JP2003022527A - Method for manufacturing master carrier for magnetic transfer - Google Patents

Method for manufacturing master carrier for magnetic transfer

Info

Publication number
JP2003022527A
JP2003022527A JP2001211018A JP2001211018A JP2003022527A JP 2003022527 A JP2003022527 A JP 2003022527A JP 2001211018 A JP2001211018 A JP 2001211018A JP 2001211018 A JP2001211018 A JP 2001211018A JP 2003022527 A JP2003022527 A JP 2003022527A
Authority
JP
Japan
Prior art keywords
substrate
pattern
soft magnetic
magnetic layer
master carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2001211018A
Other languages
Japanese (ja)
Inventor
Shoichi Nishikawa
正一 西川
Tadashi Yasunaga
正 安永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2001211018A priority Critical patent/JP2003022527A/en
Publication of JP2003022527A publication Critical patent/JP2003022527A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a master carrier having a pattern of soft magnetic layer accurately corresponding to the fine pattern on a substrate and to realize a magnetic transfer having a high transferring quality. SOLUTION: A collimator member 7 which has a parallel path 7a perpendicular to the surface of the substrate 31 and eliminates a diagonal component of a steam flow to make the flow have straight component is installed between the substrate 31 on which the pattern is formed and the evaporation source 6 of a soft magnetic material when the master carrier 3 for magnetic transfer is manufactured by forming a soft magnetic layer 32 on the pattern formed on the substrate 31, thus the soft magnetic layer 32 is accurately formed on the substrate 31 through the collimator member 7.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、情報が担持された
マスター担体からスレーブ媒体へ磁気転写する磁気転写
方法に使用する磁気転写用マスター担体の作成方法に関
するものである。 【0002】 【従来の技術】磁気転写方法は、磁性体の微細凹凸パタ
ーンにより転写情報を担持したマスター担体と、転写を
受ける磁気記録部を有するスレーブ媒体とを密着させた
状態で、転写用磁界を印加してマスター担体に担持した
情報(例えばサーボ信号)に対応する磁化パターンをス
レーブ媒体に転写記録するものである。この磁気転写方
法としては、例えば特開昭63−183623号公報、
特開平10−40544号公報、特開平10−2695
66号公報等に開示されている。 【0003】磁気転写に使用されるマスター担体は、シ
リコン基板、ガラス基板等に、フォトファブリケーショ
ン、スパッタ、エッチングなどの処理を施して磁性体に
よる凹凸パターンを形成したもので構成されている。 【0004】また、半導体などで使用されているリトグ
ラフィー技術、あるいは光ディスクスタンパー作成に使
用されているスタンパー作成技術を応用し、磁気転写用
マスター担体を作成することが考えられている。 【0005】ここで、本発明が対象とする磁気転写の基
本工程の一態様を図2に基づき説明する。この例は、面
内記録によるものである。まず、磁気転写を受ける磁気
記録層を有するスレーブ媒体2と、図2(b)に示すよう
な、基板31の微細凹凸パターンに軟磁性層32が被覆
されてなり、この軟磁性層32による凹凸パターンを有
するマスター担体3とを用意する。そして、最初に図2
(a)に示すように、スレーブ媒体2に初期静磁界Hinを
トラック方向の一方向に印加して予め初期磁化(直流消
磁)を行う。その後、図2(b)に示すように、スレーブ
媒体2の磁気記録面と、マスター担体3の軟磁性層32
による凸部パターンとを密着させ、スレーブ媒体2のト
ラック方向に初期磁界Hinとは逆方向に転写用磁界Hdu
を印加して磁気転写を行う。転写用磁界Hduが軟磁性層
32による凸部パターンに吸い込まれ、この部分の磁化
は反転せず、その他の部分の磁化が反転する結果、図2
(c)に示すように、スレーブ媒体2のトラックにはマス
ター担体3の軟磁性層32の凹凸パターンに応じた磁化
パターンが転写記録される。なお、垂直記録方式におい
ても、上記と略同様の軟磁性層による凹凸パターンを有
するマスター担体を使用することによってスレーブ媒体
に磁気転写が行える。 【0006】 【発明が解決しようとする課題】ところで、上記のよう
な磁気転写における転写品質を高めるためには、マスタ
ー担体3に精度良く軟磁性層32による転写パターンを
形成する必要がある。例えば、スタンパー法等によって
所定のパターンに微細凹凸形状が形成された基板31に
対し、その微細パターン上に、軟磁性材料が真空蒸着
法、スパッタリング法、イオンプレーティング法等の真
空成膜手段によって被覆され、基板31の凹凸パターン
と同様の凹凸パターンに軟磁性層32が形成される。 【0007】上記基板31の微細パターン上に軟磁性層
32を成膜する場合、基板31の表面と垂直な方向から
均等に成膜が行われると、理想的には、図2(b)に示し
たような、基板31のパターンの凸部頂面および凹部底
面にのみ軟磁性層32が被覆されたマスター担体3が得
られ、そのパターン通りの磁化パターンの転写が可能と
なる。 【0008】しかし、実際には、各種成膜手段における
軟磁性層蒸発源(スパッタ源)からは、ある立体角を有
して多方向からの蒸気流が基板に到達し、凸部の角部お
よびサイド面への成膜も行われる。その場合にも、微細
パターンの凹凸幅が0.3μmレベルのものでは、直進
成分以外の蒸気流(斜め成分)の影響を受けた軟磁性層
のパターン形状は、磁気転写後の信号品位が問題となっ
ていなかった。 【0009】ところが、記録密度の増大などに対応して
パターンの凹凸幅が0.2μm程度以下に狭くなると、
軟磁性層成膜時の斜め成分の蒸気流により、基板上に形
成される軟磁性層のパターン形状は、基板の凹凸パター
ンを反映せず、斜め成分により凸部幅が広くなり、極端
には凸部をまたいで凹部を埋めるように軟磁性層が結合
し、成膜された軟磁性層の表面が平坦化しているケース
があった。このようなマスター担体では、磁気転写時に
軟磁性層パターン外に磁束が出ないため、スレーブ媒体
の磁化が転写パターンに応じて反転せず、良好な磁気転
写が実施できなくなるという問題があった。 【0010】本発明はこのような問題に鑑みなされたも
ので、基板の微細パターンに正確に対応した軟磁性層に
よるパターンを有し、転写品質の高い磁気転写が行える
ようにした磁気転写用マスター担体の作成方法を提供す
ることを目的とするものである。 【0011】 【課題を解決するための手段】本発明の磁気転写用マス
ター担体の作成方法は、基板に形成されたパターン上に
軟磁性層が成膜されてなる磁気転写用マスター担体の作
成方法であって、前記軟磁性層の成膜時に、パターンが
形成された前記基板と、軟磁性材料の蒸発源との間に、
前記基板の表面と垂直方向の平行通路を有し、蒸気流の
斜め成分を除去し直進成分とするコリメーター部材を設
置し、該コリメーター部材を通して基板上に軟磁性層を
成膜することを特徴とするものである。 【0012】前記軟磁性層の成膜は、軟磁性材料を真空
蒸着法、スパッタリング法、イオンプレーティング法等
の真空成膜手段によって行うのが好適である。 【0013】また、前記コリメーター部材は、断面が格
子状、蜂の巣状、波板と平板を積層した段ボール状など
の細分化された平行通路を有するハニカム構造のものが
好適である。 【0014】また、本発明方法により作成されたマスタ
ー担体は、パターンが形成された基板上に、軟磁性材料
