JP2003013195A - Platinum-coated refractory - Google Patents
Platinum-coated refractoryInfo
- Publication number
- JP2003013195A JP2003013195A JP2001195179A JP2001195179A JP2003013195A JP 2003013195 A JP2003013195 A JP 2003013195A JP 2001195179 A JP2001195179 A JP 2001195179A JP 2001195179 A JP2001195179 A JP 2001195179A JP 2003013195 A JP2003013195 A JP 2003013195A
- Authority
- JP
- Japan
- Prior art keywords
- platinum
- refractory
- coated
- coating
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Coating By Spraying Or Casting (AREA)
Abstract
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、表面に白金被覆が
施された耐火物に関し、特に、ガラス製品の製造に適し
た白金被覆耐火物に関する。
【0002】
【従来の技術】従来、ガラス製品の製造に用いられる耐
火物には、その耐久性の維持及び溶融ガラスの汚染防止
をするために、表面を白金または白金合金で被覆された
耐火物が使用されている。
【0003】近年、耐火物の表面を少量の白金で被覆す
る溶射法が開発され、複雑な形状の耐火物にも被覆する
ことができ、泥漿鋳込み法によって成形された大型の焼
成耐火物にも応用されるようになってきた。
【0004】
【発明が解決しようとする課題】しかしながら、泥漿鋳
込み法によって成形された焼成耐火物は、耐火物の表面
となる鋳込み面は非常に緻密な組織であり、微小な気孔
が少ないため、耐火物と溶射された白金が強固に接着し
難いので白金被膜が耐火物から剥がれ落ちたりする。ま
た、溶射法によって形成される白金被膜は、多孔質であ
り微細な貫通孔が多いため、このような白金被覆耐火物
をガラスの溶融に使用すると、炉内雰囲気中の燃焼ガス
等が、耐火物の気孔および白金被膜の貫通孔を通って、
溶融ガラス中に流出するため、泡欠陥の多いガラス製品
が多くなる。
【0005】更に、耐火物の表面および内部に存在する
不純物の鉄からなる鉄斑点と白金とが反応して低融点合
金を作り、白金被膜のピンホールの原因となったりする
ため、泥漿鋳込み法によって成型され焼成された耐火物
に白金を被覆しても、しばしば期待されたほどの効果及
び寿命が得られなかった。
【0006】本発明の目的は、上記の問題を解決し、長
寿命で、泡などの製品欠陥が発生することのない、表面
に白金被膜を形成した白金被覆耐火物を提供することで
ある。
【0007】
【課題を解決するための手段】本発明の白金被覆耐火物
は、耐火物基材の表面を1mm以上研削して表面層を除
去し、該耐火物基材の表面に溶射法によって厚さ300
〜500μmの白金被膜を形成し、その後、該耐火物基
材を酸素濃度2〜12%の雰囲気中で1000〜140
0℃の温度で焼成処理してなることを特徴とする。
【0008】耐火物基材の表面の研削による除去が1m
m未満であると、泥漿鋳込み法によって成形された鋳込
み面からなる表面層が残っており、このような表面層は
非常に緻密な組織であり、溶射された白金と強く結合す
るために必要な微小な気孔が少なく、白金被膜が耐火物
基材表面から剥がれ落ちる。本発明で母材となる耐火物
基材としては、白金被膜と耐火物との接合を強固にする
上で、耐火物基材の表面を1mm以上研削してあること
が重要である。耐火物基材の緻密な表面層が研削により
除去されて耐火物の内部に存在する数μm〜数百μmの
気孔が表面に露出し、この気孔に深く食い込むように白
金を溶射することにより白金被膜と耐火物との接合を強
固にすることが可能となる。
【0009】また、白金被膜の厚みが、300μmより
薄いと焼成処理時の収縮によって白金被膜に孔が開き、
500μmより厚いと白金と耐火物との熱膨張率の差に
よって、白金被膜が耐火物基材の表面から剥離するため
好ましくない。白金被膜の厚みとしては300μm〜5
00μmが好適である。
【0010】白金が溶射された耐火物基材の焼成処理
を、雰囲気中の酸素濃度が2%より低い環境で行うと、
耐火物基材表面の鉄斑点と白金とが反応して低融点合金
を形成しピンホールが多数発生する。一方、酸素濃度が
12%より高いと、酸化揮発による白金の損耗が大きく
なるため好ましくない。白金が溶射された耐火物基材の
焼成処理としては、酸素濃度が2〜12%の酸化雰囲気
中で行うことが重要である。酸素濃度が2〜12%の酸
化雰囲気中で白金が溶射された耐火物基材の焼成処理を
行うと、耐火物基材表面に存在する鉄斑点は完全に酸化
鉄となるため白金と反応せず、ピンホール等のない緻密
な白金被膜を得ることができる。
【0011】一般に、溶射法により形成された白金被膜
は多孔質で微細な貫通孔が多数存在するが、焼成温度が
1000℃より低い場合、焼結が不十分となり白金被膜
の孔が十分には塞がらないので緻密な白金被膜を得るこ
とは難しく、一方、焼成温度が1400℃より高いと、
酸化揮発による白金の損耗を大きくなるだけでなく、耐
火物基材の焼成変形の原因になるため好ましくない。本
発明の白金被覆耐火物は、1000℃〜1400℃で長
時間(1時間〜数日間)の焼成処理を施してあるため、
白金被膜は緻密に焼結して貫通孔は存在しない。
【0012】
【発明の実施の形態】まず、泥漿鋳込み法によって成形
され焼成された耐火物基材の表面を2mm研削すること
により表面層を除去して内部を露出させる。その後、内
部が露出した耐火物基材の表面に溶射法によって厚さ3
50μmの白金被膜を形成する。
【0013】次に、白金被膜を形成した耐火物基材を酸
素濃度が8%の雰囲気中で、1350℃、4時間の条件
で焼成処理することにより白金被覆耐火物を得る。
【0014】このようにして得られた白金被覆耐火物を
用いて、室温から1時間当たり200℃の割合で昇温加
熱し、白金被覆耐火物の白金被膜の変化を観察したとこ
ろ、1500℃まで昇温しても、白金被膜は耐火物基材
から剥離することなく強固に接合していた。
【0015】また、実証試験として、ガラス溶融炉に白
金被覆耐火物を使用し、白金被覆耐火物の白金被膜の状
態とガラス製品中の泡の状態とを評価した。その結果、
白金被膜に小さな孔も観察されず、白金被膜から泡がま
ったく発生しなかった。また、ガラス製品中にも泡はな
く、良好なガラス製品を製造することができた。
【0016】さらに、実証試験の後に白金被覆耐火物を
取り出し、耐火物基板と白金被膜との界面に、ピンホー
ルの原因となる白金と鉄斑点との低融点合金が生成され
ているか否かを光学顕微鏡で調べたが、まったく観察さ
れなかった。
【0017】これに対して、比較例として、泥漿鋳込み
法によって成形され焼成された耐火物基材の表面に、溶
射法によって厚さ350μmの白金被膜を直接形成した
