JP2003012382A - Method of manufacturing porous compact and porous compact - Google Patents

Method of manufacturing porous compact and porous compact

Info

Publication number
JP2003012382A
JP2003012382A JP2001197117A JP2001197117A JP2003012382A JP 2003012382 A JP2003012382 A JP 2003012382A JP 2001197117 A JP2001197117 A JP 2001197117A JP 2001197117 A JP2001197117 A JP 2001197117A JP 2003012382 A JP2003012382 A JP 2003012382A
Authority
JP
Japan
Prior art keywords
powder
porous body
cordierite
porous compact
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001197117A
Other languages
Japanese (ja)
Inventor
Kunihide Yomo
邦英 四方
Toshiyuki Ihara
俊之 井原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001197117A priority Critical patent/JP2003012382A/en
Publication of JP2003012382A publication Critical patent/JP2003012382A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a porous compact of high productivity, needless of long time heat treatment, and having uniform density in thickness direction. SOLUTION: This porous compact is characterized in that the porous compact is a sintered compact containing Mg, Al, and Si, the crystal phase of which has diffraction peaks 1, 2, at 2θ is 24.6-24.8 deg. and 24.7-24.9 deg., the coefficient of thermal expansion at 0-25 deg.C is 0-3×10<-6> / deg.C, the specific gravity is <=2.0, and the porocity is 25-80 vol.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、工作機械、精密機
械、評価装置、半導体製造装置等の各産業分野において
幅広く利用することができる多孔質体及びその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous body which can be widely used in various industrial fields such as a machine tool, a precision machine, an evaluation device, and a semiconductor manufacturing device, and a method for manufacturing the same.

【0002】[0002]

【従来技術】機械構造部品等に用いられる部材は、従来
から金属が多用されてきた。ところが、近年、セラミッ
クスの軽量、高剛性、高硬度、低熱膨張等の特性が金属
に対して優位であることから、Al23等の酸化物、S
iC等の炭化物、Si34等の窒化物等のセラミックス
の利用が増えてきている。
2. Description of the Related Art Metals have been frequently used for members used for mechanical structural parts and the like. However, in recent years, since properties such as lightweight, high rigidity, high hardness, and low thermal expansion of ceramics are superior to metals, oxides such as Al 2 O 3 , S
The use of ceramics such as carbides such as iC and nitrides such as Si 3 N 4 is increasing.

【0003】特に、様々な産業分野において構造部材の
軽量化は現代の趨勢であり、例えば、ステージ装置のよ
うに動く構造物では、軽いほど速く移動させることがで
き、また軽いほど駆動源への負担が少なくでき、また軽
いほど慣性力が小さくなり制御性が高くなるため、部材
の軽量化が強く求められている。
[0003] In particular, in various industrial fields, the weight reduction of structural members is a modern trend. For example, in a moving structure such as a stage device, the lighter the lighter, the faster the movement can be made. The load can be reduced, and the lighter the weight, the lower the inertia force and the higher the controllability. Therefore, weight reduction of the members is strongly required.

【0004】一般に金属よりも軽く剛性が高いと言われ
ている窒化珪素や炭化珪素アルミナ等のセラミックスで
あっても、その比重は3以上であり、さらなる軽量化を
はかることは難しい。
[0004] Even ceramics such as silicon nitride and silicon carbide alumina, which are generally lighter than metals and have higher rigidity, have a specific gravity of 3 or more, and it is difficult to further reduce the weight.

【0005】かかる軽量化の課題を解決すべく、気孔を
内部に含有させ、軽量化が図られてきた。例えば、セラ
ミックス粉末に予め粒子状又はビーズ状の有機物を混合
して成形した後、或いはスポンジ上の有機物にセラミッ
ク粉末のスラリーを坦持させた後、これを焼成すること
により、有機物を焼成と同時に燃焼して焼失させ、気孔
を形成させさせることによって軽量セラミックスを作製
することが特開平6−247778号公報に記載されて
いる。
[0005] In order to solve such a problem of weight reduction, pores are contained therein to reduce the weight. For example, after a ceramic powder is preliminarily mixed with a particulate or bead-shaped organic material and molded, or after a ceramic powder slurry is carried on an organic material on a sponge, the organic material is simultaneously fired by firing. Japanese Patent Application Laid-Open No. 6-247778 describes that lightweight ceramics are produced by burning and burning to form pores.

【0006】また、セラミックス粉末スラリーに発泡剤
を添加して発泡させた後、鋳込み成形し、乾燥・脱脂
し、焼成して焼結体内部が多孔体で表層が緻密層からな
る軽量セラミックスを作製することが特開平5−310
482号に提案されている。
Further, a foaming agent is added to a ceramic powder slurry, foamed, cast, dried, degreased, and fired to produce a lightweight ceramic having a porous sintered body and a dense surface layer. JP-A 5-310
No. 482.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、特開平
6−247778号公報に記載の軽量セラミックスの製
造方法は、スポンジや発泡剤を使用しており、セラミッ
クス粉末に混入させる多量の有機物の燃焼除去のために
長時間の熱処理が必要であるという問題があった。
However, the method for manufacturing lightweight ceramics described in Japanese Patent Application Laid-Open No. Hei 6-247778 uses a sponge or a foaming agent, and removes a large amount of organic substances mixed in ceramic powder by burning. Therefore, there is a problem that a long heat treatment is required.

