JP2003013900A - Solution transfer device in constant quantity using air lift pump - Google Patents

Solution transfer device in constant quantity using air lift pump

Info

Publication number
JP2003013900A
JP2003013900A JP2001200479A JP2001200479A JP2003013900A JP 2003013900 A JP2003013900 A JP 2003013900A JP 2001200479 A JP2001200479 A JP 2001200479A JP 2001200479 A JP2001200479 A JP 2001200479A JP 2003013900 A JP2003013900 A JP 2003013900A
Authority
JP
Japan
Prior art keywords
solution
tank
air lift
pipe
feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001200479A
Other languages
Japanese (ja)
Other versions
JP4030733B2 (en
Inventor
Hiroshi Takazawa
寛 高澤
Akihiro Kawabe
晃寛 川辺
Tsutomu Kurita
勉 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Nuclear Cycle Development Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Nuclear Cycle Development Institute filed Critical Japan Nuclear Cycle Development Institute
Priority to JP2001200479A priority Critical patent/JP4030733B2/en
Publication of JP2003013900A publication Critical patent/JP2003013900A/en
Application granted granted Critical
Publication of JP4030733B2 publication Critical patent/JP4030733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a solution transfer device capable of transferring solution in constant quantity when transferring the solution using an air lift pump. SOLUTION: This solution transfer device using the air lift pump comprises a feed side liquid feed pipe 3 connecting a feed side solution tank 1 to an air lift separator 2, a receiver side liquid feed pipe 5 connecting a receiver side solution tank 4 to the air lift separator, a compressor 6 feeding compressed air to the feed side liquid feed pipe immersed in the solution in the feed side solution tank, and a vacuum pump 8 connected to the air lift separator. A constant quantity solution tank 10 is disposed in a midway of the receiver side liquid feed pipe on the lower side of the air lift separator, multiple overflow pipes 14 varying their installation heights at every prescribed solution amounts are provided in the height direction of the constant quantity solution tank, opening/closing valves 15 and 16 are provided in the respective overflow pipes and the lower part of the constand quantity solution tank, and the downstreams of the respective overflow pipes are connected to the feed side solution tank.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、真空系と圧縮空気
供給系とを併用したエアリフトポンプを利用した溶液移
送装置に関し、さらに詳しくは、かようなエアリフトポ
ンプを利用して溶液の定量的な移送を行えるようにした
溶液定量移送装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solution transfer device using an air lift pump that uses both a vacuum system and a compressed air supply system, and more specifically, a quantitative solution solution using such an air lift pump. The present invention relates to a fixed-quantity solution transfer device capable of transferring.

【0002】[0002]

【従来の技術】従来から、核燃料再処理施設等におい
て、硝酸ウラニル溶液や硝酸プルトニウム溶液等の核燃
料物質を含む溶液の移送には、機械的な駆動部がないた
め保守の必要性がきわめて少ないという理由等から、真
空系と圧縮空気供給系を併用したエアリフトポンプが広
く利用されている。
2. Description of the Related Art Conventionally, in a nuclear fuel reprocessing facility or the like, there is no mechanical drive unit for transferring a solution containing a nuclear fuel substance such as a uranyl nitrate solution or a plutonium nitrate solution, and therefore maintenance is extremely low. For some reasons, air lift pumps that use both a vacuum system and a compressed air supply system are widely used.

【0003】この種のエアリフトポンプを利用した溶液
移送装置は、例えば図3に示したように、送り側溶液槽
1とこの送り側溶液槽上方に配置したエアリフトセパレ
ータ2とが送り側送液配管3により接続されており、エ
アリフトセパレータ2下方に配置した受け側溶液槽4と
エアリフトセパレータ2とが受け側送液配管5により接
続されている。さらに、送り側溶液槽1の溶液中に浸漬
された送り側送液配管3には、コンプレッサ6からの圧
縮空気が圧縮空気注入部7から供給されるとともに、エ
アリフトセパレータ2には真空ポンプ8が接続されてい
る。図中、参照番号6aは圧縮空気の流量計を、8aは
真空計をそれぞれ示している。
In a solution transfer device using an air lift pump of this type, as shown in FIG. 3, for example, a feed side solution tank 1 and an air lift separator 2 arranged above the feed side solution tank are provided in a feed side liquid feed pipe. 3, the receiving side solution tank 4 arranged below the air lift separator 2 and the air lift separator 2 are connected by a receiving side liquid sending pipe 5. Furthermore, the compressed air from the compressor 6 is supplied from the compressed air injecting unit 7 to the liquid feed pipe 3 on the feed side immersed in the solution in the solution tank 1 on the feed side, and the vacuum pump 8 is provided to the air lift separator 2. It is connected. In the figure, reference numeral 6a indicates a compressed air flow meter, and 8a indicates a vacuum gauge.

【0004】かような装置を用いて送り側溶液槽1から
受け側溶液槽4へ溶液を移送するに際しては、真空ポン
プ8を使用してエアリフトセパレータ2および送液配管
3、5の内部圧力を大気圧より負圧に保ちながら、送り
側溶液槽1内に浸漬した送液配管3にコンプレッサ6か
ら圧縮空気を圧縮空気注入部7を介して供給する。送り
側送液配管3内においては、負圧により一定の高さまで
上昇した溶液は、圧縮空気が供給されることにより気液
混合流となり、見掛けの密度が小さくなって送り側送液
配管3内をさらに上昇し、エアリフトセパレータ2に流
入する。流入した気液混合流は、エアリフトセパレータ
2内で気液分離され、溶液は重力により落下して受け側
送液配管5を通り受け側溶液槽4へ移送される。
When the solution is transferred from the solution tank 1 on the sending side to the solution tank 4 on the receiving side by using such an apparatus, a vacuum pump 8 is used to adjust the internal pressures of the air lift separator 2 and the liquid sending pipes 3, 5. Compressed air is supplied from the compressor 6 via the compressed air injecting unit 7 to the liquid sending pipe 3 immersed in the sending side solution tank 1 while maintaining a negative pressure from the atmospheric pressure. In the feed-side liquid feed pipe 3, the solution that has risen to a certain height due to negative pressure becomes a gas-liquid mixed flow due to the supply of compressed air, and the apparent density becomes small, so that the feed-side liquid feed pipe 3 Is further raised and flows into the air lift separator 2. The gas-liquid mixed flow that has flowed in is separated into gas and liquid in the air lift separator 2, and the solution falls due to gravity and is transferred to the receiving side solution tank 4 through the receiving side liquid supply pipe 5.

【0005】[0005]

【発明が解決しようとする課題】図3に示したようなエ
アリフトポンプを利用した従来の溶液移送装置において
は、エアリフトセパレータ2への気液混合流の流入は定
常的でなく脈動的になることが知られている。また、溶
液移送中には、送液配管3、5内を大気圧より負圧に保
持しているため、送液配管内の溶液滞留量が常に存在す
る。したがって、主としてこれら2つの理由により、溶
液の移送量に関して定量性が比較的悪いという問題があ
った。
In the conventional solution transfer device using the air lift pump as shown in FIG. 3, the inflow of the gas-liquid mixed flow into the air lift separator 2 is not steady but pulsating. It has been known. Further, during the transfer of the solution, the insides of the liquid supply pipes 3 and 5 are maintained at a negative pressure than the atmospheric pressure, so that the solution retention amount in the liquid supply pipe is always present. Therefore, there is a problem that the quantitativeness of the solution transfer amount is relatively poor mainly due to these two reasons.

【0006】そこで本発明は、上記の問題点に鑑み、エ
アリフトポンプを利用して溶液移送を行うに際しても、
定量的な溶液移送を実施することができる新規かつ改良
された溶液移送装置を提供することにある。
In view of the above problems, therefore, the present invention is also effective in transferring a solution using an air lift pump.
It is an object of the present invention to provide a new and improved solution transfer device capable of performing quantitative solution transfer.

【0007】[0007]

【課題を解決するための手段】すなわち本発明のエアリ
フトポンプを利用した溶液定量移送装置は、送り側溶液
槽とこの送り側溶液槽上方に配置したエアリフトセパレ
ータとを接続する送り側送液配管と、前記エアリフトセ
パレータ下方に配置した受け側溶液槽と前記エアリフト
セパレータとを接続する受け側送液配管と、前記送り側
溶液槽の溶液中に浸漬された前記送り側送液配管に圧縮
空気を供給するコンプレッサと、前記エアセリフトパレ
ータに接続された真空ポンプとからなるエアリフトポン
プを利用した従来の溶液移送装置において、前記エアリ
フトセパレータ下方の前記受け側送液配管の途中に溶液
定量槽を配設し、この溶液定量槽に溶液の一定量が溜ま
った時点でオーバーフローするオーバーフロー配管を溶
液定量槽の所定高さに設置し、前記オーバーフロー配管
および前記溶液定量槽下部に開閉バルブを設け、前記オ
ーバーフロー配管の下流を前記送り側溶液槽に接続した
ことを特徴とするものである。
[Means for Solving the Problems] That is, a solution quantitative transfer device using an air lift pump of the present invention comprises a feed side liquid feed pipe connecting a feed side solution tank and an air lift separator arranged above the feed side solution tank. , Compressed air is supplied to the receiving-side solution sending pipe that connects the receiving-side solution tank arranged below the air lift separator and the air-lift separator, and the sending-side solution sending pipe immersed in the solution in the sending-side solution tank In a conventional solution transfer device using an air lift pump consisting of a compressor and a vacuum pump connected to the air cell lift separator, a solution fixed amount tank is provided in the middle of the receiving side liquid transfer pipe below the air lift separator. The overflow pipe that overflows when a certain amount of the solution has accumulated in this solution metering tank is installed at the specified height of the solution metering tank. Placed in, the overflow pipe and the solution quantitative vessel bottom to the opening and closing valve is provided, is characterized in that the downstream of the overflow pipe is connected to the feed side solution bath.

【0008】上記したごとき構成の本発明の装置によれ
ば、先ず本来のエアリフトポンプ機能により送り側溶液
槽から受け側溶液槽へ、移送目標値を超えない量の溶液
を移送した後、不足溶液量を補充するために、溶液定量
槽に溜めた一定量の溶液を必要回数だけ受け側溶液槽へ
定量供給することにより、定量的な受け側溶液槽への溶
液移送を行うことができる。
According to the apparatus of the present invention having the above-described structure, first, the original air lift pump function is used to transfer an amount of the solution not exceeding the transfer target value from the solution tank on the sending side to the solution tank on the receiving side, and then the insufficient solution is transferred. In order to replenish the amount, a fixed amount of the solution stored in the solution metering tank is quantitatively supplied to the receiving solution tank a required number of times, so that the solution can be quantitatively transferred to the receiving solution tank.