白金被覆耐火物を作製した。室温から1時間当たり20
0℃の割合で、昇温加熱して、白金被膜の変化を観察し
たところ、焼成面に直接溶射被膜した場合には、約90
0℃で白金被膜が耐火物から膨れ上がって剥がれて使用
できない状態になった。
【0018】
【発明の効果】以上説明したように、本発明の白金被覆
耐火物は、白金被膜と耐火物基材との密着性が良く長寿
命であり、且つ、白金被膜の表面から泡などの欠陥が発
生することがないので、ガラス溶融炉に使用した場合、
長期間に亘って安定して高い品質のガラス製品を製造す
ることが可能となる。
【0019】また、本発明の白金被覆耐火物は、大型や
複雑な形状の耐火物にも被膜できるので、大型や複雑な
形状の白金被覆耐火物を容易に作製することができる実
用上優れた効果を奏するものである。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refractory having a surface coated with platinum, and more particularly to a platinum-coated refractory suitable for manufacturing glass products. [0002] Conventionally, refractory materials used for manufacturing glass products include refractory materials whose surfaces are coated with platinum or a platinum alloy in order to maintain the durability and prevent contamination of molten glass. Is used. [0003] In recent years, a thermal spraying method has been developed in which the surface of a refractory is coated with a small amount of platinum, so that refractory of a complicated shape can be coated. It has been applied. [0004] However, in a fired refractory molded by the slurry casting method, the cast surface serving as the surface of the refractory has a very dense structure and few fine pores. Since the refractory and the sprayed platinum are hard to adhere to each other, the platinum film may be peeled off from the refractory. In addition, since the platinum coating formed by the thermal spraying method is porous and has many fine through-holes, when such a platinum-coated refractory is used for melting glass, a combustion gas or the like in a furnace atmosphere becomes refractory. Through the pores of the object and through holes in the platinum coating,
Since the glass flows out into the molten glass, the number of glass products having many bubble defects increases. [0005] Furthermore, since iron spots made of impurity iron present on the surface and inside of the refractory react with platinum to form a low melting point alloy and cause pinholes in the platinum film, a slurry casting method is used. Even coating the refractories molded and fired with platinum with platinum often did not provide the expected effect and life. An object of the present invention is to provide a platinum-coated refractory having a platinum coating formed on the surface thereof, which solves the above-mentioned problems and has a long life and does not cause product defects such as bubbles. [0007] The platinum-coated refractory of the present invention is obtained by grinding the surface of a refractory substrate by 1 mm or more to remove a surface layer, and spraying the surface of the refractory substrate by thermal spraying. Thickness 300
After forming a platinum film having a thickness of from 500 to 500 μm, the refractory substrate is placed in an atmosphere having an oxygen concentration of 2 to 12% in an atmosphere of 1000 to 140
It is characterized by being fired at a temperature of 0 ° C. The surface of the refractory substrate is removed by grinding in 1 m.