【0008】また、特開平5−310482号公報記載
の軽量セラミックスの製造方法は、発泡剤を使用したス
ラリーの鋳込み成形を用いる為に、気孔が傾斜配向し、
厚み方向に対し密度の不均一が発生するという問題があ
った。また、内部の多孔体においてもスラリー中の気泡
制御が難しい等の生産性に問題がありコストアップにつ
ながるという問題点があった。
In the method for producing lightweight ceramics described in Japanese Patent Application Laid-Open No. Hei 5-310482, the pores are inclined and oriented, because the slurry is cast using a foaming agent.
There is a problem that unevenness in density occurs in the thickness direction. Also, there is a problem in productivity such as difficulty in controlling bubbles in the slurry even in the internal porous body, leading to an increase in cost.

【0009】よって、軽量で低熱膨張の多孔質体及びそ
れを作製するために格別な有機物を用いず、長時間の熱
処理が必要ない生産性の高い製造方法により密度の均一
な多孔体を提供することを目的とする。
Therefore, a light-weight, low-thermal-expansion porous body and a porous body having a uniform density can be provided by a highly productive production method which does not require a long-term heat treatment without using any special organic substance. The purpose is to:

【0010】[0010]

【課題を解決するための手段】本発明の多孔質体は、窒
化物を含む原料を用い、焼成温度を制御して自己発泡さ
せることによって、均質で軽量・低熱膨張の多孔質体を
容易に得ることができるという知見に基づく。
Means for Solving the Problems The porous body of the present invention can be easily formed into a homogeneous, lightweight, low-thermal-expansion porous body by using a raw material containing nitride and controlling the firing temperature to cause self-foaming. Based on the finding that it can be obtained.

【0011】即ち、本発明の多孔質体の製造方法は、コ
ージェライト粉末と、Mg、Al及びSi元素群のうち
少なくとも1種の窒化物粉末と前記元素群のうち窒化物
でない他の元素の酸化物、水酸化物、炭酸塩のうち少な
くとも1種からなる粉末と、前記Mg、Al及びSiが
酸化物換算で略コージェライト組成となる成形体を13
50℃〜1500℃で焼成することを特徴とするもの
で、多量の有機物の脱脂工程が不要で、生産性の高い良
好な発泡組織を形成することが出来る。また、自己発泡
を用いるため、内部の多孔体においてもスラリー中の気
泡制御が特に必要ないため、低コストで多孔体を得るこ
とができる。
That is, the method for producing a porous body according to the present invention comprises the steps of: providing a cordierite powder, at least one nitride powder of a group consisting of Mg, Al and Si and a non-nitride element of the group of elements; A powder comprising at least one of oxides, hydroxides, and carbonates, and a molded body in which Mg, Al, and Si have a substantially cordierite composition in terms of oxides are prepared.
It is characterized by firing at 50 ° C. to 1500 ° C., and does not require a large amount of organic matter degreasing step, and can form a good foamed structure with high productivity. Further, since self-foaming is used, it is not particularly necessary to control bubbles in the slurry even in the internal porous body, so that the porous body can be obtained at low cost.

【0012】特に、実質的に非酸化性雰囲気において焼
成する事が好ましい。これにより、原料粉末中の窒化物
の急激な分解を抑制し、形成された非晶質相が窒素を含
有し、剛性を高くすることができる。
In particular, it is preferable to perform firing in a substantially non-oxidizing atmosphere. Thereby, rapid decomposition of the nitride in the raw material powder can be suppressed, and the formed amorphous phase contains nitrogen, and the rigidity can be increased.

【0013】また、Mg、Al及びSi元素を含み、X
線回折により、2θが24.6〜24.8°、24.7
〜24.9°に主たる2つの回折ピークをもつ結晶相が
含まれ、0℃〜25℃の熱膨張係数が0〜3×10-6
℃、比重が2.0以下、気孔率が25〜80体積%であ
ることを特徴とするものである。これにより、気孔が均
一に分布し、密度の不均一が少ない多孔質体を実現でき
る。
Further, X, which contains Mg, Al and Si elements,
By line diffraction, 2θ was 24.6 to 24.8 °, 24.7.
It contains a crystal phase having two main diffraction peaks at 〜24.9 ° and a coefficient of thermal expansion at 0 ° C. to 25 ° C. of 0 to 3 × 10 −6 /.
C., specific gravity of 2.0 or less, and porosity of 25 to 80% by volume. This makes it possible to realize a porous body in which pores are uniformly distributed and density unevenness is small.