の蒸発源との間に設置され、基板の表面と垂直方向の平
行通路を有するコリメーター部材を通して、斜め成分が
除去され直進成分による蒸気流で成膜された軟磁性層を
有するものである。 【0015】 【発明の効果】上記のような本発明によれば、基板に形
成したパターン上に軟磁性層を成膜してマスター担体を
作成する際に、パターンが形成された基板と、軟磁性材
料の蒸発源との間に、基板の表面と垂直方向の平行通路
を有するコリメーター部材を設置し、該コリメーター部
材を通して基板上に軟磁性層を成膜することにより、上
記コリメーター部材によって斜め成分が除去された直進
成分の蒸気流により軟磁性層が成膜されるために、記録
密度の増大などに対応してパターンの凹凸幅が0.2μ
m程度以下に狭くなっても、軟磁性層のパターン形状が
基板の凹凸パターンを正確に反映しており、転写品質の
高い磁気転写が良好に行え信頼性が向上できる。 【0016】 【発明の実施の形態】以下、本発明の実施の形態を詳細
に説明する。図1は一つの実施の形態における軟磁性層
の成膜を行う成膜装置の概略図である。 【0017】磁気転写用マスター担体3は、図2に示し
たように、転写する情報に対応した形態の微細凹凸パタ
ーンが形成された基板31に、そのパターン上に軟磁性
層32を成膜してなる。上記基板31は、表面に微細凹
凸パターンが各種作成方法によって形成され、このよう
な基板31を成膜装置1に搬送し、基板31のパターン
上に軟磁性層32を成膜する。 【0018】図1に示す成膜装置1は、不図示の真空ポ
ンプにより減圧される真空チャンバー4と、パターンが
形成された基板31を真空チャンバー4内に保持する基
板ホルダ5と、この基板ホルダ5に保持された基板31
と対向する位置に設置された軟磁性材料の蒸発源6と、
基板31と蒸発源6との間に設置されたコリメーター部
材7とを備えている。この成膜装置1の基本構造は、従
来公知の真空蒸着法、スパッタリング法、イオンプレー
ティング法等の成膜装置のものが使用される。 【0019】前記コリメーター部材7は、基板31の表
面と垂直方向の平行通路7aを有し、蒸発源6からの軟
磁性材料の蒸気流の斜め成分を除去し、直進成分とする
ものであり、このコリメーター部材7の平行通路7aを
通して基板31上に軟磁性層32を成膜する。 【0020】また、コリメーター部材7は、詳細は図示
していないが、断面が格子状、蜂の巣状、波板と平板を
積層した段ボール状などの細分化された平行通路7aを
有するハニカム構造のもので構成される。 【0021】そして、前記成膜装置1を用いて、所定の
成膜条件で、軟磁性材料の蒸発源6から蒸気流を発生さ
せ、基板31の表面と垂直方向の平行通路7aを有する
コリメーター部材7を通して、斜め成分が除去され直進
成分による蒸気流で、基板ホルダ5に保持した基板31
のパターン上に、軟磁性層32を成膜してマスター担体
3を作成する。 【0022】本実施形態によれば、基板31のパターン
上には、コリメーター部材7によって斜め成分が除去さ
れ直進成分による軟磁性材料の蒸発源6からの蒸気流に
より軟磁性層32が成膜できるために、作成されたマス
ター担体3は、パターンの凹凸幅が0.2μm程度以下
に狭くなっても、基板31の凹凸パターンを正確に反映
してその上に、軟磁性層32のパターン形状が図2(b)
の理想形状に近付けて形成でき、そのパターン精度が高
いことに伴い転写品質の高い磁気転写が可能となる。 【0023】なお、作成されたマスター担体3は磁気転
写装置に搬送され、前述の図2に示すような基本工程
で、トラック方向または垂直方向に予め初期磁化したス
レーブ媒体2と密着され、この密着状態で電磁石装置等
の磁界印加装置によって初期磁化方向と略逆向きの方向
に転写用磁界を印加して、マスター担体3の転写情報に
対応した磁化パターンをスレーブ媒体2に転写記録す
る。 【0024】マスター担体3の基板31としては、ニッ
ケル、シリコン、アルミニウム、合金等を使用する。凹
凸パターンの形成は、スタンパー法等によって行われ
る。 【0025】スタンパー法は、表面が平滑なガラス板
(または石英板)の上にスピンコート等でフォトレジス
トを形成し、このガラス板を回転させながらサーボ信号
に対応して変調したレーザー光(または電子ビーム)を
照射し、所定のパターン、例えばサーボ信号に相当する
パターンを露光する。その後、フォトレジストを現像処
理し、露光部分を除去しフォトレジストによる凹凸形状
を有する原盤を得る。次に、原盤の表面の凹凸パターン
をもとに、この表面にメッキ(電鋳)を施し、ポジ状凹
凸パターンを有する基板を作成し、原盤から剥離する。
基板31の凹凸パターンの深さ(突起の高さ)は、80
nm〜800nmの範囲が好ましく、より好ましくは1
00nm〜600nmである。 【0026】また、前記原盤にメッキを施して第2の原
盤を作成し、この第2の原盤を使用してメッキを行い、
ネガ状凹凸パターンを有する基板を作成してもよい。さ
らに、第2の原盤にメッキを行うか樹脂液を押し付けて
硬化を行って第3の原盤を作成し、第3の原盤にメッキ
を行い、ポジ状凹凸パターンを有する基板を作成しても
よい。一方、前記ガラス板にフォトレジストによるパタ
ーンを形成した後、エッチングしてガラス板に穴を形成
し、フォトレジストを除去した原盤を得て、以下前記と
同様に基板を形成してもよい。 【0027】前記軟磁性層32の形成は、前述のよう
に、軟磁性材料を真空蒸着法、スパッタリング法、イオ
ンプレーティング法等の真空成膜手段などにより成膜す
る。その磁性材料としては、Co、Co合金(CoN
i、CoNiZr、CoNbTaZr等)、Fe、Fe
合金(FeCo、FeCoNi、FeNiMo、FeA
lSi、FeAl、FeTaN)、Ni、Ni合金(N
iFe)を用いることができる。特に好ましくはFeC
o、FeCoNiである。軟磁性層32の厚みは、50
nm〜500nmの範囲が好ましく、さらに好ましくは
100nm〜400nmである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a magnetic transfer master carrier used in a magnetic transfer method for magnetic transfer from a master carrier carrying information to a slave medium. Is. 2. Description of the Related Art A magnetic transfer method is a magnetic field for transfer in a state where a master carrier carrying transfer information by means of a fine uneven pattern of a magnetic material and a slave medium having a magnetic recording portion to be transferred are in close contact. Is applied, and a magnetization pattern corresponding to information (for example, servo signal) carried on the master carrier is transferred and recorded on the slave medium. As this magnetic transfer method, for example, Japanese Patent Laid-Open No. 63-183623,
Japanese Patent Laid-Open Nos. 10-40544 and 10-2695
66 and the like. A master carrier used for magnetic transfer is formed by forming a concave / convex pattern with a magnetic material by subjecting a silicon substrate, a glass substrate, or the like to treatments such as photofabrication, sputtering, and etching. Further, it is considered that a master carrier for magnetic transfer is produced by applying a lithography technique used in a semiconductor or the like, or a stamper producing technique used for producing an optical disc stamper. Here, an embodiment of the basic process of magnetic transfer which is the object of the present invention will be described with reference to FIG. This example is based on in-plane recording. First, a slave medium 2 having a magnetic recording layer to be subjected to magnetic transfer, and a soft magnetic layer 32 covered with a fine uneven pattern of a substrate 31 as shown in FIG. A master carrier 3 having a pattern is prepared. And first, FIG.