If it is less than m, a surface layer consisting of a cast surface formed by the slurry casting method remains, and such a surface layer has a very dense structure and is necessary for strong bonding with the sprayed platinum. There are few fine pores, and the platinum coating peels off from the refractory substrate surface. It is important that the surface of the refractory substrate be ground by 1 mm or more in order to strengthen the bond between the platinum film and the refractory as the base material of the refractory base material in the present invention. The dense surface layer of the refractory base material is removed by grinding, and pores of several μm to several hundred μm existing inside the refractory are exposed on the surface, and platinum is sprayed so as to penetrate deeply into these pores. It is possible to strengthen the bond between the coating and the refractory. If the thickness of the platinum coating is less than 300 μm, pores are opened in the platinum coating due to shrinkage during the firing treatment.
If the thickness is more than 500 μm, the platinum coating is undesirably separated from the surface of the refractory substrate due to the difference in the coefficient of thermal expansion between platinum and the refractory. The thickness of the platinum film is 300 μm to 5
00 μm is preferred. If the refractory substrate on which the platinum is sprayed is fired in an environment where the oxygen concentration in the atmosphere is lower than 2%,
The iron spots on the surface of the refractory substrate react with the platinum to form a low melting point alloy and generate many pinholes. On the other hand, if the oxygen concentration is higher than 12%, it is not preferable because the loss of platinum due to oxidation and volatilization increases. It is important that the refractory substrate on which platinum is sprayed is fired in an oxidizing atmosphere having an oxygen concentration of 2 to 12%. When the refractory base material on which platinum is sprayed is fired in an oxidizing atmosphere having an oxygen concentration of 2 to 12%, iron spots present on the surface of the refractory base material become completely iron oxide and react with platinum. And a dense platinum film without pinholes or the like can be obtained. In general, a platinum coating formed by a thermal spraying method has a large number of porous and fine through-holes. However, when the firing temperature is lower than 1000 ° C., sintering is insufficient and the pores of the platinum coating are insufficient. It is difficult to obtain a dense platinum coating because it does not block, while if the firing temperature is higher than 1400 ° C,
This is not preferable because not only is the wear of platinum due to oxidation and volatilization increased, but it also causes firing deformation of the refractory substrate. Since the platinum-coated refractory of the present invention has been subjected to a firing treatment at 1000 ° C. to 1400 ° C. for a long time (1 hour to several days),
The platinum coating is densely sintered and has no through holes. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the surface of a refractory substrate formed and fired by a slurry casting method is ground by 2 mm to remove a surface layer and expose the inside. Then, the surface of the refractory base material whose inner portion is exposed is sprayed to a thickness of 3 μm.
