JP2003010741A - Apparatus for generating superfine particle - Google Patents

Apparatus for generating superfine particle

Info

Publication number
JP2003010741A
JP2003010741A JP2001197926A JP2001197926A JP2003010741A JP 2003010741 A JP2003010741 A JP 2003010741A JP 2001197926 A JP2001197926 A JP 2001197926A JP 2001197926 A JP2001197926 A JP 2001197926A JP 2003010741 A JP2003010741 A JP 2003010741A
Authority
JP
Japan
Prior art keywords
particle
fine
ultrafine
fine particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001197926A
Other languages
Japanese (ja)
Other versions
JP4647845B2 (en
Inventor
Masaaki Ikeda
正明 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ATOMAKKUSU KK
Original Assignee
ATOMAKKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ATOMAKKUSU KK filed Critical ATOMAKKUSU KK
Priority to JP2001197926A priority Critical patent/JP4647845B2/en
Priority to PCT/JP2002/006413 priority patent/WO2003002263A1/en
Publication of JP2003010741A publication Critical patent/JP2003010741A/en
Application granted granted Critical
Publication of JP4647845B2 publication Critical patent/JP4647845B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/04Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a gaseous medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0012Apparatus for achieving spraying before discharge from the apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nozzles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Spray Control Apparatus (AREA)
  • Glanulating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a superfine particle generating apparatus with which superfine particles having uniform particle diameters can be generated. SOLUTION: This superfine particle generating apparatus 2 is provided with a fine particle generating nozzle 12 for generating fine particles of a liquid by pulverizing/atomizing the liquid by a gas, a fractionating vessel 10 for fractionating the fine particles generated by the nozzle 12 and a discharge part 28 for discharging the superfine particles fractionated from the fine particles in the vessel 10. The vessel 10 is provided with a current straightening member 14 for guiding the fine particles generated by the nozzle 12 to the lower part of the vessel 10 and fine particle sorting plates 20, 22, 24 for sorting the fine particles guided to the lower part of the vessel 10 by the member 14 while the fine particles are restrained from floating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、水、薬液、油
類、樹脂及び溶剤等の液体の超微粒子を発生させる超微
粒子発生装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrafine particle generator for producing ultrafine particles of liquids such as water, chemicals, oils, resins and solvents.

【0002】[0002]

【従来の技術】従来、液体の超微粒子を発生させる方法
として、超微量の液体を多量の気体により破砕微細化す
る方法、加熱蒸発を利用した微粒子を得る方法、超音波
振動により微粒子を得る方法等が知られている。ここで
超微量の液体を多量の気体により破砕微細化する方法を
利用した超微粒子発生装置には、液体を気体により破砕
微細化する二流体ノズルを用いたものが存在する。この
二流体ノズルにおいては、水、薬液等の液体をノズルの
先端部の液体噴出部から噴出させると共に、空気等の気
体を液体噴出部の周囲の設けられた気体噴出部より噴出
させることにより二流体を混合噴射させ、液体を気体に
より破砕微細化して液体の微粒子を得ている。
2. Description of the Related Art Conventionally, as a method of generating ultrafine particles of liquid, a method of crushing and refining an extremely small amount of liquid with a large amount of gas, a method of obtaining fine particles by utilizing heating and evaporation, and a method of obtaining fine particles by ultrasonic vibration. Etc. are known. Here, there is an ultrafine particle generator using a method of crushing and refining an extremely small amount of liquid with a large amount of gas, using a two-fluid nozzle for crushing and refining a liquid with gas. In this two-fluid nozzle, a liquid such as water or a chemical liquid is jetted from a liquid jet portion at the tip of the nozzle, and a gas such as air is jetted from a gas jet portion provided around the liquid jet portion. The fluid is mixed and jetted, and the liquid is crushed into fine particles by gas to obtain fine particles of the liquid.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、液体を
気体により破砕微細化し、液体の微粒子を得る方法にお
いては、平均粒子径5μm以下の均一な粒子径の微粒子
を得ることは困難であり、微粒子の平均粒子径と最大粒
子径、最小粒子径の差が大きくなる。即ち、図8は、従
来の二流体ノズルを用いて、水の微粒子を発生させた場
合(二流体ノズルに供給される気体の圧力:0.5MP
a、二流体ノズルに供給される液体の量:10ml/m
in)の、粒子径と、その存在割合を示す図である。こ
の図に示すように発生した微粒子の粒子径は、一定の範
囲に分布している。
However, in the method of crushing and refining a liquid with a gas to obtain fine particles of the liquid, it is difficult to obtain fine particles having an average particle diameter of 5 μm or less and a uniform particle diameter. The difference between the average particle size, the maximum particle size, and the minimum particle size becomes large. That is, FIG. 8 shows a case where fine particles of water are generated using a conventional two-fluid nozzle (pressure of gas supplied to the two-fluid nozzle: 0.5MP).
a, Amount of liquid supplied to the two-fluid nozzle: 10 ml / m
(in) is a diagram showing a particle diameter and abundance ratio thereof. As shown in this figure, the particle diameters of the generated fine particles are distributed in a certain range.

【0004】この発明の課題は、均一な粒子径を有する
超微粒子を発生させることができる超微粒子発生装置を
提供することである。
An object of the present invention is to provide an ultrafine particle generator capable of producing ultrafine particles having a uniform particle size.

【0005】[0005]

【課題を解決するための手段】請求項1記載の超微粒子
発生装置は、液体を気体により破砕微粒化して液体の微
粒子を発生させる微粒子発生ノズルと、前記微粒子発生
ノズルにより発生させた微粒子を分別する分別容器と、
前記分別容器において微粒子から分別された超微粒子を
吐出させる吐出部とを備える超微粒子発生装置であっ
て、前記分別容器は、前記微粒子発生ノズルにより発生
させた微粒子を、この分別容器の下部まで導く整流部材
と、前記整流部材により分別容器の下部まで導かれた微
粒子の浮上を抑制し、微粒子の選別を行う微粒子選別プ
レートとを備えることを特徴とする。
According to a first aspect of the present invention, there is provided an ultrafine particle generating apparatus which separates the fine particle generated by the fine particle generating nozzle and the fine particle generating nozzle for crushing the liquid into fine particles to generate fine particles of the liquid. And a sorting container,
An ultrafine particle generator comprising: a discharge unit for discharging ultrafine particles separated from fine particles in the separation container, wherein the separation container guides the fine particles generated by the particle generation nozzle to a lower portion of the separation container. The present invention is characterized by comprising a flow regulating member and a fine particle selection plate for suppressing the floating of the fine particles guided to the lower portion of the sorting container by the flow regulating member and selecting the fine particles.