【0014】[0014]

【発明の実施の形態】本発明の多孔質体の製造方法につ
いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for producing a porous body according to the present invention will be described.

【0015】まず、1〜6μmの粒径に調整されたコー
ジェライト粉末を準備する。コージェライトの添加量
は、発泡を安定して充分に行うために下記の窒化物を含
有せしめるため、80重量%以下、特に70重量%以
下、更には60重量%以下であることが望ましい。
First, cordierite powder adjusted to a particle size of 1 to 6 μm is prepared. The amount of cordierite to be added is preferably 80% by weight or less, particularly preferably 70% by weight or less, and more preferably 60% by weight or less, in order to contain the following nitrides for stable and sufficient foaming.

【0016】また、2μm以下のMg、Al及びSi元
素群のうち少なくとも1種の窒化物粉末と前記元素群の
うち窒化物でない元素の酸化物、水酸化物、AlON、
炭酸塩のうち少なくとも1種からなる粉末を準備するこ
とが重要である。窒化物を加えることによって比較的低
温において発泡させ、気泡を均一に分布させることがで
きる。
Further, at least one kind of nitride powder of Mg, Al and Si element groups of 2 μm or less and oxides, hydroxides, AlON,
It is important to prepare a powder consisting of at least one of the carbonates. By adding the nitride, it is possible to foam at a relatively low temperature and to distribute the bubbles uniformly.

【0017】例えば、Mg、Al及びSiがコージェラ
イト以外の化合物で、かつ窒化物を含むものとして、M
gO粉末、Al23粉末及びSi34粉末の組合せで用
いることができる。この他の窒化物としてはMgN、A
lN、SiAlONを、水酸化物としてはMgOH、炭
酸塩としてはMgCO3を例示出来る。
For example, if Mg, Al and Si are compounds other than cordierite and contain nitrides,
It can be used in a combination of gO powder, Al 2 O 3 powder and Si 3 N 4 powder. Other nitrides include MgN, A
1N and SiAlON, MgOH as a hydroxide, and MgCO 3 as a carbonate.

【0018】多孔質体の製造に用いる原料のうち、コー
ジェライト粉末を除いた原料、即ちMg、Al及びSi
を含む粉末は、Mg、Al及びSiが酸化物換算で略コ
ージェライト組成になることが重要である。例えばMg
O:Al23:SiO2の比が1〜3:1〜3:4〜6
の比が良好な発泡を得る点で好ましい。
Among the raw materials used for producing the porous body, raw materials excluding cordierite powder, ie, Mg, Al and Si
It is important that Mg, Al and Si have a substantially cordierite composition in terms of oxide in the powder containing. For example, Mg
The ratio of O: Al 2 O 3 : SiO 2 is 1-3: 1-3: 4-6
Is preferable in that good foaming is obtained.

【0019】次いで、上記の粉末を混合する。混合に
は、ボールミル、ミキサー、ビーズミル等の公知の混合
粉砕方法を用いることができる。得られた混合粉末を所
望の形状に成形する。成形方法は、金型プレス、鋳込
み、CIP等の公知の成形方法を用いることができる。
Next, the above powders are mixed. For the mixing, a known mixing and pulverizing method such as a ball mill, a mixer, and a bead mill can be used. The obtained mixed powder is formed into a desired shape. As a molding method, a known molding method such as die pressing, casting, CIP or the like can be used.

【0020】得られた成形体を1350〜1500℃焼
成することが重要である。1350℃未満であれば自己
発泡が不十分であり、1500℃を超えると完全に溶融
する。発泡したさいの空隙の大きさが均一になり、また
十分な気孔が生じるため、特に1360〜1450℃、
更には1370〜1420℃であることが好ましい。
It is important that the obtained molded body is fired at 1350 to 1500 ° C. If it is lower than 1350 ° C., the self-foaming is insufficient, and if it exceeds 1500 ° C., it completely melts. Since the size of the voids at the time of foaming becomes uniform and sufficient pores are generated, especially at 1360 to 1450 ° C,
Further, the temperature is preferably 1370 to 1420 ° C.

【0021】焼成する雰囲気は、良好な発泡組織を形成
するために不活性雰囲気又は還元性雰囲気等の非酸化性
雰囲気で行うことが好ましい。特に、窒素、水素、アン
モニア分解ガス、Ar等の不活性ガス及びこれらの混合
ガス中で焼成することが好ましい。これらの中でも、窒
素、窒素と水素の混合ガスが特性向上、安全性及び低コ
スト化の点で好ましい。窒素と水素の混合ガスを用いる
場合、水素ガスの量は安全性のため5〜20%が望まし
い。
The firing is preferably performed in a non-oxidizing atmosphere such as an inert atmosphere or a reducing atmosphere in order to form a good foamed structure. In particular, firing in an inert gas such as nitrogen, hydrogen, an ammonia decomposition gas, or Ar, or a mixed gas thereof is preferable. Among them, nitrogen and a mixed gas of nitrogen and hydrogen are preferable in terms of improving characteristics, safety and reducing costs. When a mixed gas of nitrogen and hydrogen is used, the amount of hydrogen gas is preferably 5 to 20% for safety.

【0022】焼成が酸素を含む雰囲気中で焼成すると、
X線回折により2θが24.6〜24.8°の回折ピー
ク1、24.7〜24.9°の回折ピーク2がいずれも
観察されず、コージェライト化する傾向がある。なお、
酸素を含む雰囲気であっても、カーボン粉末等の中に成
形体を埋めるようにして焼成し、成形体周囲の酸素を酸
化炭素にすることによって擬似的に成形体を還元性雰囲
気にしても良い。
When firing is performed in an atmosphere containing oxygen,
According to X-ray diffraction, neither diffraction peak 1 at 2θ of 24.6 to 24.8 ° nor diffraction peak 2 at 24.7 to 24.9 ° was observed, and there was a tendency to form cordierite. In addition,
Even in an atmosphere containing oxygen, the molded body may be simulated to be a reducing atmosphere by firing by burying the molded body in carbon powder or the like and converting the oxygen around the molded body into carbon oxide. .

【0023】また、不活性雰囲気又は還元性雰囲気等の
非酸化性雰囲気で焼成することにより、窒化物の急激な
分解を抑制し、形成された非晶質相が窒素を含有し、剛
性の高い多孔質体を得ることができるという効果も有す
る。
Further, by firing in a non-oxidizing atmosphere such as an inert atmosphere or a reducing atmosphere, rapid decomposition of nitrides is suppressed, and the formed amorphous phase contains nitrogen and has high rigidity. There is also an effect that a porous body can be obtained.

【0024】以上の製造方法により密度が均一で、ま
た、気泡制御が簡単で、生産性良く多孔質体を製造する
ことが可能となる。
According to the above-mentioned manufacturing method, it is possible to manufacture a porous body having a uniform density, a simple control of bubbles, and a high productivity.

【0025】本発明の多孔質体は、上記の方法によって
作製することができ、構成元素として原子量が小さく、
低密度のセラミックスを得ることが出来るMg、Al及
びSi元素を主体として含み、これらが焼結体中に結晶
相として存在することが重要である。この結晶相は、C
u管球を用いたX線回折により、2θが24.6〜2
4.8°の位置に回折ピーク1が、24.7〜4.9°
の位置に回折ピーク2を観測することができる。
The porous body of the present invention can be produced by the above method, and has a small atomic weight as a constituent element.
It is important that Mg, Al, and Si elements that can obtain low-density ceramics are mainly contained, and that these exist as a crystalline phase in the sintered body. This crystalline phase is C
According to X-ray diffraction using a u-tube, 2θ was 24.6 to 2
The diffraction peak 1 is located at 4.8 ° from 24.7 to 4.9 °.
The diffraction peak 2 can be observed at the position.

【0026】これらの結晶相は、JCPDSカード上で
は報告されていない未知の結晶相であるが、この結晶が
生成することで、発泡性の良い多孔体セラミックスを得
ることが出来る。なお、この結晶相が実質的に存在しな
い場合は、コージェライトが主体となり、成形体の形状
のまま焼結しないという問題が生じ、また、発泡しな
い、或いは発泡が不充分になる。
Although these crystal phases are unknown crystal phases that have not been reported on the JCPDS card, the formation of these crystals makes it possible to obtain a porous ceramic having good foaming properties. If this crystal phase does not substantially exist, cordierite is the main component, and there is a problem that sintering is not performed in the shape of a molded body, and foaming does not occur or foaming is insufficient.

【0027】図1〜3に上記の2つの回折ピークの例を
示した。図1は、回折ピーク1及び回折ピーク2がメイ
ン、即ち最大のピーク強度を示している。図2は、回折
ピーク1及び回折ピーク2の強度が中程度であり、他に
最大ピークが観察される場合である。なお、図2におけ
る最大ピークはコージェライトであった。図3は、回折
ピーク1及び回折ピーク2の強度が小さい場合である
が、自己発泡は充分であった。
FIGS. 1 to 3 show examples of the above two diffraction peaks. FIG. 1 shows that the diffraction peak 1 and the diffraction peak 2 are main, that is, the maximum peak intensity. FIG. 2 shows a case where the intensity of the diffraction peak 1 and the intensity of the diffraction peak 2 are moderate, and the other maximum peak is observed. The maximum peak in FIG. 2 was cordierite. FIG. 3 shows the case where the intensity of the diffraction peak 1 and the diffraction peak 2 is small, but the self-foaming was sufficient.

【0028】また、上記X線回折により、2θが20〜
40°にブロードな第3の回折ピーク(回折ピーク3)
が観察される。この回折ピーク3も発泡性に関与してい
る。図1〜3では認め難いものの、微小ピークを観察す
るように主ピークを縦軸の範囲から振り切らせて測定す
ることで、回折ピーク3を観察することができる。
According to the X-ray diffraction, 2θ is 20 to
Third diffraction peak broad at 40 ° (Diffraction peak 3)
Is observed. This diffraction peak 3 also contributes to foaming. Although difficult to recognize in FIGS. 1 to 3, the diffraction peak 3 can be observed by measuring the main peak off the vertical axis so as to observe the minute peak.

【0029】上記の角度に回折ピークが観察されれば、
発泡性が十分に確保されるため、他の回折ピークが存在
していても良い。このような回折ピークとしては、コー
ジェライト(Mg2Al4Si518)、サフィリン
((Mg4Al4)(Al4Si5)O20、(Al5Mg4
(Al4Si2)O20)、Al2Re49、(Reはレア
アースを表す)等の化合物相や、未反応の窒化珪素、窒
化アルミ、アルミナ等の添加物相を例示できる。
If a diffraction peak is observed at the above angle,
Since the foaming property is sufficiently ensured, another diffraction peak may be present. Such diffraction peaks include cordierite (Mg 2 Al 4 Si 5 O 18 ), sapphirine ((Mg 4 Al 4 ) (Al 4 Si 5 ) O 20 , (Al 5 Mg 4 )
Compound phases such as (Al 4 Si 2 ) O 20 ) and Al 2 Re 4 O 9 (where Re represents a rare earth) and additive phases such as unreacted silicon nitride, aluminum nitride, and alumina can be exemplified.

【0030】なお、焼結性を促進するためにアルカリ土
類金属化合物(CaO、CaCO3)、希土類金属化合
物(Yb23、Y23、Er23、Sm23等)の焼結
助剤を0.1〜10重量%の範囲で添加しても良い。こ
れらの中でも耐水性、化学的安定性の点で希土類酸化物
Yb23、Y23及びSm23が好ましい。希土類が添
加された組成では緻密体となり、希土類が存在しない場
合は焼結せず、結果として発泡体が得られない。
In order to promote sinterability, alkaline earth metal compounds (CaO, CaCO 3 ), rare earth metal compounds (Yb 2 O 3 , Y 2 O 3 , Er 2 O 3 , Sm 2 O 3, etc.) May be added in the range of 0.1 to 10% by weight. Among these, the rare earth oxides Yb 2 O 3 , Y 2 O 3 and Sm 2 O 3 are preferable in terms of water resistance and chemical stability. If the rare earth is added, the composition becomes dense, and if the rare earth does not exist, it does not sinter, and as a result, a foam cannot be obtained.

【0031】また、0℃〜25℃の熱膨張係数が0〜3
×10 6/℃であることが重要であり、特に0〜2×
10-6/℃、更には0〜1×10-6/℃が好ましい。熱
膨張係数をこのように小さくすると、常温付近で使用さ
れる設備、機械の変形を小さく抑制することができるた
め、正確な部品を製造したり、精密な測定が可能とな
る。3×10-6/℃を越えると、環境の変化による部材
の変形が大きくなる。
The thermal expansion coefficient at 0 ° C. to 25 ° C. is 0 to 3
× 10 - 6 / a is important that ° C., especially 0 to 2 ×
10 -6 / ° C., and more preferably 0~1 × 10 -6 / ℃. When the coefficient of thermal expansion is reduced in this way, deformation of equipment and machinery used near normal temperature can be suppressed to a small extent, so that accurate parts can be manufactured and precise measurement can be performed. If it exceeds 3 × 10 −6 / ° C., the deformation of the member due to changes in the environment will increase.

【0032】さらに、比重が2.0以下であることが重
要であり、ステージ装置のように動く構造物を、軽くす
ることができ、また、速く移動させることができ、駆動
源への負担も少なくでき、慣性力が小さくなり制御性が
高い構造物を得ることが出来る。軽量化という観点で、
特に1.8以下、更には1.5以下、より好適には1以
下であることが好ましい。
Further, it is important that the specific gravity is 2.0 or less, so that a moving structure such as a stage device can be made lighter, can be moved faster, and a load on a driving source can be reduced. It is possible to reduce the inertia force and obtain a structure with high controllability. In terms of weight reduction,
In particular, it is preferably 1.8 or less, more preferably 1.5 or less, and more preferably 1 or less.

【0033】また、気孔率が25〜80体積%とするこ
とで十分な軽量化が可能となる。
When the porosity is 25 to 80% by volume, sufficient weight reduction can be achieved.

【0034】比重が2.0を越える場合又は気孔率が2
5体積%に満たない場合、軽量化が不十分であり、特に
ステージ等の駆動部がある場合には駆動用モーターに大
きな負荷が加わるという不具合が生じる。また、気孔率
が80体積%を超える場合、わずかの衝撃でも破壊しや
すい。
When the specific gravity exceeds 2.0 or when the porosity is 2
When the volume is less than 5% by volume, the weight is not sufficiently reduced, and particularly when there is a driving unit such as a stage, a problem occurs that a large load is applied to the driving motor. Further, when the porosity exceeds 80% by volume, it is easily broken even by a slight impact.

【0035】このような構成を有する多孔質体は、軽量
且つ低熱膨張という特徴を有し、工作機械、精密機械、
評価装置、半導体製造装置等の各産業分野における軽量
セラミック部材等に好適に用いることができる。
The porous body having such a structure has features of light weight and low thermal expansion, and can be used for machine tools, precision machines,
It can be suitably used for lightweight ceramic members in various industrial fields such as evaluation devices and semiconductor manufacturing devices.

【0036】[0036]

【実施例】合成後2μm、純度99.8%のコージェラ
イト粉末と、平均粒径が2μm以下のMg(OH)2
MgCO3粉末、MgO粉末、Al23粉末、AlN
粉末、SiO2粉末、SiC粉末、Si34粉末と、焼
結助剤として平均粒径が2μm以下のYb23粉末、Y
23粉末、Sm23粉末とを表1に示す比率に調整し、
溶剤としてIPA、混合メディアとして、耐摩耗アルミ
ナボールを添加したミルで24時間混合した。得られた
混合粉末の平均粒径は2μmであった。その後、パラフ
ィンワックスを添加し、造粒粉体とし、98MPaで金
型成形した。
EXAMPLE 2 μm cordierite powder having a purity of 99.8% after synthesis, Mg (OH) 2 powder , MgCO 3 powder, MgO powder, Al 2 O 3 powder, AlN powder having an average particle diameter of 2 μm or less.
Powder, SiO 2 powder, SiC powder, Si 3 N 4 powder, Yb 2 O 3 powder having an average particle size of 2 μm or less as a sintering aid, Y
2 O 3 powder and Sm 2 O 3 powder were adjusted to the ratio shown in Table 1,
The mixture was mixed for 24 hours in a mill containing IPA as a solvent and wear-resistant alumina balls as a mixed medium. The average particle size of the obtained mixed powder was 2 μm. Thereafter, paraffin wax was added to obtain a granulated powder, which was molded at 98 MPa.

【0037】得られた成形体を250℃の窒素気流中で
2時間熱処理し、しかる後にMo金属板にのせ、表1に
示す条件で常圧焼成した。
The obtained compact was heat-treated in a nitrogen stream at 250 ° C. for 2 hours, and then placed on a Mo metal plate and calcined under normal pressure under the conditions shown in Table 1.

【0038】また、試料No.25は、H2及びCH3
iCl3とを用いて1400℃で熱CVD法により炭化
珪素を作製した。
Sample No. 25 is H 2 and CH 3 S
Silicon carbide was produced by thermal CVD at 1400 ° C. using iCl 3 .

【0039】得られた試料の表層を研磨し、ノギス、マ
イクロメーターを用いて寸法を測定するとともに、重量
を測定することで、比重を算出した。また、気孔率は水
銀圧入法により求めた。また、得られた多孔体を乳鉢で
粉砕し、2θが20°から80°までX線回折を行った
回折条件は、Cu管球を用い、管電圧50kV、管電流
200mA、ステップ幅0.02°、計数時間0.5s
ecで行った。熱膨張係数は、リガク社製TAS−20
0測定器を用いてTMA法により0〜100℃での試料
の伸びを測定し、0〜25℃の熱膨張係数を算出した。
結果を表1、2に示した。
The surface layer of the obtained sample was polished, the dimensions were measured using calipers and a micrometer, and the weight was measured to calculate the specific gravity. The porosity was determined by a mercury intrusion method. The obtained porous body was crushed in a mortar and subjected to X-ray diffraction at 2θ from 20 ° to 80 ° using a Cu tube, a tube voltage of 50 kV, a tube current of 200 mA, and a step width of 0.02. °, counting time 0.5s
ec. The coefficient of thermal expansion is TAS-20 manufactured by Rigaku Corporation.
The elongation of the sample at 0 to 100 ° C. was measured by the TMA method using a zero measuring device, and the coefficient of thermal expansion at 0 to 25 ° C. was calculated.
The results are shown in Tables 1 and 2.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】本発明の試料No.1〜4、7〜13、1
5、16、18〜24は、24.6〜24.8°、およ
び24.7〜24.9°に回折ピーク1、2を有し、回
折ピーク3が20〜40°にブロードに観察され、比重
が1.95以下、気孔率が25〜71体積%、熱膨張率
が0.51〜2.46×10-6/℃であった。また、上
記の試料においては、いずれも気孔の分布は一様で、比
重のばらつきは実質的に見られなかった。
Sample No. of the present invention 1-4, 7-13, 1
5, 16, 18 to 24 have diffraction peaks 1 and 2 at 24.6 to 24.8 ° and 24.7 to 24.9 °, and diffraction peak 3 is broadly observed at 20 to 40 °. The specific gravity was 1.95 or less, the porosity was 25 to 71% by volume, and the coefficient of thermal expansion was 0.51 to 2.46 × 10 −6 / ° C. In each of the above samples, the pore distribution was uniform and the specific gravity did not substantially vary.

【0043】一方、コージェライトのみを原料とする本
発明の範囲外の試料No.5は、X線回折においてコー
ジェライトのみのピークが観察され、24.6〜24.
8°、および24.7〜24.9°に回折ピークが見ら
れなかった。
On the other hand, Sample No. out of the scope of the present invention using only cordierite as a raw material was used. In No. 5, a peak of only cordierite was observed in the X-ray diffraction, and 24.6 to 24.
No diffraction peaks were observed at 8 ° and 24.7 to 24.9 °.

【0044】また、窒化物を原料に含まない本発明の範
囲外の試料No.6は、X線回折においてコージェライ
トのみのピークが観察され、24.6〜24.8°、お
よび24.7〜24.9°に回折ピークが見られなかっ
た。
Further, Sample No. which does not contain nitrides and is out of the scope of the present invention. In No. 6, a peak of cordierite alone was observed in X-ray diffraction, and no diffraction peak was observed at 24.6 to 24.8 ° and 24.7 to 24.9 °.

【0045】さらに、焼成温度が1335℃と低い本発
明の範囲外の試料No.14は、気孔率が17体積%と
低く、比重も2.13と大きかった。
Further, Sample No. having a firing temperature as low as 1335 ° C., which is out of the range of the present invention. 14 had a low porosity of 17% by volume and a high specific gravity of 2.13.

【0046】さらにまた、焼成温度が1550℃と低い
本発明の範囲外の試料No.17は、試料が溶融してし
まった。
Further, Sample No. having a firing temperature as low as 1550 ° C., which is out of the range of the present invention. In No. 17, the sample was melted.

【0047】また、炭化珪素からなる本発明の範囲外の
試料No.25は、熱膨張率が3.5×10-6/℃と大
きかった。
In addition, Sample No. out of the range of the present invention consisting of silicon carbide was used. Sample No. 25 had a large coefficient of thermal expansion of 3.5 × 10 −6 / ° C.

【0048】[0048]

【発明の効果】本発明によれば、コージェライト粉末に
加えて、Mg、Al及びSi元素群のうち少なくとも1
種の窒化物粉末と、窒化物以外の他の元素の酸化物、水
酸化物、炭酸塩のうち少なくとも1種からなる粉末とを
含む原料を用い、1350〜1500℃で焼成すること
によって、特定の結晶相を含有し、軽量・低熱膨張の多
孔質体が得られる。
According to the present invention, in addition to the cordierite powder, at least one of the group consisting of Mg, Al and Si is used.
By sintering at 1350 to 1500 ° C. using a raw material containing a kind of nitride powder and a powder of at least one of oxides, hydroxides and carbonates of elements other than nitride, A light-weight, low-thermal-expansion porous body is obtained.

【0049】本発明の多孔質体は、0〜25℃の熱膨張
係数が0〜3×10-6/℃、比重が2.0以下、気孔率
が25〜80体積%であるため、軽量且つ低熱膨張とい
う特徴を有し、工作機械、精密機械、評価装置、半導体
製造装置等の各産業分野における軽量セラミック部材等
に好適に用いることができる。
The porous body of the present invention has a coefficient of thermal expansion at 0 to 25 ° C. of 0 to 3 × 10 −6 / ° C., a specific gravity of 2.0 or less, and a porosity of 25 to 80% by volume. In addition, it has a feature of low thermal expansion, and can be suitably used for lightweight ceramic members in various industrial fields such as machine tools, precision machines, evaluation devices, and semiconductor manufacturing devices.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の多孔体のX線回折スペクトルである。FIG. 1 is an X-ray diffraction spectrum of a porous body of the present invention.

【図2】本発明の多孔体の他のX線回折スペクトルであ
る。
FIG. 2 is another X-ray diffraction spectrum of the porous body of the present invention.

【図3】本発明の多孔体の更に他のX線回折スペクトル
である。
FIG. 3 is another X-ray diffraction spectrum of the porous body of the present invention.

【符号の説明】[Explanation of symbols]

1、11、21・・・回折ピーク1 2、12、22・・・回折ピーク2 14、24・・・他結晶の回折ピーク 1, 11, 21 ... diffraction peak 1 2, 12, 22 ... diffraction peak 2 14, 24 ... diffraction peaks of other crystals

フロントページの続き Fターム(参考) 4G001 BA01 BA03 BA06 BA08 BA09 BA22 BA32 BA36 BA42 BB01 BB22 BB32 BB36 BB42 BD05 BD11 BD38 BE01 BE31 4G019 GA02 GA04 4G030 AA07 AA36 AA37 AA51 AA52 CA01 CA09 GA24 GA27 Continuation of front page    F-term (reference) 4G001 BA01 BA03 BA06 BA08 BA09                       BA22 BA32 BA36 BA42 BB01                       BB22 BB32 BB36 BB42 BD05                       BD11 BD38 BE01 BE31                 4G019 GA02 GA04                 4G030 AA07 AA36 AA37 AA51 AA52                       CA01 CA09 GA24 GA27

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】コージェライト粉末と、Mg、Al及びS
i元素群のうち少なくとも1種の窒化物粉末と前記元素
群のうち窒化物でない他の元素の酸化物、水酸化物、炭
酸塩のうち少なくとも1種からなる粉末と、前記Mg、
Al及びSiが酸化物換算で略コージェライト組成とな
る成形体を1350℃〜1500℃で焼成することを特
徴とする多孔質体の製造方法。
1. A cordierite powder comprising Mg, Al and S
i. a powder comprising at least one nitride powder of the element group and at least one of oxides, hydroxides, and carbonates of other elements that are not nitrides in the group of elements;
A method for producing a porous body, characterized by firing a molded body in which Al and Si have a substantially cordierite composition in oxide conversion at 1350 ° C to 1500 ° C.
【請求項2】実質的に非酸化性雰囲気において焼成する
ことを特徴とする請求項1記載の多孔質体の製造方法。
2. The method for producing a porous body according to claim 1, wherein the firing is performed in a substantially non-oxidizing atmosphere.
【請求項3】Mg、Al及びSiを含み、X線回折によ
り、2θが24.6〜24.8°、および24.7〜2
4.9°に主たる2つの回折ピークをもつ結晶相が含ま
れる焼結体からなり、0〜25℃の熱膨張係数が0〜3
×10-6/℃、比重が2.0以下、気孔率が25〜80
体積%であることを特徴とする多孔質体。
3. It contains Mg, Al and Si, and has 2θ of 24.6 to 24.8 ° and 24.7 to 2 by X-ray diffraction.
It consists of a sintered body containing a crystal phase having two main diffraction peaks at 4.9 °, and has a thermal expansion coefficient of 0 to 3 at 0 to 25 ° C.
× 10 -6 / ° C, specific gravity of 2.0 or less, porosity of 25 to 80
A porous body characterized by volume%.
JP2001197117A 2001-06-28 2001-06-28 Method of manufacturing porous compact and porous compact Pending JP2003012382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001197117A JP2003012382A (en) 2001-06-28 2001-06-28 Method of manufacturing porous compact and porous compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001197117A JP2003012382A (en) 2001-06-28 2001-06-28 Method of manufacturing porous compact and porous compact

Publications (1)

Publication Number Publication Date
JP2003012382A true JP2003012382A (en) 2003-01-15

Family

ID=19034782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001197117A Pending JP2003012382A (en) 2001-06-28 2001-06-28 Method of manufacturing porous compact and porous compact

Country Status (1)

Country Link
JP (1) JP2003012382A (en)

Similar Documents

Publication Publication Date Title
KR100341696B1 (en) High thermal conductivity silicon nitride sintered body and method for manufacturing the same
JP5060093B2 (en) Semiconductor device substrate
KR960016070B1 (en) Sintered aluminium nitride and its production
EP1414580B1 (en) Multication doped alpha-beta sialon ceramics
JP2006232659A (en) Silicon carbide sintered body and its manufacturing method
JP2871410B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
JPH11322433A (en) Production of composite ceramic sintered body containing boron nitride, and the sintered body
JP2003012382A (en) Method of manufacturing porous compact and porous compact
JP3537241B2 (en) Method for producing silicon nitride sintered body
JP5164304B2 (en) Manufacturing method of ceramics
JPH07172921A (en) Aluminum nitride sintered material and its production
JP2000272968A (en) Silicon nitride sintered compact and its production
JP5289184B2 (en) Method for producing high thermal conductivity silicon nitride sintered body
JP4958353B2 (en) Aluminum nitride powder and method for producing the same
JP2012180234A (en) Method for producing silicon nitride-based ceramic
JPH06287066A (en) Silicon nitride sintered compact and its production
JP2002201083A (en) Ceramic porous compact and method of manufacturing the same
JPS6344713B2 (en)
JP2005187235A (en) Highly heat-conductive aluminum nitride sintered compact
JPH0523921A (en) Silicone nitride basis sintered body for cutting tool
JP2005225744A (en) Method for manufacturing silicon nitride sintered compact
JPH11180774A (en) Silicon nitride-base heat radiating member and its production
JP2001322874A (en) Aluminum nitride sintered body and method for manufacturing the same
JP2000033470A (en) Plunger device of die cast machine
JPH0717457B2 (en) Aluminum nitride sintered body