A platinum coating of 50 μm is formed. Next, the refractory substrate on which the platinum coating is formed is fired at 1350 ° C. for 4 hours in an atmosphere having an oxygen concentration of 8% to obtain a platinum-coated refractory. The platinum-coated refractory obtained in this manner was heated from room temperature at a rate of 200 ° C./hour to a temperature of 200 ° C., and the change in the platinum coating of the platinum-coated refractory was observed. Even when the temperature was raised, the platinum film was firmly bonded without peeling off from the refractory substrate. As a verification test, a platinum-coated refractory was used in a glass melting furnace, and the state of the platinum coating of the platinum-coated refractory and the state of bubbles in the glass product were evaluated. as a result,
No small holes were observed in the platinum coating, and no bubbles were generated from the platinum coating. In addition, there was no bubble in the glass product, and a good glass product could be manufactured. Further, after the verification test, the platinum-coated refractory is taken out, and it is determined whether or not a low melting point alloy of platinum and iron spots causing pinholes is formed at the interface between the refractory substrate and the platinum coating. Examination with an optical microscope showed no observations. On the other hand, as a comparative example, a platinum-coated refractory in which a 350 μm-thick platinum coating was directly formed on the surface of a refractory substrate formed and baked by a slurry casting method by thermal spraying was produced. 20 per hour from room temperature
When the temperature of the platinum coating was increased by heating at a rate of 0 ° C. and the change of the platinum coating was observed, it was found that when the sprayed coating was directly formed on the fired surface, about 90% was obtained.
At 0 ° C., the platinum coating swelled from the refractory and peeled off, making it unusable. As described above, the platinum-coated refractory of the present invention has good adhesion between the platinum coating and the refractory base material, has a long service life, and has a foam or the like from the surface of the platinum coating. When used in a glass melting furnace,
High quality glass products can be stably manufactured over a long period of time. Further, since the platinum-coated refractory of the present invention can be coated on a large-sized or complicated-shaped refractory, a platinum-coated refractory of a large-sized or complicated shape can be easily produced, and is excellent in practical use. It is effective.
Claims (1)
表面層を除去し、該耐火物基材の表面に溶射法によって
厚さ300〜500μmの白金被膜を形成し、その後、
該耐火物基材を酸素濃度2〜12%の雰囲気中で100
0〜1400℃の温度で焼成処理してなることを特徴と
する白金被覆耐火物。Claims: 1. The surface of a refractory substrate is ground by grinding at least 1 mm to remove a surface layer, and a platinum coating having a thickness of 300 to 500 μm is formed on the surface of the refractory substrate by a thermal spraying method. And then
The refractory substrate is placed in an atmosphere having an oxygen concentration of 2 to 12% for 100 hours.
A platinum-coated refractory obtained by firing at a temperature of 0 to 1400 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001195179A JP4556352B2 (en) | 2001-06-27 | 2001-06-27 | Platinum coated refractory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001195179A JP4556352B2 (en) | 2001-06-27 | 2001-06-27 | Platinum coated refractory |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003013195A true JP2003013195A (en) | 2003-01-15 |
JP4556352B2 JP4556352B2 (en) | 2010-10-06 |
Family
ID=19033208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001195179A Expired - Fee Related JP4556352B2 (en) | 2001-06-27 | 2001-06-27 | Platinum coated refractory |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4556352B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005040446A1 (en) * | 2003-10-22 | 2005-05-06 | Yamada Corrosion Protection Co., Ltd. | Method of thermal spraying |
JP2008121073A (en) * | 2006-11-13 | 2008-05-29 | Asahi Glass Co Ltd | Electrocast brick with metal film and production method therefor |
US7682667B2 (en) | 2003-10-22 | 2010-03-23 | Nishinippon Plant Engineering And Construction Co., Ltd. | Method of thermal spraying |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6425963A (en) * | 1987-07-21 | 1989-01-27 | Fujikura Ltd | Production of superconductor |