As shown in (a), initial magnetization (DC demagnetization) is performed in advance by applying an initial static magnetic field Hin to the slave medium 2 in one direction in the track direction. Thereafter, as shown in FIG. 2 (b), the magnetic recording surface of the slave medium 2 and the soft magnetic layer 32 of the master carrier 3.
And a convex magnetic field pattern for the transfer in the direction opposite to the initial magnetic field Hin in the track direction of the slave medium 2.
Is applied to perform magnetic transfer. As a result of the transfer magnetic field Hdu being sucked into the convex pattern by the soft magnetic layer 32, the magnetization of this portion is not reversed, and the magnetization of the other portion is reversed.
As shown in (c), a magnetization pattern corresponding to the concavo-convex pattern of the soft magnetic layer 32 of the master carrier 3 is transferred and recorded on the track of the slave medium 2. Even in the perpendicular recording method, magnetic transfer can be performed on a slave medium by using a master carrier having a concavo-convex pattern with a soft magnetic layer substantially the same as described above. However, in order to improve the transfer quality in the magnetic transfer as described above, it is necessary to form a transfer pattern using the soft magnetic layer 32 on the master carrier 3 with high accuracy. For example, with respect to the substrate 31 on which fine irregularities are formed in a predetermined pattern by a stamper method or the like, a soft magnetic material is formed on the fine pattern by a vacuum film forming means such as a vacuum deposition method, a sputtering method, or an ion plating method. The soft magnetic layer 32 is formed in a concavo-convex pattern similar to the concavo-convex pattern of the substrate 31. When the soft magnetic layer 32 is formed on the fine pattern of the substrate 31, if the film is formed uniformly from the direction perpendicular to the surface of the substrate 31, ideally, as shown in FIG. As shown, the master carrier 3 in which the soft magnetic layer 32 is coated only on the top surface and the bottom surface of the concave portion of the pattern of the substrate 31 is obtained, and the magnetization pattern can be transferred according to the pattern. However, in reality, a soft magnetic layer evaporation source (sputter source) in various film forming means has a certain solid angle and vapor flows from multiple directions reach the substrate, and the corners of the projections. In addition, film formation on the side surface is also performed. Even in such a case, when the uneven width of the fine pattern is on the order of 0.3 μm, the signal shape after magnetic transfer is a problem for the pattern shape of the soft magnetic layer affected by the vapor flow (diagonal component) other than the straight component. It was not. However, when the uneven width of the pattern is reduced to about 0.2 μm or less in response to an increase in recording density, etc.,
The pattern shape of the soft magnetic layer formed on the substrate does not reflect the uneven pattern of the substrate due to the vapor flow of the oblique component during the formation of the soft magnetic layer. In some cases, the soft magnetic layer is bonded so as to fill the concave portion across the convex portion, and the surface of the formed soft magnetic layer is flattened. In such a master carrier, no magnetic flux is generated outside the soft magnetic layer pattern at the time of magnetic transfer, so that there is a problem that the magnetization of the slave medium is not reversed according to the transfer pattern, and good magnetic transfer cannot be performed. The present invention has been made in view of such problems, and has a pattern with a soft magnetic layer that accurately corresponds to a fine pattern on a substrate, and can perform magnetic transfer with high transfer quality. The object is to provide a method for producing a carrier. A method for producing a magnetic transfer master carrier according to the present invention is a method for producing a magnetic transfer master carrier comprising a soft magnetic layer formed on a pattern formed on a substrate. When the soft magnetic layer is formed, between the substrate on which the pattern is formed and the evaporation source of the soft magnetic material,
Installing a collimator member having a parallel passage perpendicular to the surface of the substrate, removing a slant component of the vapor flow to make a straight component, and forming a soft magnetic layer on the substrate through the collimator member; It is a feature. The soft magnetic layer is preferably formed by vacuum film forming means such as a vacuum deposition method, a sputtering method, or an ion plating method using a soft magnetic material. Further, the collimator member preferably has a honeycomb structure having a finely divided parallel passage such as a lattice shape, a honeycomb shape, or a corrugated cardboard shape in which corrugated plates and flat plates are laminated. The master carrier prepared by the method of the present invention is placed between the evaporation source of the soft magnetic material on the substrate on which the pattern is formed, and a collimator having parallel passages perpendicular to the surface of the substrate. Through the meter member, a slant component is removed and a soft magnetic layer is formed by vapor flow with a straight component. According to the present invention as described above, when forming a master carrier by forming a soft magnetic layer on a pattern formed on the substrate, the substrate on which the pattern is formed, By installing a collimator member having a parallel passage perpendicular to the surface of the substrate between the evaporation source of the magnetic material and forming a soft magnetic layer on the substrate through the collimator member, the collimator member Since the soft magnetic layer is formed by the straight component vapor flow from which the oblique component is removed by the step, the unevenness width of the pattern is 0.2 μm corresponding to the increase in recording density, etc.
Even if it becomes narrower than about m, the pattern shape of the soft magnetic layer accurately reflects the concave / convex pattern of the substrate, so that magnetic transfer with high transfer quality can be performed well and reliability can be improved. DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described in detail below. FIG. 1 is a schematic view of a film forming apparatus for forming a soft magnetic layer in one embodiment. As shown in FIG. 2, the magnetic transfer master carrier 3 has a soft magnetic layer 32 formed on a substrate 31 on which a fine concavo-convex pattern having a form corresponding to the information to be transferred is formed. It becomes. On the surface of the substrate 31, fine uneven patterns are formed by various production methods, and the substrate 31 is transported to the film forming apparatus 1 to form a soft magnetic layer 32 on the pattern of the substrate 31. A film forming apparatus 1 shown in FIG. 1 includes a vacuum chamber 4 that is depressurized by a vacuum pump (not shown), a substrate holder 5 that holds a substrate 31 on which a pattern is formed, in the vacuum chamber 4, and the substrate holder. Substrate 31 held by 5
An evaporation source 6 of a soft magnetic material installed at a position opposite to
A collimator member 7 is provided between the substrate 31 and the evaporation source 6. As the basic structure of the film forming apparatus 1, a conventionally known film forming apparatus such as a vacuum vapor deposition method, a sputtering method, or an ion plating method is used. The collimator member 7 has a parallel passage 7a perpendicular to the surface of the substrate 31, and removes an oblique component of the vapor flow of the soft magnetic material from the evaporation source 6 to obtain a straight component. The soft magnetic layer 32 is formed on the substrate 31 through the parallel passage 7a of the collimator member 7. Although the collimator member 7 is not shown in detail, the collimator member 7 has a honeycomb structure having finely divided parallel passages 7a such as a lattice shape, a honeycomb shape, and a corrugated cardboard shape in which corrugated plates and flat plates are laminated. Composed of things. Then, a vapor flow is generated from the soft magnetic material evaporation source 6 using the film forming apparatus 1 under predetermined film forming conditions, and a collimator having parallel passages 7a perpendicular to the surface of the substrate 31. The substrate 31 held on the substrate holder 5 by the vapor flow due to the straight traveling component with the oblique component removed through the member 7.
On this pattern, a soft magnetic layer 32 is formed to form a master carrier 3. According to this embodiment, on the pattern of the substrate 31, the oblique component is removed by the collimator member 7, and the soft magnetic layer 32 is formed by the vapor flow from the evaporation source 6 of the soft magnetic material by the straight component. For this reason, the master carrier 3 thus prepared accurately reflects the concavo-convex pattern of the substrate 31 even when the concavo-convex width of the pattern is narrowed to about 0.2 μm or less. Figure 2 (b)
It can be formed close to the ideal shape, and magnetic transfer with high transfer quality becomes possible with the high pattern accuracy. The prepared master carrier 3 is conveyed to a magnetic transfer device, and is brought into close contact with the slave medium 2 that has been previously magnetized in the track direction or the vertical direction in the basic process as shown in FIG. In this state, a magnetic field for transfer is applied in a direction substantially opposite to the initial magnetization direction by a magnetic field application device such as an electromagnet device, and a magnetization pattern corresponding to the transfer information of the master carrier 3 is transferred and recorded on the slave medium 2. As the substrate 31 of the master carrier 3, nickel, silicon, aluminum, an alloy or the like is used. The formation of the concavo-convex pattern is performed by a stamper method or the like. In the stamper method, a photoresist is formed on a glass plate (or quartz plate) having a smooth surface by spin coating or the like, and laser light (or modulated in response to a servo signal while rotating the glass plate) (or An electron beam is irradiated to expose a predetermined pattern, for example, a pattern corresponding to a servo signal. Thereafter, the photoresist is developed, the exposed portion is removed, and a master having a concavo-convex shape by the photoresist is obtained. Next, based on the concavo-convex pattern on the surface of the master, plating (electroforming) is performed on the surface to create a substrate having a positive concavo-convex pattern, and the substrate is peeled off.
The depth of the concavo-convex pattern of the substrate 31 (the height of the protrusion) is 80
The range of nm to 800 nm is preferable, more preferably 1
00 nm to 600 nm. In addition, a second master is produced by plating the master, and plating is performed using the second master.
You may create the board | substrate which has a negative uneven | corrugated pattern. Furthermore, the second master may be plated or a resin solution may be pressed and cured to create a third master, and the third master may be plated to create a substrate having a positive uneven pattern. . On the other hand, after forming a pattern with a photoresist on the glass plate, etching may be performed to form a hole in the glass plate to obtain a master from which the photoresist has been removed, and the substrate may be formed in the same manner as described above. As described above, the soft magnetic layer 32 is formed by depositing a soft magnetic material by a vacuum film forming means such as a vacuum deposition method, a sputtering method, or an ion plating method. As the magnetic material, Co, Co alloy (CoN
i, CoNiZr, CoNbTaZr, etc.), Fe, Fe
Alloy (FeCo, FeCoNi, FeNiMo, FeA
lSi, FeAl, FeTaN), Ni, Ni alloy (N
iFe) can be used. Particularly preferably FeC
o, FeCoNi. The thickness of the soft magnetic layer 32 is 50
The range of nm-500 nm is preferable, More preferably, it is 100 nm-400 nm.

【図面の簡単な説明】 【図1】本発明の一つの実施の形態における軟磁性層の
成膜を行う成膜装置の概略図 【図2】磁気転写の基本工程の一態様を示す図 【符号の説明】 1 成膜装置 2 スレーブ媒体 3 マスター担体 7 コリメーター部材 7a 平行通路 31 基板 32 磁性層
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a film forming apparatus for forming a soft magnetic layer according to one embodiment of the present invention. FIG. 2 is a view showing one mode of a basic process of magnetic transfer. DESCRIPTION OF SYMBOLS 1 Deposition device 2 Slave medium 3 Master carrier 7 Collimator member 7a Parallel path 31 Substrate 32 Magnetic layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G11B 5/86 101 G11B 5/86 101B ──────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme code (reference) G11B 5/86 101 G11B 5/86 101B

Claims (1)

【特許請求の範囲】 【請求項1】 基板に形成されたパターン上に軟磁性層
が成膜されてなる磁気転写用マスター担体の作成方法で
あって、 前記軟磁性層の成膜時に、パターンが形成された前記基
板と、軟磁性材料の蒸発源との間に、前記基板の表面と
垂直方向の平行通路を有するコリメーター部材を設置
し、該コリメーター部材を通して基板上に軟磁性層を成
膜することを特徴とする磁気転写用マスター担体の作成
方法。
What is claimed is: 1. A method for producing a master carrier for magnetic transfer comprising a soft magnetic layer formed on a pattern formed on a substrate, wherein the pattern is formed when the soft magnetic layer is formed. A collimator member having a parallel passage perpendicular to the surface of the substrate is installed between the substrate on which the substrate is formed and an evaporation source of the soft magnetic material, and a soft magnetic layer is formed on the substrate through the collimator member. A method of producing a master carrier for magnetic transfer, characterized by forming a film.
JP2001211018A 2001-07-11 2001-07-11 Method for manufacturing master carrier for magnetic transfer Abandoned JP2003022527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001211018A JP2003022527A (en) 2001-07-11 2001-07-11 Method for manufacturing master carrier for magnetic transfer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001211018A JP2003022527A (en) 2001-07-11 2001-07-11 Method for manufacturing master carrier for magnetic transfer

Publications (1)

Publication Number Publication Date
JP2003022527A true JP2003022527A (en) 2003-01-24

Family

ID=19046402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001211018A Abandoned JP2003022527A (en) 2001-07-11 2001-07-11 Method for manufacturing master carrier for magnetic transfer

Country Status (1)

Country Link
JP (1) JP2003022527A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245559A (en) * 2008-03-31 2009-10-22 Fujifilm Corp Master carrier for magnetic transfer and magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245559A (en) * 2008-03-31 2009-10-22 Fujifilm Corp Master carrier for magnetic transfer and magnetic recording medium

Similar Documents

Publication Publication Date Title
KR20010088331A (en) Master carrier for magnetic transfer
US7972490B2 (en) Magnetic transfer master disk and method for manufacturing the same
JP2006216181A (en) Manufacturing method of master disk for magnetic transfer
US20080248334A1 (en) Mold structure, imprinting method using the same, magnetic recording medium and production method thereof
US20080014456A1 (en) Process of producing master carrier for magnetic transfer
JP2003022527A (en) Method for manufacturing master carrier for magnetic transfer
US6887593B2 (en) Master information carrier for magnetic transfer
US20030161222A1 (en) Method of producing master information carrier for magnetic transfer
JP2003203331A (en) Master carrier for magnetic transfer
US20100075179A1 (en) Master disk for transfer and manufacturing method of the same
JP2003141715A (en) Master carrier for magnetic transfer
US20080248333A1 (en) Mold structure, imprinting method using the same, magnetic recording medium and production method thereof
JP2003091806A (en) Master carrier for magnetic transfer
US7641822B2 (en) Master information carrier for magnetic transfer and a method for producing the carrier
JP2006260690A (en) Master disk for magnetic transfer
JP2003022530A (en) Magnetic transfer method
JP2003203323A (en) Master carrier for magnetic transfer
JP3964452B2 (en) Master carrier for magnetic transfer
JP2003187433A (en) Master carrier for magnetic transfer
JP2003187435A (en) Master carrier for magnetic transfer
JP2004265558A (en) Manufacturing method of master carrier for magnetic transfer
JP2004110875A (en) Master carrier for magnetic transfer
JP2003248918A (en) Substrate of magnetic transfer master
JP2005100605A (en) Process of producing master carrier for magnetic transfer
JP2004139628A (en) Master carrier for magnetic transfer, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060113

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20080619