【0006】また、請求項2記載の超微粒子発生装置
は、前記分別容器内に、微粒子が通過する複数の微粒子
通過孔が設けられた前記微粒子選別プレートが複数枚配
置され、下側に位置する前記微粒子選別プレートに設け
らた前記微粒子通過孔の大きさは、上側に位置する前記
微粒子選別プレートに設けらた前記微粒子通過孔の大き
さに比較して大きいことを特徴とする。
In the ultrafine particle generator according to the second aspect of the invention, a plurality of the fine particle selection plates provided with a plurality of fine particle passage holes through which the fine particles pass are arranged in the sorting container and are located on the lower side. The size of the particle passing hole provided in the particle selecting plate is larger than the size of the particle passing hole provided in the particle selecting plate located on the upper side.

【0007】また、請求項3記載の超微粒子発生装置
は、前記分別容器内の微粒子を上昇させるための二次気
体を前記分別容器内に供給する二次気体供給手段を更に
備えることを特徴とする。
Further, the ultrafine particle generator according to a third aspect of the present invention further comprises a secondary gas supply means for supplying a secondary gas for raising the particles in the separation container into the separation container. To do.

【0008】この請求項1〜請求項3記載の超微粒子発
生装置によれば、微粒子発生ノズルにより発生された微
粒子は、整流部材により分別容器の下部まで導かれる。
分別容器の下部まで導かれた微粒子は、微粒子選別プレ
ートにより浮上を抑制されつつ、微粒子選別プレートに
設けられた複数の微粒子通過孔を通って、徐々に分別容
器内を浮上する。この間に粒子径の大きい微粒子は、分
別容器の底部落下し、吐出部から均一な粒子径を有する
超微粒子が吐出される。
According to the ultrafine particle generating apparatus of the first to third aspects, the fine particles generated by the fine particle generating nozzle are guided to the lower portion of the sorting container by the rectifying member.
The fine particles guided to the lower part of the sorting container gradually float in the sorting container through the plurality of fine particle passage holes provided in the fine particle sorting plate while being prevented from floating by the fine particle sorting plate. During this time, the fine particles having a large particle diameter fall to the bottom of the sorting container, and the ultrafine particles having a uniform particle diameter are discharged from the discharging portion.

【0009】また、請求項4記載の超微粒子発生装置
は、前記微粒子発生ノズルに供給される液体の量を調整
する液量調整手段と、前記微粒子発生ノズルに供給され
る気体の圧力を調整するノズル供給気体圧調整手段と、
前記分別容器内に供給される二次気体の圧力を調整する
二次気体圧調整手段とを更に備え、前記微粒子発生ノズ
ルに供給される液体の量及び気体の圧力を調整すると共
に、前記分別容器内に供給される二次気体の圧力を調整
することにより、前記吐出部から吐出される超微粒子の
量及び粒子径を制御することを特徴とする。
In the ultrafine particle generator according to the present invention, the liquid amount adjusting means for adjusting the amount of liquid supplied to the fine particle generating nozzle and the pressure of the gas supplied to the fine particle generating nozzle are adjusted. Nozzle supply gas pressure adjusting means,
A secondary gas pressure adjusting means for adjusting the pressure of the secondary gas supplied into the separation container is further provided, and the amount of the liquid supplied to the particle generation nozzle and the gas pressure are adjusted, and the separation container is also provided. It is characterized in that the amount and the particle diameter of the ultrafine particles discharged from the discharge part are controlled by adjusting the pressure of the secondary gas supplied into the inside.

【0010】この請求項4記載の超微粒子発生装置によ
れば、微粒子発生ノズルに供給される液体の量及び気体
の圧力を調整すると共に、分別容器内に供給される二次
気体の圧力を調整することにより、所望の量の超微粒子
を吐出部から吐出させることができると共に、所望の粒
子径を有する超微粒子を吐出部から吐出させることがで
きる。
According to the ultrafine particle generator of the present invention, the amount of liquid and the gas pressure supplied to the particle generation nozzle are adjusted, and the pressure of the secondary gas supplied into the sorting container is adjusted. By doing so, it is possible to eject a desired amount of ultrafine particles from the ejection unit, and it is possible to eject ultrafine particles having a desired particle diameter from the ejection unit.

【0011】また、請求項5記載の超微粒子発生装置
は、前記吐出部から吐出される超微粒子に対して電荷を
供給する電荷供給手段を更に備えることを特徴とする。
The ultrafine particle generator according to a fifth aspect of the invention is further characterized by further comprising charge supply means for supplying an electric charge to the ultrafine particles ejected from the ejection section.

【0012】この請求項5記載の超微粒子発生装置によ
れば、吐出部から吐出される超微粒子に電荷を供給する
ことにより帯電させることができる。従って、噴霧、塗
布しようとする対象物への付着効率を向上させることが
できる。
According to the ultrafine particle generator of the fifth aspect, it is possible to charge the ultrafine particles ejected from the ejection portion by supplying the electric charge. Therefore, it is possible to improve the adhesion efficiency to the object to be sprayed and applied.

【0013】[0013]

【発明の実施の形態】以下、図面を参照して、この発明
の実施の形態にかかる超微粒子発生装置について説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION An ultrafine particle generator according to an embodiment of the present invention will be described below with reference to the drawings.

【0014】図1は、この発明の実施の形態にかかる超
微粒子発生装置の構成図である。この超微粒子発生装置
2は、下端部が閉じ上端部に蓋部10aを有する円筒形
状の微粒子分別容器10を備えている。この微粒子分別
容器10の蓋部10aには、液体を気体により破砕微細
化する二流体ノズル(微粒子発生ノズル)12が設けら
れている。ここで二流体ノズル12は、ノズルの先端部
に設けられた液体噴出口から噴出された液体の外周部に
対して気体噴出口から気体を噴出させ、液体を気体によ
り破砕微細化することにより液体の微粒子を噴出させる
ものである。
FIG. 1 is a block diagram of an ultrafine particle generator according to an embodiment of the present invention. The ultrafine particle generator 2 includes a cylindrical particle sorting container 10 having a closed lower end and a lid 10a at the upper end. A two-fluid nozzle (fine particle generating nozzle) 12 for crushing and refining a liquid with a gas to finely divide the liquid is provided on a lid portion 10 a of the fine particle sorting container 10. Here, the two-fluid nozzle 12 ejects gas from the gas ejection port to the outer peripheral portion of the liquid ejected from the liquid ejection port provided at the tip of the nozzle, and pulverizes the liquid by the gas to form a fine liquid. The fine particles of are ejected.

【0015】微粒子分別容器10内には、二流体ノズル
12により発生された微粒子を微粒子分別容器10の下
部まで整流して導く整流コーン(整流部材)14が設けら
れている。ここで整流コーン14の上部の開口部には、
二流体ノズル12の先端部が配置されている。また、微
粒子分別容器10内には、二次気体用コンプレッサ16
から延びる二次気体供給管18が配置されており、二次
気体用コンプレッサ16からの二次気体は、整流コーン
14の下部の開口部付近に供給される。また、微粒子分
別容器10内には、整流コーン14により微粒子分別容
器10の下部まで導かれた微粒子の浮上を抑制し、微粒
子の選別を行う3枚の微粒子選別プレート20,22,
24が設けられている。
A rectifying cone (rectifying member) 14 for rectifying and guiding the fine particles generated by the two-fluid nozzle 12 to the lower portion of the fine particle sorting container 10 is provided in the fine particle sorting container 10. Here, in the upper opening of the rectifying cone 14,
The tip of the two-fluid nozzle 12 is arranged. In addition, the secondary gas compressor 16 is provided in the fine particle sorting container 10.
A secondary gas supply pipe 18 extending from the secondary gas supply pipe 18 is disposed, and the secondary gas from the secondary gas compressor 16 is supplied to the lower part of the rectifying cone 14 near the opening. Further, in the fine particle sorting container 10, three fine particle sorting plates 20, 22, which sort the fine particles by suppressing the floating of the fine particles guided to the lower part of the fine particle sorting container 10 by the rectifying cone 14,
24 are provided.

【0016】図2に示すように、微粒子選別プレート2
0は、中央部に整流コーン14が貫通する開口部20a
が設けられた円板形状を有するプレート状部材であり、
多数の微粒子通過孔20bが設けられている。また、図
3に示すように、微粒子選別プレート22は、中央部に
整流コーン14が貫通する開口部22aが設けられた円
板形状を有するプレート状部材であり、多数の微粒子通
過孔22bが設けられている。なお、微粒子通過孔22
bは、微粒子選別プレート20の微粒子通過孔20bの
大きさよりも大きく形成されている。更に図4に示すよ
うに、微粒子選別プレート24は、中央部に整流コーン
14が貫通する開口部24aが設けられた円板形状を有
するプレート状部材であり、多数の微粒子通過孔24b
が設けられている。なお、微粒子通過孔24bは、微粒
子選別プレート22の微粒子通過孔22bの大きさより
も大きく形成されている。
As shown in FIG. 2, the fine particle selection plate 2
0 is an opening 20a through which the rectifying cone 14 penetrates in the central portion.
Is a plate-like member having a disc shape provided with,
A large number of fine particle passage holes 20b are provided. Further, as shown in FIG. 3, the fine particle selection plate 22 is a disk-shaped plate-shaped member having an opening 22a through which the rectifying cone 14 penetrates in the central portion, and a large number of fine particle passage holes 22b are provided. Has been. The fine particle passage hole 22
b is formed larger than the size of the particle passage hole 20b of the particle selection plate 20. Further, as shown in FIG. 4, the fine particle selection plate 24 is a plate-like member having a disk shape having an opening 24a through which the flow rectifying cone 14 penetrates in the central portion thereof, and a large number of fine particle passage holes 24b.
Is provided. The fine particle passage hole 24b is formed to be larger than the size of the fine particle passage hole 22b of the fine particle selection plate 22.

【0017】微粒子分別容器10の底部には、液体貯留
容器26に連通する液体排出口10bが設けられてい
る。微粒子分別容器10の底部にたまった液体は、液体
排出口10bから排出され液体貯留容器26内に貯留さ
れる。
A liquid discharge port 10b communicating with the liquid storage container 26 is provided at the bottom of the fine particle sorting container 10. The liquid accumulated at the bottom of the particle sorting container 10 is discharged from the liquid discharge port 10b and stored in the liquid storage container 26.

【0018】また、微粒子分別容器10の蓋部10aに
は、微粒子分別容器10内において微粒子から分別され
た超微粒子を吐出する吐出部28が設けられている。こ
こで、吐出部28は、微粒子分別容器10の蓋部10a
取付けられた噴霧口取付部28a、噴霧口取付部28a
に接続された噴霧誘導管28b及び噴霧誘導管28bの
先端部に設けられた噴霧口28cにより構成されてい
る。
The lid 10a of the particle sorting container 10 is provided with a discharge part 28 for discharging the ultrafine particles separated from the particles in the particle sorting container 10. Here, the discharge part 28 is the lid part 10 a of the particle sorting container 10.
Attached spray port attachment portion 28a, spray port attachment portion 28a
And a spray port 28c provided at the tip of the spray guiding tube 28b.

【0019】また、液体貯留容器26と二流体ノズル1
2との間には、液体を二流体ノズル12へ供給するため
の液体供給管30が設けられている。この液体供給管3
0には、二流体ノズル12への液体供給量を調整するた
めのニードル弁32が設けられている。なお、二流体ノ
ズル12へは、液体貯留容器26以外からも分岐供給管
30aを介して液体を供給することができる。また、ノ
ズル供給用コンプレッサ34と二流体ノズル12との間
には、ノズル用気体を二流体ノズル12へ供給するため
の気体供給管36が設けられている。
Further, the liquid storage container 26 and the two-fluid nozzle 1
A liquid supply pipe 30 for supplying a liquid to the two-fluid nozzle 12 is provided between the two. This liquid supply pipe 3
At 0, a needle valve 32 for adjusting the liquid supply amount to the two-fluid nozzle 12 is provided. Liquid can be supplied to the two-fluid nozzle 12 from other than the liquid storage container 26 through the branch supply pipe 30a. Further, a gas supply pipe 36 for supplying the nozzle gas to the two-fluid nozzle 12 is provided between the nozzle supply compressor 34 and the two-fluid nozzle 12.

【0020】次に、この超微粒子発生装置2による超微
粒子の発生処理について説明する。なお、以下の説明に
おいては、二流体ノズル12に水を供給すると共に、ノ
ズル用気体及び二次気体として空気を供給する場合を例
として説明する。
Next, the processing for generating ultrafine particles by the ultrafine particle generator 2 will be described. In the following description, the case where water is supplied to the two-fluid nozzle 12 and air is supplied as the nozzle gas and the secondary gas will be described as an example.

【0021】この超微粒子発生装置2においては、ノズ
ル供給用コンプレッサ34から気体供給管36を介して
二流体ノズル12に空気(ノズル用気体)が供給される
と、この空気が二流体ノズル12の先端部の気体噴出口
から噴出され、この噴出力により液体貯留容器26内の
水が吸上げられ、液体供給管30を介して二流体ノズル
12に供給される。
In this ultrafine particle generator 2, when air (nozzle gas) is supplied from the nozzle supply compressor 34 to the two-fluid nozzle 12 via the gas supply pipe 36, this air is supplied to the two-fluid nozzle 12. It is ejected from the gas ejection port at the tip portion, and the ejection force sucks up the water in the liquid storage container 26 and supplies it to the two-fluid nozzle 12 via the liquid supply pipe 30.

【0022】二流体ノズル12においては、液体噴出口
から噴出される水が気体噴出口から噴出される空気によ
り破砕微細化されて、水の微粒子が噴出される。この二
流体ノズル12から噴出された水の微粒子は、整流コー
ン14内を通って微粒子分別容器10の下部まで導かれ
る。一方、二次気体用コンプレッサ16からの空気(二
次気体)が二次気体供給管18を介して整流コーン14
の下部の開口部付近に供給される。
In the two-fluid nozzle 12, the water ejected from the liquid ejection port is crushed into fine particles by the air ejected from the gas ejection port, and fine particles of water are ejected. The fine particles of water ejected from the two-fluid nozzle 12 are guided to the lower part of the fine particle sorting container 10 through the flow straightening cone 14. On the other hand, the air (secondary gas) from the secondary gas compressor 16 is rectified by the rectifying cone 14 via the secondary gas supply pipe 18.
Is supplied near the opening at the bottom of the.

【0023】微粒子分別容器10の下部まで導かれた微
粒子は、二流体ノズル12から噴出された空気(ノズル
用気体)及び二次気体による上昇流により、微粒子選別
プレート20,22,24により浮上を抑制されつつ、
微粒子選別プレート20,22,24に設けられた微粒
子通過孔20b,22b,24bを通って、徐々に微粒
子分別容器10内を浮上する。即ち、まず微粒子選別プ
レート24を通過した微粒子は、微粒子選別プレート2
2により浮上が抑制され、微粒子選別プレート24と微
粒子選別プレート22の間に所定の粒子径を有する微粒
子が滞留する。ここで粒子径の大きい微粒子は、重力に
より微粒子分別容器10の底部に落下する。
The fine particles introduced to the lower part of the fine particle sorting container 10 are floated by the fine particle selection plates 20, 22, 24 by the upward flow of the air (nozzle gas) ejected from the two-fluid nozzle 12 and the secondary gas. While being suppressed
The particles are gradually floated in the particle sorting container 10 through the particle passage holes 20b, 22b, 24b provided in the particle selection plates 20, 22, 24. That is, first, the fine particles that have passed through the fine particle selecting plate 24 are
Floating is suppressed by 2 and fine particles having a predetermined particle diameter are retained between the fine particle selection plate 24 and the fine particle selection plate 22. Here, the fine particles having a large particle diameter fall to the bottom of the fine particle sorting container 10 due to gravity.

【0024】また、微粒子選別プレート22を通過した
微粒子は、微粒子選別プレート20により浮上が抑制さ
れ、微粒子選別プレート22と微粒子選別プレート20
の間に所定の粒子径を有する微粒子が滞留する。ここで
粒子径の大きい微粒子は、重力により微粒子分別容器1
0の底部に落下する。なお、微粒子選別プレート22と
微粒子選別プレート20の間に滞留する微粒子の粒子径
は、微粒子選別プレート24と微粒子選別プレート22
の間に滞留する微粒子の粒子径よりも小さくなってい
る。
Further, the fine particles that have passed through the fine particle selecting plate 22 are suppressed from floating by the fine particle selecting plate 20, and the fine particle selecting plate 22 and the fine particle selecting plate 20.
During this period, fine particles having a predetermined particle size are retained. Here, the fine particles having a large particle size are separated by the gravity from the fine particle sorting container 1
Fall to the bottom of 0. It should be noted that the particle diameter of the fine particles staying between the fine particle selecting plate 22 and the fine particle selecting plate 20 is as follows.
It is smaller than the particle size of the fine particles that stay in the space.

【0025】このようにして微粒子が微粒子分別容器1
0内を浮上するにしたがい、粒子径の大きい微粒子は、
微粒子分別容器10の底部に落下し、均一な粒子径の超
微粒子のみが微粒子分別容器10の吐出部28から吐出
される。なお、微粒子分別容器10の底部にたまった水
は、液体排出口10bから排出され液体貯留容器26に
貯留され再利用される。
In this way, the fine particles are sorted into the fine particle sorting container 1
As it floats in 0,
The ultrafine particles having a uniform particle diameter are dropped to the bottom of the particle sorting container 10 and are discharged from the discharging portion 28 of the particle sorting container 10. The water accumulated at the bottom of the fine particle sorting container 10 is discharged from the liquid discharge port 10b and stored in the liquid storage container 26 for reuse.

【0026】この超微粒子発生装置2において、発生さ
せる超微粒子の粒子径を変化させる場合には、二流体ノ
ズル12に供給される空気(ノズル用気体)の圧力及び
微粒子分別容器10内に供給される二次気体の圧力を調
整する。即ち、ノズル供給用コンプレッサ34を制御し
て、二流体ノズル12に供給される空気(ノズル用気
体)の圧力を高くすると吐出部28から吐出される超微
粒子の粒子径が小さくなり、二流体ノズル12に供給さ
れる空気(ノズル用気体)の圧力を低くすると吐出部2
8から吐出される超微粒子の粒子径が大きくなる。即
ち、二流体ノズル12に供給される空気(ノズル用気
体)の圧力を高くすると二流体ノズル12から噴出され
る微粒子の粒子径が小さくなることから、超微粒子発生
装置2の吐出部28から吐出される超微粒子の粒子径が
小さくなる。
In the ultrafine particle generator 2, when changing the particle diameter of the ultrafine particles to be generated, the pressure of the air (gas for nozzle) supplied to the two-fluid nozzle 12 and the fine particle sorting container 10 are supplied. Adjust the pressure of the secondary gas. That is, by controlling the nozzle supply compressor 34 and increasing the pressure of the air (nozzle gas) supplied to the two-fluid nozzle 12, the particle size of the ultrafine particles discharged from the discharge part 28 becomes small, and the two-fluid nozzle When the pressure of the air (gas for nozzle) supplied to 12 is lowered, the discharge portion 2
The particle size of the ultrafine particles discharged from No. 8 becomes large. That is, when the pressure of the air (nozzle gas) supplied to the two-fluid nozzle 12 is increased, the particle diameter of the fine particles ejected from the two-fluid nozzle 12 becomes smaller, so that the ejection portion 28 of the ultrafine particle generator 2 ejects the particles. The particle diameter of the generated ultrafine particles is reduced.

【0027】また、二次気体用コンプレッサ16を制御
して微粒子分別容器10内に供給される空気(二次気
体)の圧力を高くすると吐出部28から吐出される超微
粒子の粒子径が小さくなり、空気(二次気体)の圧力を
を低くすると吐出部28から吐出される超微粒子の粒子
径が大きくなる。即ち、二次気体の圧力を高くすると微
粒子選別プレート20,22,24に設けられた微粒子
通過孔20b,22b,24bを通過する微粒子の量が
多くなることから、粒子径の大きい微粒子は通過しづら
くなり、粒子径の小さい微粒子が微粒子選別プレート2
0,22,24に設けられた微粒子通過孔20b,22
b,24bを通過して浮上するため、超微粒子発生装置
2の吐出部28から吐出される超微粒子の粒子径が小さ
くなる。なお、二次気体の圧力を調整することにより吐
出部28から吐出される超微粒子の粒子径の均一度を高
めることができる。
Further, when the pressure of the air (secondary gas) supplied into the fine particle sorting container 10 is increased by controlling the secondary gas compressor 16, the particle size of the ultra fine particles discharged from the discharge part 28 becomes smaller. When the pressure of the air (secondary gas) is lowered, the particle size of the ultrafine particles discharged from the discharge part 28 becomes large. That is, when the pressure of the secondary gas is increased, the amount of fine particles passing through the fine particle passage holes 20b, 22b, 24b provided in the fine particle selection plates 20, 22, 24 is increased, so that fine particles having a large particle diameter pass. Particles that become difficult and have small particle size
Fine particle passage holes 20b, 22 provided at 0, 22, 24
Since the particles pass through b and 24b and float, the particle size of the ultrafine particles discharged from the discharge part 28 of the ultrafine particle generator 2 becomes small. By adjusting the pressure of the secondary gas, it is possible to increase the uniformity of the particle diameter of the ultrafine particles discharged from the discharge unit 28.

【0028】また、微粒子分別容器10の吐出部28か
ら吐出される超微粒子の量を増加させるためには、液体
供給管30に設けられているニードル弁32を調整す
る。即ち、ニードル弁32を調整して二流体ノズル12
に供給される水の量を多くすることにより、吐出部28
から吐出される超微粒子の量を増大させることができ、
ニードル弁32を調整して二流体ノズル12に供給され
る水の量を少なくすることにより、吐出部28から吐出
される超微粒子の量を減少させることができる。
Further, in order to increase the amount of ultrafine particles discharged from the discharge part 28 of the particle sorting container 10, the needle valve 32 provided in the liquid supply pipe 30 is adjusted. That is, the needle valve 32 is adjusted to adjust the two-fluid nozzle 12
By increasing the amount of water supplied to the discharge part 28
It is possible to increase the amount of ultrafine particles discharged from
By adjusting the needle valve 32 to reduce the amount of water supplied to the two-fluid nozzle 12, it is possible to reduce the amount of ultrafine particles discharged from the discharge unit 28.

【0029】この実施の形態にかかる超微粒子発生装置
2によれば、省エネルギで、即ち、二流体ノズル12に
空気を供給すると共に微粒子分別容器10内に空気(二
次気体)を供給するだけで、微粒子を微粒子径(質量)
で分別し、5μm以下の均一な粒子径を有する水の超微
粒子を発生させることができる。また、二流体ノズル1
2に供給される水の量及び空気の圧力を調整すると共
に、微粒子分別容器10内に供給される空気(二次気体)
の圧力を調整することにより、所望の量の超微粒子を吐
出部28から吐出させることができると共に、所望の粒
子径を有する超微粒子を吐出部28から吐出させること
ができる。
According to the ultrafine particle generator 2 of this embodiment, energy is saved, that is, air is supplied to the two-fluid nozzle 12 and air (secondary gas) is supplied into the particle separation container 10. , Fine particle diameter (mass)
And ultrafine particles of water having a uniform particle diameter of 5 μm or less can be generated. Also, the two-fluid nozzle 1
The air (secondary gas) supplied to the fine particle sorting container 10 while adjusting the amount of water and the pressure of the air supplied to 2
By adjusting the pressure of, the desired amount of ultrafine particles can be ejected from the ejection unit 28, and the ultrafine particles having the desired particle size can be ejected from the ejection unit 28.

【0030】また、この超微粒子発生装置2において、
均一な粒子径を有する超微粒子を発生させることができ
るため、今日まで高度な技術が必要とされていた殺菌、
殺虫、消臭、超薄膜コーティング、造粒、燃焼等超微粒
子を必要とする分野において安価に利用することができ
る。
Further, in this ultrafine particle generator 2,
Since it is possible to generate ultrafine particles with a uniform particle size, sterilization, which required advanced technology to date,
It can be used at low cost in fields requiring ultrafine particles such as insecticidal, deodorant, ultrathin film coating, granulation and combustion.

【0031】なお、上述の実施の形態の微粒子分別容器
10の吐出部28から吐出される超微粒子に電荷を供給
するようにしてもよい。即ち、図5に示すように、電源
装置40により所望の直流高電圧を吐出部28の噴霧口
28cに給電し、吐出部28から吐出される超微粒子に
電荷を供給して帯電させる。このようにして超微粒子を
帯電させることにより、噴霧、塗布しようとする対象物
への超微粒子の付着効率を向上させることができる。
It should be noted that electric charge may be supplied to the ultra-fine particles discharged from the discharging portion 28 of the particle sorting container 10 of the above-described embodiment. That is, as shown in FIG. 5, a desired high DC voltage is supplied from the power supply device 40 to the spray port 28c of the ejection unit 28, and the ultrafine particles ejected from the ejection unit 28 are supplied with electric charges to be charged. By charging the ultrafine particles in this manner, it is possible to improve the adhesion efficiency of the ultrafine particles to the object to be sprayed or applied.

【0032】また、上述の実施の形態の超微粒子発生装
置においては、二流体ノズルに水を供給して水の超微粒
子を発生させているが、二流体ノズルに薬液、油類、溶
剤、樹脂等を供給して、薬液、油類、溶剤、樹脂等の超
微粒子を発生させるようにしてもよい。
In addition, in the ultrafine particle generator of the above-described embodiment, water is supplied to the two-fluid nozzle to generate ultrafine particles of water. However, the two-fluid nozzle uses chemicals, oils, solvents, and resins. Etc. may be supplied to generate ultrafine particles of chemicals, oils, solvents, resins and the like.

【0033】次に、この超微粒子発生装置2において発
生させた超微粒子の粒子径及び粒子径毎の存在割合の測
定結果を示す。図6は、二流体ノズル12に供給される
空気の圧力を0.3MPa、二流体ノズル12に供給さ
れる液体の量を10ml/minとし、微粒子分別容器
10内に所定の圧力の二次気体(空気)を供給し、超微粒
子発生装置2により発生される超微粒子の粒子径と、そ
の存在割合を測定した結果を示す図である。この図に示
すように発生した超微粒子は、粒子径が3.9〜5.0
μmのものが100%であり、均一な粒子径を有する超
微粒子を発生させることができることが確認できた。
Next, the measurement results of the particle size of the ultrafine particles generated in this ultrafine particle generator 2 and the existence ratio of each particle size will be shown. In FIG. 6, the pressure of the air supplied to the two-fluid nozzle 12 is 0.3 MPa, the amount of the liquid supplied to the two-fluid nozzle 12 is 10 ml / min, and the secondary gas of a predetermined pressure is stored in the fine particle sorting container 10. It is a figure which shows the result of having supplied (air) and measuring the particle diameter of the ultrafine particle generated by the ultrafine particle generator 2 and its abundance ratio. The ultrafine particles generated as shown in this figure have a particle size of 3.9 to 5.0.
It was confirmed that it was possible to generate ultrafine particles having a uniform particle size, since the particles having a particle size of 100 μm were 100%.

【0034】また、図7は、二流体ノズル12に供給さ
れる空気の圧力を0.5MPa、二流体ノズル12に供
給される液体の量を10ml/minとし、微粒子分別
容器10内に、図6に示す場合よりも高い所定の圧力の
二次気体(空気)を供給し、超微粒子発生装置2により発
生される超微粒子の粒子径と、その存在割合を測定した
結果を示す図である。この図に示すように発生した超微
粒子は、粒子径が1.8〜2.7μmのものが96.1
%であり、二次気体の圧力を高くすることにより、超微
粒子の粒子径を小さくすることができることが確認でき
た。
In FIG. 7, the pressure of the air supplied to the two-fluid nozzle 12 is 0.5 MPa, the amount of the liquid supplied to the two-fluid nozzle 12 is 10 ml / min, and the inside of the fine particle sorting container 10 is shown in FIG. 6 is a diagram showing the results of measuring the particle size of ultrafine particles generated by the ultrafine particle generator 2 and the abundance ratio thereof by supplying a secondary gas (air) having a predetermined pressure higher than that shown in FIG. The ultrafine particles generated as shown in this figure have a particle size of 1.8 to 2.7 μm and are 96.1.
%, And it was confirmed that the particle size of the ultrafine particles can be reduced by increasing the pressure of the secondary gas.

【0035】[0035]

【発明の効果】この発明によれば、分別容器内の微粒子
は、微粒子選別プレートにより浮上を抑制されつつ、微
粒子選別プレートに設けられた微粒子通過孔を通って、
徐々に分別容器内を浮上する。この間に粒子径の大きい
微粒子は、分別容器の底部に落下し、吐出部から均一な
粒子径を有する超微粒子が吐出される。
According to the present invention, the fine particles in the sorting container are prevented from floating by the fine particle sorting plate, and pass through the fine particle passage holes provided in the fine particle sorting plate,
Gradually float in the sorting container. During this time, the fine particles having a large particle diameter fall to the bottom of the sorting container, and the ultrafine particles having a uniform particle diameter are discharged from the discharging portion.

【0036】また、微粒子発生ノズルに供給される液体
の量及び気体の圧力を調整すると共に、分別容器内に供
給される二次気体の圧力を調整することにより、所望の
量の超微粒子を吐出部から吐出させることができると共
に、所望の粒子径を有する超微粒子を吐出部から吐出さ
せることができる。
Further, by adjusting the amount of liquid and the pressure of gas supplied to the fine particle generating nozzle and the pressure of the secondary gas supplied into the sorting container, a desired amount of ultrafine particles are discharged. In addition to being able to discharge from the discharge section, ultrafine particles having a desired particle size can be discharged from the discharge section.

【0037】また、吐出部から吐出される超微粒子に電
荷を供給することにより帯電させることができるため、
噴霧、塗布しようとする対象物への付着効率を向上させ
ることができる。
Further, since the ultrafine particles discharged from the discharging portion can be charged by being charged,
It is possible to improve the adhesion efficiency to the object to be sprayed and applied.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施の形態にかかる超微粒子発生装
置の概略構成図である。
FIG. 1 is a schematic configuration diagram of an ultrafine particle generator according to an embodiment of the present invention.

【図2】この発明の実施の形態にかかる微粒子選別プレ
ートを示す図である。
FIG. 2 is a diagram showing a particle selection plate according to the embodiment of the present invention.

【図3】この発明の実施の形態にかかる微粒子選別プレ
ートを示す図である。
FIG. 3 is a view showing a fine particle selection plate according to the embodiment of the present invention.

【図4】この発明の実施の形態にかかる微粒子選別プレ
ートを示す図である。
FIG. 4 is a view showing a fine particle sorting plate according to the embodiment of the present invention.

【図5】この発明の実施の形態において吐出部に対して
電荷を供給するための構成を説明するための図である。
FIG. 5 is a diagram for explaining a configuration for supplying charges to the ejection portion in the embodiment of the present invention.

【図6】この発明の実施の形態にかかる超微粒子発生装
置により発生させた超微粒子の粒子径及び粒子径毎の存
在割合の測定結果を示す図である。
FIG. 6 is a diagram showing measurement results of particle diameters of ultrafine particles generated by the ultrafine particle generating apparatus according to the embodiment of the present invention and abundance ratios for each particle diameter.

【図7】この発明の実施の形態にかかる超微粒子発生装
置により発生させた超微粒子の粒子径及び粒子径毎の存
在割合の測定結果を示す図である。
FIG. 7 is a diagram showing the measurement results of the particle diameter of ultrafine particles generated by the ultrafine particle generating apparatus according to the embodiment of the present invention and the existence ratio for each particle diameter.

【図8】二流体ノズルにより発生させた超微粒子の粒子
径及び粒子径毎の存在割合の測定結果を示す図である。
FIG. 8 is a diagram showing the measurement results of the particle size of ultrafine particles generated by a two-fluid nozzle and the abundance ratio for each particle size.

【符号の説明】[Explanation of symbols]

2…超微粒子発生装置、10…微粒子分別容器、12…
二流体ノズル、14…整流コーン、16…二次気体用コ
ンプレッサ、20,22,24…微粒子選別プレート、
26…液体貯留容器、28…吐出部、32…ニードル
弁、34…ノズル供給用コンプレッサ、40…電源装
置。
2 ... Ultrafine particle generator, 10 ... Fine particle sorting container, 12 ...
Two-fluid nozzle, 14 ... Straightening cone, 16 ... Compressor for secondary gas, 20, 22, 24 ... Fine particle selection plate,
26 ... Liquid storage container, 28 ... Discharge part, 32 ... Needle valve, 34 ... Nozzle supply compressor, 40 ... Power supply device.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F033 BA03 DA01 EA01 GA00 JA06 LA04 QA10 QB02Y QB03X QB12Y QB15X QB16X QB17 QB18 QC08 QD02 QD11 QD13 QD16 QE01 QE13 QE14 QE24 QF07Y QF17X QF23 QK16X QK18Y QK23X QK23Y QK25X QK25Y 4G004 EA06 EA08 4G075 AA13 BB08 BB10 BD03 BD13 DA02 EA01 EB01 EC01 EC09 FA02    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4F033 BA03 DA01 EA01 GA00 JA06                       LA04 QA10 QB02Y QB03X                       QB12Y QB15X QB16X QB17                       QB18 QC08 QD02 QD11 QD13                       QD16 QE01 QE13 QE14 QE24                       QF07Y QF17X QF23 QK16X                       QK18Y QK23X QK23Y QK25X                       QK25Y                 4G004 EA06 EA08                 4G075 AA13 BB08 BB10 BD03 BD13                       DA02 EA01 EB01 EC01 EC09                       FA02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 液体を気体により破砕微粒化して液体の
微粒子を発生させる微粒子発生ノズルと、前記微粒子発
生ノズルにより発生させた微粒子を分別する分別容器
と、前記分別容器において微粒子から分別された超微粒
子を吐出させる吐出部とを備える超微粒子発生装置であ
って、 前記分別容器は、前記微粒子発生ノズルにより発生させ
た微粒子を、この分別容器の下部まで導く整流部材と、 前記整流部材により分別容器の下部まで導かれた微粒子
の浮上を抑制し、微粒子の選別を行う微粒子選別プレー
トとを備えることを特徴とする超微粒子発生装置。
1. A fine particle generating nozzle for crushing and atomizing a liquid by gas to generate fine particles of the liquid, a sorting container for sorting the fine particles generated by the fine particle generating nozzle, and an ultra-fine powder separated from the fine particles in the sorting container. An ultrafine particle generator comprising a discharge unit for discharging fine particles, wherein the classification container is a rectifying member for guiding the particles generated by the particle generation nozzle to a lower portion of the classification container, and the rectifying member for separating the container. An ultrafine particle generator, comprising: a fine particle selection plate that suppresses the floating of the fine particles that have been guided to the lower part of the particle and selects the fine particles.
【請求項2】 前記分別容器内には、微粒子が通過する
複数の微粒子通過孔が設けられた前記微粒子選別プレー
トが複数枚配置され、 下側に位置する前記微粒子選別プレートに設けらた前記
微粒子通過孔の大きさは、上側に位置する前記微粒子選
別プレートに設けらた前記微粒子通過孔の大きさに比較
して大きいことを特徴とする請求項1記載の超微粒子発
生装置。
2. A plurality of the fine particle selection plates provided with a plurality of fine particle passage holes through which fine particles pass, and the fine particles provided on the lower fine particle selection plate. 2. The ultrafine particle generator according to claim 1, wherein the size of the passage hole is larger than the size of the fine particle passage hole provided in the fine particle selection plate located above.
【請求項3】 前記分別容器内の微粒子を上昇させるた
めの二次気体を前記分別容器内に供給する二次気体供給
手段を更に備えることを特徴とする請求項1又は請求項
2記載の超微粒子発生装置。
3. The supermarket according to claim 1, further comprising secondary gas supply means for supplying a secondary gas for raising fine particles in the separation container into the separation container. Particle generator.
【請求項4】 前記微粒子発生ノズルに供給される液体
の量を調整する液量調整手段と、前記微粒子発生ノズル
に供給される気体の圧力を調整するノズル供給気体圧調
整手段と、前記分別容器内に供給される二次気体の圧力
を調整する二次気体圧調整手段とを更に備え、 前記微粒子発生ノズルに供給される液体の量及び気体の
圧力を調整すると共に、前記分別容器内に供給される二
次気体の圧力を調整することにより、前記吐出部から吐
出される超微粒子の量及び粒子径を制御することを特徴
とする請求項1〜請求項3の何れか一項に記載の超微粒
子発生装置。
4. A liquid amount adjusting means for adjusting the amount of liquid supplied to the particle generation nozzle, a nozzle supply gas pressure adjusting means for adjusting the pressure of gas supplied to the particle generation nozzle, and the separation container. Further comprising a secondary gas pressure adjusting means for adjusting the pressure of the secondary gas supplied into the separation container, while adjusting the amount of liquid and the gas pressure supplied to the particle generation nozzle. The amount and the particle diameter of the ultrafine particles discharged from the discharge unit are controlled by adjusting the pressure of the secondary gas that is generated. Ultrafine particle generator.
【請求項5】 前記吐出部から吐出される超微粒子に対
して電荷を供給する電荷供給手段を更に備えることを特
徴とする請求項1〜請求項4の何れか一項に記載の超微
粒子発生装置。
5. The ultrafine particle generation according to claim 1, further comprising a charge supply unit that supplies an electric charge to the ultrafine particles ejected from the ejection unit. apparatus.
JP2001197926A 2001-06-29 2001-06-29 Ultrafine particle generator Expired - Lifetime JP4647845B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001197926A JP4647845B2 (en) 2001-06-29 2001-06-29 Ultrafine particle generator
PCT/JP2002/006413 WO2003002263A1 (en) 2001-06-29 2002-06-26 Ultra-fine particulate generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001197926A JP4647845B2 (en) 2001-06-29 2001-06-29 Ultrafine particle generator

Publications (2)

Publication Number Publication Date
JP2003010741A true JP2003010741A (en) 2003-01-14
JP4647845B2 JP4647845B2 (en) 2011-03-09

Family

ID=19035450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001197926A Expired - Lifetime JP4647845B2 (en) 2001-06-29 2001-06-29 Ultrafine particle generator

Country Status (2)

Country Link
JP (1) JP4647845B2 (en)
WO (1) WO2003002263A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003062449A (en) * 2001-08-29 2003-03-04 Tomohiko Hashiba Manufacturing apparatus for ultrafine particle
JP2005313050A (en) * 2004-04-28 2005-11-10 Atomakkusu:Kk Particulate spraying apparatus
JP2005313049A (en) * 2004-04-28 2005-11-10 Atomakkusu:Kk Particulate injection device
JP2006297325A (en) * 2005-04-22 2006-11-02 Ricoh Co Ltd Particle production apparatus, production method of particle group, and particle group and receiving body
JP2007536076A (en) * 2004-05-04 2007-12-13 エア アロマ インターナショナル ピーティーワイ. リミテッド Plant essential oil spraying equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017209068A1 (en) * 2017-05-30 2018-12-06 Bielomatik Leuze Gmbh + Co. Kg An aerosol device and method for providing an aerosol

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024874A (en) * 1998-06-27 2000-01-25 Acculube Mfg Gmbh Schmiermittel & Geraet Producing device for fine oil mist

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH566822A5 (en) * 1973-06-20 1975-09-30 Stern Freres Sa
JPS6377650U (en) * 1986-11-10 1988-05-23
JPH03215931A (en) * 1990-01-22 1991-09-20 Hitachi Ltd Formation of photoresist
JPH11285630A (en) * 1998-02-05 1999-10-19 Sharp Corp Production of hydrophilic grain and production device
JP2002052355A (en) * 2000-08-08 2002-02-19 Hayashi Seiko:Kk Fine mist generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024874A (en) * 1998-06-27 2000-01-25 Acculube Mfg Gmbh Schmiermittel & Geraet Producing device for fine oil mist

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003062449A (en) * 2001-08-29 2003-03-04 Tomohiko Hashiba Manufacturing apparatus for ultrafine particle
JP2005313050A (en) * 2004-04-28 2005-11-10 Atomakkusu:Kk Particulate spraying apparatus
JP2005313049A (en) * 2004-04-28 2005-11-10 Atomakkusu:Kk Particulate injection device
JP4551117B2 (en) * 2004-04-28 2010-09-22 株式会社アトマックス Fine particle spray device
JP2007536076A (en) * 2004-05-04 2007-12-13 エア アロマ インターナショナル ピーティーワイ. リミテッド Plant essential oil spraying equipment
JP2006297325A (en) * 2005-04-22 2006-11-02 Ricoh Co Ltd Particle production apparatus, production method of particle group, and particle group and receiving body
JP4594789B2 (en) * 2005-04-22 2010-12-08 株式会社リコー Particle manufacturing apparatus and particle group manufacturing method

Also Published As

Publication number Publication date
JP4647845B2 (en) 2011-03-09
WO2003002263A1 (en) 2003-01-09

Similar Documents

Publication Publication Date Title
CN109759958B (en) Electrostatic nozzle and controllable jet flow micro-lubrication grinding system
US5839951A (en) Separator for blasting apparatus
US11845100B2 (en) Electrospray device for fluidized bed apparatus, fluidized bed apparatus and method
CN105636745A (en) Blast machining method and blast machining device
CN104815753A (en) Floating agglomeration electromagnetic fine selection equipment
JP2003010741A (en) Apparatus for generating superfine particle
JP2003062074A (en) Aspiration unit
JPWO2019176768A1 (en) Slurry storage stirring device and slurry stirring method
JP4477798B2 (en) Ultrafine particle generator
CN102397812A (en) Colliding fluidized bed air flow crusher with separation function
US1180089A (en) Process and apparatus for separation of ores by flotation.
JP4053379B2 (en) Fluidized bed equipment
JP5113308B2 (en) Ultrafine particle production equipment
JP4740493B2 (en) Pesticide application method
JP4551117B2 (en) Fine particle spray device
CN213967719U (en) Grading plant of fine powder
JP2660424B2 (en) Method and apparatus for producing fine particles of liquid or melt
CN110603907B (en) Heat removal method and heat removal system
US6040004A (en) Method and apparatus for fabricating a particle-coated substrate, and such substrate
JP2020050900A (en) Method for producing magnetic alloy powders
CN110756375B (en) Double-layer continuous ultrasonic atomization grading device and grading method
JPS5839824Y2 (en) Classifier
JPS5687457A (en) Liquid coater
JP2596450B2 (en) Method for adjusting density of aerosol composed of liquid or molten fine particles
JP2015134952A (en) Pulverization and classification device and aerosol deposition device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20010716

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070115

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4647845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term