JPH03219030A (en) * | 1990-01-22 | 1991-09-26 | Tanaka Kikinzoku Kogyo Kk | Manufacture of noble metal matrix composite |
JPH10195623A (en) * | 1996-12-27 | 1998-07-28 | Nippon Electric Glass Co Ltd | Platinum-coating refractory |
JPH11228260A (en) * | 1998-02-06 | 1999-08-24 | Tanaka Kikinzoku Kogyo Kk | Covering of platinum for refractory or the like |
JP2001153730A (en) * | 1999-11-26 | 2001-06-08 | Tanaka Kikinzoku Kogyo Kk | Thermocouple protection tube and its manufacturing method |
-
2001
- 2001-06-27 JP JP2001195179A patent/JP4556352B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6425963A (en) * | 1987-07-21 | 1989-01-27 | Fujikura Ltd | Production of superconductor |
JPH03219030A (en) * | 1990-01-22 | 1991-09-26 | Tanaka Kikinzoku Kogyo Kk | Manufacture of noble metal matrix composite |
JPH10195623A (en) * | 1996-12-27 | 1998-07-28 | Nippon Electric Glass Co Ltd | Platinum-coating refractory |
JPH11228260A (en) * | 1998-02-06 | 1999-08-24 | Tanaka Kikinzoku Kogyo Kk | Covering of platinum for refractory or the like |
JP2001153730A (en) * | 1999-11-26 | 2001-06-08 | Tanaka Kikinzoku Kogyo Kk | Thermocouple protection tube and its manufacturing method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005040446A1 (en) * | 2003-10-22 | 2005-05-06 | Yamada Corrosion Protection Co., Ltd. | Method of thermal spraying |
US7682667B2 (en) | 2003-10-22 | 2010-03-23 | Nishinippon Plant Engineering And Construction Co., Ltd. | Method of thermal spraying |
JP2008121073A (en) * | 2006-11-13 | 2008-05-29 | Asahi Glass Co Ltd | Electrocast brick with metal film and production method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP4556352B2 (en) | 2010-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101276506B1 (en) | Surface-treated ceramic member, method for producing same, and vacuum processing device | |
TW200846495A (en) | Electrocast brick with metal film and production method therefor | |
JP3723753B2 (en) | Method for producing a coating on a fire-resistant component and use of such a coating | |
NO145468B (en) | PROCEDURE FOR AA REDUCED THE ACCESSIBILITY OF A SILICONE-BASED CERAMIC COMPOSITION TO AA REACTOR WITH METALLIC SURFACES AT INCREASED TEMPERATURE | |
CN110903074A (en) | High-temperature oxidation-resistant coating on surface of silicon carbide substrate and preparation method thereof | |
JP4556352B2 (en) | Platinum coated refractory | |
JPS6220157B2 (en) | ||
JPH0873288A (en) | Ceramic coating member and its production | |
JP2009274905A (en) | Crucible for melting silicon | |
JP5465143B2 (en) | Tool material for SiC firing | |
CA2518170C (en) | Method of making a layer system comprising a metallic carrier and an anode functional layer | |
JPS6012247A (en) | Investment shell mold for unidirectional solidification casting of super alloy | |
JPH10195623A (en) | Platinum-coating refractory | |
KR101595541B1 (en) | Setter for manufacturing ceramic and manufacturing method thereof | |
TWI383965B (en) | A ceramic material for a ceramic ceramic container, a method for manufacturing the same, and a method for producing the same | |
TWI271394B (en) | Jig for heat-treating ceramic for electronic part and its manufacturing process | |
JP4658523B2 (en) | Oxidation-resistant composite material | |
EP3046896A1 (en) | Substrate for solidifying a silicon ingot | |
JP2002348174A (en) | HEATER MATERIAL CONTAINING MoSi2 AS ITS MAIN COMPONENT WITH LOW-OXYGEN DIFFUSE VITREOUS COATING FILM | |
JPH05186285A (en) | Substrate for heat treatment and its production | |
JP2002362985A (en) | Member coated with ceramic and method of manufacturing the same | |
JP4354671B2 (en) | Silicon carbide member and manufacturing method thereof | |
JP2585548B2 (en) | Hermetic ceramic coating and method for producing the same | |
JPS60243259A (en) | Heat resisting structural body | |
JP2004238215A (en) | Silicon carbide sintered member having non-reactive thermally sprayed film and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080605 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081031 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100629 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100712 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4556352 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130730 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140730 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |