JP2004139628A - Master carrier for magnetic transfer, and its manufacturing method - Google Patents

Master carrier for magnetic transfer, and its manufacturing method Download PDF

Info

Publication number
JP2004139628A
JP2004139628A JP2002300418A JP2002300418A JP2004139628A JP 2004139628 A JP2004139628 A JP 2004139628A JP 2002300418 A JP2002300418 A JP 2002300418A JP 2002300418 A JP2002300418 A JP 2002300418A JP 2004139628 A JP2004139628 A JP 2004139628A
Authority
JP
Japan
Prior art keywords
magnetic layer
magnetic
transfer
master carrier
master
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002300418A
Other languages
Japanese (ja)
Inventor
Toshihiro Usa
宇佐 利裕
Kazunori Komatsu
小松 和則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2002300418A priority Critical patent/JP2004139628A/en
Publication of JP2004139628A publication Critical patent/JP2004139628A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a noise component involved by magnetic transfer and to enhance transfer characteristics, in a master carrier having a rugged pattern of a magnetic layer and used in a magnetic transfer method by which magnetic transfer of an information signal such as a servo signal is performed to a slave medium. <P>SOLUTION: The rear surface 2b of the magnetic layer 2 whose surface 2a has the rugged pattern corresponding to transfer information is flatly provided by polishing and a flat substrate 3 is layered on the flat rear surface 2b. The flat substrate 3 is layered by electroforming of Ni. A resin liquid is applied onto a master disk on which a rugged pattern corresponding to the information is formed and the resin liquid is cured to form a resin substrate. The magnetic layer 2 is formed by film-depositing the magnetic layer 2 on the rugged pattern of the resin substrate. Ruggedness of the rear surface 2b of the magnetic layer 2 is polished and flattened, the flat substrate 3 is layered on the flattened rear surface 2b by electroforming and the resin substrate is stripped from the rugged pattern of the magnetic layer 2. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、転写情報が担持されたマスター担体から転写を受けるスレーブ媒体へ磁気転写する磁気転写方法に使用する磁気転写用マスター担体およびその製造方法に関するものである。
【0002】
【従来の技術】
本発明の対象とする磁気転写は、少なくとも表層に磁性層を有するサーボ信号等の転写パターンが凹凸形状で形成されたマスター担体(パターンドマスター)を、磁気記録部を有するスレーブ媒体と密着させた状態で、転写用磁界を印加してマスター担体に担持した情報に対応する磁化パターンをスレーブ媒体に転写記録するものである。
【0003】
上記磁気転写に使用するマスター担体の一例としては、基板の表面に情報信号に対応する凹凸パターンを形成し、この凹凸パターンの表面に薄膜磁性層を被覆形成してなるものが提案されている(例えば、特許文献1参照)。
【0004】
このマスター担体の凹凸パターンは、フォトレジストが塗布された円板を回転させながら情報に応じて変調したレーザーまたは電子ビームを照射して描画し、このフォトレジストを現像した凹凸を有する原板にメッキを行い、金属の型をとった後剥離することで作製してなる金属盤を原盤として、前記基板表面に凹凸形状を複写している。
【0005】
【特許文献1】
特開2001−256644号公報
【0006】