【0009】本発明の好ましい実施態様においては、前
記溶液定量槽の高さ方向に所定溶液量ごとに設置高さを
異にした複数のオーバーフロー配管を設置し、各オーバ
ーフロー配管に開閉バルブを設けるとともに、各オーバ
ーフロー配管の下流を送り側溶液槽に接続する。
In a preferred embodiment of the present invention, a plurality of overflow pipes having different installation heights are installed in the height direction of the solution metering tank for each predetermined solution amount, and an opening / closing valve is provided in each overflow pipe. , Connect the downstream of each overflow pipe to the solution tank on the feed side.

【0010】オーバーフロー配管を複数設置する構成に
よれば、各オーバーフロー配管に設けた開閉バルブの開
閉を選択してオーバーフローする高さを変えることによ
り、溶液定量槽に溜まる一定量の溶液量を選択すること
ができる。その結果、不足溶液量を補充するために、溶
液定量槽に溜めた一定量の溶液を必要回数だけ受け側溶
液槽へ定量供給するに際して、定量供給する一定量の溶
液量を適宜選択できることになり、溶液定量槽から受け
側溶液槽へ定量供給する回数を最小にすることが可能と
なる。
According to the structure in which a plurality of overflow pipes are installed, the opening / closing valve provided in each overflow pipe is selected to change the overflow height, thereby selecting a fixed amount of the solution accumulated in the solution metering tank. be able to. As a result, in order to replenish the insufficient solution amount, when a fixed amount of the solution stored in the solution fixed amount tank is supplied to the receiving side solution tank a fixed number of times, it is possible to appropriately select the fixed amount of solution to be supplied in a fixed amount. , It is possible to minimize the number of times of constant supply from the solution fixed amount tank to the receiving side solution tank.

【0011】さらに本発明の好ましい実施態様において
は、前記各オーバーフロー配管の下流を1本の戻し配管
に接続し、この戻し配管を前記送り側溶液槽に接続す
る。かような構成によれば、複数のオーバーフロー配管
の下流をそれぞれ送り側溶液槽に接続する場合に比べ
て、多数の配管を引き回すことによる煩雑さを避けるこ
とができる。
Further, in a preferred embodiment of the present invention, the downstream side of each overflow pipe is connected to one return pipe, and the return pipe is connected to the feed side solution tank. According to such a configuration, it is possible to avoid the complication caused by drawing a large number of pipes, as compared with the case where the downstream sides of the plurality of overflow pipes are respectively connected to the feed side solution tank.

【0012】[0012]

【発明の実施の形態】以下に図面に示す実施例を参照し
て本発明を詳述する。図1はエアリフトポンプを利用し
た本発明による溶液定量移送装置の好ましい実施例を示
すものであり、図3の従来の装置における部材と同じ部
材には、同じ参照番号を付すことにより説明を省略す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the embodiments shown in the drawings. FIG. 1 shows a preferred embodiment of a solution quantitative transfer device according to the present invention using an air lift pump, and the same members as those in the conventional device of FIG. .

【0013】図1に示した本発明の装置が図3の従来装
置と相違する構成は、本発明においては、エアリフトセ
パレータ2下方の受け側送液配管5の途中に、溶液定量
槽10を配設した点である。
The structure of the apparatus of the present invention shown in FIG. 1 is different from that of the conventional apparatus of FIG. 3 in the present invention. In the present invention, a solution metering tank 10 is provided in the middle of the receiving side liquid supply pipe 5 below the air lift separator 2. That is the point.

【0014】図2は、図1における点線内の溶液定量槽
近傍を拡大して詳細に示したものであり、この図2から
わかるように、溶液定量槽10は、その内部の溶液定量
部11、上部の溶液流入配管12、下部の溶液排出配管
13、側部のオーバーフロー配管14から構成されてい
る。
FIG. 2 is an enlarged detailed view of the vicinity of the solution quantification tank within the dotted line in FIG. 1. As can be seen from FIG. 2, the solution quantification tank 10 has a solution quantification section 11 therein. , An upper solution inflow pipe 12, a lower solution discharge pipe 13, and a side overflow pipe 14.

【0015】図示の実施例においては、溶液定量槽10
の高さ方向に所定溶液量ごとに設置高さを変えた4本の
オーバーフロー配管14a、14b、14c、14dが
設置されており、各オーバーフロー配管にはそれぞれ開
閉バルブ15a、15b、15c、15dが設けられて
いる。さらに溶液定量槽10下部の溶液排出配管13に
も開閉バルブ16が設けられている。
In the illustrated embodiment, the solution metering tank 10
There are four overflow pipes 14a, 14b, 14c, 14d whose installation heights are changed in the height direction for each predetermined amount of solution, and opening / closing valves 15a, 15b, 15c, 15d are provided in each overflow pipe. It is provided. Further, an opening / closing valve 16 is provided in the solution discharge pipe 13 below the solution metering tank 10.

【0016】各オーバーフロー配管14a〜14dは、
その下流をそれぞれ送り側溶液槽1へ接続してもよい
が、図1の実施例では、各オーバーフロー配管の下流を
1本の戻し配管17に接続し、この戻し配管17を送り
側溶液槽1へ接続している。
Each overflow pipe 14a-14d is
The downstream side may be connected to the feed side solution tank 1, but in the embodiment of FIG. 1, the downstream side of each overflow pipe is connected to one return pipe 17, and the return pipe 17 is connected to the feed side solution tank 1. Connected to.

【0017】図1および図2に示した本発明の実施例に
おける溶液定量移送装置の動作を以下に説明する。先
ず、送り側溶液槽1(容積200L)には、受け側溶液
槽4へ移送されるべき溶液(150L)を入れ、受け側
溶液槽4(容積200L)にも受け側送液配管5の先端
部が溶液中に浸漬されて封鎖される程度の溶液(30
L)を入れる。受け側溶液槽4に溶液が存在せずに受け
側送液配管5の先端部が封鎖されていないと、真空ポン
プ8の運転を開始した際に、受け側送液配管5先端部か
ら空気が流入してしまい、エアリフトセパレータ2およ
び送液配管3、5内部を負圧に保つことが不可能とな
る。この理由により、受け側溶液槽4内にも受け側送液
配管5先端部が浸漬できる程度の若干の溶液を予め入れ
ておく必要がある。
The operation of the solution quantitative transfer device in the embodiment of the present invention shown in FIGS. 1 and 2 will be described below. First, the solution (150 L) to be transferred to the receiving side solution tank 4 is put in the sending side solution tank 1 (volume 200 L), and the tip of the receiving side liquid supply pipe 5 is also put in the receiving side solution tank 4 (volume 200 L). A solution (30
L). If there is no solution in the receiving side solution tank 4 and the tip of the receiving side liquid supply pipe 5 is not blocked, when the operation of the vacuum pump 8 is started, air will flow from the receiving side liquid supply pipe 5 tip part. It will flow in, and it will be impossible to maintain a negative pressure inside the air lift separator 2 and the liquid supply pipes 3 and 5. For this reason, it is necessary to previously fill a small amount of solution into the receiving side solution tank 4 such that the tip of the receiving side liquid supply pipe 5 can be immersed.

【0018】次に、真空ポンプ8の運転を開始して、エ
アリフトセパレータ2および送液配管3、5内部の圧力
を大気圧と比較して負圧にする。このときの真空度は−
0.030MPa〜−0.045MPa程度が適当であ
り、真空度の調整は真空度調整用バルブ8bの開度を調
整することにより行うことができる。また同時に、コン
プレッサ6の運転を開始して、圧縮空気注入部7から送
り側送液配管3内部に圧縮空気を注入する。圧縮空気の
流入量は8NL/分〜20NL/分程度が適当であり、
流入量の調整は流量計6aにより行うことができる。
Next, the operation of the vacuum pump 8 is started to make the pressure inside the air lift separator 2 and the liquid supply pipes 3, 5 negative compared with the atmospheric pressure. The degree of vacuum at this time is −
The suitable degree is about 0.030 MPa to -0.045 MPa, and the degree of vacuum can be adjusted by adjusting the opening degree of the degree of vacuum adjusting valve 8b. At the same time, the operation of the compressor 6 is started, and compressed air is injected from the compressed air injecting section 7 into the feed side liquid supply pipe 3. A suitable inflow rate of compressed air is about 8 NL / min to 20 NL / min.
The flow rate can be adjusted by the flow meter 6a.

【0019】送り側送液配管3内部の圧力が大気圧より
負圧に保持されることにより、真空度に見合った高さの
量の溶液が送り側送液配管3内部を上昇する。さらに、
圧縮空気が送り込まれることにより送り側送液配管3内
部の溶液と空気が混合され気液混合流が生成する。生成
した気液混合流は、その見掛けの平均密度がもとの溶液
よりも小さくなるために、送り側送液配管3内をさらに
上昇してエアリフトセパレータ2に流入し、気液分離さ
れる。
By keeping the pressure inside the feed side liquid feed pipe 3 at a negative pressure from the atmospheric pressure, the amount of the solution corresponding to the degree of vacuum rises inside the feed side liquid feed pipe 3. further,
When the compressed air is fed, the solution inside the feed liquid feed pipe 3 and the air are mixed with each other to generate a gas-liquid mixed flow. Since the apparent average density of the generated gas-liquid mixed flow is smaller than that of the original solution, the gas-liquid mixed flow further rises in the feed side liquid feeding pipe 3 and flows into the air lift separator 2 to be gas-liquid separated.

【0020】気体から分離された溶液は、自重により配
管内を下降して溶液定量槽10を通過し、受け側送液配
管5を通って受け側溶液槽4に流入する。この際、溶液
定量槽10下部の開閉バルブ16は開放されており、溶
液は溶液定量槽10に溜まることなく通過する。また、
送り側溶液槽1への逆流を防止するために、オーバーフ
ロー配管14a〜14dの各開閉バルブ15a〜15d
は全て閉じておく。受け側溶液槽4への送液を停止する
場合には、真空ポンプ8を停止し、エアリフトセパレー
タ2および送液配管3、5内部の真空を大気開放すると
ともに、圧縮空気の流入量をゼロにすることにより行わ
れる。
The solution separated from the gas descends in the pipe due to its own weight, passes through the solution metering tank 10, and flows into the receiving solution tank 4 through the receiving liquid supply pipe 5. At this time, the opening / closing valve 16 at the bottom of the solution metering tank 10 is opened, and the solution passes through the solution metering tank 10 without being accumulated. Also,
In order to prevent the backflow to the solution tank 1 on the sending side, the opening / closing valves 15a to 15d of the overflow pipes 14a to 14d are used.
Keep all closed. When stopping the liquid supply to the receiving side solution tank 4, the vacuum pump 8 is stopped, the vacuum inside the air lift separator 2 and the liquid supply pipes 3 and 5 is opened to the atmosphere, and the inflow of compressed air is made zero. It is done by doing.

【0021】上記の手順によって、移送目標値(本実施
例の場合85.1L)を超えない量の溶液をエアリフト
ポンプにより送り側溶液槽1から受け側溶液槽4へ移送
する。
According to the above procedure, the amount of the solution that does not exceed the transfer target value (85.1 L in the case of this embodiment) is transferred from the sending side solution tank 1 to the receiving side solution tank 4 by the air lift pump.

【0022】エアリフトポンプによる溶液の送液後に、
移送目標値と上記した実際の移送量との差(不足溶液
量)を補充するために、本発明の装置においては、以下
の手順によって溶液定量槽10を使用した溶液の定量供
給による微調整を実施する。すなわち、溶液定量槽10
下部の開閉バルブ16を閉じ、4つのオーバーフロー配
管14a〜14dに取付けた開閉バルブ15a〜15d
のいずれか1つ(例えば15a)のみを開放し、上記と
同じ手順でエアリフトポンプにより溶液を溶液定量槽1
0へ移送する。エアリフトセパレータ2を経て溶液定量
槽10へ流れ込んだ溶液は、開閉バルブ16が閉じられ
ているため、受け側溶液槽4には流れ込まず、溶液定量
槽10に溜まり、開放してある開閉バルブ15aを有す
るオーバーフロー配管14aの高さまで溜まった後はオ
ーバーフロー配管14aからオーバーフローして戻し配
管17により送り側溶液槽1へ戻される。オーバーフロ
ー配管14aからのオーバーフローを確認した後に、真
空ポンプ8およびコンプレッサ6の運転を停止し、溶液
定量槽10への溶液の移送を停止する。次に、オーバー
フロー配管14aからの溶液のオーバーフローが停止し
た後に、溶液定量槽10下部の開閉バルブ16を開放
し、溶液定量槽10に溜まった一定量の溶液を定量的に
受け側溶液槽4へ追加供給することができる。
After sending the solution by the air lift pump,
In order to replenish the difference between the transfer target value and the above-mentioned actual transfer amount (insufficient solution amount), in the apparatus of the present invention, fine adjustment by the fixed amount supply of the solution using the solution fixed amount tank 10 is performed by the following procedure. carry out. That is, the solution quantification tank 10
The lower opening / closing valve 16 is closed and the opening / closing valves 15a to 15d attached to the four overflow pipes 14a to 14d.
Only one of them (for example, 15a) is opened, and the solution is measured by the air lift pump in the same procedure as above.
Transfer to 0. The solution that has flowed into the solution metering tank 10 through the air lift separator 2 does not flow into the receiving solution tank 4 because the opening / closing valve 16 is closed, so that the solution accumulates in the solution metering tank 10 and opens and closes the opening / closing valve 15a. After having accumulated up to the height of the overflow pipe 14a, it overflows from the overflow pipe 14a and is returned to the feed side solution tank 1 by the return pipe 17. After confirming the overflow from the overflow pipe 14a, the operation of the vacuum pump 8 and the compressor 6 is stopped, and the transfer of the solution to the solution metering tank 10 is stopped. Next, after the overflow of the solution from the overflow pipe 14a is stopped, the opening / closing valve 16 at the bottom of the solution metering tank 10 is opened to quantitatively transfer a fixed amount of the solution accumulated in the solution metering tank 10 to the receiving side solution tank 4. Additional supply is possible.

【0023】図示した本実施例においては、溶液定量槽
10の高さ方向に所定溶液量ごとに設置高さを異にした
オーバーフロー配管を4本設置してあり、オーバーフロ
ー配管14aは1Lの溶液量、オーバーフロー配管14
bは2Lの溶液量、オーバーフロー配管14cは4Lの
溶液量、オーバーフロー配管14dは8Lの溶液量をそ
れぞれ定量供給できる高さに設置されている。これら定
量供給の誤差は、いずれの溶液量に対しても1バッチ当
たり±0.005L以内となっている。
In the illustrated embodiment, four overflow pipes having different installation heights are installed in the height direction of the solution metering tank 10 for each predetermined solution amount, and the overflow pipe 14a has a 1L solution amount. Overflow pipe 14
b is a 2 L solution volume, the overflow pipe 14c is a 4 L solution volume, and the overflow pipe 14d is installed at a height capable of quantitatively supplying an 8 L solution volume. These quantitative supply errors are within ± 0.005 L per batch for any solution amount.

【0024】溶液定量槽10による定量供給量は、目標
値とエアリフトポンプによる初期移送量との差(不足溶
液量)から決定され、目標値との差を最小にするよう
に、かつ、溶液定量槽10からの定量供給回数を最小に
するように決定される。本実施例では、目標値を85.
1Lとし、前記したエアリフトポンプによる初期移送量
が77.9Lであったため、その差は7.2Lとなり、
1L、2Lおよび4Lの溶液量を1回ずつ、すなわち3
回の供給回数で合計7Lを定量供給すればよい。
The fixed amount supplied by the solution fixed amount tank 10 is determined from the difference between the target value and the initial transfer amount by the air lift pump (insufficient solution amount) so as to minimize the difference from the target value and the solution fixed amount. It is determined so as to minimize the number of times of constant supply from the tank 10. In this embodiment, the target value is 85.
1L and the initial transfer amount by the air lift pump was 77.9L, the difference was 7.2L,
1 L, 2 L and 4 L solution volume once, ie 3
It is sufficient to supply a fixed amount of 7 L in total by the number of times of supply.

【0025】本実施例では、溶液定量槽10による定量
供給間隔が1Lであるため、かような溶液定量槽を使用
して追加供給する場合には、最大で0.5Lの差が生じ
ることになる。また、溶液定量槽10の供給誤差は0.
005L/バッチであるため、n回の定量供給を行った
場合の二乗平均誤差は(n×(0.005)2 1/2
なる。 従って、定量供給に関する誤差の最大値は0.
5+(n×(0.005)2 1/2 (リットル)とな
る。本実施例の場合、目標値が85.1L、n=3回で
あるので、送液誤差の最大値は 〔0.5+{3×(0.005)2 1/2 〕/85.1
×100=0.60% となる。
In this embodiment, since the fixed amount supply interval by the solution fixed amount tank 10 is 1 L, a maximum difference of 0.5 L occurs when additional supply is performed using such a solution fixed amount tank. Become. Further, the supply error of the solution quantification tank 10 is 0.
Since it is 005 L / batch, the root-mean-square error is (n × (0.005) 2 ) 1/2 when the quantitative supply is performed n times. Therefore, the maximum value of the error related to the fixed amount supply is 0.
It becomes 5+ (n × (0.005) 2 ) 1/2 (liter). In the case of this embodiment, since the target value is 85.1 L and n = 3 times, the maximum value of the liquid transfer error is [0.5+ {3 × (0.005) 2 } 1/2 ] /85.1.
× 100 = 0.60%.

【0026】なお、図示した実施例では溶液定量槽10
にオーバーフロー配管14を4本設置しているが、1本
のみ設置することも可能である。例えば図2のオーバー
フロー配管14aのみを設置して、1Lの溶液量を定量
供給できるようにした場合には、1Lずつ7回の定量供
給を行うことにより、合計7Lの不足溶液量を補充する
ことが可能となる。しかしながらこの場合、定量供給回
数が前記した実施例における3回より多くなるため、二
乗平均誤差が若干高くなることも考えられる。かような
観点から、図示した実施例のように、複数のオーバーフ
ロー配管を設置して、溶液定量槽から受け側溶液槽へ定
量供給する溶液量を適宜選択できるようにして、定量供
給回数をできるだけ少数にすることが望ましい。
In the illustrated embodiment, the solution metering tank 10
Although four overflow pipes 14 are installed in the above, it is also possible to install only one. For example, when only the overflow pipe 14a of FIG. 2 is installed to make it possible to supply a fixed amount of a 1 L solution, a fixed amount of 7 times for each 1 L is supplied to replenish the total amount of the insufficient solution of 7 L. Is possible. However, in this case, the number of times of fixed quantity supply is more than three times in the above-described embodiment, so that the root mean square error may be slightly increased. From such a viewpoint, as in the illustrated embodiment, a plurality of overflow pipes are installed so that the amount of solution to be quantitatively supplied from the solution metering tank to the receiving solution tank can be appropriately selected, and the number of times of metering can be adjusted as much as possible. It is desirable to keep the number small.

【0027】また、溶液定量槽10を用いて一定量の溶
液を受け側溶液槽4へ追加供給する際には、溶液を溶液
定量槽10に溜めた直後や、オーバーフロー配管14a
〜14dの1つから溶液をオーバーフローさせた直後に
は、溶液定量槽内の液面に波立ちが起こっているために
溶液量の変動が生じ、溶液定量槽内に溜まった溶液量が
安定しない。そのため、溶液定量槽内の液面に波立ちが
無くなり、槽内に溜まった溶液量に変動が無くなった後
に、受け側溶液槽4への定量供給を行う必要がある。
Further, when a fixed amount of the solution is additionally supplied to the receiving side solution tank 4 by using the solution metering tank 10, immediately after the solution is stored in the solution metering tank 10 or the overflow pipe 14a.
Immediately after the solution overflows from one of the solutions 14d to 14d, the solution amount fluctuates because the liquid surface in the solution metering tank is wavy, and the solution quantity accumulated in the solution metering tank is not stable. Therefore, it is necessary to supply the fixed amount to the receiving-side solution tank 4 after the liquid level in the solution fixed-quantity tank disappears and the amount of the solution accumulated in the tank disappears.

【0028】溶液定量槽10内の液面に波立ちが無くな
ったか否かを確認するための手段として、図示の実施例
では、溶液定量槽10に設置した超音波式液面計を使用
している。すなわち、液面計のセンサーヘッド18を溶
液定量槽10の上蓋部分に取り付け、このセンサーヘッ
ド18から発生される超音波により、センサーヘッド1
8から溶液定量槽10内の液面までの距離を非接触で測
定することができる。この距離に変動が無くなった時点
で槽内に溜まった溶液量に変動がなくなったものと判断
し、開閉バルブ16を開放して槽内に溜まった一定量の
溶液を受け側溶液槽4へ追加供給することにより、溶液
の定量供給を確実に行うことができる。センサーヘッド
18で測定された液面の変位信号は、ケーブル19によ
り作業員か確認できる位置に置かれたアンプユニット
(図示せず)へ送られ、変位の有無を作業員が確認して
開閉バルブ16の操作を行えるようにされている。
In the illustrated embodiment, an ultrasonic liquid level gauge installed in the solution metering tank 10 is used as a means for confirming whether the liquid level in the solution metering tank 10 has disappeared. . That is, the sensor head 18 of the liquid level gauge is attached to the upper lid portion of the solution metering tank 10, and the sensor head 1 is detected by the ultrasonic waves generated from the sensor head 18.
The distance from 8 to the liquid surface in the solution metering tank 10 can be measured without contact. When there is no change in this distance, it is determined that the amount of solution accumulated in the tank has not changed, and the open / close valve 16 is opened to add a fixed amount of solution accumulated in the tank to the receiving side solution tank 4. By supplying the solution, the solution can be reliably supplied in a fixed amount. The displacement signal of the liquid level measured by the sensor head 18 is sent by a cable 19 to an amplifier unit (not shown) placed at a position where the operator can confirm, and the operator confirms the presence or absence of displacement to open / close the valve. 16 operations can be performed.

【0029】[0029]

【発明の効果】以上の説明からわかるように本発明によ
れば、真空系と圧縮空気供給系とを併用したエアリフト
ポンプを利用した溶液移送装置の溶液移送ラインに、開
閉バルブ付のオーバーフロー配管を備えた溶液定量槽を
配設し、溶液定量槽に溜まる一定量の溶液を受け側溶液
槽へ定量供給することにより、定量的な溶液移送を行う
ことが可能となる。
As can be seen from the above description, according to the present invention, an overflow pipe with an opening / closing valve is provided in a solution transfer line of a solution transfer device using an air lift pump that uses both a vacuum system and a compressed air supply system. It is possible to quantitatively transfer the solution by arranging the provided solution quantification tank and supplying a fixed amount of the solution accumulated in the solution quantification tank to the receiving solution tank.

【0030】また、溶液定量槽に所定溶液量ごとに設置
高さを異にした複数のオーバーフロー配管を設置し、各
オーバーフロー配管の開閉バルブの開閉を選択してオー
バーフローする高さを変えることにより、溶液定量槽に
溜まる一定量の溶液量を選択することができ、これによ
って受け側溶液槽へ定量供給する一定量の溶液量を適宜
選択でき、溶液定量槽から受け側溶液槽へ定量供給する
回数を最小にすることで誤差の少ない定量移送が可能に
なる。
Further, by installing a plurality of overflow pipes having different installation heights for each predetermined amount of solution in the solution metering tank, and selecting the opening / closing valve of each overflow pipe to change the overflow height, It is possible to select a fixed amount of solution to be stored in the solution fixed amount tank, and to select the fixed amount of fixed amount of solution to be supplied to the receiving side solution tank accordingly. By minimizing, it becomes possible to perform quantitative transfer with less error.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるエアリフトポンプを利用した溶液
定量移送装置の実施例を示す説明図である。
FIG. 1 is an explanatory diagram showing an embodiment of a solution quantitative transfer device using an air lift pump according to the present invention.

【図2】図1の点線部分を拡大した説明図である。FIG. 2 is an explanatory diagram in which a dotted line portion in FIG. 1 is enlarged.

【図3】エアリフトポンプを利用した従来の溶液移送装
置の一例を示す説明図である。
FIG. 3 is an explanatory diagram showing an example of a conventional solution transfer device using an air lift pump.

【符号の説明】[Explanation of symbols]

1: 送り側溶液槽 2: エアリフトセパレータ 3: 送り側送液配管 4: 受け側溶液槽 5: 受け側送液配管 6: コンプレッサ 8: 真空ポンプ 10: 溶液定量槽 14: オーバーフロー配管 15: オーバーフロー配管の開閉バルブ 16: 溶液定量槽下部の開閉バルブ 1: Sending side solution tank 2: Air lift separator 3: Delivery side liquid delivery piping 4: Recipient solution tank 5: Receiving side liquid supply piping 6: Compressor 8: Vacuum pump 10: Solution quantitative tank 14: Overflow piping 15: Open / close valve for overflow piping 16: Open / close valve at the bottom of the solution metering tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 栗田 勉 茨城県那珂郡東海村村松4番地33 核燃料 サイクル 開発機構 東海事業所内 Fターム(参考) 3H079 AA09 BB03 CC12 DD02 DD12 DD20 DD27 DD41 DD44 DD55   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tsutomu Kurita             Nuclear fuel, 4-3 Muramatsu, Tokai-mura, Naka-gun, Ibaraki Prefecture             Cycle Development Organization Tokai Office F term (reference) 3H079 AA09 BB03 CC12 DD02 DD12                       DD20 DD27 DD41 DD44 DD55

