JP2003012353A - Activated powder, method for producing the same and method for producing inorganic cured body using the same - Google Patents

Activated powder, method for producing the same and method for producing inorganic cured body using the same

Info

Publication number
JP2003012353A
JP2003012353A JP2001195005A JP2001195005A JP2003012353A JP 2003012353 A JP2003012353 A JP 2003012353A JP 2001195005 A JP2001195005 A JP 2001195005A JP 2001195005 A JP2001195005 A JP 2001195005A JP 2003012353 A JP2003012353 A JP 2003012353A
Authority
JP
Japan
Prior art keywords
powder
water
calcium silicate
producing
amorphous calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001195005A
Other languages
Japanese (ja)
Inventor
Takashi Osugi
高志 大杉
Makoto Kitamura
真 北村
Haruhisa Shiomi
治久 塩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2001195005A priority Critical patent/JP2003012353A/en
Publication of JP2003012353A publication Critical patent/JP2003012353A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/08Diatomaceous earth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00198Characterisation or quantities of the compositions or their ingredients expressed as mathematical formulae or equations

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an activated powder having high reactive activity with carbon dioxide, its production method and an inorganic cured body having high mechanical strength and excellent in thermal resistance using the powder. SOLUTION: This activated powder is an amorphous calcium silicate powder with Ca/Si mol ratio of 0.8 to 1.5 and substantially containing no water. When the amorphous calcium silicate powder is mixed with water at the weight ratio of 2:3, eluted amount of siliceous component after 90 min at 23 deg.C is >=1 ppm per 1 (m<2> /g) specific surface area of the powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭酸ガスとの反応
活性が高い活性粉体及びその製造方法並びにそれを用い
た無機質硬化体の製造方法に関する。
TECHNICAL FIELD The present invention relates to an active powder having a high reaction activity with carbon dioxide, a method for producing the same, and a method for producing an inorganic cured product using the same.

【0002】[0002]

【従来の技術】従来から、セメント硬化体の強度を向上
させる方法として、セメント材料と炭酸ガスとを接触さ
せる方法が知られている。例えば、セメント硬化体の養
生を行う際の特定の期間中、炭酸ガス雰囲気下で養生を
行う方法が提案されている(特開平6−263562号
公報)。
2. Description of the Related Art Conventionally, as a method of improving the strength of a hardened cement product, a method of bringing a cement material into contact with carbon dioxide has been known. For example, there has been proposed a method of performing curing in a carbon dioxide gas atmosphere during a specific period when curing a hardened cement (Japanese Patent Laid-Open No. 6-263562).

【0003】しかし、上記の方法では、炭酸ガス雰囲気
下で養生に長時間を必要とし、生産性が良くないという
問題点があるほか、材料に含有される水分量によって
は、水分の存在が炭酸ガスの拡散を阻害して、硬化体内
部まで炭酸化が進行しないといった問題が残されてい
る。
However, the above-mentioned method has a problem that it requires a long time for curing in a carbon dioxide gas atmosphere and the productivity is not good. In addition, depending on the amount of water contained in the material, the presence of water may be carbonic acid. There remains a problem that gas diffusion is hindered and carbonation does not proceed to the inside of the cured body.

【0004】炭酸化されたセメント硬化体の内部に未反
応の材料が残存した場合、長期における材料変質の要因
となることが予想される。
When unreacted material remains inside the carbonized cement hardened product, it is expected to cause deterioration of the material for a long period of time.

【0005】このような問題に対し、石灰質と珪酸塩と
が共存する粉粒体にメカノケミカル反応を生起させるこ
とにより、成形体の内部まで炭酸化する炭酸化硬化体の
製造方法が提案されている(特開2001−12265
3号公報)。
In order to solve such problems, there has been proposed a method for producing a carbonation-cured product which carbonates the interior of a molded product by causing a mechanochemical reaction in a granular material in which calcareous and silicate coexist. (Japanese Patent Laid-Open No. 2001-12265
3 gazette).

【0006】上記の方法では、石灰質と珪酸塩とが共存
する粉粒体にメカノケミカル反応を生起させることによ
り、粉粒体中にエネルギー的に不安定な非晶質珪酸カル
シウム水和物を生成する。このために、炭酸ガス養生に
よりCa2+が溶出され易くなり、速やかに炭酸カルシウ
ムが析出されるようになり、その結果、成形体の表層部
だけでなく成形体内部にまで炭酸化反応が進行するもの
である。
In the above method, a mechanochemical reaction is caused in a granular material in which calcareous and silicate coexist to produce an energy-unstable amorphous calcium silicate hydrate in the granular material. To do. For this reason, Ca 2+ is easily eluted by carbon dioxide curing, and calcium carbonate is promptly deposited. As a result, the carbonation reaction proceeds not only to the surface layer of the molded product but also to the inside of the molded product. To do.

【0007】即ち、上記の製造方法においては、予め、
メカノケミカル反応により、非晶質珪酸カルシウム水和
物を生成する必要がある。即ち、粉粒体には必ず水分が
含有されることが必須となってくる。しかしながら、珪
酸カルシウム水和物が炭酸化されて得られる硬化体は、
十分な強度の硬化体が得られないといった問題があっ
た。
That is, in the above manufacturing method,
It is necessary to produce amorphous calcium silicate hydrate by mechanochemical reaction. That is, it is essential that the powder and granules always contain water. However, the cured product obtained by carbonating calcium silicate hydrate is
There is a problem that a cured product having sufficient strength cannot be obtained.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記問題を
解決するためになされたものであり、炭酸ガスとの反応
活性が高い活性粉体及びその製造方法並びにそれを用い
た機械的強度の高い、且つ、耐熱性に優れた無機質硬化
体を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has an active powder having a high reaction activity with carbon dioxide gas, a method for producing the same, and mechanical strength using the same. It is an object of the present invention to provide an inorganic cured product that is high and has excellent heat resistance.

【0009】[0009]

【課題を解決するための手段】本発明の活性粉体は、C
a/Siモル比が0.8〜1.5であり、実質的に水を
含有しない非晶質カルシウムシリケート粉体であって、
該非晶質カルシウムシリケート粉体と水とを重量比で
2:3で混合した際に、23℃における90分後の珪素
成分の溶出量が、該粉体比表面積1(m2/g)あたり1
ppm以上であることを特徴とする。
The active powder of the present invention comprises C
An amorphous calcium silicate powder having an a / Si molar ratio of 0.8 to 1.5 and containing substantially no water,
When the amorphous calcium silicate powder and water were mixed at a weight ratio of 2: 3, the elution amount of the silicon component after 90 minutes at 23 ° C. was about 1 (m 2 / g) of the powder specific surface area. 1
It is characterized by being above ppm.

【0010】非晶質カルシウムシリケート粉体とは、組
成式nCaO・mSiO2で示されるn/mが0.8〜
1.5の化合物を主成分とする粉体である。n/mが
0.8より小さくても1.5より大きくても、炭酸化に
より得られる硬化体強度が低くなる。本発明の活性粉体
を炭酸化して硬化体を得る場合、カルシウム成分が炭酸
化される際の体積膨張により、優れた機械物性の硬化体
が得られる。
Amorphous calcium silicate powder means that n / m represented by the composition formula nCaO.mSiO 2 is 0.8 to
It is a powder whose main component is the compound of 1.5. When n / m is smaller than 0.8 or larger than 1.5, the strength of the cured product obtained by carbonation becomes low. When a hardened body is obtained by carbonating the active powder of the present invention, a hardened body having excellent mechanical properties can be obtained due to volume expansion when the calcium component is carbonated.

【0011】n/mが0.8より小さいと、炭酸化する
際の膨張効果が小さく、得られる硬化体強度が小さくな
る。また、n/mが1.5より大きいと、粉体の水和活
性が大きくなり、水を添加して賦形する際に多量の珪酸
カルシウム水和物ゲルが生成する。珪酸カルシウム水和
物ゲルで組織が形成された場合、ゲル自体の炭酸化では
体積膨張が見込めないために、得られる硬化体強度が小
さくなるほか、炭酸ガスを作用させる際に拡散が阻害さ
れ、硬化体内部に炭酸化されない組織が残ってしまい、
硬化体の耐熱安定性が劣るものとなる。
When n / m is less than 0.8, the expansion effect at the time of carbonation is small and the strength of the obtained cured product is small. Further, when n / m is more than 1.5, the hydration activity of the powder becomes large, and a large amount of calcium silicate hydrate gel is generated when water is added to shape. When the structure is formed in the calcium silicate hydrate gel, the volume expansion cannot be expected by the carbonation of the gel itself, so that the strength of the obtained hardened body becomes small and the diffusion is inhibited when the carbon dioxide gas acts, The uncarbonated structure remains inside the cured body,
The heat resistance of the cured product will be poor.

【0012】非晶質粉体とは、X線回折測定で明確なピ
ークを持たない構造の粉体をいい、実質的に水を含有し
ないとは、後述する機械的エネルギーを作用させる際
に、非晶質珪酸カルシウム水和物を生成しないようにな
されていることをいい、その水の量は、全非晶質カルシ
ウムシリケート粉体中1重量%以下であることが好まし
い。
[0012] The amorphous powder is a powder having a structure having no clear peak in X-ray diffraction measurement, and substantially not containing water means that when mechanical energy described later is applied, It means that it does not form an amorphous calcium silicate hydrate, and the amount of water is preferably 1% by weight or less in the total amorphous calcium silicate powder.

【0013】本発明の活性粉体は、上記非晶質カルシウ
ムシリケート粉体において、該粉体と水とを重量比で
2:3で混合した際に、23℃における90分後の珪素
成分の溶出量が、該粉体比表面積1(m2/g)あたり1
ppm以上のものである。
The active powder of the present invention is the above-mentioned amorphous calcium silicate powder, and when the powder and water are mixed in a weight ratio of 2: 3, the active ingredient powder of the silicon component after 90 minutes at 23 ° C. Elution amount is 1 per 1 (m 2 / g) of the powder specific surface area
ppm or more.

【0014】上記珪素成分の溶出量測定には、溶媒とし
て水を使用する。水はイオン交換水を使用することが好
ましい。該粉体と水とを混合する方法は特に限定される
ものではなく、例えば、該粉体と水とを容器に入れた後
にマグネチックスターラーで1時間撹拌し、その後30
分静置する方法が挙げられる。
Water is used as a solvent for measuring the elution amount of the silicon component. As the water, it is preferable to use ion-exchanged water. The method of mixing the powder and water is not particularly limited. For example, after the powder and water are put in a container, the mixture is stirred with a magnetic stirrer for 1 hour, and then 30 minutes.
The method of leaving still for minutes is mentioned.

【0015】上記珪素成分の溶出量は、溶液中に存在す
る珪酸イオン等に含まれる珪素原子の濃度であり、誘導
結合プラズマ発光分析(ICP発光分析)装置等を利用
した従来公知の方法で測定される。
The elution amount of the above-mentioned silicon component is the concentration of silicon atoms contained in silicate ions and the like present in the solution, and is measured by a conventionally known method using an inductively coupled plasma emission analysis (ICP emission analysis) device or the like. To be done.

【0016】上記珪素成分の溶出量は、少なすぎると粉
体表面の反応活性が低く、目的とする炭酸ガスとの反応
性が得られず、炭酸化により得られる硬化体の機械的物
性も低下するので、該粉体比表面積1(m2/g)あたり
1ppm以上に限定され、通常は、10,000ppm
以下である。
If the amount of the silicon component eluted is too small, the reaction activity on the powder surface is low, the desired reactivity with carbon dioxide cannot be obtained, and the mechanical properties of the cured product obtained by carbonation are also reduced. Therefore, the specific surface area of the powder is limited to 1 ppm or more per 1 (m 2 / g), and usually 10,000 ppm
It is the following.

【0017】上記粉体の比表面積の測定方法は、例え
ば、窒素ガス吸着によるBET法により測定される。
The specific surface area of the powder is measured by, for example, the BET method using nitrogen gas adsorption.

【0018】本発明の活性粉体の製造方法は、上記請求
項1記載の活性粉体の製造方法であって、Ca/Siモ
ル比が0.8〜1.5であり、実質的に水を含有しない
非晶質カルシウムシリケート粉体に、0.01〜30k
Wh/kgの機械的エネルギーを作用させるものであ
る。
The method for producing an active powder according to the present invention is the method for producing an active powder according to claim 1, wherein the Ca / Si molar ratio is 0.8 to 1.5 and the water is substantially water. 0.01 to 30k in amorphous calcium silicate powder not containing
The mechanical energy of Wh / kg is applied.

【0019】機械的エネルギーを作用させる非晶質カル
シウムシリケート粉体の平均粒径は特に限定されるもの
ではないが、機械的エネルギーをより有効的に作用させ
るためには、0.1〜100μmであることが好まし
い。
The average particle size of the amorphous calcium silicate powder on which mechanical energy is applied is not particularly limited, but it is 0.1 to 100 μm for more effective application of mechanical energy. Preferably there is.

【0020】上記機械的エネルギーとしては特に限定さ
れるものではなく、例えば、圧縮力、剪断力、衝撃力、
摩擦力等によるエネルギーが挙げられる。
The mechanical energy is not particularly limited, and for example, compressive force, shearing force, impact force,
Examples of energy include frictional energy.

【0021】上記機械的エネルギーを作用させる方法と
しても特に限定されず、例えば、粉砕を目的として一般
に使用されている粉砕装置を用いて行うことができる。
例えば、圧縮力、剪断力、衝撃力、摩擦力等が複合した
粉砕装置としては、ボールミル、振動ミル、遊星ミル、
媒体攪拌型ミル等のボール媒体ミル;ローラーミル;乳
鉢等が挙げられる。また、衝撃、摩擦等を主体とする装
置としては、ジェット粉砕装置が挙げられる。これらの
うち、上記非晶質カルシウムシリケート粉体に有効に機
械的エネルギーを付与するには、ボール媒体型のミルが
好ましい。
The method of applying the mechanical energy is not particularly limited, and for example, it can be carried out by using a crushing device generally used for the purpose of crushing.
For example, a ball mill, a vibration mill, a planetary mill, a pulverizer that combines a compressive force, a shearing force, an impact force, a frictional force, etc.
A ball medium mill such as a medium stirring mill; a roller mill; a mortar and the like. In addition, as a device mainly for impact, friction, etc., there is a jet crushing device. Of these, a ball medium type mill is preferable in order to effectively impart mechanical energy to the amorphous calcium silicate powder.

【0022】作用させる機械的エネルギーは、小さすぎ
ると得られる粉体の構造変化が少なく、反応活性(粉体
の炭酸化しやすさ)が小さくなり、大きすぎると粉砕装
置への過大な負荷、媒体としてのボールや容器の激しい
摩耗による処理粉体へのコンタミネーション、処理粉体
の凝集による粒子の粗大化、コスト等の生産性面での不
利等の不都合があるので、0.01〜30kWh/kg
に限定され、好ましくは0.1〜5kWh/kgであ
る。
If the mechanical energy to be applied is too small, the structural change of the obtained powder is small and the reaction activity (the easiness of carbonation of the powder) becomes small, and if it is too large, an excessive load on the crushing device, the medium As a result, there are disadvantages such as contamination to the treated powder due to severe abrasion of the balls and containers, coarsening of the particles due to agglomeration of the treated powder, and disadvantages in productivity such as cost. kg
And preferably 0.1 to 5 kWh / kg.

【0023】上記機械的エネルギーは、上記非晶質カル
シウムシリケート粉体と粉砕媒体等とを粉砕装置中に投
入して実際に運転した時に粉砕装置が消費する全電力量
から、粉砕装置自体を同条件で空運転させたときに消費
する電力量を差し引いた値を、処理に供した非晶質カル
シウムシリケート粉体の質量(kg)で除した値であ
る。
The mechanical energy is calculated from the total amount of electric power consumed by the crushing device when the amorphous calcium silicate powder and the crushing medium are put into the crushing device and actually operated. It is a value obtained by dividing the value obtained by subtracting the amount of power consumed when the engine is idled under the conditions by the mass (kg) of the amorphous calcium silicate powder subjected to the treatment.

【0024】本発明の無機質硬化体の製造方法は、請求
項1記載の活性粉体と水とを混合した後、炭酸化するも
のである。
The method for producing an inorganic hardened material of the present invention comprises mixing active powder according to claim 1 with water and then carbonating.

【0025】本発明の無機質硬化体の製造方法におい
て、活性粉体に混合される水の量は特に限定されるもの
ではなく、活性粉体の比表面積、形状、その他の添加物
の種類、量によって適宜決定されるが、少なすぎると炭
酸ガスとの反応が充分に起こらず、又、賦形性も低下
し、多すぎると、炭酸ガスが粉体表面に到達しにくくな
るので、炭酸化の効率が低下するので、活性粉体及び水
のみを用いる場合には、上記活性粉体100重量部に対
して10〜100重量部が好ましい。
In the method for producing an inorganic hardened material of the present invention, the amount of water mixed with the active powder is not particularly limited, and the specific surface area, shape, other kinds of additives and the amount of the active powder are not particularly limited. Although it is appropriately determined by the above, when the amount is too small, the reaction with the carbon dioxide gas does not sufficiently occur, and the shapeability is lowered, and when the amount is too large, it becomes difficult for the carbon dioxide gas to reach the powder surface. Since the efficiency decreases, when only the active powder and water are used, 10 to 100 parts by weight is preferable to 100 parts by weight of the active powder.

【0026】なお、活性粉体に混合される水は、水蒸気
として供給されてもよい。また、配合時の水分量が多す
ぎる場合は、賦形時に加圧、もしくは吸引によって、適
量の水分量とすることができる。
The water mixed with the active powder may be supplied as water vapor. In addition, when the water content during compounding is too large, the water content can be adjusted to an appropriate amount by applying pressure or suction during shaping.

【0027】本発明の無機質硬化体の製造方法において
は、上記活性粉体、水、及び必要に応じて、他のセメン
ト材料、骨材、強化繊維等を混合した後、必要に応じて
所望の形状に賦形した後炭酸化する。
In the method for producing a cured inorganic material of the present invention, the above-mentioned active powder, water, and, if necessary, other cement materials, aggregates, reinforcing fibers, etc. are mixed and then, if desired, desired. Carbonate after shaping into shape.

【0028】上記賦形にあたっては、脱水プレス等の圧
縮成形法、押出成形法等、従来公知の任意の方法が使用
できる。
In the above shaping, any conventionally known method such as compression molding method such as dewatering press, extrusion molding method and the like can be used.

【0029】上記炭酸化の方法としては、例えば、炭酸
ガスの雰囲気下で処理する方法が挙げられる。炭酸ガス
の濃度は特に限定されるものではないが、100%に近
い濃度で処理することが効率的である。なお、必要に応
じ、超臨界状態の二酸化炭素の雰囲気下で処理を行って
もよい。
Examples of the carbonation method include a method of treating in a carbon dioxide atmosphere. The concentration of carbon dioxide gas is not particularly limited, but it is efficient to treat at a concentration close to 100%. If necessary, the treatment may be performed in an atmosphere of carbon dioxide in a supercritical state.

【0030】炭酸化の際の温度は特に限定されるもので
はないが、低すぎると炭酸化反応が充分に起こるには大
きな時間を要し、高すぎると炭酸化反応は迅速になるも
のの大きなエネルギーが必要になり、また、強化繊維と
して有機系の強化繊維等が用いられる場合には、該繊維
等が熱劣化を起こしやすくなるという危険性があるの
で、30〜200℃が好ましい。
The temperature for carbonation is not particularly limited, but if it is too low, it takes a long time for the carbonation reaction to sufficiently occur, and if it is too high, the carbonation reaction is rapid but a large amount of energy is required. Is required, and when an organic reinforcing fiber or the like is used as the reinforcing fiber, there is a risk that the fiber or the like is likely to be deteriorated by heat, so 30 to 200 ° C. is preferable.

【0031】炭酸化の際の圧力も特に限定されるもので
はないが、低すぎると減圧装置が必要となり、エネルギ
ー消費や炭酸化反応の進行の両面で非効率であり、高す
ぎると大きなエネルギーがかかり工業生産性や設備の大
型化という観点から不適当であるので、常圧〜5MPa
が好ましい。なお、本明細書における圧力とは、絶対圧
力でなくゲージ圧を示すものとする。
The pressure during carbonation is not particularly limited either, but if it is too low, a decompression device is required, which is inefficient in both energy consumption and progress of the carbonation reaction, and if it is too high, a large amount of energy is required. Since it is unsuitable from the standpoint of industrial productivity and enlargement of equipment, normal pressure to 5 MPa
Is preferred. It should be noted that the pressure in this specification indicates a gauge pressure, not an absolute pressure.

【0032】炭酸化に要する時間も特に限定されるもの
ではないが、短すぎると炭酸化が充分に進行せず、得ら
れる硬化体の機械物性が低下し、長すぎても炭酸化は充
分に進行するが、硬化体の製造効率が低下するので、1
分〜10時間が好ましい。
The time required for carbonation is not particularly limited either, but if it is too short, carbonation does not proceed sufficiently and the mechanical properties of the resulting cured product deteriorate, and if it is too long, carbonation is sufficient. Although it progresses, the production efficiency of the cured product decreases, so 1
Minutes to 10 hours are preferred.

【0033】(作用)本発明の活性粉体は、Ca/Si
モル比が0.8〜1.5であり、実質的に水を含有しな
い非晶質カルシウムシリケート粉体であるので、炭酸化
の際に大部分が未水和のカルシウムシリケート粉体と反
応するため、炭酸化による膨張効果によって硬化体の強
度が大きい成形体を得ることができる。
(Function) The active powder of the present invention is Ca / Si.
Since the amorphous calcium silicate powder has a molar ratio of 0.8 to 1.5 and contains substantially no water, most of it reacts with unhydrated calcium silicate powder during carbonation. Therefore, it is possible to obtain a molded product having a cured product with high strength due to the expansion effect of carbonation.

【0034】一般にカルシウムシリケート材料の炭酸化
は、カルシウム成分が二酸化炭素と結合して炭酸カルシ
ウムを生成し、シリケート成分が重合してシリカゲルを
生成することにより進行する。そして、本発明の活性粉
体は、該非晶質カルシウムシリケート粉体と水とを重量
比で2:3で混合した際に、23℃における90分後の
珪素成分の溶出量が、該粉体比表面積1(m2/g)あた
り1ppm以上であり、珪素成分の溶出量が大きな非晶
質カルシウムシリケート粉体であるため、粉体表面のシ
リケート成分の活性が大きく、シリケート成分の重合が
速やかに進行し炭酸化の進行が容易である。
Generally, carbonation of a calcium silicate material proceeds by binding a calcium component with carbon dioxide to form calcium carbonate, and polymerizing the silicate component to form silica gel. When the amorphous calcium silicate powder and water are mixed at a weight ratio of 2: 3, the active powder of the present invention has a silicon component elution amount after 90 minutes at 23 ° C. of the powder. Since the amorphous calcium silicate powder has a specific surface area of 1 ppm or more per 1 (m 2 / g) and a large elution amount of the silicon component, the activity of the silicate component on the powder surface is large and the silicate component is rapidly polymerized. And the progress of carbonation is easy.

【0035】本発明の活性粉体の製造方法は、上記請求
項1記載の活性粉体の製造方法であって、Ca/Siモ
ル比が0.8〜1.5であり、実質的に水を含有しない
非晶質カルシウムシリケート粉体に、0.01〜30k
Wh/kgの機械的エネルギーを作用させるものである
から、活性な非晶質カルシウムシリケート粉体を効率的
に製造できる。
The method for producing an active powder according to the present invention is the method for producing an active powder according to claim 1, wherein the Ca / Si molar ratio is 0.8 to 1.5 and the method is substantially water. 0.01 to 30k in amorphous calcium silicate powder not containing
Since the mechanical energy of Wh / kg is applied, active amorphous calcium silicate powder can be efficiently produced.

【0036】本発明の無機質硬化体の製造方法は、請求
項1記載の活性粉体と水とを混合した後、炭酸化するも
のであるから、炭酸化反応量が大きく、得られた無機質
硬化体は、活性粉体間の空隙を炭酸化による体積膨張に
よって埋められることで強度が発現するため、優れた機
械物性の硬化体を得ることができる。また、本発明の製
造方法で得られた無機質硬化体は、炭酸カルシウムとシ
リカゲルを主成分とするため、化学的に安定な組織が形
成され、優れた機械物性と耐熱性を有するものとなる。
In the method for producing an inorganic cured product of the present invention, the active powder according to claim 1 is mixed with water and then carbonated, so that the amount of carbonation reaction is large and the resulting inorganic cured product is obtained. The body develops strength by filling the voids between the active powders with volume expansion due to carbonation, so that a cured product having excellent mechanical properties can be obtained. Further, since the inorganic hardened body obtained by the production method of the present invention contains calcium carbonate and silica gel as the main components, it has a chemically stable structure and has excellent mechanical properties and heat resistance.

【0037】[0037]

【実施例】(活性粉体の作製) 活性粉体A〜D 非晶質カルシウムシリケート粉体(ナカライテスク社
製、Ca/Siモル比1)を振動ミル(ポット容積45
0cm3 、ボール媒体:10mmφのジルコニアボール
220個 )により、振動数1200rpm、振幅8mm
で、表1に示した所定量、所定時間粉砕して機械的エネ
ルギーを作用させ、活性粉体A〜Dを得た。作用させた
機械的エネルギーは以下のようにして算出し、表1に示
した。
Example (Preparation of Active Powder) Active Powders A to D Amorphous calcium silicate powder (Nacalai Tesque, Ca / Si molar ratio 1) was placed in a vibration mill (pot volume 45).
0 cm 3 , ball medium: 220 zirconia balls of 10 mmφ), vibration frequency 1200 rpm, amplitude 8 mm
Then, the powder was pulverized for a predetermined amount shown in Table 1 for a predetermined time and mechanical energy was applied to obtain active powders A to D. The mechanical energy applied was calculated as follows and shown in Table 1.

【0038】作用させた機械的エネルギー(kWh/k
g)={処理時の消費電力量(kWh)−空転時の消費
電力量(kWh)}/処理粉体質量(kg)
Mechanical energy applied (kWh / k
g) = {Power consumption during processing (kWh) -Power consumption during idling (kWh)} / mass of treated powder (kg)

【0039】(カルシウムシリケート水和物粉体の作
製)水酸化カルシウム0.085重量%水溶液と珪酸エ
チル10重量%水溶液を重量比45:1で混合し、密封
状態でスターラーで攪拌し、7日間養生し沈殿物を得、
得られた沈殿物を24時間脱気乾燥を行い、カルシウム
シリケート水和物粉体を得た。得られたカルシウムシリ
ケート水和物粉体のCa/Siモル比は、X線による元
素定量分析の結果、1.11であった。
(Preparation of calcium silicate hydrate powder) A 0.085 wt% aqueous solution of calcium hydroxide and a 10 wt% aqueous solution of ethyl silicate were mixed at a weight ratio of 45: 1, and the mixture was stirred with a stirrer for 7 days. Cure and get the precipitate,
The obtained precipitate was degassed and dried for 24 hours to obtain calcium silicate hydrate powder. The Ca / Si molar ratio of the obtained calcium silicate hydrate powder was 1.11 as a result of elemental quantitative analysis by X-ray.

【0040】粉体の評価 (比表面積の測定)得られた活性粉体A〜D、機械的エ
ネルギーを作用させていない非晶質カルシウムシリケー
ト粉体(表1中粉体Eと記す)、結晶質カルシウムシリ
ケート粉体として普通ポルトランドセメント(表1中粉
体Gと記す)を166℃で30分間乾燥するとともに、
得られたカルシウムシリケート水和物粉体(表1中粉体
Fと記す)をアセトンで洗浄し80℃で2時間乾燥し
(水和物の熱分解を防ぐため)た後、それぞれ、窒素ガ
ス吸着によるBET5点法により測定し、結果を表1に
示した。
Evaluation of powders (measurement of specific surface area) Obtained active powders A to D, amorphous calcium silicate powders not subjected to mechanical energy (referred to as powder E in Table 1), crystals As normal calcium silicate powder, ordinary Portland cement (referred to as powder G in Table 1) is dried at 166 ° C. for 30 minutes, and
The obtained calcium silicate hydrate powder (referred to as powder F in Table 1) was washed with acetone and dried at 80 ° C. for 2 hours (to prevent thermal decomposition of the hydrate), and then nitrogen gas, respectively. It was measured by the BET 5-point method by adsorption, and the results are shown in Table 1.

【0041】(珪素成分の溶出量の測定)得られた活性
粉体A〜D、粉体E〜G8gにイオン交換水12gを加
え、マグネチックスターラーで1時間撹拌後、30分静
置して濾過し、濾液に含まれる珪酸成分をICP発光分
析(誘導結合プラズマ発光分析)装置によって測定し、
結果を表1に示した。
(Measurement of Elution Amount of Silicon Component) 12 g of ion-exchanged water was added to 8 g of the obtained active powders A to D and powders E to G, and the mixture was stirred for 1 hour with a magnetic stirrer and allowed to stand for 30 minutes. After filtering, the silicic acid component contained in the filtrate is measured by an ICP emission spectrometer (inductively coupled plasma emission spectrometer),
The results are shown in Table 1.

【0042】[0042]

【表1】 [Table 1]

【0043】(無機質硬化体の作製) (実施例1〜4、比較例1〜3)活性粉体A〜D、粉体
E〜Gからの珪素成分の溶出量を測定した際、濾過した
ときに得られた粘土状の活性粉体と水の混合物に対し
て、オートクレーブ内において、表2に示した条件で1
00%炭酸ガスの雰囲気下で処理して炭酸化させ、無機
質硬化体を得た。
(Preparation of Inorganic Cured Product) (Examples 1 to 4, Comparative Examples 1 to 3) When the elution amount of the silicon component from the active powders A to D and the powders E to G was measured, it was filtered. For the mixture of the clay-like active powder and water obtained in Example 1, in an autoclave under the conditions shown in Table 2.
Carbonation was carried out by treating in an atmosphere of 00% carbon dioxide gas to obtain an inorganic cured body.

【0044】無機質硬化体の評価 (圧縮強度の測定)実施例1〜4、比較例1〜3で得ら
れた無機質硬化体を10mm角に切断し、クロスヘッド
速度0.5mm/minで圧縮強度を測定した。
Evaluation of Inorganic Cured Body (Measurement of Compressive Strength) The inorganic cured bodies obtained in Examples 1 to 4 and Comparative Examples 1 to 3 were cut into 10 mm squares, and the compressive strength at a crosshead speed of 0.5 mm / min. Was measured.

【0045】(カルシウムイオン溶出量測定)実施例3
及び比較例3で得られた無機質硬化体を粒径100μm
以下に粉砕したもの1gにイオン交換水100gを注入
し、5分間振とうした後に24時間放置した水溶液中の
カルシウムイオン濃度をICP発光分析装置によって測
定した。
(Measurement of calcium ion elution amount) Example 3
And the inorganic cured body obtained in Comparative Example 3 with a particle size of 100 μm
100 g of ion-exchanged water was added to 1 g of the pulverized product, shaken for 5 minutes, and allowed to stand for 24 hours. The calcium ion concentration in the aqueous solution was measured by an ICP emission spectrometer.

【0046】(耐熱性試験)実施例3及び比較例3で得
られた無機質硬化体を600℃で30分加熱した後に、
クロスヘッド速度0.5mm/minで圧縮強度を測定
した。以上の結果を表2に纏めて示した。
(Heat Resistance Test) After heating the inorganic cured bodies obtained in Example 3 and Comparative Example 3 at 600 ° C. for 30 minutes,
The compressive strength was measured at a crosshead speed of 0.5 mm / min. The above results are summarized in Table 2.

【0047】[0047]

【表2】 [Table 2]

【0048】表2からわかる通り、実施例1〜4では、
機械的エネルギーを与えることで、適当な珪素成分の溶
出量を有する非晶質カルシウムシリケートを使用してい
るため、良好な機械物性を有する無機質硬化体を低圧で
得ることができる。これに対して比較例1では機械的エ
ネルギーを与えていないことから、適当な珪素成分の溶
出量を有していない非晶質カルシウムシリケートを使用
しているため、硬化体の強度が不十分なものとなった。
また、比較例2ではカルシウムシリケート水和物を使用
したため、珪素成分の溶出量は適当であるが硬化体の強
度が非常に小さなものとなった。
As can be seen from Table 2, in Examples 1 to 4,
Since amorphous calcium silicate having an appropriate elution amount of silicon component is used by applying mechanical energy, an inorganic hardened material having good mechanical properties can be obtained at low pressure. On the other hand, in Comparative Example 1, since mechanical energy is not applied, the strength of the cured product is insufficient because the amorphous calcium silicate that does not have an appropriate elution amount of the silicon component is used. It became a thing.
Further, in Comparative Example 2, since calcium silicate hydrate was used, the elution amount of the silicon component was appropriate, but the strength of the cured product was very small.

【0049】比較例3では珪素成分の溶出量は十分であ
るが、Ca/Siのモル比が大きな結晶質カルシウムシ
リケートを使用したため、初期強度は十分発現したもの
の、溶出カルシウムイオン濃度が大きくなっている。溶
出カルシウムイオン濃度は硬化体の水に対する安定性を
示しており、本発明の活性粉体を使用した硬化体(実施
例3)では非常に小さく、水に対して安定であることが
示されているのに対し、比較例3ではCa/Siのモル
比が大きな結晶質カルシウムシリケートを使用したた
め、水と混合した際に水和が進行して炭酸化が内部まで
進行しなかったため、炭酸カルシウムの溶解度を超える
カルシウムの溶出が見られ、硬化体内部からカルシウム
の溶出が生じたと考えられる。
In Comparative Example 3, the elution amount of the silicon component is sufficient, but since crystalline calcium silicate having a large Ca / Si molar ratio is used, the initial strength is sufficiently expressed, but the elution calcium ion concentration becomes large. There is. The dissolved calcium ion concentration shows the stability of the cured product to water, and the cured product using the active powder of the present invention (Example 3) is very small, indicating that it is stable to water. On the other hand, in Comparative Example 3, since crystalline calcium silicate having a large Ca / Si molar ratio was used, hydration proceeded and carbonation did not proceed to the inside when mixed with water. The elution of calcium exceeding the solubility was observed, and it is considered that the elution of calcium occurred inside the cured product.

【0050】また、実施例3及び比較例3で得られた硬
化体を比較すると、本発明の活性粉体を炭酸化して得ら
れた硬化体が、耐熱性試験後も圧縮強度に殆ど変化がな
かったのに対して、水和が進行した粉体を炭酸化して得
られた硬化体では耐熱性試験後の圧縮強度が大幅に低下
した。これは、比較例3で得られた硬化体内部に残る水
和物から、加熱によって水分が奪われることで組織が崩
壊し、強度低下を引き起こしていると考えられる。
Comparing the cured products obtained in Example 3 and Comparative Example 3, the cured product obtained by carbonating the active powder of the present invention shows almost no change in compressive strength after the heat resistance test. On the other hand, in the case of the cured product obtained by carbonating the powder whose hydration has progressed, the compressive strength after the heat resistance test was significantly reduced. It is considered that this is because the hydrate remaining in the hardened body obtained in Comparative Example 3 loses its water content by heating and the structure collapses, causing a decrease in strength.

【0051】[0051]

【発明の効果】本発明の活性粉体は、上述の如き構成と
なされているから、比較的、低温、低圧の条件下でも炭
酸ガスとの反応が高いものとなる。本発明の活性粉体の
製造方法は、上述の如き構成となされているから、上述
の活性粉体を生産性良く得ることが出来る。本発明の無
機質硬化体の製造方法は、上述の如き構成となされてい
るから、機械的強度の高い、且つ、耐熱性に優れた無機
質硬化体を得ることが出来る。
Since the active powder of the present invention is constructed as described above, it has a high reaction with carbon dioxide even under relatively low temperature and low pressure conditions. Since the method for producing the active powder of the present invention has the above-mentioned constitution, the above-mentioned active powder can be obtained with high productivity. Since the method for producing an inorganic cured body of the present invention has the above-mentioned constitution, it is possible to obtain an inorganic cured body having high mechanical strength and excellent heat resistance.

【0052】このような方法により得られた無機質硬化
体は、例えば住宅の外壁や瓦等の建築材料や土木建設材
料に好適に使用することができる。
The inorganic hardened material obtained by such a method can be suitably used as a building material such as an outer wall of a house or a roof tile, or a civil engineering construction material.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Ca/Siモル比が0.8〜1.5であ
り、実質的に水を含有しない非晶質カルシウムシリケー
ト粉体であって、該非晶質カルシウムシリケート粉体と
水とを重量比で2:3で混合した際に、23℃における
90分後の珪素成分の溶出量が、該粉体比表面積1(m
2/g)あたり1ppm以上であることを特徴とする活性
粉体。
1. An amorphous calcium silicate powder having a Ca / Si molar ratio of 0.8 to 1.5 and containing substantially no water, wherein the amorphous calcium silicate powder and water are mixed. When mixed at a weight ratio of 2: 3, the elution amount of the silicon component after 90 minutes at 23 ° C. was such that the specific surface area of the powder was 1 (m
2 / g) 1 ppm or more per active powder.
【請求項2】 Ca/Siモル比が0.8〜1.5であ
り、実質的に水を含有しない非晶質カルシウムシリケー
ト粉体に、0.01〜30kWh/kgの機械的エネル
ギーを作用させることを特徴とする請求項1記載の活性
粉体の製造方法。
2. A mechanical energy of 0.01 to 30 kWh / kg is applied to an amorphous calcium silicate powder having a Ca / Si molar ratio of 0.8 to 1.5 and containing substantially no water. The method for producing the active powder according to claim 1, wherein
【請求項3】 請求項1記載の活性粉体と水とを混合し
た後、炭酸化することを特徴とする無機質硬化体の製造
方法。
3. A method for producing an inorganic cured product, which comprises mixing the active powder according to claim 1 with water and then carbonating the mixture.
JP2001195005A 2001-06-27 2001-06-27 Activated powder, method for producing the same and method for producing inorganic cured body using the same Withdrawn JP2003012353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001195005A JP2003012353A (en) 2001-06-27 2001-06-27 Activated powder, method for producing the same and method for producing inorganic cured body using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001195005A JP2003012353A (en) 2001-06-27 2001-06-27 Activated powder, method for producing the same and method for producing inorganic cured body using the same

Publications (1)

Publication Number Publication Date
JP2003012353A true JP2003012353A (en) 2003-01-15

Family

ID=19033049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001195005A Withdrawn JP2003012353A (en) 2001-06-27 2001-06-27 Activated powder, method for producing the same and method for producing inorganic cured body using the same

Country Status (1)

Country Link
JP (1) JP2003012353A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179170A (en) * 2003-11-25 2005-07-07 Jfe Steel Kk Method of manufacturing carbonated solid
JP2010138004A (en) * 2008-12-09 2010-06-24 Kao Corp Method for manufacturing mesoporous silica particle powder
JP2010534607A (en) * 2007-07-27 2010-11-11 カールスルーアー・インスティトゥート・フュア・テヒノロギー Single-phase hydraulic binder, manufacturing method thereof, and building material manufactured using the same
JP2010534606A (en) * 2007-07-27 2010-11-11 カールスルーアー・インスティトゥート・フュア・テヒノロギー Single-phase hydraulic binder, manufacturing method thereof, and building material manufactured using the same
JP2010534608A (en) * 2007-07-27 2010-11-11 カールスルーアー・インスティトゥート・フュア・テヒノロギー Single-phase hydraulic binder, manufacturing method thereof, and building material manufactured using the same
WO2013119826A1 (en) * 2012-02-07 2013-08-15 Massachusetts Institute Of Technology Cement hydrate compositions and methods of synthesis
KR20140040796A (en) * 2011-06-09 2014-04-03 러트거즈,더스테이트유니버시티오브뉴저지 Synthetic formulations and methods of manufacturing and using thereof
US10414690B2 (en) * 2015-01-19 2019-09-17 Cimpor Portugal, Sgps, Sa. Amorphous low-calcium content silicate hydraulic binders and methods for their manufacturing

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506236B2 (en) * 2003-11-25 2010-07-21 Jfeスチール株式会社 Method for producing carbonated solid
JP2005179170A (en) * 2003-11-25 2005-07-07 Jfe Steel Kk Method of manufacturing carbonated solid
KR101621029B1 (en) 2007-07-27 2016-05-13 칼스루헤 인스티투트 퓌어 테흐놀로기 Single-phase hydraulic binder, methods for the production thereof and building material produced therewith
JP2010534607A (en) * 2007-07-27 2010-11-11 カールスルーアー・インスティトゥート・フュア・テヒノロギー Single-phase hydraulic binder, manufacturing method thereof, and building material manufactured using the same
JP2010534606A (en) * 2007-07-27 2010-11-11 カールスルーアー・インスティトゥート・フュア・テヒノロギー Single-phase hydraulic binder, manufacturing method thereof, and building material manufactured using the same
JP2010534608A (en) * 2007-07-27 2010-11-11 カールスルーアー・インスティトゥート・フュア・テヒノロギー Single-phase hydraulic binder, manufacturing method thereof, and building material manufactured using the same
JP2010138004A (en) * 2008-12-09 2010-06-24 Kao Corp Method for manufacturing mesoporous silica particle powder
KR20140040796A (en) * 2011-06-09 2014-04-03 러트거즈,더스테이트유니버시티오브뉴저지 Synthetic formulations and methods of manufacturing and using thereof
JP2014516023A (en) * 2011-06-09 2014-07-07 ラトガーズ, ザ ステイト ユニバーシティ オブ ニュー ジャージー Synthetic formulations and methods of making and using them
KR101905120B1 (en) * 2011-06-09 2018-10-08 러트거즈,더스테이트유니버시티오브뉴저지 Synthetic formulations and methods of manufacturing and using thereof
KR20180113621A (en) * 2011-06-09 2018-10-16 러트거즈,더스테이트유니버시티오브뉴저지 Synthetic formulations and methods of manufacturing and using thereof
KR102093059B1 (en) * 2011-06-09 2020-03-24 러트거즈,더스테이트유니버시티오브뉴저지 Synthetic formulations and methods of manufacturing and using thereof
WO2013119826A1 (en) * 2012-02-07 2013-08-15 Massachusetts Institute Of Technology Cement hydrate compositions and methods of synthesis
US10414690B2 (en) * 2015-01-19 2019-09-17 Cimpor Portugal, Sgps, Sa. Amorphous low-calcium content silicate hydraulic binders and methods for their manufacturing

Similar Documents

Publication Publication Date Title
US4956321A (en) Surface pacified wollastonite
JPH09500605A (en) Coagulation and hardening accelerator for silica-based hydraulic binders
KR101621022B1 (en) Single-phase hydraulic binder, methods for the production thereof and structural material produced therewith
JP5687716B2 (en) Hydraulic lime composition
JPH0881217A (en) Solidification of caco3
JP2003012353A (en) Activated powder, method for producing the same and method for producing inorganic cured body using the same
JPH06144944A (en) Method for carbonating porous calcium silicate hydrate
US20060107872A1 (en) Method and apparatus for producing calcium silicate hydrate
JP2006026616A (en) Water clarifying material and manufacturing method of water clarifying material
WO1999042418A1 (en) Cured calcium silicate object with high strength
EP1149047B1 (en) Procedure for preparing silica from calcium silicate
JP4859221B2 (en) Method for producing porous material
JPH06263510A (en) Production of carbonated hardened body of calcium silicate
JP4176395B2 (en) Manufacturing method of low specific gravity calcium silicate hardened body
JP3749648B2 (en) Carbonated cured body
JP2001122653A (en) Production process of carbonate hardened body
JP2002114562A (en) Hydrothermal hardened body and method for manufacturing the same
EP0002876B1 (en) Method of producing hydrothermally hardened products
JPH07291616A (en) Production of crystalline calcium silicate hydrate
RU2376258C1 (en) Lime and siliceous binder, method of lime and siliceous binder production and method of moulding sand production for extruded silicate items
RU2149149C1 (en) Method of preparing lime-sand building material
JP3699597B2 (en) Aluminosilicate slurry, curable inorganic composition, and inorganic cured body
JP2000086312A (en) Hydration-cured product
JP3025401B2 (en) Manufacturing method of hydrated cured product
JPS62265160A (en) Manufacture of alc

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100305