【発明が解決しようとする課題】
ところで、上記のような磁気転写用マスター担体では、磁気転写を行うために必要とされる磁性層による凹凸パターンを、まず表面に転写情報に対応した凹凸形状を有する基板を作製し、この基板の凹凸形状に磁性層を被覆することによって得ているため、この磁性層は凸部上面の皮膜厚さと同じものが凹部底面にも設けられてなり、このようなマスター担体を用いてスレーブ媒体へ磁気転写を行うと、転写された磁化パターンにはノイズを含みやすく、転写信号品位の点でさらに改善が望まれている。
【0007】
上記点を解析した結果、スレーブ媒体に転写された磁化パターンでのノイズ成分は、マスター担体の凹凸パターンの凹部底面に形成された磁性層が起因となって発生しているものであり、この凹部底面の磁性層の厚さは小さい方がノイズを含みにくいことが判明した。
【0008】
また、基板の凹凸パターン上に磁性層を被覆してなるものでは、磁性層表面の凹凸形状は磁性層下面における基板の凹凸形状を正確に現出させたものではなく、凸部幅が広くなったり、凸部角部に曲面が形成されるなどの現象が発生し、これは磁性層が厚くなるほど顕著となり、転写信号品位、位置精度などに影響を与える問題もある。
【0009】
本発明はこのような点に鑑みなされたもので、磁気転写に伴うノイズ成分が少なく転写特性に優れた磁気転写用マスター担体およびその製造方法を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
本発明の磁気転写用マスター担体は、情報を担持したマスター担体と、転写を受けるスレーブ媒体とを密着させ転写用磁界を印加して磁気転写する磁気転写方法に使用するマスター担体であって、
表面に転写情報に応じた凹凸パターンを有し、裏面が研磨により平坦となった磁性層と、該磁性層の平坦裏面に積層されてなる平坦基板とを備えたことを特徴とするものである。
【0011】
前記平坦基板は、前記磁性層の裏面にNiが電鋳で積層されてなるものが好適である。
【0012】
また、本発明の磁気転写用マスター担体の製造方法は、情報に応じた凹凸パターンが形成された原盤に、樹脂液を塗布し硬化させて樹脂基盤を作製し、該樹脂基盤の凹凸パターン上に磁性層を成膜し、該磁性層の裏面の凹凸を研磨して平坦化した後、この平坦裏面に電鋳により平坦基板を積層し、前記樹脂基盤を磁性層の凹凸パターンより剥離し、前記磁性層と平坦基板とを備えたマスター担体を作製することを特徴とするものである。
【0013】
前記原盤は、フォトレジストへの描画露光により形成された凹凸パターンに電鋳を施し、金属の型を取った後剥離してなる金属原盤であるものが好ましい。
【0014】
前記樹脂基盤は、紫外線硬化樹脂等の光硬化樹脂を硬化させて作製するのが好ましい。また、前記磁性層を、スパッタリングまたは電鋳で成膜するのが好適である。
【0015】
前記磁性層の裏面研磨は、平研磨、ラッピング等の磁性層に歪みを与えない方法を使用するのが好ましい。
【0016】
【発明の効果】
上記のような本発明マスター担体によれば、表面に転写情報に応じた凹凸パターンを形成した磁性層の裏面を研磨により平坦とし、該磁性層の平坦裏面に平坦基板を積層してなることにより、転写パターンの凹部底面の磁性層の厚さが凸部の磁性層の厚さより小さくなり、ノイズの少ない磁気転写を実施することができ、転写品質の向上による信頼性の確保ができる。
【0017】
また、本発明製造方法によれば、磁性層表面の凹凸パターンの形成精度が高くなり、凹部底面の磁性層の厚さが小さくなることと相まって、転写信号品位の向上が図れる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を詳細に説明する。図1は本発明の一つの実施形態に係る磁気転写用マスター担体の断面図、図2は一つの実施形態に係るマスター担体の作製工程を順に示す図である。なお、各図は模式図であり、実際の寸法とは異なる比率で示している。
【0019】
図1に示す磁気転写用マスター担体1は、磁性層2と基板3とで構成されてなり、磁性層2は表面2aに転写情報に応じた凹凸パターン(転写パターン)を有し、裏面2bが研磨により平坦となっている。前記基板3は、上記磁性層2の平坦裏面2bに、例えばNiが電鋳で積層されてなる。
【0020】
磁性層2の凹凸パターンにおける突起の高さは、80〜800nmの範囲が好ましく、さらに好ましくは100〜600nmの範囲である。
【0021】
磁気転写時には、前記マスター担体1における磁性層2の表面2a(凹凸パターン)と、鎖線で示す転写を受けるスレーブ媒体4とを密着させて転写用磁界を印加して磁気転写する。その際、スレーブ媒体4は予め面内方向または垂直方向の一方に初期磁化が施され、転写用磁界はこの初期磁化とほぼ反対方向の面内方向または垂直方向に印加するものである。
【0022】
そして、上記磁気転写時に印加された転写用磁界は、マスター担体1の凹凸パターンにおけるスレーブ媒体4と密着した磁性層2の凸部に吸い込まれ、面内記録の場合にはこの部分の初期磁化は反転せずその他の部分の初期磁化が反転し、垂直記録の場合にはこの部分の初期磁化が反転しその他の部分の初期磁化は反転しない結果、スレーブ媒体4の磁気記録層にはマスター担体1の凹凸パターンに応じた磁化パターンが転写記録される。
【0023】
なお、上記マスター担体1は、磁性層2の凹凸パターンが、図1のポジ状パターンと逆の凹凸形状のネガ状パターンの場合であっても、スレーブ媒体4に対する初期磁界の方向および転写用磁界の印加方向を逆の方向にすることによって同様の磁化パターンが転写記録できる。
【0024】
上記のようなマスター担体1を使用した磁気転写においては、磁性層2の凹凸パターンにおける凹部の厚さが薄いことにより、スレーブ媒体4への磁気転写時のノイズ成分が小さくなり信号品位の高い転写記録が行える。
【0025】
上記マスター担体1は、詳細は後述するように、情報に応じた凹凸パターンが形成された原盤に、樹脂液を塗布し硬化させて樹脂基盤を作製し、この樹脂基盤の凹凸パターン上に磁性層2を成膜し、該磁性層2の裏面2bの凹凸を研磨して平坦化した後、この磁性層2の平坦裏面2bに電鋳により平坦基板3を積層し、樹脂基盤より剥離することによって作製してなる。
【0026】
マスター担体1の一実施形態の作製方法を、図2(a)〜(h)に基づいて説明する。
【0027】
(a)〜(d)の工程で磁性層2を成膜するときに表面2aに微細凹凸パターンを形成するための樹脂基盤14を作製する。まず、(a)のように表面が平滑で清浄なシリコンウエハーによる原板10(ガラス板、石英板でもよい)の上に、フォトレジスト液をスピンコート等で塗布してフォトレジスト膜11を形成する。そして、高精度な回転ステージを備えた不図示の電子ビーム露光装置にて、その回転ステージに搭載した上記原板10を回転させながら、サーボ信号に対応して変調した電子ビームEBを照射し、そのフォトレジスト膜11に所望のパターンを描画露光する。その後、(b)のように、フォトレジスト膜11を現像処理し、露光部分を除去して、残ったフォトレジスト膜11による所望厚みで所望の凹凸パターン(ネガ状パターン)を形成する。この凹凸パターン上にNi導電膜12を付与し、電鋳可能としてなる。
【0028】
次に、(c)のように、上記原板10の表面の凹凸パターンの上に、電鋳装置にて電鋳処理を施し、所望厚みのNi金属による原盤13を作製する。この凹凸パターン(ポジ状パターン)を有する金属原盤13を、上記原板10より剥離し、残留するフォトレジスト膜11を除去・洗浄する。
【0029】
次に、(d)のように、上記金属原盤13の上に、紫外線硬化樹脂等の光硬化樹脂を塗布し、紫外線等の特殊光を照射することで硬化させ、ネガ状に反転した凹凸パターンを有する樹脂基盤14を作製し、金属原盤13から剥離する。
【0030】
次に、(e)のように、上記樹脂基盤14を使用して、その凹凸パターン上に、スパッタリング、電鋳等により所定厚さに磁性層2を成膜する。成膜後の状態においては、磁性層2の表面には樹脂基盤14のネガ状凹凸パターンによってポジ状凹凸パターンが反転形成され、磁性層2の反対側裏面には凹凸パターンを反映した凹凸形状となっている。
【0031】
そして、(f)のように、樹脂基盤14に成膜した状態のままの磁性層2の裏面側の凹凸面を研磨し、凸部を除去して平坦裏面2bとする。この磁性層2の研磨は、平研磨、ラッピング等の磁性層2に歪みを与えない研磨方法を使用して行う。
【0032】
次に、(g)のように、電鋳装置にて、磁性層2の研磨処理した平坦裏面2bに所望の厚みのNiによる電鋳処理を施し、Ni平坦基板3を積層する。その後、樹脂基盤14の凹凸パターンより、磁性層2を平坦基板3とともに剥離し、(h)のように、磁性層2の表面2aに凹凸パターンを有し、磁性層2の平坦裏面2bに平坦基板3が積層されてなるマスター担体1を作製するものである。
【0033】
なお、前記原板10の作製において、フォトレジスト膜11を露光・現像処理した後、エッチング処理を行って、ウエハー原板10の表面にエッチングによる凹凸パターンを形成してからフォトレジスト膜11を除去してもよい。この凹凸パターン上にNi導電膜12を施してから、図2(c)と同様に、電鋳処理を施してポジ状凹凸パターンを有する金属原盤13を作製することができる。また、前記金属原盤13を繰り返し使用し、複数の樹脂基盤14を作製することができる。
【0034】
前記樹脂基盤14の作製時に、金属原盤13に紫外線硬化樹脂液を塗布した上から紫外線透過材料からなる板部材を押しつけて均一厚みとし、そして、板部材を通して紫外線を照射し、樹脂液を硬化(光重合)させて樹脂基盤14を作製してもよい。上記板部材は成形後にはそのまま樹脂基盤の一部としてもよい。
【0035】
なお、図2では、電鋳処理により形成した金属原盤13の裏面は平坦に示しているが、この裏面に凹凸形状が形成されていても樹脂基盤14の形成には問題がない。
【0036】
前記磁性層2の形成は、磁性材料を真空蒸着法、スパッタリング法、イオンプレーティング法等の真空成膜手段、電鋳等のメッキ法などにより成膜する。磁性層2の磁性材料としては、Co、Co合金(CoNi、CoNiZr、CoNbTaZr等)、Fe、Fe合金(FeCo、FeCoNi、FeNiMo、FeAlSi、FeAl、FeTaN)、Ni、Ni合金(NiFe)を用いることができる。特に好ましくはFeCo、FeCoNiである。
【0037】
なお、磁性層2の表面2a(凹凸パターン)にダイヤモンドライクカーボン(DLC)等の保護膜を設けることが好ましく、潤滑剤層を設けても良い。また保護膜として5〜30nmのDLC膜と潤滑剤層が存在することがさらに好ましい。潤滑剤は、スレーブ媒体4との接触過程で生じるずれを補正する際の、摩擦による傷の発生などの耐久性の劣化を改善する。
【0038】
スレーブ媒体4としては、ハードディスク、高密度フレキシブルディスクなどが使用され、その磁気記録層は塗布型磁気記録層あるいは金属薄膜型磁気記録層が形成されている。金属薄膜型磁気記録層については、磁性材料としてはCo、Co合金(CoPtCr、CoCr、CoPtCrTa、CoPtCrNbTa、CoCrB、CoNi等)、Fe、Fe合金(FeCo、FePt、FeCoNi)を用いることができる。
【0039】
上記のような作成方法で製造されたマスター担体1は、磁性層2の表面2aの凹凸パターンが、樹脂基盤14の凹凸パターンを直接型どって反転したパターンとなって、凸部幅、凸部断面形状等の精度のよいパターンの形成が行える。
【0040】
また、樹脂基盤14に磁性層2を成膜したまま、研磨、基板3の積層を行うことで、作業性に優れている。
【図面の簡単な説明】
【図1】本発明の一つの実施形態に係る磁気転写用マスター担体の断面図
【図2】一実施形態のマスター担体の作製工程を順に示す図
【符号の説明】
1  マスター担体
2  磁性層
2a  表面(凹凸パターン)
2b  裏面
3  平坦基板
10  原板
11  フォトレジスト膜
12  Ni導電膜
13  金属原盤
14  樹脂基盤
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic transfer master carrier used in a magnetic transfer method for magnetic transfer from a master carrier carrying transfer information to a slave medium that receives the transfer, and a method for manufacturing the same.
[0002]
[Prior art]
In the magnetic transfer of the present invention, a master carrier (patterned master) on which a transfer pattern such as a servo signal having a magnetic layer on at least a surface layer is formed in a concavo-convex shape is brought into close contact with a slave medium having a magnetic recording portion. In this state, a magnetic field for transfer is applied to transfer and record the magnetization pattern corresponding to the information carried on the master carrier onto the slave medium.
[0003]
As an example of the master carrier used for the magnetic transfer, a substrate formed by forming a concavo-convex pattern corresponding to an information signal on the surface of a substrate and coating a thin film magnetic layer on the surface of the concavo-convex pattern has been proposed ( For example, see Patent Document 1).
[0004]
The concavo-convex pattern of this master carrier is drawn by irradiating a laser or electron beam modulated according to information while rotating a disk coated with a photoresist, and plating the original plate with concavo-convex developed by this photoresist. The metal plate formed by peeling off after taking the metal mold is used as a master and the uneven shape is copied on the surface of the substrate.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-256644 [0006]
[Problems to be solved by the invention]
By the way, in the magnetic transfer master carrier as described above, a substrate having a concavo-convex pattern corresponding to the transfer information on the surface is first prepared with a concavo-convex pattern formed by a magnetic layer required for magnetic transfer. Since the magnetic layer is obtained by coating the magnetic layer in a concavo-convex shape, this magnetic layer is provided on the bottom surface of the concave portion with the same film thickness as the top surface of the convex portion. When transfer is performed, the transferred magnetization pattern easily includes noise, and further improvement is desired in terms of transfer signal quality.
[0007]
As a result of analyzing the above points, the noise component in the magnetization pattern transferred to the slave medium is caused by the magnetic layer formed on the bottom surface of the concave portion of the concave and convex pattern of the master carrier. It was found that the smaller the thickness of the magnetic layer on the bottom surface, the less noise is contained.
[0008]
In the case where the magnetic layer is coated on the concave / convex pattern of the substrate, the concave / convex shape on the surface of the magnetic layer does not accurately represent the concave / convex shape of the substrate on the bottom surface of the magnetic layer, and the width of the convex portion becomes wider. Or a curved surface is formed at the corner of the convex portion, which becomes more noticeable as the magnetic layer becomes thicker, and there is a problem that affects the quality of the transfer signal, the positional accuracy, and the like.
[0009]
The present invention has been made in view of the above points, and an object of the present invention is to provide a master carrier for magnetic transfer that has few transfer noise components and excellent transfer characteristics, and a method for manufacturing the same.
[0010]
[Means for Solving the Problems]
The magnetic transfer master carrier of the present invention is a master carrier used in a magnetic transfer method in which a master carrier carrying information and a slave medium to be transferred are brought into close contact with each other and applied with a magnetic field for transfer, and magnetic transfer is performed.
A magnetic layer having a concavo-convex pattern corresponding to transfer information on the front surface and having a back surface flattened by polishing, and a flat substrate laminated on the flat back surface of the magnetic layer. .
[0011]
The flat substrate is preferably one in which Ni is laminated on the back surface of the magnetic layer by electroforming.
[0012]
The method for producing a magnetic transfer master carrier according to the present invention also includes a step of applying a resin liquid to a master on which a concavo-convex pattern according to information is formed, and curing the resin base to produce a resin base. After forming a magnetic layer and polishing and flattening the unevenness of the back surface of the magnetic layer, a flat substrate is laminated on the flat back surface by electroforming, and the resin substrate is peeled off from the uneven pattern of the magnetic layer, A master carrier provided with a magnetic layer and a flat substrate is produced.
[0013]
The master is preferably a metal master obtained by electroforming a concavo-convex pattern formed by drawing exposure on a photoresist, removing a metal mold, and then peeling.
[0014]
The resin substrate is preferably produced by curing a light curable resin such as an ultraviolet curable resin. The magnetic layer is preferably formed by sputtering or electroforming.
[0015]
For the backside polishing of the magnetic layer, it is preferable to use a method that does not give strain to the magnetic layer, such as flat polishing or lapping.
[0016]
【The invention's effect】
According to the master carrier of the present invention as described above, the back surface of the magnetic layer having a concavo-convex pattern corresponding to the transfer information is flattened by polishing, and a flat substrate is laminated on the flat back surface of the magnetic layer. The thickness of the magnetic layer on the bottom surface of the concave portion of the transfer pattern is smaller than the thickness of the magnetic layer on the convex portion, so that magnetic transfer with less noise can be performed, and reliability can be ensured by improving the transfer quality.
[0017]
In addition, according to the manufacturing method of the present invention, the formation accuracy of the concave / convex pattern on the surface of the magnetic layer is increased and the thickness of the magnetic layer on the bottom surface of the concave portion is reduced.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 is a cross-sectional view of a master carrier for magnetic transfer according to one embodiment of the present invention, and FIG. 2 is a diagram sequentially illustrating steps for producing a master carrier according to one embodiment. Each figure is a schematic diagram, and is shown in a ratio different from the actual dimensions.
[0019]
A magnetic transfer master carrier 1 shown in FIG. 1 includes a magnetic layer 2 and a substrate 3. The magnetic layer 2 has an uneven pattern (transfer pattern) corresponding to transfer information on the front surface 2a, and the back surface 2b has a back surface 2b. Flattened by polishing. The substrate 3 is formed by laminating Ni, for example, on the flat back surface 2b of the magnetic layer 2 by electroforming.
[0020]
The height of the protrusions in the concavo-convex pattern of the magnetic layer 2 is preferably in the range of 80 to 800 nm, more preferably in the range of 100 to 600 nm.
[0021]
At the time of magnetic transfer, the surface 2a (uneven pattern) of the magnetic layer 2 in the master carrier 1 and the slave medium 4 that receives the transfer indicated by the chain line are brought into close contact, and a magnetic field for transfer is applied to perform magnetic transfer. At this time, the slave medium 4 is preliminarily magnetized in one of the in-plane direction and the vertical direction, and the transfer magnetic field is applied in the in-plane direction or the vertical direction substantially opposite to the initial magnetization.
[0022]
Then, the magnetic field for transfer applied during the magnetic transfer is sucked into the convex portion of the magnetic layer 2 in close contact with the slave medium 4 in the concave / convex pattern of the master carrier 1, and in the case of in-plane recording, the initial magnetization of this portion is In the case of perpendicular recording, the initial magnetization of this portion is reversed and the initial magnetization of the other portion is not reversed. As a result, the master carrier 1 is provided in the magnetic recording layer of the slave medium 4. A magnetized pattern corresponding to the uneven pattern is transferred and recorded.
[0023]
Note that the master carrier 1 has an initial magnetic field direction and a transfer magnetic field with respect to the slave medium 4 even when the concave-convex pattern of the magnetic layer 2 is a negative concave pattern opposite to the positive pattern of FIG. A similar magnetization pattern can be transferred and recorded by changing the application direction of.
[0024]
In the magnetic transfer using the master carrier 1 as described above, since the thickness of the concave portion in the concave / convex pattern of the magnetic layer 2 is thin, the noise component at the time of magnetic transfer to the slave medium 4 is reduced, and the transfer has high signal quality. Can record.
[0025]
As will be described in detail later, the master carrier 1 is prepared by applying a resin liquid to a master on which a concavo-convex pattern corresponding to information is formed and curing the resin base. A magnetic layer is formed on the concavo-convex pattern of the resin base. 2 is formed, the unevenness of the back surface 2b of the magnetic layer 2 is polished and flattened, and then a flat substrate 3 is laminated on the flat back surface 2b of the magnetic layer 2 by electroforming, and then peeled off from the resin substrate. Made.
[0026]
A method for producing an embodiment of the master carrier 1 will be described with reference to FIGS.
[0027]
When the magnetic layer 2 is formed in the steps (a) to (d), the resin substrate 14 for forming a fine uneven pattern on the surface 2a is prepared. First, a photoresist film 11 is formed by applying a photoresist solution by spin coating or the like on an original plate 10 (which may be a glass plate or a quartz plate) made of a silicon wafer having a smooth surface as shown in FIG. . Then, with an electron beam exposure apparatus (not shown) equipped with a high-precision rotary stage, the electron beam EB modulated in accordance with the servo signal is irradiated while rotating the original plate 10 mounted on the rotary stage. A desired pattern is drawn and exposed on the photoresist film 11. Thereafter, as shown in (b), the photoresist film 11 is developed, the exposed portion is removed, and a desired uneven pattern (negative pattern) is formed with a desired thickness by the remaining photoresist film 11. An Ni conductive film 12 is applied on the uneven pattern to enable electroforming.
[0028]
Next, as shown in (c), an electroforming process is performed on the concavo-convex pattern on the surface of the original plate 10 by an electroforming apparatus to produce a master 13 made of Ni metal having a desired thickness. The metal master 13 having the uneven pattern (positive pattern) is peeled off from the master 10 and the remaining photoresist film 11 is removed and washed.
[0029]
Next, as shown in (d), a concavo-convex pattern in which a photo-curing resin such as an ultraviolet curable resin is applied on the metal master 13 and cured by irradiating with special light such as an ultraviolet ray, and inverted into a negative shape. The resin substrate 14 having the above is manufactured and peeled off from the metal master 13.
[0030]
Next, as shown in (e), the resin layer 14 is used to form the magnetic layer 2 on the concavo-convex pattern to a predetermined thickness by sputtering, electroforming, or the like. In the state after the film formation, the surface of the magnetic layer 2 is reversely formed with a positive concavo-convex pattern by the negative concavo-convex pattern of the resin substrate 14, and the opposite back surface of the magnetic layer 2 has a concavo-convex shape reflecting the concavo-convex pattern. It has become.
[0031]
Then, as shown in (f), the uneven surface on the back surface side of the magnetic layer 2 as it is formed on the resin substrate 14 is polished, and the convex portion is removed to form a flat back surface 2b. The polishing of the magnetic layer 2 is performed using a polishing method such as flat polishing or lapping that does not cause distortion of the magnetic layer 2.
[0032]
Next, as shown in (g), an electroforming process is performed on the flat back surface 2b obtained by polishing the magnetic layer 2 with Ni having a desired thickness, and the Ni flat substrate 3 is laminated. After that, the magnetic layer 2 is peeled off from the concave / convex pattern of the resin substrate 14 together with the flat substrate 3 and has a concave / convex pattern on the front surface 2a of the magnetic layer 2 and flat on the flat back surface 2b of the magnetic layer 2 as shown in (h). The master carrier 1 formed by laminating the substrate 3 is produced.
[0033]
In the production of the original plate 10, after the photoresist film 11 is exposed and developed, an etching process is performed to form an uneven pattern by etching on the surface of the wafer original plate 10, and then the photoresist film 11 is removed. Also good. After the Ni conductive film 12 is applied on the concavo-convex pattern, the metal master 13 having the positive concavo-convex pattern can be produced by performing an electroforming process as in FIG. In addition, a plurality of resin substrates 14 can be manufactured by repeatedly using the metal master 13.
[0034]
At the time of producing the resin base 14, an ultraviolet curable resin liquid is applied to the metal master 13, and then a plate member made of an ultraviolet transmitting material is pressed to a uniform thickness, and ultraviolet rays are irradiated through the plate member to cure the resin liquid ( The resin substrate 14 may be produced by photopolymerization. The said plate member is good also as a part of resin base | substrate as it is after shaping | molding.
[0035]
In FIG. 2, the back surface of the metal master 13 formed by the electroforming process is shown flat, but there is no problem in forming the resin substrate 14 even if an uneven shape is formed on the back surface.
[0036]
The magnetic layer 2 is formed by depositing a magnetic material by a vacuum film forming means such as a vacuum deposition method, a sputtering method, or an ion plating method, or a plating method such as electroforming. As the magnetic material of the magnetic layer 2, Co, Co alloy (CoNi, CoNiZr, CoNbTaZr, etc.), Fe, Fe alloy (FeCo, FeCoNi, FeNiMo, FeAlSi, FeAl, FeTaN), Ni, Ni alloy (NiFe) should be used. Can do. Particularly preferred are FeCo and FeCoNi.
[0037]
A protective film such as diamond-like carbon (DLC) is preferably provided on the surface 2a (uneven pattern) of the magnetic layer 2, and a lubricant layer may be provided. More preferably, a 5-30 nm DLC film and a lubricant layer are present as the protective film. The lubricant improves the deterioration of durability such as the occurrence of scratches due to friction when correcting the deviation caused in the contact process with the slave medium 4.
[0038]
As the slave medium 4, a hard disk, a high-density flexible disk, or the like is used, and the magnetic recording layer is formed with a coating type magnetic recording layer or a metal thin film type magnetic recording layer. For the metal thin film type magnetic recording layer, Co, Co alloy (CoPtCr, CoCr, CoPtCrTa, CoPtCrNbTa, CoCrB, CoNi, etc.), Fe, Fe alloy (FeCo, FePt, FeCoNi) can be used as the magnetic material.
[0039]
In the master carrier 1 manufactured by the above-described production method, the concave / convex pattern on the surface 2a of the magnetic layer 2 becomes a pattern in which the concave / convex pattern of the resin substrate 14 is directly shaped and inverted, so that the convex portion width, the convex portion It is possible to form a highly accurate pattern such as a cross-sectional shape.
[0040]
Further, the workability is excellent by polishing and laminating the substrate 3 while the magnetic layer 2 is formed on the resin substrate 14.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a master carrier for magnetic transfer according to one embodiment of the present invention. FIG. 2 is a diagram sequentially illustrating a manufacturing process of a master carrier according to one embodiment.
1 Master Carrier 2 Magnetic Layer 2a Surface (Unevenness Pattern)
2b Back surface 3 Flat substrate 10 Master plate 11 Photoresist film 12 Ni conductive film 13 Metal master 14 Resin base

Claims (7)

情報を担持したマスター担体と、転写を受けるスレーブ媒体とを密着させ転写用磁界を印加して磁気転写する磁気転写方法に使用するマスター担体であって、
表面に転写情報に応じた凹凸パターンを有し、裏面が研磨により平坦となった磁性層と、該磁性層の平坦裏面に積層されてなる平坦基板とを備えたことを特徴とする磁気転写用マスター担体。
A master carrier used in a magnetic transfer method in which a master carrier carrying information and a slave medium to be transferred are brought into close contact with each other and a magnetic field for transfer is applied for magnetic transfer,
For magnetic transfer, comprising: a magnetic layer having a concavo-convex pattern according to transfer information on the front surface, and a back surface flattened by polishing; and a flat substrate laminated on the flat back surface of the magnetic layer. Master carrier.
前記平坦基板は、前記磁性層にNiが電鋳で積層されてなることを特徴とする請求項1に記載の磁気転写用マスター担体。2. The magnetic transfer master carrier according to claim 1, wherein the flat substrate is formed by stacking Ni on the magnetic layer by electroforming. 情報に応じた凹凸パターンが形成された原盤に、樹脂液を塗布し硬化させて樹脂基盤を作製し、該樹脂基盤の凹凸パターン上に磁性層を成膜し、該磁性層の裏面の凹凸を研磨して平坦化した後、この平坦裏面に電鋳により平坦基板を積層し、前記樹脂基盤を磁性層の凹凸パターンより剥離し、前記磁性層と平坦基板とを備えたマスター担体を作製することを特徴とする磁気転写用マスター担体の製造方法。A resin base is formed by applying a resin liquid to a master having a concavo-convex pattern according to information and curing it. A magnetic layer is formed on the concavo-convex pattern of the resin base. After polishing and flattening, a flat substrate is laminated on the flat back surface by electroforming, and the resin substrate is peeled off from the uneven pattern of the magnetic layer to produce a master carrier comprising the magnetic layer and the flat substrate. A method for producing a master carrier for magnetic transfer. 前記原盤は、フォトレジストへの描画露光により形成された凹凸パターンに電鋳を施し、金属の型を取った後剥離してなる金属原盤であることを特徴とする請求項3に記載の磁気転写用マスター担体の製造方法。4. The magnetic transfer according to claim 3, wherein the master is a metal master obtained by electroforming a concavo-convex pattern formed by drawing exposure on a photoresist, removing a metal mold, and then peeling. For producing a master carrier for use in an automobile. 前記樹脂基盤は、紫外線硬化樹脂等の光硬化樹脂を硬化させて作製してなることを特徴とする請求項3に記載の磁気転写用マスター担体の製造方法。4. The method for manufacturing a magnetic transfer master carrier according to claim 3, wherein the resin substrate is made by curing a photo-curing resin such as an ultraviolet curable resin. 前記磁性層を、スパッタリングで成膜してなることを特徴とする請求項3に記載の磁気転写用マスター担体の製造方法。4. The method for producing a magnetic transfer master carrier according to claim 3, wherein the magnetic layer is formed by sputtering. 前記磁性層を、電鋳で成膜してなることを特徴とする請求項3に記載の磁気転写用マスター担体の製造方法。4. The method for producing a magnetic transfer master carrier according to claim 3, wherein the magnetic layer is formed by electroforming.
JP2002300418A 2002-10-15 2002-10-15 Master carrier for magnetic transfer, and its manufacturing method Pending JP2004139628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002300418A JP2004139628A (en) 2002-10-15 2002-10-15 Master carrier for magnetic transfer, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002300418A JP2004139628A (en) 2002-10-15 2002-10-15 Master carrier for magnetic transfer, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004139628A true JP2004139628A (en) 2004-05-13

Family

ID=32449120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002300418A Pending JP2004139628A (en) 2002-10-15 2002-10-15 Master carrier for magnetic transfer, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004139628A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009134793A (en) * 2007-11-29 2009-06-18 Fujifilm Corp Magnetic transfer master disk and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009134793A (en) * 2007-11-29 2009-06-18 Fujifilm Corp Magnetic transfer master disk and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP3999436B2 (en) Master carrier for magnetic transfer
KR20020021029A (en) Magnetic transfer apparatus
KR20020062593A (en) Master carrier for magnetic transfer
KR20020013718A (en) Method of magnetic transfer
US7593175B2 (en) Magnetic transfer method, magnetic transfer apparatus, magnetic recording medium and magnetic record reproduction system
EP2107559A1 (en) Production method of magnetic transfer master carrier, magnetic transfer master carrier, magnetic transfer method, and magnetic recording medium
JP2004139628A (en) Master carrier for magnetic transfer, and its manufacturing method
JP2002050038A (en) Magnetic transfer method
JP2004079060A (en) Master carrier for magnetic transfer
KR20030070832A (en) Producing method of master carrier for magnetic transfer
JP4046480B2 (en) Magnetic transfer method and magnetic transfer apparatus
US20030026026A1 (en) Master carrier for magnetic transfer
JP2003091806A (en) Master carrier for magnetic transfer
JP2001307324A (en) Magnetic transferring master carrier and magnetic recording medium
KR20020021002A (en) Method and apparatus for magnetic transfer
US7641822B2 (en) Master information carrier for magnetic transfer and a method for producing the carrier
JP2002342920A (en) Master carrier for magnetic transfer
JP2003178440A (en) Master carrier for magnetic transfer
JP2003022530A (en) Magnetic transfer method
JP2004265558A (en) Manufacturing method of master carrier for magnetic transfer
JP4249063B2 (en) Master carrier for magnetic transfer, magnetic transfer device, and magnetic transfer method
JP4761166B2 (en) Manufacturing method of master body for magnetic transfer
KR20010082119A (en) Master carrier for magnetic transfer and magnetic recording medium
JP2003248918A (en) Substrate of magnetic transfer master
JP2002342921A (en) Master carrier for magnetic transfer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070227