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 送り側溶液槽とこの送り側溶液槽上方に
配置したエアリフトセパレータとを接続する送り側送液
配管と、前記エアリフトセパレータ下方に配置した受け
側溶液槽と前記エアリフトセパレータとを接続する受け
側送液配管と、前記送り側溶液槽の溶液中に浸漬された
前記送り側送液配管に圧縮空気を供給するコンプレッサ
と、前記エアセリフトパレータに接続された真空ポンプ
とからなるエアリフトポンプを利用した溶液移送装置に
おいて、前記エアリフトセパレータ下方の前記受け側送
液配管の途中に溶液定量槽を配設し、この溶液定量槽に
溶液の所定量が溜まった時点でオーバーフローするオー
バーフロー配管を溶液定量槽の所定高さに設置し、前記
オーバーフロー配管および前記溶液定量槽下部に開閉バ
ルブを設け、前記オーバーフロー配管の下流を前記送り
側溶液槽に接続したことを特徴とするエアリフトポンプ
を利用した溶液定量移送装置。
1. A feed-side liquid feed pipe connecting the feed-side solution tank and an air lift separator arranged above the feed-side solution tank, and a connection between the receiving-side solution tank arranged below the air-lift separator and the air-lift separator. An air lift including a receiving side liquid sending pipe, a compressor for supplying compressed air to the sending side liquid sending pipe immersed in the solution in the sending side solution tank, and a vacuum pump connected to the air lifter separator. In a solution transfer device using a pump, a solution metering tank is arranged in the middle of the receiving side liquid sending piping below the air lift separator, and an overflow piping overflows when a predetermined amount of the solution is accumulated in the solution metering tank. It is installed at a predetermined height of the solution metering tank, and an opening / closing valve is installed under the overflow pipe and the solution metering tank. A fixed-quantity solution transfer device using an air lift pump, characterized in that the downstream of the overflow pipe is connected to the solution tank on the feed side.
【請求項2】 前記溶液定量槽の高さ方向に所定溶液量
ごとに設置高さを異にした複数のオーバーフロー配管を
設置し、各オーバーフロー配管に開閉バルブを設けると
ともに、各オーバーフロー配管の下流を送り側溶液槽に
接続したことを特徴とする請求項1に記載の溶液定量移
送装置。
2. A plurality of overflow pipes having different installation heights are installed in the height direction of the solution metering tank for each predetermined amount of solution, an opening / closing valve is provided in each overflow pipe, and a downstream of each overflow pipe is installed. The fixed-quantity solution transfer device according to claim 1, which is connected to the solution tank on the sending side.
【請求項3】 前記各オーバーフロー配管の下流を1本
の戻し配管に接続し、この戻し配管を前記送り側溶液槽
に接続したことを特徴とする請求項2に記載の溶液定量
移送装置。
3. The solution quantitative transfer device according to claim 2, wherein the downstream of each overflow pipe is connected to one return pipe, and the return pipe is connected to the feed side solution tank.
JP2001200479A 2001-07-02 2001-07-02 Solution quantitative transfer device using air lift pump Expired - Fee Related JP4030733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001200479A JP4030733B2 (en) 2001-07-02 2001-07-02 Solution quantitative transfer device using air lift pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001200479A JP4030733B2 (en) 2001-07-02 2001-07-02 Solution quantitative transfer device using air lift pump

Publications (2)

Publication Number Publication Date
JP2003013900A true JP2003013900A (en) 2003-01-15
JP4030733B2 JP4030733B2 (en) 2008-01-09

Family

ID=19037593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001200479A Expired - Fee Related JP4030733B2 (en) 2001-07-02 2001-07-02 Solution quantitative transfer device using air lift pump

Country Status (1)

Country Link
JP (1) JP4030733B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107246414A (en) * 2017-06-23 2017-10-13 安徽尚蓝环保科技有限公司 A kind of quick air pressure unloads liquid device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107246414A (en) * 2017-06-23 2017-10-13 安徽尚蓝环保科技有限公司 A kind of quick air pressure unloads liquid device

Also Published As

Publication number Publication date
JP4030733B2 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
KR100454156B1 (en) Chemical delivery systems and methods of delivery
US6299753B1 (en) Double pressure vessel chemical dispenser unit
US20070205214A1 (en) Liquid dispense system
KR20100017231A (en) Method and device for determining volume during transfer of a liquid
CN107500227B (en) Flowmeter type filling machine
US6027240A (en) Apparatus and method for precise mixing, delivery and transfer of chemicals
US6270246B1 (en) Apparatus and method for precise mixing, delivery and transfer of chemicals
JP2003013900A (en) Solution transfer device in constant quantity using air lift pump
CN102245497B (en) Alcohol receiving station
CN106289428B (en) Cool down device and metering system
CN210739983U (en) Diluent filling system
CN207280532U (en) Foundation pit Groundwater Control system steam slag separation meter flow apparatus
JP2584232Y2 (en) Liquid supply device
CN114987958B (en) Constant-voltage source dosing device and flow control system
CN220355177U (en) Dosing metering device, dosing metering system and sea water desalination equipment
CN210545000U (en) Current stabilizer of dosing system
CN211198708U (en) Water treatment medicine system
JPH0649530B2 (en) Operation method of vertical hydro hoist
CN217650893U (en) High-precision chemical raw material filling system
US20230049409A1 (en) Process and installation for the destruction of radioactive sodium
US8229687B2 (en) System and method for measuring a level of a liquid in a container
CN217808750U (en) Liquid feeding system
CN214096294U (en) Liquid weightlessness scale
CN219209068U (en) Surplus ammonia water intermediate tank
CN117854774A (en) Reactor vessel coolant charge and discharge system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050413

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050418

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20051104

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061116

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees