generation flow path portion 41 including the power generation section gas flow path 25, and a metal mold is formed on the vertical wall portion 1a of the uneven portion of the separator 1 during the press molding. For the draft, the bent portion 1b needs to give R.

その後、図4(b)に示すように、シール部35に相当する部位を、マスキング材43で適宜マスキングした状態で、金属を溶融させる溶液中に成形後の金属板Pを浸し、シール部35以外の部位に対してエッジング加工を行う。図4(c)は、上記発電流路部41におけるエッジング加工後の状態を示す。これにより、プレス成形部位(凹凸形状部)などのマスキングしていない部位の板厚がシール部35の板厚Tより薄いt1あるいはt2となるセパレータ1が得られる。   Thereafter, as shown in FIG. 4B, the molded metal plate P is immersed in a solution that melts the metal in a state where the portion corresponding to the seal portion 35 is appropriately masked with the masking material 43, and the seal portion 35. Edging process is performed on other parts. FIG. 4C shows a state after the edging process in the power generation flow path portion 41. As a result, the separator 1 is obtained in which the plate thickness of the unmasked portion such as the press-formed portion (uneven shape portion) is t1 or t2 which is thinner than the plate thickness T of the seal portion 35.

なお、シール部35における圧縮シール材37,39の設置部位の凹部は、エッジング加工後に機械加工すればよい。   In addition, what is necessary is just to machine the recessed part of the installation site | part of the compression sealing materials 37 and 39 in the seal part 35 after an edging process.

このように、本実施形態の燃料電池に使用するセパレータ1は、金属板を一体成形するとともに、剛性が必要なガスシール部35の板厚に対し、その内側のガス流路23を形成するガス流路部24の板厚を薄くしているので、剛性が必要なガスシール部35の板厚に合わせて他の部位、すなわちガス流路23を形成するガス流路部24も同様の板厚となることによるセパレータ全体の板厚増大を防止し、これにより燃料電池として重量低減を達成できるとともに、単位電池相互間のピッチを小さくできて燃料電池の小型化を達成することができる。   As described above, the separator 1 used in the fuel cell according to the present embodiment integrally forms a metal plate and forms a gas flow path 23 on the inner side with respect to the plate thickness of the gas seal portion 35 that requires rigidity. Since the plate thickness of the flow passage portion 24 is reduced, the gas flow passage portion 24 that forms the other portion, that is, the gas flow passage 23 in accordance with the plate thickness of the gas seal portion 35 that requires rigidity has the same plate thickness. Accordingly, an increase in the thickness of the separator as a whole can be prevented, thereby reducing the weight of the fuel cell, and reducing the pitch between the unit cells, thereby reducing the size of the fuel cell.

また、図5(a)のように、エッジング加工後の凹凸部の曲げ部1bは、プレス成形後のR形状を維持しているが、これをさらにエッジング加工によって、図5(b)に示すように、曲げ部1bのRを無くすか、あるいはRを小さくすることができる。これにより、セパレータ1のガス拡散層との接触面積が増大して接触抵抗が低減し、発電効率を高めることができる。   Further, as shown in FIG. 5 (a), the bent portion 1b of the concavo-convex portion after the edging process maintains the R shape after the press forming, and this is further shown in FIG. 5 (b) by the edging process. As described above, R of the bent portion 1b can be eliminated or R can be reduced. Thereby, the contact area with the gas diffusion layer of the separator 1 increases, the contact resistance decreases, and the power generation efficiency can be increased.

この際のマスキングは、図5(a)に二点鎖線で示すように、凹部となる部位にマスキング材45を設置し、凹部と反対側の凸部分をエッジングにより溶融させて板厚を薄くすることで、曲げ部1bのRを無くすか、あるいはRを小さくすることができる。   In this case, as shown by a two-dot chain line in FIG. 5 (a), a masking material 45 is provided at a portion to be a concave portion, and the convex portion opposite to the concave portion is melted by edging to reduce the plate thickness. Thereby, R of the bending part 1b can be eliminated or R can be made small.

さらに、ガス拡散層と接する発電部ガス流路25を備える発電流路部41の板厚を薄くすることで、燃料電池の起動時などの熱膨張による変形を、セパレータ1の上記した発電流路部41が弾性変形することで吸収しやすくなり、燃料電池の性能向上に寄与することができる。   Further, by reducing the plate thickness of the power generation flow path portion 41 including the power generation section gas flow path 25 in contact with the gas diffusion layer, deformation due to thermal expansion such as when the fuel cell is started up is prevented from being generated as described above. The portion 41 is easily deformed by being elastically deformed, which can contribute to improving the performance of the fuel cell.

また、プレス加工とエッジング加工の2工程で、セパレータ1の板厚を変えられるので、例えば金属板の表面にカーボンを部分的に付着させて板厚を変える場合に比較して、加工時間を短縮することができる。   In addition, the plate thickness of the separator 1 can be changed in two steps, pressing and edging, so the processing time is shortened compared to, for example, changing the plate thickness by partially attaching carbon to the surface of a metal plate. can do.

本発明の一実施形態を示す燃料電池に使用するカソード側のセパレータの平面図である。It is a top view of the separator by the side of the cathode used for the fuel cell which shows one Embodiment of this invention. 図1のA−A線に対応する燃料電池の簡略化した断面図である。FIG. 2 is a simplified cross-sectional view of a fuel cell corresponding to line AA in FIG. 1. (a)は図2の燃料電池におけるセパレータの一部を単体で示す断面図、(b)は図1のB−B断面図、(c)は図1のC−C断面図を時計回り方向に90度回転して示した断面図である。2A is a sectional view showing a part of the separator in the fuel cell of FIG. 2 alone, FIG. 2B is a sectional view taken along the line BB in FIG. 1, and FIG. FIG. 図1のセパレータの製造方法を示す説明図で、(a)はプレス成形後の断面図、(b)プレス成形後にマスキングしている状態を示す断面図、(c)はマスキング状態でエッジング加工した状態を示す断面図である。It is explanatory drawing which shows the manufacturing method of the separator of FIG. 1, (a) is sectional drawing after press molding, (b) Sectional drawing which shows the state masked after press molding, (c) is edging in the masking state It is sectional drawing which shows a state. (a)はプレス成形後のセパレータの曲げ部をエッジング加工する際のマスキング状態を示す断面図、(b)はエッジング加工によりセパレータの曲げ部のR形状を無くした状態を示す断面図である。(A) is sectional drawing which shows the masking state at the time of edging the bending part of the separator after press molding, (b) is sectional drawing which shows the state which eliminated the R shape of the bending part of the separator by edging.

符号の説明Explanation of symbols

1 カソード側のセパレータ
3 電解質膜
5 燃料極を備えたガス拡散層
7 酸化剤極を備えたガス拡散層
9 アノード側のセパレータ
23 ガス流路
24 ガス流路部
31,33 ガス連絡部
35 ガスシール部
41 発電流路部
DESCRIPTION OF SYMBOLS 1 Cathode side separator 3 Electrolyte membrane 5 Gas diffusion layer provided with fuel electrode 7 Gas diffusion layer provided with oxidant electrode 9 Separator on anode side 23 Gas flow path 24 Gas flow path section 31, 33 Gas communication section 35 Gas seal Part 41 Power generation flow path

Claims (5)

電解質膜の一方の側に燃料極を備えたガス拡散層を設けるとともに、同他方の側に酸化剤極を備えたガス拡散層を設け、前記各ガス拡散層の前記電解質膜と反対側にセパレータをそれぞれ配置し、この各セパレータと前記各ガス拡散層との間に、燃料ガスおよび酸化剤ガスをそれぞれ供給するガス流路を設けた燃料電池において、前記セパレータを金属板で形成し、前記セパレータの周縁部におけるガスシール部の板厚に対し、このガスシール部の内側の前記ガス流路を形成するガス流路部の板厚を薄くすることを特徴とする燃料電池。   A gas diffusion layer having a fuel electrode is provided on one side of the electrolyte membrane, a gas diffusion layer having an oxidant electrode is provided on the other side, and a separator is provided on the opposite side of each gas diffusion layer from the electrolyte membrane. In the fuel cell in which gas flow paths for supplying fuel gas and oxidant gas are provided between each separator and each gas diffusion layer, the separator is formed of a metal plate, and the separator A fuel cell characterized in that the plate thickness of the gas flow path portion forming the gas flow path inside the gas seal portion is made thinner than the plate thickness of the gas seal portion at the peripheral edge of the fuel cell. 前記セパレータのガス流路部は、前記ガス拡散層の外側に位置し、このガス拡散層とそれよりさらに外側のガスマニホールドとを連絡するガス連絡部であることを特徴とする請求項1に記載の燃料電池。   The gas flow path portion of the separator is located outside the gas diffusion layer, and is a gas communication portion that communicates the gas diffusion layer and a gas manifold outside the gas diffusion layer. Fuel cell. 前記セパレータのガス流路部は、前記ガス拡散層に対応する発電流路部であることを特徴とする請求項1に記載の燃料電池。   The fuel cell according to claim 1, wherein the gas flow path portion of the separator is a power generation flow path portion corresponding to the gas diffusion layer. 前記金属板で形成したセパレータは、金属を溶融可能な溶液により溶融させることで板厚を変化させたことを特徴とする請求項1ないし3のいずれか1項に記載の燃料電池。   The fuel cell according to any one of claims 1 to 3, wherein the separator formed of the metal plate has a plate thickness changed by melting the metal with a meltable solution. 電解質膜の一方の側に燃料極を備えたガス拡散層を設けるとともに、同他方の側に酸化剤極を備えたガス拡散層を設け、前記各ガス拡散層の前記電解質膜と反対側にそれぞれ配置され、前記各ガス拡散層との間に、燃料ガスおよび酸化剤ガスをそれぞれ供給するガス流路を形成する燃料電池用セパレータの製造方法において、前記セパレータを金属板で形成し、前記セパレータの周縁部におけるガスシール部の板厚に対し、このガスシール部の内側の前記ガス流路を形成するガス流路部の板厚が薄くなるように、前記金属板を溶融可能な溶液により溶融させて板厚を変化させることを特徴とする燃料電池用セパレータの製造方法。   A gas diffusion layer provided with a fuel electrode is provided on one side of the electrolyte membrane, and a gas diffusion layer provided with an oxidant electrode is provided on the other side, and each of the gas diffusion layers is opposite to the electrolyte membrane. In the method for manufacturing a separator for a fuel cell, wherein the separator is formed of a metal plate, and the separator is formed with a metal plate. The separator is formed of a metal plate. The metal plate is melted with a meltable solution so that the plate thickness of the gas flow path portion forming the gas flow path inside the gas seal portion is thinner than the thickness of the gas seal portion at the periphery. A method for producing a separator for a fuel cell, characterized in that the plate thickness is changed.
JP2005207672A 2005-07-15 2005-07-15 Fuel cell and manufacturing method of separator therefor Pending JP2007026899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005207672A JP2007026899A (en) 2005-07-15 2005-07-15 Fuel cell and manufacturing method of separator therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005207672A JP2007026899A (en) 2005-07-15 2005-07-15 Fuel cell and manufacturing method of separator therefor

Publications (1)

Publication Number Publication Date
JP2007026899A true JP2007026899A (en) 2007-02-01

Family

ID=37787412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005207672A Pending JP2007026899A (en) 2005-07-15 2005-07-15 Fuel cell and manufacturing method of separator therefor

Country Status (1)

Country Link
JP (1) JP2007026899A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059513A (en) * 2007-08-30 2009-03-19 Honda Motor Co Ltd Fuel cell
JP2013131355A (en) * 2011-12-21 2013-07-04 Honda Motor Co Ltd Fuel cell
JP2013528908A (en) * 2010-05-11 2013-07-11 ユーティーシー パワー コーポレイション Improved stampable flow field to improve flow distribution in PEM fuel cell channels
KR20220138571A (en) * 2021-04-06 2022-10-13 일도에프엔씨(주) Bipolar plate for fuel cell and method for manufacturing the bipolar plate and fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059513A (en) * 2007-08-30 2009-03-19 Honda Motor Co Ltd Fuel cell
JP2013528908A (en) * 2010-05-11 2013-07-11 ユーティーシー パワー コーポレイション Improved stampable flow field to improve flow distribution in PEM fuel cell channels
US9065088B2 (en) 2010-05-11 2015-06-23 Audi Ag Modification to stampable flowfields to improve flow distribution in the channels of PEM fuel cells
JP2013131355A (en) * 2011-12-21 2013-07-04 Honda Motor Co Ltd Fuel cell
KR20220138571A (en) * 2021-04-06 2022-10-13 일도에프엔씨(주) Bipolar plate for fuel cell and method for manufacturing the bipolar plate and fuel cell
KR102578790B1 (en) * 2021-04-06 2023-09-15 일도에프엔씨(주) Bipolar plate for fuel cell and method for manufacturing the bipolar plate and fuel cell

Similar Documents

Publication Publication Date Title
US20110123904A1 (en) Separator for fuel cell and manufacturing method of the same
JP5078689B2 (en) Fuel cell stack
US7396609B2 (en) Fuel cell and metal separator for fuel cell
RU2011107433A (en) INTERCONNECTOR FOR FUEL ELEMENTS AND METHOD FOR PRODUCING INTERCONNECTOR FOR FUEL ELEMENTS
EP2461403A1 (en) Air-cooled metal separator for fuel cell and fuel cell stack using same
JP3751911B2 (en) Polymer electrolyte fuel cell and method of manufacturing separator plate thereof
JP2019008984A (en) Manufacturing method of separator for fuel cell
JP7031455B2 (en) Manufacturing method of metal separator for fuel cell
JP2007026899A (en) Fuel cell and manufacturing method of separator therefor
JP4696545B2 (en) Fuel cell
JP2006221905A (en) Separator for fuel cell, and method of manufacturing separator for fuel cell problem to be solved
JP2010123491A (en) Apparatus for manufacturing membrane electrode assembly
JP4978060B2 (en) Fuel cell and manufacturing method thereof
JP2006032008A (en) Fuel cell
JP3448557B2 (en) Separator for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell
JP5664457B2 (en) FUEL CELL SEPARATOR PLATE, FUEL CELL SEPARATOR, FUEL CELL, AND METHOD FOR PRODUCING FUEL CELL SEPARATOR PLATE
JP2010238421A (en) Fuel battery
JP4534780B2 (en) Fuel cell separator and method for producing fuel cell separator
JP3400976B2 (en) Separator for polymer electrolyte fuel cell and fuel cell
JP5703186B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cell and production method thereof
JP2007157578A (en) Fuel cell
US7135249B2 (en) Fuel cell separator, fuel cell using the separator, and method of producing the separator
JP4639744B2 (en) Fuel cell
KR100546016B1 (en) Current collector for fuel cell, manufacturing method thereof and fuel cell having same
JP2007324122A (en) Fuel cell